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Numerical Integration – Simulation of Chemical Kinetics 
Using Mathematica 6.0 
 
Mathematica 6.0 Student Edition is licensed through Cornell University and is 
available at 
http://www.cusoftware.cornell.edu/cusoftware/purchase/mathematica.cfm 
 
 
1. Introduction: The Problem 
 Differential equations derived from chemical kinetics must often be solved 
numerically.  The following manual is a detailed guide on how to use 
Mathematica 6.0 to (1) numerically integrate sets of differential forms of rate laws, 
and (2) plot the solution as time-dependent concentrations. 
 
 Given the relatively simple transformations represented in Scheme 1, how 
can we use numerical integration to solve for the concentrations of A, B, and C 
for all combinations of rate constants k1, k-1, and k2?  A non-limiting case in which 
the concentration of B builds up to a limited extent is illustrative. 
 
Scheme 1 
 

 
 



 2 

2. Differential Forms of the Rate Laws  
       k1 

 A  B        (1) 
       k-1   
 
        k2 
 B  C       (2) 
 
 We begin by writing the differential equations associated with each 
chemical species (A, B, and C) in eqs 1 and 2 as follows: 
 
d[A]/dt = -k1[A] + k-1[B] 
d[B]/dt = k1[A] - k-1[B] - k2[B] 
d[C]/dt = k2[B] 
 
 We provide a substantially more complex mechanism in eqs 3-5 to 
illustrate that close attention must be devoted to the stoichiometric coefficients as 
they translate into prefactorial and exponential terms in the differential 
equations.  
 
    k1 

 B + A2  A2·B       (3) 
    k-1   
 
  k2 

 A2·B  A·B + 0.5A2     (4) 
  k-2   
 
       k3 
 B + A2  C + 0.5A2     (5) 
 
This mechanism translates into the following differential equations: 
 
d[A2]/dt = -k1[A2][B] + k-1[A2B] + 0.5k2[A2B] - 0.5k-2[AB][A2]0.5 - 0.5k3[A2][B] 
d[B]/dt = -k1[A2][B] + k-1[A2B] - k3[A2][B] 
d[AB]/dt = k2[A2B] - k-2[AB][A2]0.5 
d[A2B]/dt = k1[A2][B] - k-1[A2B] - k2[A2B] + k-2[AB][A2]0.5 
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3. Numerical Integration in Mathematica 
 We illustrate numerical integration in Mathematica with the example in 
scheme 1. The differential equations are repeated below with a slight change in 
syntax.  Mathematica does not accept variable names with embedded 
mathematical symbols (i.e. ‘k-1’, or ‘A*B’). Instead we denote rate constants by a 
number followed by the letter f or r (forward or reverse). 
d[A]/dt = -k1f[A] + k1r[B] 
d[B]/dt = k1f[A] - k1r[B] - k2f[B] 
d[C]/dt = k2f[B] 
 
The input and output illustrated below will be discussed in detail in the 
following sections. 
 

 
 
The code is divided into two parts that work in parallel. Part II instructs Part I on 
how many points to evaluate, over what interval and what solutions it is 
supposed to find. 

Part I 

Part II 
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Part I   
 
The input denoted as Part I is repeated below with labels 1-7 referring to the 
subsequent comments: 
 
 

 
 
1. We begin by giving the solution to the numerical integration an arbitrary name 
such as mechanism1 for recall in part II.  The equal sign (=) is normal (as opposed 
to other cases below).  
 
2. NDSolve prompts the program to numerically integrate the differential 
equations. The succeeding square bracket ([) is not closed until the very end of 
part I.  The square brackets enclose four sets of curly brackets ({}) explained in 
the following sections. 
 
