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Preface

Signal processing is one of my favorite topics. It is useful in many areas of
science and engineering, and if you understand the fundamental ideas, it
provides insight into many things we see in the world, and especially the
things we hear.

But unless you studied electrical or mechanical engineering, you probably
haven’t had a chance to learn about signal processing. The problem is that
most books (and the classes that use them) present the material bottom-up,
starting with mathematical abstractions like phasors. And they tend to be
theoretical, with few applications and little apparent relevance.

The premise of this book is that if you know how to program, you can use
that skill to learn other things, and have fun doing it.

With a programming-based approach, I can present the most important
ideas right away. By the end of the first chapter, you can analyze sound
recordings and other signals, and generate new sounds. Each chapter intro-
duces a new technique and an application you can apply to real signals. At
each step you learn how to use a technique first, and then how it works.

This approach is more practical and, I hope you’ll agree, more fun.

0.1 Who is this book for?

The examples and supporting code for this book are in Python. You should
know core Python and you should be familiar with object-oriented features,
at least using objects if not defining your own.

If you are not already familiar with Python, you might want to start with
my other book, Think Python, which is an introduction to Python for people
who have never programmed, or Mark Lutz’s Learning Python, which might
be better for people with programming experience.
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I use NumPy and SciPy extensively. If you are familiar with them already,
that’s great, but I will also explain the functions and data structures I use.

I assume that the reader knows basic mathematics, including complex num-
bers. You don’t need much calculus; if you understand the concepts of inte-
gration and differentiation, that will do. I use some linear algebra, but I will
explain it as we go along.

0.2 Using the code

The code and sound samples used in this book are available from https:
//github.com/AllenDowney/ThinkDSP. Git is a version control system that
allows you to keep track of the files that make up a project. A collection of
tiles under Git’s control is called a “repository”. GitHub is a hosting service
that provides storage for Git repositories and a convenient web interface.

The GitHub homepage for my repository provides several ways to work
with the code:

* You can create a copy of my repository on GitHub by pressing the Fork
button. If you don’t already have a GitHub account, you'll need to
create one. After forking, you'll have your own repository on GitHub
that you can use to keep track of code you write while working on this
book. Then you can clone the repository, which means that you copy
the files to your computer.

* Or you could clone my repository. You don’t need a GitHub account
to do this, but you won’t be able to write your changes back to GitHub.

¢ If you don’t want to use Git at all, you can download the files in a Zip
file using the button in the lower-right corner of the GitHub page.

All of the code is written to work in both Python 2 and Python 3 with no
translation.

I developed this book using Anaconda from Continuum Analytics, which
is a free Python distribution that includes all the packages you’ll need to
run the code (and lots more). I found Anaconda easy to install. By default
it does a user-level installation, not system-level, so you don’t need admin-
istrative privileges. And it supports both Python 2 and Python 3. You can
download Anaconda from http://continuum.io/downloads.

If you don’t want to use Anaconda, you will need the following packages:
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¢ NumPy for basic numerical computation, http://www.numpy.org/;
* SciPy for scientific computation, http://www.scipy.org/;

¢ matplotlib for visualization, http://matplotlib.org/.

Although these are commonly used packages, they are not included with all
Python installations, and they can be hard to install in some environments.
If you have trouble installing them, I recommend using Anaconda or one of
the other Python distributions that include these packages.

Most exercises use Python scripts, but some also use Jupyter notebooks. If
you have not used Jupyter before, you can read about itathttp://jupyter.
org.

There are three ways you can work with the Jupyter notebooks:

Run Jupyter on your computer If you installed Anaconda, you probably
got Jupyter by default. To check, start the server from the command
line, like this:

$ jupyter notebook
If it’s not installed, you can install it in Anaconda like this
$ conda install jupyter

When you start the server, it should launch your default web browser
or create a new tab in an open browser window.

Run Jupyter on Binder Binder is a service that runs Jupyter in a vir-
tual machine. If you follow this link, http://mybinder.org/repo/
AllenDowney/ThinkDSP, you should get a Jupyter home page with the
notebooks for this book and the supporting data and scripts.

