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1 Introduction

Those who generate data—for example, official statistics agencies, survey organizations, and principal investiga-
tors, henceforth all called agencies—have a long history of providing access to their data to researchers, policy
analysts, decision makers, and the general public. At the same time, these agencies are obligated ethically and
often legally to protect the confidentiality of data subjects’ identities and sensitive attributes. Simply stripping
names, exact addresses, and other direct identifiers typically does not suffice to protect confidentiality. When the
released data include variables that are readily available in external files, such as demographic characteristics or
employment histories, ill-intentioned users—henceforth called intruders—may be able to link records in the re-
leased data to records in external files, thereby compromising the agency’s promise of confidentiality to those who
provided the data.

In response to this threat, agencies have developed an impressive variety of strategies for reducing the risks
of unintended disclosures, ranging from restricting data access to altering data before release. Strategies that fall
into the latter category are known as statistical disclosure limitation (SDL) techniques. Most SDL techniques have
been developed for data derived from probability surveys or censuses. Even in complete form, these data would not
typically be thought of as big data, with respect to scale (numbers of cases and attributes), complexity of attribute
types, or structure: most datasets are released, if not actually structured, as flat files.

In this chapter, we explore interactions between data dissemination and big data. We suggest lessons that
stewards of big data can learn from statistical agencies’ experiences. Conversely, we discuss how big data and
growing computing power could impact agencies’ future dissemination practices. We conclude with discussion of

research needed and possible visions of the future of big data dissemination.
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2 Experiences from Agencies

When disseminating a data set to the public, agencies generally take three steps. First, after removing direct
identifiers like names and addresses, the agency evaluates the disclosure risks inherent in releasing the data “as is.”
Almost always the agency determines that these risks are too large, so that some form of restricted access or SDL
is needed. We focus on SDL techniques here, because of the importance to researchers and others of direct access
to the data. Second, the agency applies an SDL technique to the data. Third, the agency evaluates the disclosure
risks and assesses the analytical quality of the candidate data release(s). In these evaluations, the agency seeks
to determine whether the risks are sufficiently low, and the usefulness is adequately high, to justify releasing a
particular set of altered data (Reiter, 2012). Often, these steps are iterated multiple times, for example, a series of
SDL techniques is applied to the data and subsequently evaluated for risk and utility. The agency stops when it
determines that the risks are acceptable and the utility is adequate (Cox et al., 2011).

To set the stage for our discussion of SDL frameworks and big data releases, we begin with a short overview
of common SDL techniques, risk assessment, and utility assessment. We are not comprehensive here; additional
information can be found in, for example, Federal Committee on Statistical Methodology (1994), Willenborg and
de Waal (2001), National Research Council (2005, 2007), Karr et al. (2010), Reiter (2012), and Hundepool et al.
(2012).

2.1 Risk Assessment for Original Data

Most agencies are concerned with two types of disclosures, namely (1) identification disclosures, which occur
when an intruder correctly identifies individual records in the released data; and (2) attribute disclosures, which
occur when an intruder learns the values of sensitive variables for individual records in the data (Reiter, 2012).
Often agencies fold assessment of attribute risk into assessment of identification risk. For concreteness, in this
chapter, we focus on data regarding individuals. In the world of official statistics, many datasets contain informa-
tion on establishments such as hospitals, manufacturers and schools. Many of the problems we discuss here are
significantly more challenging for establishment data (Kinney et al., 2011).

To assess identification disclosure risks, agencies make assumptions, either explicitly or implicitly, regarding
what intruders know about the data subjects. Typical assumptions include whether the intruder knows that certain
individuals participated in the survey, which quasi-identifying variables the intruder knows, and the amount of
measurement error, or other error, in the intruder’s data. For example, a common approach to risk assessment

is to perform reidentification studies: the agency matches records in the original file with records from external



databases that intruders could use to attempt identifications, matching on variables common to both files such as
demographics, employment histories, or education. In such studies, the information on the external files opera-
tionally defines the agency’s assumptions about intruder knowledge.