3. The first curly bracket ({) encloses the differential equations and initial 
conditions separated by commas. The time derivative is expressed by an 
apostrophe followed by [t], indicating that the derivative is taken with respect to 
time t (e.g. d[A]/dt is written as a’[t]). The double equal sign (==) is constructed 
from two equal signs and is different from the ordinary equal sign.  The two 
signs visibly merge (tighten up) to form a Mathematica-specific after hitting the 
space bar.  We include spaces between terms only for visual clarity. Each term 
that is time-dependent (chemical species) must be followed by [t]. Exponential 
terms follow the [t] (e.g. a[t]^0.5). 
 
4. The initial conditions are treated as linear equations and are part of the set of 
equations to be solved. Each chemical species must have an initial condition. a[0] 
== 0.1 sets the concentration of a at t=0 equal to 0.1.  We close the equation 
section of the NDSolve command with a curly bracket (}). 
 
5. The slash (/.) prompts the program to replace all previous rate constants in the 
equations with the subsequent assigned values. Curly brackets enclose the rate 
constants separated by commas. The ‘assign’ symbol (->) is formed from a dash 
followed by a greater-than symbol. Hitting the space bar merges the two symbols 
().  
 
6. Curly brackets enclose all chemical species in the mechanism for which a 
solution is needed. 
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7. Curly brackets specify the time interval (t), starting time (tmin), and ending time 
(tmax) for which the differential equations shall be solved.  We close part I with a 
square bracket (]) that was originally opened in line 1.  
 
Mathematica is instructed to solve the equations by hitting the key combination 
Shift/Return.  Plotting is described in part II. 
 
 
Part II  
 
 

  
 
1. The output of the Plot command is assigned an arbitrary name (myplot1) for 
recall.  The Plot command is immediately followed by a square bracket, which 
will be closed at the end of part II. Seven functionally distinct lines of code are 
organized by numbers 2-8.  Lines 2-4 instruct the evaluation of the time-
dependent variables.  Lines 5-8 provide formatting commands. 
 
2. The program is instructed to evaluate variables a, b, and c. If only starting 
material a is of interest, we would write: {Evaluate[a[t]/.mechanism1]}. The a[t] is 
followed by /.mechanism1 to indicate that a[t] is evaluated for the set of 
differential equations defined by mechanism1 in part I. 
 
3. Curly brackets include the time interval over which species a, b and c are to be 
evaluated (plotted).  This time interval should not be larger than the time interval 
chosen on line 7 in part 1 because the points beyond the interval (>1500 s in this 
example) will be extrapolated and can be highly spurious. 
 
4. PlotPoints -> 500 tells the program to divide the time interval into 500 points, 
which would produce points every three seconds in the case provided. 
Mathematica employs a recursion formula that fills in more points where the 
curves are most complex (i.e. at inflection points, maximas, etc.).  Mathematica 
also interpolates between the points to arrive at a smooth curve.  If the curve is 
not smooth, increase the number following PlotPoints.  If one wishes to display 
individual points, follow PlotPoints -> 500 with a comma and Mesh->All.  
 
5. PlotRange defines the graphing range. It opens with a curly bracket within 
which there are two more curly brackets. The first specifies the x axis (time) and 
the second specifies the y axis (concentration). PlotRange does not interfere with 
the two time intervals stated earlier. If the time interval is chosen smaller, the 
program will still evaluate solutions up to 1500 s but only display them to the 
specified time. 
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6. AxesLabel places labels on the x and y axes, respectively.  
 
7. LabelStyle specifies the color, size, and font of the numbers and labels in the 
graph. 
 
8. PlotStyle specifies which solutions are to be displayed. In this example, we 
chose to display all three species a, b, and c. The curly brackets designations for 
species a, b, and c are listed in the same order as in line 2 of part II (i.e.  a, b and c 
are assigned the colors red, green and blue, respectively). 
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 4. Modeling Reaction Orders 
 Reaction orders are easily interpreted for simple kinetic systems, but are 
often complicated by multiple ground states or parallel pathways. We can model 
rate order plots and theoretically arrive at a rate order for complex mechanisms 
using numerical integration. This allows to predict and rationalize rate 
dependencies when chemical intuition fails. 
 One begins by solving the differential equations as described in section 3 
and by computing the slope (initial rate) of the desired time-dependent 
concentration at various initial concentrations. The initial rates are then plotted 
against the initial concentration and are fit in Sigmaplot or Scientist to arrive at the 
rate order. This second step will not be described here. 
 The following code finds the slope (rate) at time=0.2 of species a by 
computing the first time derivative (D) of the numerical solution of a. These two 
lines of code are appended to the code presented in section 3. 
 

