
InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets

Xi Chen†‡, Yan Duan†‡, Rein Houthooft†‡, John Schulman†‡, Ilya Sutskever‡, Pieter Abbeel†‡
† UC Berkeley, Department of Electrical Engineering and Computer Sciences

‡ OpenAI

Abstract

This paper describes InfoGAN, an information-theoretic extension to the Gener-
ative Adversarial Network that is able to learn disentangled representations in a
completely unsupervised manner. InfoGAN is a generative adversarial network
that also maximizes the mutual information between a small subset of the latent
variables and the observation. We derive a lower bound of the mutual information
objective that can be optimized efficiently. Specifically, InfoGAN successfully
disentangles writing styles from digit shapes on the MNIST dataset, pose from
lighting of 3D rendered images, and background digits from the central digit on
the SVHN dataset. It also discovers visual concepts that include hair styles, pres-
ence/absence of eyeglasses, and emotions on the CelebA face dataset. Experiments
show that InfoGAN learns interpretable representations that are competitive with
representations learned by existing supervised methods.

1 Introduction

Unsupervised learning can be described as the general problem of extracting value from unlabelled
data which exists in vast quantities. A popular framework for unsupervised learning is that of
representation learning [1, 2], whose goal is to use unlabelled data to learn a representation that
exposes important semantic features as easily decodable factors. A method that can learn such
representations is likely to exist [2], and to be useful for many downstream tasks which include
classification, regression, visualization, and policy learning in reinforcement learning.

While unsupervised learning is ill-posed because the relevant downstream tasks are unknown at
training time, a disentangled representation, one which explicitly represents the salient attributes of a
data instance, should be helpful for the relevant but unknown tasks. For example, for a dataset of
faces, a useful disentangled representation may allocate a separate set of dimensions for each of the
following attributes: facial expression, eye color, hairstyle, presence or absence of eyeglasses, and the
identity of the corresponding person. A disentangled representation can be useful for natural tasks
that require knowledge of the salient attributes of the data, which include tasks like face recognition
and object recognition. It is not the case for unnatural supervised tasks, where the goal could be,
for example, to determine whether the number of red pixels in an image is even or odd. Thus, to be
useful, an unsupervised learning algorithm must in effect correctly guess the likely set of downstream
classification tasks without being directly exposed to them.

A significant fraction of unsupervised learning research is driven by generative modelling. It is
motivated by the belief that the ability to synthesize, or “create” the observed data entails some form
of understanding, and it is hoped that a good generative model will automatically learn a disentangled
representation, even though it is easy to construct perfect generative models with arbitrarily bad
representations. The most prominent generative models are the variational autoencoder (VAE) [3]
and the generative adversarial network (GAN) [4].

ar
X

iv
:1

60
6.

03
65

7v
1

 [
cs

.L
G

]
 1

2
Ju

n
20

16

In this paper, we present a simple modification to the generative adversarial network objective that
encourages it to learn interpretable and meaningful representations. We do so by maximizing the
mutual information between a fixed small subset of the GAN’s noise variables and the observations,
which turns out to be relatively straightforward. Despite its simplicity, we found our method to be
surprisingly effective: it was able to discover highly semantic and meaningful hidden representations
on a number of image datasets: digits (MNIST), faces (CelebA), and house numbers (SVHN). The
quality of our unsupervised disentangled representation matches previous works that made use of
supervised label information [5–9]. These results suggest that generative modelling augmented with
a mutual information cost could be a fruitful approach for learning disentangled representations.

In the remainder of the paper, we begin with a review of the related work, noting the supervision that is
required by previous methods that learn disentangled representations. Then we review GANs, which
is the basis of InfoGAN. We describe how maximizing mutual information results in interpretable
representations and derive a simple and efficient algorithm for doing so. Finally, in the experiments
section, we first compare InfoGAN with prior approaches on relatively clean datasets and then
show that InfoGAN can learn interpretable representations on complex datasets where no previous
unsupervised approach is known to learn representations of comparable quality.

2 Related Work

There exists a large body of work on unsupervised representation learning. Early methods were
based on stacked (often denoising) autoencoders or restricted Boltzmann machines [10–13]. A lot of
promising recent work originates from the Skip-gram model [14], which inspired the skip-thought
vectors [15] and several techniques for unsupervised feature learning of images [16].