You can run the scripts and modify them to run your own code, but
the virtual machine you run in is temporary. Any changes you make
will disappear, along with the virtual machine, if you leave it idle for
more than about an hour.

View notebooks on nbviewer When we refer to notebooks later in the
book, we provide links to nbviewer, which provides a static view of
the code and results. You can use these links to read the notebooks
and listen to the examples, but you won't be able to modify or run the
code, or use the interactive widgets.

Good luck, and have fun!
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Chapter 1

Sounds and signals

A signal represents a quantity that varies in time. That definition is pretty
abstract, so let’s start with a concrete example: sound. Sound is variation in
air pressure. A sound signal represents variations in air pressure over time.

A microphone is a device that measures these variations and generates an
electrical signal that represents sound. A speaker is a device that takes an
electrical signal and produces sound. Microphones and speakers are called
transducers because they transduce, or convert, signals from one form to
another.

This book is about signal processing, which includes processes for synthe-
sizing, transforming, and analyzing signals. I will focus on sound signals,
but the same methods apply to electronic signals, mechanical vibration, and
signals in many other domains.

They also apply to signals that vary in space rather than time, like eleva-
tion along a hiking trail. And they apply to signals in more than one di-
mension, like an image, which you can think of as a signal that varies in
two-dimensional space. Or a movie, which is a signal that varies in two-
dimensional space and time.

But we start with simple one-dimensional sound.

The code for this chapter is in chap01.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdspOil


http://tinyurl.com/thinkdsp01
http://tinyurl.com/thinkdsp01

2 Chapter 1. Sounds and signals

1.0

0.5F

0.0

-0.5}

-1.0
0.000 0.001 0.002 0.003 0.004 0.005 0.006
Time (s) +7

Figure 1.1: Segment from a recording of a bell.

1.1 Periodic signals

We'll start with periodic signals, which are signals that repeat themselves
after some period of time. For example, if you strike a bell, it vibrates and
generates sound. If you record that sound and plot the transduced signal, it

looks like Figure

This signal resembles a sinusoid, which means it has the same shape as the
trigonometric sine function.

You can see that this signal is periodic. I chose the duration to show three
tull repetitions, also known as cycles. The duration of each cycle, called the
period, is about 2.3 ms.

The frequency of a signal is the number of cycles per second, which is the
inverse of the period. The units of frequency are cycles per second, or Hertz,
abbreviated “Hz”. (Strictly speaking, the number of cycles is a dimension-
less number, so a Hertz is really a “per second”).

The frequency of this signal is about 439 Hz, slightly lower than 440 Hz,
which is the standard tuning pitch for orchestral music. The musical name
of this note is A, or more specifically, A4. If you are not familiar with
“scientific pitch notation”, the numerical suffix indicates which octave the
note is in. A4 is the A above middle C. A5 is one octave higher. See
http://en.wikipedia.org/wiki/Scientific_pitch_notation.

A tuning fork generates a sinusoid because the vibration of the tines is a
form of simple harmonic motion. Most musical instruments produce peri-
odic signals, but the shape of these signals is not sinusoidal. For example,
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Figure 1.2: Segment from a recording of a violin.

Figure[1.2]shows a segment from a recording of a violin playing Boccherini’s
String Quintet No. 5 in E, 3rd movement.

Again we can see that the signal is periodic, but the shape of the signal
is more complex. The shape of a periodic signal is called the waveform.
Most musical instruments produce waveforms more complex than a sinu-
soid. The shape of the waveform determines the musical timbre, which is
our perception of the quality of the sound. People usually perceive complex
waveforms as rich, warm and more interesting than sinusoids.

1.2 Spectral decomposition

The most important topic in this book is spectral decomposition, which
is the idea that any signal can be expressed as the sum of sinusoids with
different frequencies.

The most important mathematical idea in this book is the Discrete Fourier
Transform, or DFT, which takes a signal and produces its spectrum. The
spectrum is the set of sinusoids that add up to produce the signal.

And the most important algorithm in this book is the Fast Fourier Trans-
form, or FFT, which is an efficient way to compute the DFT.