Agencies are particularly concerned about data subjects that are unique in the population with respect to char-
acteristics deemed to be available to intruders, which often are called keys in the SDL literature. An intruder who
accurately matches the keys of a record that is unique in the population (on those keys) to an external file is guar-
anteed to be correct. Typically agencies only know that a record is unique on the keys in the sample. They have
to estimate the probability that a data subject is unique in the population given that the subject is unique in the
sample. See Skinner and Shlomo (2008) and Manrique-Vallier and Reiter (2012) for reviews of such methods. We
also note that intruders who know that a particular record was in the sample can identify that record easily if it is
unique in the sample on the keys.

Almost surely, the agency does not know very precisely what information intruders possess about the data
subjects. Hence, and prudently, they examine risks under several scenarios, e.g., different sets of quasi-identifiers

known by intruders, and whether or not intruders know who participated in the study.

2.2 Statistical Disclosure Limitation Techniques

Most public use data sets released by national statistical agencies have undergone SDL treatment by one or more

of the methods below.

Aggregation. Aggregation turns atypical records—which generally are most at risk—into typical records. For
example, there may be only one person with a particular combination of keys in a county, but many people with
those characteristics in a state. Releasing data for this person with county indicators might pose a high disclosure
risk, whereas releasing the data at the state level might not. Unfortunately, such aggregation makes analysis at finer
levels difficult and often impossible, and it creates problems of ecological inferences. Another example is to report
exact values only below specified thresholds, for example, reporting all ages above 90 as “90 or older.” Such top
coding (or bottom coding) eliminates detailed inferences about the distribution beyond the thresholds. Chopping

off tails also negatively impacts estimation of whole-data quantities (Kennickell and Lane, 2006).

Suppression. Agencies can delete at-risk values, or even entire variables, from the released data (Cox, 1980).

Suppression of at-risk values creates data that are not missing at random, which are difficult to analyze properly.

Data swapping. Agencies can swap data values between selected pairs of records—for example, switch counties



for two households with the same number of people—to discourage users from matching, since matches may be
based on “incorrect” data (Dalenius and Reiss, 1982). Swapping at high levels destroys relationships involving
both swapped and unswapped variables. Even at low levels certain analyses can be compromised (Drechsler and

Reiter, 2010; Winkler, 2007).

Adding random noise. Agencies can add randomly sampled amounts to the observed numerical values, for
example, adding a random deviate from a normal distribution with mean equal to zero (Fuller, 1993). This reduces
the potential to match accurately on the perturbed data and changes sensitive attributes. Generally, the amount of
protection increases with the variance of the noise distribution; however, adding noise with large variance distorts

marginal distributions and attenuates regression coefficients (Yancey et al., 2002).

Synthetic data. Agencies can replace original data values at high risk of disclosure with values simulated from
probability distributions specified to reproduce as many of the relationships in the original data as possible (Reiter
and Raghunathan, 2007). Partially synthetic data comprise the original individuals with some subset of collected
values replaced with simulated values. Fully synthetic data comprise entirely simulated records; the originally
sampled individuals are not on the file. In both types, the agency generates and releases multiple versions of
the data to enable users to account appropriately for uncertainty when making inferences. Synthetic data can
provide valid inferences for analyses that are in accord with the synthesis models, but they may produce inaccurate
inferences for other analyses. Despite being synthesized, synthetic data are not risk-free, especially with respect to

attribute disclosure.

2.3 Disclosure Risk and Data Utility Assessment After SDL

Disclosure risk assessment. Many agencies perform re-identification experiments on SDL-protected data. In
addition to matching records in the file being considered for release to external files, many agencies match the
altered file against the confidential file. Agencies also specify conditional probability models that explicitly account
for assumptions about what intruders might know about the data subjects and any information released about the
disclosure control methods. For illustrative computations of model-based identification probabilities, see Duncan
and Lambert (1986, 1989), Fienberg et al. (1997), Reiter (2005), and Shlomo and Skinner (2010).