Another intriguing line of work consists of the ladder network [17], which has achieved spectacular
results on a semi-supervised variant of the MNIST dataset. More recently, a model based on the
VAE has achieved even better semi-supervised results on MNIST [18]. GANs [4] have been used by
Radford et al. [19] to learn an image representation that supports basic linear algebra on code space.
Lake et al. [20] have been able to learn representations using probabilistic inference over Bayesian
programs, which achieved convincing one-shot learning results on the OMNI dataset.

In addition, prior research attempted to learn disentangled representations using supervised data.
One class of such methods trains a subset of the representation to match the supplied label using
supervised learning: bilinear models [21] separate style and content; multi-view perceptron [22]
separate face identity and view point; and Yang et al. [23] developed a recurrent variant that generates
a sequence of latent factor transformations. Similarly, VAEs [5] and Adversarial Autoencoders [9]
were shown to learn representations in which class label is separated from other variations.

Recently several weakly supervised methods were developed to remove the need of explicitly
labeling variations. disBM [24] is a higher-order Boltzmann machine which learns a disentangled
representation by “clamping” a part of the hidden units for a pair of data points that are known to
match in all but one factors of variation. DC-IGN [7] extends this “clamping” idea to VAE and
successfully learns graphics codes that can represent pose and light in 3D rendered images. This line
of work yields impressive results, but they rely on a supervised grouping of the data that is generally
not available. Whitney et al. [8] proposed to alleviate the grouping requirement by learning from
consecutive frames of images and use temporal continuity as supervisory signal.

Unlike the cited prior works that strive to recover disentangled representations, InfoGAN requires
no supervision of any kind. To the best of our knowledge, the only other unsupervised method that
learns disentangled representations is hossRBM [13], a higher-order extension of the spike-and-slab
restricted Boltzmann machine that can disentangle emotion from identity on the Toronto Face Dataset
[25]. However, hossRBM can only disentangle discrete latent factors, and its computation cost grows
exponentially in the number of factors. InfoGAN can disentangle both discrete and continuous latent
factors, scale to complicated datasets, and typically requires no more training time than regular GAN.

3 Background: Generative Adversarial Networks

Goodfellow et al. [4] introduced the Generative Adversarial Networks (GAN), a framework for
training deep generative models using a minimax game. The goal is to learn a generator distribution

2

PG(x) that matches the real data distribution Pdata(x). Instead of trying to explicitly assign probability
to every x in the data distribution, GAN learns a generator network G that generates samples from
the generator distribution PG by transforming a noise variable z ∼ Pnoise(z) into a sample G(z).
This generator is trained by playing against an adversarial discriminator network D that aims to
distinguish between samples from the true data distribution Pdata and the generator’s distribution PG.
So for a given generator, the optimal discriminator is D(x) = Pdata(x)/(Pdata(x) + PG(x)). More
formally, the minimax game is given by the following expression:

min
G

max
D

V (D,G) = Ex∼Pdata [logD(x)] + Ez∼noise[log (1−D(G(z)))] (1)

4 Mutual Information for Inducing Latent Codes

The GAN formulation uses a simple factored continuous input noise vector z, while imposing no
restrictions on the manner in which the generator may use this noise. As a result, it is possible that
the noise will be used by the generator in a highly entangled way, causing the individual dimensions
of z to not correspond to semantic features of the data.

However, many domains naturally decompose into a set of semantically meaningful factors of
variation. For instance, when generating images from the MNIST dataset, it would be ideal if the
model automatically chose to allocate a discrete random variable to represent the numerical identity
of the digit (0-9), and chose to have two additional continuous variables that represent the digit’s
angle and thickness of the digit’s stroke. It is the case that these attributes are both independent and
salient, and it would be useful if we could recover these concepts without any supervision, by simply
specifying that an MNIST digit is generated by an independent 1-of-10 variable and two independent
continuous variables.

In this paper, rather than using a single unstructured noise vector, we propose to decompose the input
noise vector into two parts: (i) z, which is treated as source of incompressible noise; (ii) c, which we
will call the latent code and will target the salient structured semantic features of the data distribution.

Mathematically, we denote the set of structured latent variables by c1, c2, . . . , cL. In its simplest
form, we may assume a factored distribution, given by P (c1, c2, . . . , cL) =

∏L
i=1 P (ci). For ease of

notation, we will use latent codes c to denote the concatenation of all latent variables ci.

We now propose a method for discovering these latent factors in an unsupervised way: we provide
the generator network with both the incompressible noise z and the latent code c, so the form of the
generator becomes G(z, c). However, in standard GAN, the generator is free to ignore the additional
latent code c by finding a solution satisfying PG(x|c) = PG(x). To cope with the problem of trivial
codes, we propose an information-theoretic regularization: there should be high mutual information
between latent codes c and generator distribution G(z, c). Thus I(c;G(z, c)) should be high.