For example, Figure 1.3 shows the spectrum of the violin recording in Fig-
ure The x-axis is the range of frequencies that make up the signal. The
y-axis shows the strength or amplitude of each frequency component.
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Figure 1.3: Spectrum of a segment from the violin recording.

The lowest frequency component is called the fundamental frequency. The
fundamental frequency of this signal is near 440 Hz (actually a little lower,
or “flat”).

In this signal the fundamental frequency has the largest amplitude, so it is
also the dominant frequency. Normally the perceived pitch of a sound is
determined by the fundamental frequency, even if it is not dominant.

The other spikes in the spectrum are at frequencies 880, 1320, 1760, and
2200, which are integer multiples of the fundamental. These components
are called harmonics because they are musically harmonious with the fun-
damental:

* 880 is the frequency of A5, one octave higher than the fundamental.
An octave is a doubling in frequency.

¢ 1320 is approximately E6, which is a perfect fifth above A5. If you
are not familiar with musical intervals like "perfect fifth”, see https:
//en.wikipedia.org/wiki/Interval_(music).

e 1760 is A6, two octaves above the fundamental.

* 2200 is approximately C§7, which is a major third above A6.

These harmonics make up the notes of an A major chord, although not all
in the same octave. Some of them are only approximate because the notes
that make up Western music have been adjusted for equal temperament
(see http://en.wikipedia.org/wiki/Equal_temperament).
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Given the harmonics and their amplitudes, you can reconstruct the signal
by adding up sinusoids. Next we’ll see how.

1.3 Signals

I wrote a Python module called thinkdsp.py that contains classes and func-
tions for working with signals and spectrumﬂ You will find it in the repos-
itory for this book (see Section [0.2).

To represent signals, thinkdsp provides a class called Signal, which is the
parent class for several signal types, including Sinusoid, which represents
both sine and cosine signals.

thinkdsp provides functions to create sine and cosine signals:

cos_sig = thinkdsp.CosSignal(freq=440, amp=1.0, offset=0)
sin_sig = thinkdsp.SinSignal(freq=880, amp=0.5, offset=0)

freq is frequency in Hz. amp is amplitude in unspecified units where 1.0 is
defined as the largest amplitude we can record or play back.

offset is a phase offset in radians. Phase offset determines where in the
period the signal starts. For example, a sine signal with offset=0 starts at
sin 0, which is 0. With offset=pi/2 it starts at sin 7t /2, which is 1.

Signals have an __add__ method, so you can use the + operator to add them:
mix = sin_sig + cos_sig

The result is a SumSignal, which represents the sum of two or more signals.

A Signal is basically a Python representation of a mathematical function.
Most signals are defined for all values of t, from negative infinity to infinity.

You can’t do much with a Signal until you evaluate it. In this context, “eval-
uate” means taking a sequence of points in time, ts, and computing the
corresponding values of the signal, ys. I represent ts and ys using NumPy
arrays and encapsulate them in an object called a Wave.

A Wave represents a signal evaluated at a sequence of points in time. Each
point in time is called a frame (a term borrowed from movies and video).
The measurement itself is called a sample, although “frame” and “sample”
are sometimes used interchangeably.

IThe plural of “spectrum” is often written “spectra”, but I prefer to use standard English
plurals. If you are familiar with “spectra”, I hope my choice doesn’t sound too strange.
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Figure 1.4: Segment from a mixture of two sinusoid signals.

Signal provides make_wave, which returns a new Wave object:
wave = mix.make_wave(duration=0.5, start=0, framerate=11025)

duration is the length of the Wave in seconds. start is the start time, also
in seconds. framerate is the (integer) number of frames per second, which
is also the number of samples per second.

11,025 frames per second is one of several framerates commonly used in
audio file formats, including Waveform Audio File (WAV) and mp3.

This example evaluates the signal from t=0 to t=0.5 at 5,513 equally-spaced
frames (because 5,513 is half of 11,025). The time between frames, or
timestep, is 1/11025 seconds, about 91 pus.

Wave provides a plot method that uses pyplot. You can plot the wave like
this:

wave.plot ()
pyplot.show()

pyplot is part of matplotlib; it is included in many Python distributions,
or you might have to install it.