It is worth noting that the concept of harm, such as a criminal act or loss of benefits, from a disclosure can
be separated from the risk of disclosure (Skinner, 2012). SDL techniques are designed to reduce risks, not harm.
Agencies may decide to take on more risk if the potential for harm is low, or less risk if the potential for harm

is high. We note that agencies could be concerned about the harm that arises from perceived identification or at-



tribute disclosures—the intruder believes she has made an identification or learned an attribute, but is not correct—
although in general agencies do not take this into account when designing SDL strategies. See Lambert (1993) and

Skinner (2012) for discussion.

Data utility assessment. Data utility is usually assessed by comparing differences in results of specific analyses
between the original and released data. For example, agencies look at the similarity of a set of quantities estimated
with the original data and the data proposed for release, such as first and second moments, marginal distribu-
tions, and regression coefficients representative of anticipated analyses. Similarity across a wide range of analyses
suggests that the released data have high utility (Karr et al., 2006). Of course, such utility measures only reveal
selected features of the quality of the candidate releases; other features could be badly distorted.

The SDL literature also describes utility measures based on global functions of the data, such as differences in

distributions (Woo et al., 2009). Our sense is that these methods are not widely used by agencies.

3 Current SDL and Big Data

Can typical SDL techniques be employed to protect big data? To be blunt, we believe the answer is no, except in
special cases. We reach this opinion via informal, but we think plausible, assessments of the potential risk-utility

tradeoffs associated with applying these methods.

3.1 Disclosure Risks in Original Files

Confidential big data carry greater disclosure risks than the typical survey sample. Often confidential big data come
from administrative or privately-collected sources so that, by definition, someone other than the agency charged
with sharing the data knows the identities of data subjects. This is in contrast to small-scale probability samples,
which agencies believe inherently have a degree of protection from the fact that they are random subsets of the
population, and since membership in a survey is rarely known to intruders. Confidential big data typically include
many variables that, since the data arguably are known by others, have to be considered as keys, so that essentially
everyone in the file is a population unique. Further, as the quality of administrative databases gets better with time
(particularly as profit incentives strengthen their alignment with information collection), agencies cannot rely on

measurement error in external files as a buffer for data protection.



3.2 Effectiveness of SDL

Because of the risks inherent in big data, SDL methods that make small changes to data are not likely to be
sufficiently protective; there simply will be too much identifying information remaining on the file. This renders
ineffective the usual implementations of data swapping, e.g., swapping entire records across geographies. On the
other hand, massive swapping within individual variables, or even within many small sets of variables, would
essentially destroy joint relationships in the data. Suppression is not a viable solution: so much would be needed to
ensure adequate protection that the released data would be nearly worthless. Aggregation is likely to be problematic
for similar reasons. When many variables are available to intruders, even after typical applications of aggregation,
many data subjects will remain unique in the file. Very coarse aggregation/recoding is likely to be needed, which
also leads to limited data utility.

One potential solution is a fully synthetic, or barely partially synthetic, data release. With appropriate models,
it is theoretically possible to preserve many distributional features of the original data. However, in practice it
is challenging to find good-fitting models for joint distributions of large-scale data; to our knowledge there have
been only a handful of efforts to synthesize large-scale databases with complex variable types (Abowd et al., 2006;
Machanavajjhala et al., 2008; Kinney et al., 2011). Nonetheless, we believe that methods for generating massive

synthetic databases merit further research.

3.3 Demands on Big Data

Through both necessity and desire, analyst demands on big data will be broader than what has been dealt with
to date. We know some things about utility assessed in terms of “standard statistical” analyses such as linear
regressions (Karr et al., 2006), but almost nothing about utility associated with machine learning techniques such
as neural networks or support vector machines, or data mining techniques such as association rules. Nor is it
clear even what the right abstractions are. For instance, for surveys, SDL can to some extent be thought of as one
additional source of error within a total survey error framework (Groves, 2004), allowing use of utility measures
that relate to uncertainties in inferences. For big data that are the universe (e.g., of purchases at Walmart), we do
not yet know even how to think about utility, let alone measure it. To illustrate, consider partitioning analyses in
which the data are split recursively into classes on the basis of a response and one or more predictor variables,
producing a tree whose terminal nodes represent sets of similar data points. Measuring the nearness of two trees
can be challenging, making it difficult to say how much SDL has altered a partitioning analysis.