In information theory, mutual information between X and Y , I(X;Y), measures the “amount of
information” learned from knowledge of random variable Y about the other random variable X . The
mutual information can be expressed as the difference of two entropy terms:

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X) (2)

This definition has an intuitive interpretation: I(X;Y) is the reduction of uncertainty in X when Y
is observed. If X and Y are independent, then I(X;Y) = 0, because knowing one variable reveals
nothing about the other; by contrast, if X and Y are related by a deterministic, invertible function,
then maximal mutual information is attained. This interpretation makes it easy to formulate a cost:
given any x ∼ PG(x), we want PG(c|x) to have a small entropy. In other words, the information in
the latent code c should not be lost in the generation process. Similar mutual information inspired
objectives have been considered before in the context of clustering [26–28]. Therefore, we propose
to solve the following information-regularized minimax game:

min
G

max
D

VI(D,G) = V (D,G)− λI(c;G(z, c)) (3)

5 Variational Mutual Information Maximization

In practice, the mutual information term I(c;G(z, c)) is hard to maximize directly as it requires
access to the posterior P (c|x). Fortunately we can obtain a lower bound of it by defining an auxiliary

3

distribution Q(c|x) to approximate P (c|x):
I(c;G(z, c)) = H(c)−H(c|G(z, c))

= Ex∼G(z,c)[Ec′∼P (c|x)[logP (c
′|x)]] +H(c)

= Ex∼G(z,c)[DKL(P (·|x) ‖ Q(·|x))︸ ︷︷ ︸
≥0

+Ec′∼P (c|x)[logQ(c′|x)]] +H(c)

≥ Ex∼G(z,c)[Ec′∼P (c|x)[logQ(c′|x)]] +H(c)

(4)

This technique of lower bounding mutual information is known as Variational Information Maximiza-
tion [29]. We note in addition that the entropy of latent codes H(c) can be optimized over as well
since for common distributions it has a simple analytical form. However, in this paper we opt for
simplicity by fixing the latent code distribution and we will treat H(c) as a constant. So far we have
bypassed the problem of having to compute the posterior P (c|x) explicitly via this lower bound but
we still need to be able to sample from the posterior in the inner expectation. Next we state a simple
lemma, with its proof deferred to Appendix, that removes the need to sample from the posterior.

Lemma 5.1 For random variables X,Y and function f(x, y) under suitable regularity conditions:
Ex∼X,y∼Y |x[f(x, y)] = Ex∼X,y∼Y |x,x′∼X|y[f(x′, y)].

By using Lemma A.1, we can define a variational lower bound, LI(G,Q), of the mutual information,
I(c;G(z, c)):

LI(G,Q) = Ec∼P (c),x∼G(z,c)[logQ(c|x)] +H(c)

= Ex∼G(z,c)[Ec′∼P (c|x)[logQ(c′|x)]] +H(c)

≤ I(c;G(z, c))
(5)

We note that LI(G,Q) is easy to approximate with Monte Carlo simulation. In particular, LI can
be maximized w.r.t. Q directly and w.r.t. G via the reparametrization trick. Hence LI(G,Q) can be
added to GAN’s objectives with no change to GAN’s training procedure and we call the resulting
algorithm Information Maximizing Generative Adversarial Networks (InfoGAN).

Eq (4) shows that the lower bound becomes tight as the auxiliary distribution Q approaches the
true posterior distribution: Ex[DKL(P (·|x) ‖ Q(·|x))] → 0. In addition, we know that when the
variational lower bound attains its maximum LI(G,Q) = H(c) for discrete latent codes, the bound
becomes tight and the maximal mutual information is achieved. In Appendix, we note how InfoGAN
can be connected to the Wake-Sleep algorithm [30] to provide an alternative interpretation.

Hence, InfoGAN is defined as the following minimax game with a variational regularization of
mutual information and a hyperparameter λ:

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λLI(G,Q) (6)

6 Implementation

In practice, we parametrize the auxiliary distribution Q as a neural network. In most experiments, Q
and D share all convolutional layers and there is one final fully connected layer to output parameters
for the conditional distribution Q(c|x), which means InfoGAN only adds a negligible computation
cost to GAN. We have also observed that LI(G,Q) always converges faster than normal GAN
objectives and hence InfoGAN essentially comes for free with GAN.