At freq=440 there are 220 periods in 0.5 seconds, so this plot would look
like a solid block of color. To zoom in on a small number of periods, we can
use segment, which copies a segment of a Wave and returns a new wave:

period = mix.period
segment = wave.segment(start=0, duration=period*3)
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period is a property of a Signal; it returns the period in seconds.

start and duration are in seconds. This example copies the first three pe-
riods from mix. The result is a Wave object.

If we plot segment, it looks like Figure This signal contains two fre-
quency components, so it is more complicated than the signal from the tun-
ing fork, but less complicated than the violin.

1.4 Reading and writing Waves

thinkdsp provides read_wave, which reads a WAV file and returns a Wave:
violin_wave = thinkdsp.read_wave('input.wav')

And Wave provides write, which writes a WAV file:
wave.write(filename='output.wav')

You can listen to the Wave with any media player that plays WAV files. On
UNIX systems, I use aplay, which is simple, robust, and included in many
Linux distributions.

thinkdsp also provides play_wave, which runs the media player as a sub-
process:
thinkdsp.play_wave(filename='output.wav', player='aplay')

It uses aplay by default, but you can provide the name of another player.

1.5 Spectrums

Wave provides make_spectrum, which returns a Spectrum:
spectrum = wave.make_spectrum()
And Spectrum provides plot:

spectrum.plot ()
thinkplot.show()

thinkplot is a module I wrote to provide wrappers around some of the
functions in pyplot. It is included in the Git repository for this book (see

Section[0.2).

Spectrum provides three methods that modity the spectrum:
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Figure 1.5: Relationships among the classes in thinkdsp.

* low_pass applies a low-pass filter, which means that components
above a given cutoff frequency are attenuated (that is, reduced in mag-
nitude) by a factor.

* high_pass applies a high-pass filter, which means that it attenuates
components below the cutoff.

* band_stop attenuates components in the band of frequencies between
two cutoffs.

This example attenuates all frequencies above 600 by 99%:
spectrum.low_pass(cutoff=600, factor=0.01)

A low-pass filter removes bright, high-frequency sounds, so the result
sounds muffled and darker. To hear what it sounds like, you can convert
the Spectrum back to a Wave, and then play it.

wave = spectrum.make_wave ()
wave.play('temp.wav')

The play method writes the wave to a file and then plays it. If you use
Jupyter notebooks, you can use make_audio, which makes an Audio widget
that plays the sound.

1.6 Wave objects

There is nothing very complicated in thinkdsp.py. Most of the functions it
provides are thin wrappers around functions from NumPy and SciPy.

The primary classes in thinkdsp are Signal, Wave, and Spectrum. Given a
Signal, you can make a Wave. Given a Wave, you can make a Spectrum,
and vice versa. These relationships are shown in Figure

A Wave object contains three attributes: ys is a NumPy array that contains
the values in the signal; ts is an array of the times where the signal was
evaluated or sampled; and framerate is the number of samples per unit of
time. The unit of time is usually seconds, but it doesn’t have to be. In one
of my examples, it’s days.
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Wave also provides three read-only properties: start, end, and duration. If
you modify ts, these properties change accordingly.

To modify a wave, you can access the ts and ys directly. For example:
wave.ys *= 2
wave.ts += 1

The first line scales the wave by a factor of 2, making it louder. The second
line shifts the wave in time, making it start 1 second later.

But Wave provides methods that perform many common operations. For
example, the same two transformations could be written:

wave.scale(2)
wave.shift (1)

You can read the documentation of these methods and others at http://
greenteapress.com/thinkdsp.html.

1.7 Signal objects

Signal is a parent class that provides functions common to all kinds of
signals, like make_wave. Child classes inherit these methods and provide
evaluate, which evaluates the signal at a given sequence of times.

For example, Sinusoid is a child class of Signal, with this definition:

class Sinusoid(Signal):

def __init__(self, freq=440, amp=1.0, offset=0, func=np.sin):
Signal.__init__(self)
self.freq = freq
self.amp = amp
self.offset = offset
self.func = func

The parameters of __init__ are:

* freq: frequency in cycles per second, or Hz.

e amp: amplitude. The units of amplitude are arbitrary, usually chosen
50 1.0 corresponds to the maximum input from a microphone or max-
imum output to a speaker.