Moreover, many demands on big data will be inherently privacy-threatening. Most of today’s statistical analy-



ses require only that the post-SDL data sufficiently resemble the original data in some low-dimensional, aggregate
sense. For instance, if means and covariances are close, so will be the results of linear regressions. On the
other hand, data mining analyses such as searching for extremely rare phenomena, like Higgs bosons or potential
terrorists, require “sufficiently resemble” at the individual record level. Current SDL techniques are, virtually uni-
versally, based on giving up record-level accuracy, which reduces disclosure risk, in return for preserving aggregate

accuracy, which is the current, but not necessarily the future, basis of utility.

4 Vision for The Future

We now present a vision for the future, including (i) discussions of what disclosure risk might mean and how
it might be assessed with big data and big computation; (ii) how methods based on remote access and secure
computation might be useful; and (iii) a vision for a big data dissemination engine involving interplay between

unrestricted access, verification of results, and trusted access.

4.1 Changing Views of Privacy

It is possible, if not likely, that concomitantly with the move to big data, there also will be changes in the legal,
political and social milieu within which data release lies. Of the authors of this chapter, one (AK) is a baby
boomer, and the other (JR) is a genX-er. Perhaps as a result of our research on data confidentiality, our views on
privacy do not differ dramatically. But, almost daily, we observe others whose views do seem quite different from
ours. These include cell phone users who discuss intimate details of their lives within earshot (and “lipshot,” since
many of them seem aware that there are skilled lip readers everywhere) of others, social media users who seem
not to realize how much privacy-compromising information a photograph can contain, and others. Whether these
behaviors represent true changes in thinking about privacy, or will change as the individuals mature or societal
attitudes evolve, remains to be seen. If the former, less protection of data may be required, although “who doesn’t
care about privacy” may be a potent form of response bias in both surveys and administrative data. If the latter,
less may change.

Also unclear is the denouement of the current trend of reluctance-to-refusal by individuals to provide data
to government agencies. Some of the decline in response rates is the result of privacy concerns, some is the
result of everyone’s increasingly complicated lives, some represents a belief that the government already has the
information, and some is political opposition to any government data collection. It is hard not to think that response

rates will continue to decline, but might they stabilize at a level at which statistical fixes still work?



What seemingly must change no matter what is the nature of the compact between data collectors and data
subjects. Currently there is a major disequilibrium: official statistics agencies collect and protect much information
about individuals and organizations that is readily accessible elsewhere, albeit sometimes there is a cost. Data
subjects are clueless as to whether their information is protected adequately. Incentives to data subjects are seen as
a means of payment for burden; subjects could (but are not now) also be compensated for (actual or risked) loss of
privacy (Reiter, 2011). A supremely intriguing thought experiment is to ask “What would happen if data subjects
were promised no privacy at all, and simply paid enough to get them to agree to participate?” Would data quality
be destroyed? Would the cost be affordable? We do not know.

The connection between privacy and big data is likewise evolving. Answering a few questions on a survey
does not generate big data, nor does it cause most people to think anew about privacy. Collecting entire electronic
medical records, DNA sequences or video tapes of two years of driving (as in the Naturalistic Driving Study of the
Virginia Tech Transportation Institute) may generate big data, and may change attitudes about privacy. Big data
may also change what information is considered sensitive. Forty years ago, most people would have considered
salary to be the most sensitive information about them. Today, a significant fraction of salaries are directly avail-
able, or accurately inferrable from, public information. Instead, medical records may be more sensitive for many
people. Partly this is because (in the same way that salaries were once seen as protectable) they are perceived still
to be protectable; in addition, the risk associated with knowledge of medical records may be greater (e.g., loss of

insurance or a job), as well as more nebulous.