For categorical latent code ci, we use the natural choice of softmax nonlinearity to represent Q(ci|x).
For continuous latent code cj , there are more options depending on what is the true posterior P (cj |x).
In our experiments, we have found that simply treating Q(cj |x) as a factored Gaussian is sufficient.

Even though InfoGAN introduces an extra hyperparameter λ, it’s easy to tune and simply setting to 1
is sufficient for discrete latent codes. When the latent code contains continuous variables, a smaller λ
is typically used to ensure that λLI(G,Q), which now involves differential entropy, is on the same
scale as GAN objectives.

Since GAN is known to be difficult to train, we design our experiments based on existing techniques
introduced by DC-GAN [19], which are enough to stabilize InfoGAN training and we did not have to
introduce new trick. Detailed experimental setup is described in Appendix.

4

7 Experiments

The first goal of our experiments is to investigate if mutual information can be maximized efficiently.
The second goal is to evaluate if InfoGAN can learn disentangled and interpretable representations
by making use of the generator to vary only one latent factor at a time in order to assess if varying
such factor results in only one type of semantic variation in generated images. DC-IGN [7] also uses
this method to evaluate their learned representations on 3D image datasets, on which we also apply
InfoGAN to establish direct comparison.

7.1 Mutual Information Maximization

0 200 400 600 800 1000

Iteration

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

L
I

InfoGAN
GAN

Figure 1: Lower bound LI

over training iterations

To evaluate whether the mutual information between latent codes c and
generated images G(z, c) can be maximized efficiently with proposed
method, we train InfoGAN on MNIST dataset with a uniform categor-
ical distribution on latent codes c ∼ Cat(K = 10, p = 0.1). In Fig 1,
the lower bound LI(G,Q) is quickly maximized to H(c) ≈ 2.30,
which means the bound (4) is tight and maximal mutual information
is achieved.

As a baseline, we also train a regular GAN with an auxiliary distribu-
tion Q when the generator is not explicitly encouraged to maximize
the mutual information with the latent codes. Since we use expressive
neural network to parametrize Q, we can assume that Q reasonably
approximates the true posterior P (c|x) and hence there is little mutual
information between latent codes and generated images in regular
GAN. We note that with a different neural network architecture, there
might be a higher mutual information between latent codes and generated images even though we
have not observed such case in our experiments. This comparison is meant to demonstrate that in a
regular GAN, there is no guarantee that the generator will make use of the latent codes.

7.2 Disentangled Representation

To disentangle digit shape from styles on MNIST, we choose to model the latent codes with one
categorical code, c1 ∼ Cat(K = 10, p = 0.1), which can model discontinuous variation in data, and
two continuous codes that can capture variations that are continuous in nature: c2, c3 ∼ Unif(−1, 1).
In Figure 2, we show that the discrete code c1 captures drastic change in shape. Changing categorical
code c1 switches between digits most of the time. In fact even if we just train InfoGAN without
any label, c1 can be used as a classifier that achieves 5% error rate in classifying MNIST digits by
matching each category in c1 to a digit type. In the second row of Figure 2a, we can observe a digit 7
is classified as a 9.

Continuous codes c2, c3 capture continuous variations in style: c2 models rotation of digits and c3
controls the width. What is remarkable is that in both cases, the generator does not simply stretch
or rotate the digits but instead adjust other details like thickness or stroke style to make sure the
resulting images are natural looking. As a test to check whether the latent representation learned
by InfoGAN is generalizable, we manipulated the latent codes in an exaggerated way: instead of
plotting latent codes from −1 to 1, we plot it from −2 to 2 covering a wide region that the network
was never trained on and we still get meaningful generalization.

Next we evaluate InfoGAN on two datasets of 3D images: faces [31] and chairs [32], on which
DC-IGN was shown to learn highly interpretable graphics codes.

On the faces dataset, DC-IGN learns to represent latent factors as azimuth (pose), elevation, and
lighting as continuous latent variables by using supervision. Using the same dataset, we demonstrate
that InfoGAN learns a disentangled representation that recover azimuth (pose), elevation, and lighting
on the same dataset. In this experiment, we choose to model the latent codes with five continuous
codes, ci ∼ Unif(−1, 1) with 1 ≤ i ≤ 5.