 
 
1. The smooth line seen in the time-dependent concentration plot in section 3 
represents an interpolated line drawn through a series of discrete points. The 
solution is therefore not a continuous function and cannot be differentiated 
directly. We must first define the solution a[t] as an interpolating function 
denoted by [t_]. We arbitrarily call it aint. 
 
2. We now take the derivative (D) of the interpolating function (aint) at a 
specified time. Because we would like to compute the initial rate, we chose an 
early time point (t=0.2). 
 
3. The solution in this example is 0.0379681. Note that the last two lines are 
output lines. 
 
Computing the initital rates at varying initial concentration of a yields the 
desired rate order plot. 
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5. Exporting Solutions to Excel 
 
The numerical solution that was solved in section 3 can be exported as an Excel 
file for presentation or imported into fitting programs such as Sigmaplot or 
Scientist to determine, for instance, whether the computed decay in starting 
material fits first- or second-order kinetics. 
 
The following code exports the numerical solution of a to Excel and is appended 
to the code presented in section 3. 
 

 
 
1. We must first collect the time and concentration values separately over a given 
time range. We define xi as a table containing a time series ranging from i=0 to 
1500 in steps of 1.  xi now contains 1500+1 time values such that i serves as the 
index number in the table. 
 
2. Similarly, we define yi as aint that was generated as described in section 4. The 
Flatten command is necessary to homogenize the tabular format of xi with yi. 
 
3. xi (time) and yi (concentration of a) are grouped together into a table with the 
name xy. The second curly bracket inside the Table command specifies the index 
i.  In this example, all 1501 points of x and y are exported.  
 
4. Table xy is exported by putting the pathname of the exported file in quotes. 
The ending xls designates the exporting file as an excel file. The second entry 
inside the Export command is the name of the table to be exported. The semi-
colons at the end of every line suppress the output inside the mathematica 
window. Exported Excel files are overwritten without warning. 
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6. Changing Constants Interactively 
 Slider bars allow you to alter rate constants while watching the curves 
change in real time. This is done with the Manipulate command as described 
below using the differential equations described in section 3.  
 

 
 
Lines 3-11 numerically integrate the given differential equations and are identical 
to the code discussed previously. Note, however, the placement of the Evaluate 
command and the lack of assigned rate constants. These are controlled by the 
manipulate command in the last three lines of the code. 
 
The Plot command on line 2 plots the solutions.  The formatting options of Plot 
are specified on lines 12-13 followed by a square bracket. Lines 14-16 are specific 
to the Manipulate command and define the slider bars.  Each rate constant is 
listed in curly brackets separated by commas. The embedded curly brackets 
contain the declaration of the rate constant, the default value of the rate constant, 
and a label name that will appear next to the slider.  The name must be placed in 
double apostrophes.  The interior curly bracket encloses lower and upper bound 
values of the sliders.  
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Shift-Return enables the dynamic command, which allows the sliders to be 
dragged while the curves adjust interactively. By clicking on the ‘+’ sign to the 
right of the slider, the current value of the variable is displayed and can be 
changed continously with the play button. The other buttons are intuitive and 
warrant no further discussion. 
 
The Manipulate command is not limited to rate constants. As an example, a slider 
can change the initial concentration of species a. To do this, we must assign ‘a’ a 
variable for its initial concentration. We call it a0. Line 8 must correspondingly be 
changed to a[0] == a0. Next, we add this new variable to the slider control as 
described above for the case of the rate constants as shown on line 17. 
 

 
 
Happy Computing! 
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