4.2 SDL of the Future: A Framework

A significant change that big data and big computing will produce is the capability to enumerate all possible
versions of the original dataset that could plausibly have generated the released data. To understand what this
means, we sketch here a framework for this “SDL of the future.”

Let O be the original dataset and M be the released dataset after SDL is applied to O. Let @ denote the set
of all possible input data sets that could have been redacted to generate M. In general, the extent to which an
analyst or intruder can specify O is a function of M, agency-released information about the SDL applied to O, and
external knowledge. We denote this collective knowledge by (the o -algebra) X and for the moment restrict it to
consist only of M and agency-released information. External knowledge is addressed in §4.3.

To illustrate, suppose that O is a categorical dataset structured as a multi-way contingency table containing
integer cell counts. Suppose that M is generated from O by means of suppressing low-count cells deemed to be

risky, but contains correct marginal totals. In this case, additional cells must almost always be suppressed in order



to prevent reconstruction of the risky cells from the marginals. Figure 1 contains an illustration: in the table O, on
the left, the four cells with counts less than 5 are suppressed because they are risky, and the cells with counts 5 and
6 are suppressed to protect them. In M, on the right, there is no distinction between the “primary” and “secondary”
suppressions. Minimally, K consists of M and the knowledge that cell suppression was performed; KX might or
might not contain the value of the suppression threshold or information distinguishing primary from secondary
suppressions. In the minimal case, @ consists of six tables: O and the tables obtained by putting 0, 2, 3, 4, and 5
as the upper left-hand entry and solving for the other entries. We denote these by Oy, . .. Os, respectively. If the
suppression threshold is known and zero is not considered risky, the first of these is ruled out because applying the
rules to it does not yield M. Every one of the other four is ruled out if X distinguishes primary from secondary
suppressions. Already one key implication for agencies is clear: the framework can distinguish what must be
protected from what might be protected.

Equally important, the framework can distinguish analysts from intruders. The sardonic but apt comment that
“One person’s risk is another person’s utility” demonstrates how subtle the issues are. Within our framework,
both analysts and intruders wish to calculate the posterior distribution P{O = (-)|K}, but use this conditional
distribution in fundamentally different ways.

Specifically, analysts wish to perform statistical analyses of the masked data M, as surrogates for analyses of
O, and wish to understand how faithful the results of the former are to the results of the latter. (See also §4.5.)
Conditional on O, the results of an analysis are a deterministic (in general, vector-valued) function f(O). To
illustrate, for categorical data, f(O) may consist of the entire set of fitted values of the associated contingency table

under a well-chosen log-linear model. In symbols, given P{O = (-)|K}, analysts integrate to estimate f(O):
f(0) = / f(0) dP{O = 0| X}. (1)
o

It is important to keep in mind that @ depends on K, even though the notation suppresses the dependence.

To illustrate with the example in Figure 1, if X is only the knowledge that cell suppression was performed,
then @ = {0, Oy, O,, O3, O4, Os} and P{O = (-)|K} is the uniform distribution on this set. By contrast, if
JK contains in addition the suppression rules, then O = {O, O,, O3, O4, Os} and P{O = (-)|K} is the uniform
distribution on this set. Finally, if X distinguishes primary from secondary suppressions, then @ = {O}.

If the analysis of interest were a x> test of independence, then, in the second case, the average of the five x>
statistics is 34.97, and independence would be rejected. Indeed, independence is rejected for all of O, O,, O3, O4

and Os, so the analyst can be certain, even without knowing O, that independence fails.
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Figure 1: Left: Original dataset O. Right: masked data set M, after cell suppression.

The point is that big computing makes this approach feasible in realistic settings.
By contrast, intruders are interested in global or local maxima in P{O = (-)|X}, which correspond to high

posterior likelihood estimates of the original data O. In the extreme, intruders maximize, calculating

O* = argmax P{O = o|K}. 2)

0e@

We do not prescribe what intruders would do using O*, but assume only that any malicious acts would be done us-
ing O itself, for instance, re-identifying records by means of linkage to an external database containing identifiers.