Since DC-IGN requires supervision, it was previously not possible to learn a latent code for a variation
that’s unlabeled and hence salient latent factors of variation cannot be discovered automatically from
data. By contrast, InfoGAN is able to discover such variation on its own: for instance, in Figure 3d a

5

(a) Varying c1 on InfoGAN (Digit type) (b) Varying c1 on regular GAN (No clear meaning)

(c) Varying c2 from −2 to 2 on InfoGAN (Rotation) (d) Varying c3 from −2 to 2 on InfoGAN (Width)

Figure 2: Manipulating latent codes on MNIST: In all figures of latent code manipulation, we will
use the convention that in each one latent code varies from left to right while the other latent codes
and noise are fixed. The different rows correspond to different random samples of fixed latent codes
and noise. For instance, in (a), one column contains five samples from the same category in c1, and a
row shows the generated images for 10 possible categories in c1 with other noise fixed. In (a), each
category in c1 largely corresponds to one digit type; in (b), varying c1 on a GAN trained without
information regularization results in non-interpretable variations; in (c), a small value of c2 denotes
left leaning digit whereas a high value corresponds to right leaning digit; in (d), c3 smoothly controls
the width. We reorder (a) for visualization purpose, as the categorical code is inherently unordered.

latent code that smoothly changes a face from wide to narrow is learned even though this variation
was neither explicitly generated or labeled in prior work.

On the chairs dataset, DC-IGN can learn a continuous code that representes rotation. InfoGAN again
is able to learn the same concept as a continuous code (Figure 4a) and we show in addition that
InfoGAN is also able to continuously interpolate between similar chair types of different widths
using a single continuous code (Figure 4b). In this experiment, we choose to model the latent factors
with four categorical codes, c1, c2, c3, c4 ∼ Cat(K = 20, p = 0.05) and one continuous code
c5 ∼ Unif(−1, 1).
Next we evaluate InfoGAN on the Street View House Number (SVHN) dataset, which is significantly
more challenging to learn an interpretable representation because it is noisy, containing images of
variable-resolution and distracting digits, and it does not have multiple variations of the same object.
In this experiment, we make use of four 10−dimensional categorical variables and two uniform
continuous variables as latent codes. We show two of the learned latent factors in Figure 5.

Finally we show in Figure 6 that InfoGAN is able to learn many visual concepts on another challenging
dataset: CelebA [33], which includes 200, 000 celebrity images with large pose variations and
background clutter. In this dataset, we model the latent variation as 10 uniform categorical variables,
each of dimension 10. Surprisingly, even in this complicated dataset, InfoGAN can recover azimuth
as in 3D images even though in this dataset no single face appears in multiple pose positions.
Moreover InfoGAN can disentangle other highly semantic variations like presence or absence of
glasses, hairstyles and emotion, demonstrating a level of visual understanding is acquired without
any supervision.

6

(a) Azimuth (pose) (b) Elevation

(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from −1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

(a) Rotation (b) Width

Figure 4: Manipulating latent codes on 3D Chairs: In (a), we show that the continuous code
captures the pose of the chair while preserving its shape, although the learned pose mapping varies
across different types; in (b), we show that the continuous code can alternatively learn to capture the
widths of different chair types, and smoothly interpolate between them. For each factor, we present
the representation that most resembles prior supervised results [7] out of 5 random runs to provide
direct comparison.

8 Conclusion

This paper introduces a representation learning algorithm called Information Maximizing Generative
Adversarial Networks (InfoGAN). In contrast to previous approaches, which require supervision,
InfoGAN is completely unsupervised and learns interpretable and disentangled representations on
challenging datasets. In addition, InfoGAN adds only negligible computation cost on top of GAN and
is easy to train. The core idea of using mutual information to induce representation can be applied to
other methods like VAE [3], which is a promising area of future work. Other possible extensions to

7

(a) Continuous variation: Lighting (b) Discrete variation: Plate Context

Figure 5: Manipulating latent codes on SVHN: In (a), we show that one of the continuous codes
captures variation in lighting even though in the dataset each digit is only present with one lighting
condition; In (b), one of the categorical codes is shown to control the context of central digit: for
example in the 2nd column, a digit 9 is (partially) present on the right whereas in 3rd column, a digit
0 is present, which indicates that InfoGAN has learned to separate central digit from its context.

(a) Azimuth (pose) (b) Presence or absence of glasses

(c) Hair style (d) Emotion

Figure 6: Manipulating latent codes on CelebA: (a) shows that a categorical code can capture the
azimuth of face by discretizing this variation of continuous nature; in (b) a subset of the categorical
code is devoted to signal the presence of glasses; (c) shows variation in hair style, roughly ordered
from less hair to more hair; (d) shows change in emotion, roughly ordered from stern to happy.

this work include: learning hierarchical latent representations, improving semi-supervised learning
with better codes [34], and using InfoGAN as a high-dimensional data discovery tool.