This distinction allows the agency to reason in principled manners about risk and utility, especially in terms of
how they relate to K. High utility means that the integration in (1) can be performed or approximated relatively
easily. Low risk means that the maximization in (2) is difficult to perform or approximate.

A central question is then: How large is the set @ of possible values of O given K? Of course, high utility
and low risk remain competing objectives: when O is very large, then the maximization in (2) is hard, but so may
be the integration in (1). Because of the integration in (1), it may be more natural to view |@| as a measure of

disclosure risk than as an inverse measure of data utility.

4.3 Incorporating External Information

The framework in §4.2 meshes perfectly with a Bayesian approach to external knowledge possessed by analysts
or intruders. Once O is known, such information exists independently of the knowledge X in, for instance, (1), so
that it becomes completely natural to view as the product of a prior distribution on O and a likelihood function.
See McClure and Reiter (2012a) for implementation of a related approach. In the example in §4.2, the prior would
simply weight the elements of @ on the basis of external knowledge.

More important from a computational perspective is that the integration in (1) can be performed by sampling

from the posterior distribution P{O = (-)|K}, which is exactly what (Markov chain) Monte Carlo methods do!
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4.4 Operational Implications

Most of today’s (2013) big data are physical measurements that seem to need no SDL. There are, of course,
very large transaction databases held by E-commerce websites, as well as databases containing information about
telephone or E-mail communications. The extent to which any of the latter will be shared in any form is not clear.
What is clear is that, in the short run at least, local storage and computing power will be supplemented or even
supplanted by “cloud computing,” in which, transparently to the user, data and cycles reside in multiple physical
machines.

Some implications of cloud computing are troubling to official statistics agencies. They may lose control over
who has physical possession of their data, over who can view the data, and how access to the data is controlled.
The number of vulnerabilities increases in the cloud model, as does the possibility of secondary disclosure. In
today’s model, someone seeking illicitly to access Census Bureau data must penetrate Census Bureau servers,
all of which are physically and electronically controlled by the Bureau. What happens if Census data might
“accidentally” be seen by someone attempting to access credit card records? Can the Census Bureau legitimately
promise confidentiality of records when “transparency” means lack of knowledge rather than openness? Similar,
and perhaps more challenging, issues arise for licensing of datasets.

These issues notwithstanding, we expect that the data access model of the future will be to take the analysis
to the data rather than the data to the analyst or the analyst to the data. There are multiple reasons for this.
Truly big data are too big to take to the users. Dataset size, coupled with the current impetus for availability of
research datasets, seems to demand archives that can deal with complex issues of data format, metadata, paradata,
provenance and versioning. In our view, archives will also provide computational power. They will resemble
today’s remote access servers (Karr et al., 2010), but with vastly increased computational power and flexibility.

Construction of such archives will require addressing issues we currently choose (mostly) to bypass by limiting
server capability. If the data do require protection, perhaps the most pressing challenge is query interaction: both
risk and utility increase in ways we do not currently understand when multiple queries are posed to the server.
Answering one query may permanently preclude answering others (Dobra et al., 2002, 2003). Many current
remote access servers in effect dodge this issue by severely limiting the space of allowable queries, for instance,
by forbidding high-leverage variable transformations or limiting the degree of interactions. Others include manual
review of both analyses and results, a strategy that is hopelessly non-scalable. Linkage to other datasets is rarely
permitted, as are exploratory tools such as visualizations. In virtually all of these instances, everything from sound
abstractions to computational tools is lacking.