References

[1] Y. Bengio, “Learning deep architectures for ai,” Foundations and trends in Machine Learning, vol. 2, no.
1, pp. 1–127, 2009.

[2] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, no. 8, pp. 1798–1828, 2013.

[3] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” ArXiv preprint arXiv:1312.6114, 2013.
[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y.

Bengio, “Generative adversarial nets,” in NIPS, 2014, pp. 2672–2680.

8

[5] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning with deep
generative models,” in NIPS, 2014, pp. 3581–3589.

[6] B. Cheung, J. A. Livezey, A. K. Bansal, and B. A. Olshausen, “Discovering hidden factors of variation in
deep networks,” ArXiv preprint arXiv:1412.6583, 2014.

[7] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep convolutional inverse graphics
network,” in NIPS, 2015, pp. 2530–2538.

[8] W. F. Whitney, M. Chang, T. Kulkarni, and J. B. Tenenbaum, “Understanding visual concepts with
continuation learning,” ArXiv preprint arXiv:1602.06822, 2016.

[9] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial autoencoders,” ArXiv preprint
arXiv:1511.05644, 2015.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural
Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”
Science, vol. 313, no. 5786, pp. 504–507, 2006.

[12] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features
with denoising autoencoders,” in ICLR, 2008, pp. 1096–1103.

[13] G. Desjardins, A. Courville, and Y. Bengio, “Disentangling factors of variation via generative entangling,”
ArXiv preprint arXiv:1210.5474, 2012.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector
space,” ArXiv preprint arXiv:1301.3781, 2013.

[15] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler, “Skip-thought
vectors,” in NIPS, 2015, pp. 3276–3284.

[16] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by context predic-
tion,” in ICCV, 2015, pp. 1422–1430.

[17] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-supervised learning with ladder
networks,” in NIPS, 2015, pp. 3532–3540.

[18] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther, “Improving semi-supervised learning with
auxiliary deep generative models,” in NIPS Workshop on Advances in Approximate Bayesian Inference,
2015.

[19] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional
generative adversarial networks,” ArXiv preprint arXiv:1511.06434, 2015.

[20] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning through probabilistic
program induction,” Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[21] J. B. Tenenbaum and W. T. Freeman, “Separating style and content with bilinear models,” Neural
computation, vol. 12, no. 6, pp. 1247–1283, 2000.

[22] Z. Zhu, P. Luo, X. Wang, and X. Tang, “Multi-view perceptron: A deep model for learning face identity
and view representations,” in NIPS, 2014, pp. 217–225.

[23] J. Yang, S. E. Reed, M.-H. Yang, and H. Lee, “Weakly-supervised disentangling with recurrent transfor-
mations for 3d view synthesis,” in NIPS, 2015, pp. 1099–1107.

[24] S. Reed, K. Sohn, Y. Zhang, and H. Lee, “Learning to disentangle factors of variation with manifold
interaction,” in ICML, 2014, pp. 1431–1439.

[25] J. Susskind, A. Anderson, and G. E. Hinton, “The Toronto face dataset,” Tech. Rep., 2010.
[26] J. S. Bridle, A. J. Heading, and D. J. MacKay, “Unsupervised classifiers, mutual information and

’phantom targets’,” in NIPS, 1992.
[27] D. Barber and F. V. Agakov, “Kernelized infomax clustering,” in NIPS, 2005, pp. 17–24.
[28] A. Krause, P. Perona, and R. G. Gomes, “Discriminative clustering by regularized information maximiza-

tion,” in NIPS, 2010, pp. 775–783.
[29] D. Barber and F. V. Agakov, “The IM algorithm: A variational approach to information maximization,”

in NIPS, 2003.
[30] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The" wake-sleep" algorithm for unsupervised neural

networks,” Science, vol. 268, no. 5214, pp. 1158–1161, 1995.
[31] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3d face model for pose and illumination

invariant face recognition,” in AVSS, 2009, pp. 296–301.
[32] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic, “Seeing 3D chairs: Exemplar part-based

2D-3D alignment using a large dataset of CAD models,” in CVPR, 2014, pp. 3762–3769.
[33] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in ICCV, 2015.