Because cloud data are distributed data, operational systems will require techniques for handling distributed
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data. A set of techniques from computer science known generically as secure multiparty computation (SMPC)
have been shown to allow analyses based on sufficient statistics that are additive across component databases (Karr
et al., 2005, 2007; Karr, 2010; Karr and Lin, 2010). These analyses include creation of contingency tables, linear
and logistic regression (as well as extensions such as generalized linear models) and even iterative procedures such
as numerical maximum likelihood estimation using Newton-Raphson methods. For almost all other analyses, the

details remain to be worked out.

4.5 Is There a Future for Microdata Releases?

In view of the discussion in §4.4, it is natural to ask whether there is a future for publicly released microdata (i.e.,
data on individual records). We believe that there is, but that new tools will be required to attain it.

To begin, there is and will remain a case for releasing microdata. Microdata are essential to the education and
training of early career researchers. Historically, there has been no substitute for working directly with data, and
we do not believe that this will change. (Indeed, the risk that “big data” means “disconnected from the data” is
both real and disconcerting.) Perhaps more important, even skilled, mature researchers rarely know in advance
which are the right questions to ask, and exploratory analyses dealing with the data themselves remain the best, if
not only, path to the “right questions.”

Currently available techniques for query-based analysis of distributed data using SMPC are notably poor in
this respect. To illustrate, consider the example in Figure 2. There are three distributed datasets containing two
variables, lying in the ranges shown. An analyst familiar with any one of the three databases would believe
that the relationship between the two variables is linear, but, of course, it is quadratic instead. Existing query
system models might thwart knowing the right question to ask. But, even a small sample with intensive statistical
disclosure limitation (SDL) from the integrated dataset would have made the right question apparent.

The question then: if highly redacted microdata are released publicly, for example, using novel methods of
generating fully synthetic data, how can an analyst know whether he or she is on the right track to the right
questions, which can then be posed to an archive/server? Verification servers (Reiter et al., 2009; McClure and
Reiter, 2012b) are one technology that offers a solution. Briefly, a verification server (VS) is a web-accessible

system based on a confidential database O with an associated public microdata release M—derived from O—that

e Receives from the analyst a description of a statistical analysis Q performed on M;

e Performs the analysis on both M and O;

e Calculates one or more measures of the fidelity of Q(M) to Q(0);
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e Returns to the analyst the values of the fidelity measure(s).

The concept is illustrated pictorially in Figure 3. When the fidelity is high, the analyst may pose the query to a
server, and receive a more detailed set of results.

Verification servers also could help reduce costs of accessing servers that host confidential data. Currently, and
we expect also in the future, users who want access to confidential data via virtual or physical data enclaves are
vetted by the data stewards. This involves cost which often is passed to the user, for example in the form of fees
to access data. With the output from a verification server, users can decide if analysis results based on the redacted
data are of satisfactory quality for their particular purposes. If so, they may choose to forego the dollar and time
costs of gaining access. Even users who are not satisfied with the quality of the results can benefit from starting
with the redacted data. Storage and processing of big data is costly to data stewards, who likely will pass some
costs to users. Analysts who have an informed analysis plan can improve their efficiency when using the server,
thereby saving dollars and time.

Although attractive conceptually, verification servers remain an untested technology with both known and
to-be-discovered risks. The former include risks shared with remote access servers—-unlimited and/or arbitrary
queries, interaction among multiple queries, high-complexity variable transformations, subsetting of the data and
intruders with extreme computational resources. Too many, or too high-precision, fidelity measures are among
the latter. We do know that the latter are problems: if they are unaddressed, many SDL methods, including data
swapping and top-coding, can be reversed (Reiter et al., 2009). At the extreme, returning to the framework in §4.2,
with sufficiently many queries, sufficiently precise fidelity measures and enough computational power, O can be
recovered exactly from M.

Archive/server-based models also seem (at least currently) to be poor at handling record linkage, except in sim-
ple cases where the linkage amounts to a database join. Knowing which variables to link with, and understanding
how uncertainties are affected by linkage, require—at least in exploratory stages—actual microdata.

One item of interest in this setting is that as a means of SDL, sampling is typically seen as ineffectual, at least
by itself. If the goal is to produce an analysis-capable dataset M, most records must be retained. If no other SDL
is performed and this information is known, then an intruder seeking to carry out the maximization in (2) needs
only to worry about the possibility that the maximizer is not in M. Typically, this would be deemed insufficient
protection. On other hand, if the goal is to produce an M that allows analysts to ask the right questions, small

samples, especially if accompanied by weights, may be entirely adequate.

13



O - O

Agency 1 Agency 2 Agency 3

Figure 2: Three datasets, each with locally linear structure, but quadratic global structure.
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Figure 3: Pictorial schematic view of a verification server.

4.6 How Do Official Statistics Agencies Fit In?

Despite some of the challenges alluded to earlier (e.g., cloud computing), official statistics agencies are playing,
and we expect will continue to play, significant roles in advancing methodology and practice for accessing big
data. Many official statistics agencies that currently collect large-scale databases are experimenting with methods
for providing access to these data. For example, as reported in presentations at the 2013 Joint Statistical Meetings,
the Center for Medicare and Medicaid Services (CMS) has contracted with the National Opinion Research Center
(NORC) to develop an unrestricted-access, synthetic public use file for Medicare claims data. This file is intended
to have limited analytic utility. It exists to help researchers develop methods and code to run on the actual data.
After vetting, these researchers may be approved to access the restricted data in a data enclave setting. CMS and
NORC had one team develop the synthetic data sets, while another team evaluated the disclosure risks, a separation
we recommend as a general dissemination practice.

The Census Bureau has forged similar partnerships with researchers in academia to develop public use products
for Longitudinal Employer-Household Dynamics (LEHD) data; see 1ehd.ces.census.gov for details.

At the same time, agencies are, properly and of necessity, conservative and slow-to-change. In particular, they

must deal with extremely diverse sets of data users and other stakeholders. To illustrate, agencies have been slow to
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adopt multiple imputation as a means of dealing with item nonresponse, because not all users, even in the research
community, are able to analyze such data. More “exotic” technologies, such as synthetic data, other Bayesian
methods, and differential privacy (Dwork, 2006), will replace existing methods, if at all, only at an evolutionary
pace. One promising trend, however, is increasing agency attention to the fact that most people pay heed only to
the decisions based on agency data, not to the data themselves (Karr, 2012, 2013), which seems likely to yield

important new insights about data utility.

5 Concluding Remarks

In spite of many steps toward wider data availability, legal, ethical, scale and intellectual property restrictions
are part of the foreseeable future (Karr, 2014). “Make everything available to everyone” will not be ubiquitous,
and SDL techniques are not likely to offer broadly the kind of one-off databases released by statistical agencies
today. Statistical agencies already balance what to release to whom against other considerations, and this mode of
thinking can, we believe, be crucial to big data.

For many big datasets, confidentiality risks of disseminating data may be so high that it is nearly impossible
to share unrestricted-use microdata without massive data alterations, which call into question the usefulness of the
released big data. We believe that methods for nonparametric estimation of distributions for large-scale data—a
focus of significant research effort in the machine learning and statistical communities—offer potential to be con-
verted to data synthesizers (Drechsler and Reiter, 2011). Nonetheless, unrestricted-access, big datasets probably
need to take on less ambitious roles than current agency practice permits; for example, they may serve as code
testbeds or permit only a limited number of (valid) analyses. Verification servers, which promise to provide au-
tomated feedback on the quality of inferences from redacted data, could enhance the usefulness of such datasets,
allowing users to determine when they can trust results and when they need to accept the costs of applying for
access to the confidential data. Highly redacted datasets also should help users of remote query systems to identify
sensible queries.

To conclude, we believe a way forward for big data access is an integrated system including (i) unrestricted
access to highly redacted data, most likely some version of synthetic data, followed with (ii) means for approved
researchers to access the confidential data via remote access solutions, glued together by (iii) verification servers
that allow users to assess the quality of their inferences with the redacted data so as to be more efficient with their

use (if necessary) of the remote data access. We look forward to seeing how this vision develops.
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