9

[34] J. T. Springenberg, “Unsupervised and semi-supervised learning with categorical generative adversarial
networks,” ArXiv preprint arXiv:1511.06390, 2015.

10

A Proof of Lemma 5.1

Lemma A.1 For random variables X,Y and function f(x, y) under suitable regularity conditions:
Ex∼X,y∼Y |x[f(x, y)] = Ex∼X,y∼Y |x,x′∼X|y[f(x′, y)].

Proof

Ex∼X,y∼Y |x[f(x, y)] =
∫

x

P (x)

∫

y

P (y|x)f(x, y)dydx

=

∫

x

∫

y

P (x, y)f(x, y)dydx

=

∫

x

∫

y

P (x, y)f(x, y)

∫

x′
P (x′|y)dx′dydx

=

∫

x

P (x)

∫

y

P (y|x)
∫

x′
P (x′|y)f(x′, y)dx′dydx

= Ex∼X,y∼Y |x,x′∼X|y[f(x
′, y)]

(7)

B Interpretation as “Sleep-Sleep” Algorithm

We note that InfoGAN can be viewed as a Helmholtz machine [1]: PG(x|c) is the generative
distribution and Q(c|x) is the recognition distribution. Wake-Sleep algorithm [2] was proposed to
train Helmholtz machines by performing “wake” phase and “sleep” phase updates.

The “wake” phase update proceeds by optimizing the variational lower bound of logPG(x) w.r.t.
generator:

max
G

Ex∼Data,c∼Q(c|x)[logPG(x|c)] (8)

The “sleep” phase updates the auxiliary distribution Q by “dreaming” up samples from current
generator distribution rather than drawing from real data distribution:

max
Q

Ec∼P (c),x∼PG(x|c)[logQ(c|x)] (9)

Hence we can see that when we optimize the surrogate loss LI w.r.t. Q, the update step is exactly
the “sleep” phase update in Wake-Sleep algorithm. InfoGAN differs from Wake-Sleep when we
optimize LI w.r.t. G, encouraging the generator network G to make use of latent codes c for the
whole prior distribution on latent codes P (c). Since InfoGAN also updates generator in “sleep” phase,
our method can be interpreted as “Sleep-Sleep” algorithm. This interpretation highlights InfoGAN’s
difference from previous generative modeling techniques: the generator is explicitly encouraged
to convey information in latent codes and suggests that the same principle can be applied to other
generative models.

C Experiment Setup

For all experiments, we use Adam [3] for online optimization and apply batch normalization [4]
after most layers, the details of which are specified for each experiment. We use an up-convolutional
architecture for the generator networks [5]. We use leaky rectified linear units (lRELU) [6] with
leaky rate 0.1 as the nonlinearity applied to hidden layers of the discrminator networks, and normal
rectified linear units (RELU) for the generator networks. Unless noted otherwise, learning rate is
2e-4 for D and 1e-3 for G; λ is set to 1.

For discrete latent codes, we apply a softmax nonlinearity over the corresponding units in the
recognition network output. For continuous latent codes, we parameterize the approximate posterior
through a diagonal Gaussian distribution, and the recognition network outputs its mean and standard
deviation, where the standard deviation is parameterized through an exponential transformation of
the network output to ensure positivity.

The details for each set of experiments are presented below.

11

C.1 MNIST

The network architectures are shown in Table 1. The discriminator D and the recognition network Q
shares most of the network. For this task, we use 1 ten-dimensional categorical code, 2 continuous
latent codes and 62 noise variables, resulting in a concatenated dimension of 74.

Table 1: The discriminator and generator CNNs used for MNIST dataset.

discriminator D / recognition network Q generator G
Input 28× 28 Gray image Input ∈ R74

4× 4 conv. 64 lRELU. stride 2 FC. 1024 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm FC. 7× 7× 128 RELU. batchnorm
FC. 1024 lRELU. batchnorm 4× 4 upconv. 64 RELU. stride 2. batchnorm
FC. output layer for D,
FC.128-batchnorm-lRELU-FC.output for Q 4× 4 upconv. 1 channel

C.2 SVHN

The network architectures are shown in Table 2. The discriminator D and the recognition network Q
shares most of the network. For this task, we use 4 ten-dimensional categorical code, 4 continuous
latent codes and 124 noise variables, resulting in a concatenated dimension of 168.

Table 2: The discriminator and generator CNNs used for SVHN dataset.

discriminator D / recognition network Q generator G
Input 32× 32 Color image Input ∈ R168

4× 4 conv. 64 lRELU. stride 2 FC. 2× 2× 448 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm 4× 4 upconv. 256 RELU. stride 2. batchnorm
4× 4 conv. 256 lRELU. stride 2. batchnorm 4× 4 upconv. 128 RELU. stride 2.
FC. output layer for D,
FC.128-batchnorm-lRELU-FC.output for Q 4× 4 upconv. 64 RELU. stride 2.

4× 4 upconv. 3 Tanh. stride 2.

C.3 CelebA

The network architectures are shown in Table 3. The discriminator D and the recognition network Q
shares most of the network. For this task, we use 10 ten-dimensional categorical code and 128 noise
variables, resulting in a concatenated dimension of 228.

Table 3: The discriminator and generator CNNs used for SVHN dataset.

discriminator D / recognition network Q generator G
Input 32× 32 Color image Input ∈ R228

4× 4 conv. 64 lRELU. stride 2 FC. 2× 2× 448 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm 4× 4 upconv. 256 RELU. stride 2. batchnorm
4× 4 conv. 256 lRELU. stride 2. batchnorm 4× 4 upconv. 128 RELU. stride 2.
FC. output layer for D,
FC.128-batchnorm-lRELU-FC.output for Q 4× 4 upconv. 64 RELU. stride 2.

4× 4 upconv. 3 Tanh. stride 2.

C.4 Faces

The network architectures are shown in Table 4. The discriminator D and the recognition network Q
shares the same network, and only have separate output units at the last layer. For this task, we use 5
continuous latent codes and 128 noise variables, so the input to the generator has dimension 133.

We used separate configurations for each learned variation, shown in Table 5.

12

Table 4: The discriminator and generator CNNs used for Faces dataset.

discriminator D / recognition network Q generator G
Input 32× 32 Gray image Input ∈ R133

4× 4 conv. 64 lRELU. stride 2 FC. 1024 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm FC. 8× 8× 128 RELU. batchnorm
FC. 1024 lRELU. batchnorm 4× 4 upconv. 64 RELU. stride 2. batchnorm
FC. output layer 4× 4 upconv. 1 sigmoid.

Table 5: The hyperparameters for Faces dataset.

Learning rate for D / Q Learning rate for G λ
Azimuth (pose) 2e-4 5e-4 0.2
Elevation 4e-4 3e-4 0.1
Lighting 8e-4 3e-4 0.1
Wide or Narrow learned using the same network as the lighting variation

C.5 Chairs

The network architectures are shown in Table 6. The discriminator D and the recognition network Q
shares the same network, and only have separate output units at the last layer. For this task, we use 1
continuous latent code, 3 discrete latent codes (each with dimension 20), and 128 noise variables, so
the input to the generator has dimension 189.

Table 6: The discriminator and generator CNNs used for Chairs dataset.

discriminator D / recognition network Q generator G
Input 64× 64 Gray image Input ∈ R189

4× 4 conv. 64 lRELU. stride 2 FC. 1024 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm FC. 8× 8× 256 RELU. batchnorm
4× 4 conv. 256 lRELU. stride 2. batchnorm 4× 4 upconv. 256 RELU. batchnorm
4× 4 conv. 256 lRELU. batchnorm 4× 4 upconv. 256 RELU. batchnorm
4× 4 conv. 256 lRELU. batchnorm 4× 4 upconv. 128 RELU. stride 2. batchnorm
FC. 1024 lRELU. batchnorm 4× 4 upconv. 64 RELU. stride 2. batchnorm
FC. output layer 4× 4 upconv. 1 sigmoid.

We used separate configurations for each learned variation, shown in Table 7. For this task, we found
it necessary to use different regularization coefficients for the continuous and discrete latent codes.

References

[1] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel, “The helmholtz machine,” Neural
computation, vol. 7, no. 5, pp. 889–904, 1995.

[2] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The" wake-sleep" algorithm for unsuper-
vised neural networks,” Science, vol. 268, no. 5214, pp. 1158–1161, 1995.

[3] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ArXiv preprint
arXiv:1412.6980, 2014.

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” ArXiv preprint arXiv:1502.03167, 2015.

[5] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox, “Learning to generate chairs with
convolutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 1538–1546.

[6] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network
acoustic models,” in Proc. ICML, vol. 30, 2013, p. 1.

13

Table 7: The hyperparameters for Chairs dataset.

Learning rate for D / Q Learning rate for G λcont λdisc

Rotation 2e-4 1e-3 10.0 1.0
Width 2e-4 1e-3 0.05 2.0

14