* offset: indicates where in its period the signal starts; offset is in
units of radians, for reasons I explain below.
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e func: a Python function used to evaluate the signal at a particular
point in time. It is usually either np.sin or np. cos, yielding a sine or
cosine signal.

Like many init methods, this one just tucks the parameters away for future
use.

Signal provides make_wave, which looks like this:

def make_wave(self, duration=1, start=0, framerate=11025):
n = round(duration * framerate)
ts = start + np.arange(n) / framerate
ys = self.evaluate(ts)
return Wave(ys, ts, framerate=framerate)

start and duration are the start time and duration in seconds. framerate
is the number of frames (samples) per second.

n is the number of samples, and ts is a NumPy array of sample times.

To compute the ys, make_wave invokes evaluate, which is provided by
Sinusoid:

def evaluate(self, ts):
phases = PI2 * self.freq * ts + self.offset
ys = self.amp * self.func(phases)
return ys

Let’s unwind this function one step at time:

1. self.freq is frequency in cycles per second, and each element of ts
is a time in seconds, so their product is the number of cycles since the
start time.

2. PI2 is a constant that stores 27t. Multiplying by PI2 converts from
cycles to phase. You can think of phase as “cycles since the start time”
expressed in radians. Each cycle is 277 radians.

3. self.offset is the phase when t = 0. It has the effect of shifting the
signal left or right in time.

4. If self .func isnp.sin ornp.cos, the result is a value between —1 and
+1.

5. Multiplying by self.amp yields a signal that ranges from -self.amp
to +self . amp.
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In math notation, evaluate is written like this:
y = Acos(27tft+ ¢o)

where A is amplitude, f is frequency, f is time, and ¢y is the phase offset. It
may seem like I wrote a lot of code to evaluate one simple expression, but
as we'll see, this code provides a framework for dealing with all kinds of
signals, not just sinusoids.

1.8 Exercises

Before you begin these exercises, you should download the code for this
book, following the instructions in Section [0.2}

Solutions to these exercises are in chapOlsoln. ipynb.

Exercise 1.1 If you have Jupyter, load chap01.ipynb, read through it, and
run the examples. You can also view this notebook at http://tinyurl.
com/thinkdspO1.

Exercise 1.2 Go to http://freesound.org and download a sound sample
that includes music, speech, or other sounds that have a well-defined pitch.
Select a roughly half-second segment where the pitch is constant. Compute
and plot the spectrum of the segment you selected. What connection can
you make between the timbre of the sound and the harmonic structure you
see in the spectrum?

Use high_pass, low_pass, and band_stop to filter out some of the harmon-
ics. Then convert the spectrum back to a wave and listen to it. How does
the sound relate to the changes you made in the spectrum?

Exercise 1.3 Synthesize a compound signal by creating SinSignal and
CosSignal objects and adding them up. Evaluate the signal to get a Wave,
and listen to it. Compute its Spectrum and plot it. What happens if you add
frequency components that are not multiples of the fundamental?

Exercise 1.4 Write a function called stretch that takes a Wave and a stretch
factor and speeds up or slows down the wave by modifying ts and
framerate. Hint: it should only take two lines of code.


http://tinyurl.com/thinkdsp01
http://tinyurl.com/thinkdsp01
http://freesound.org
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Chapter 2

Harmonics

In this chapter I present several new waveforms; we will look at their spec-
trums to understand their harmonic structure, which is the set of sinusoids
they are made up of.

I'll also introduce one of the most important phenomena in digital signal
processing: aliasing. And I'll explain a little more about how the Spectrum
class works.

The code for this chapter is in chap02.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdsp02.

2.1 Triangle waves

A sinusoid contains only one frequency component, so its spectrum has
only one peak. More complicated waveforms, like the violin recording,
yield DFTs with many peaks. In this section we investigate the relationship
between waveforms and their spectrums.

I'll start with a triangle waveform, which is like a straight-line version of a
sinusoid. Figure 2.1|shows a triangle waveform with frequency 200 Hz.

To generate a triangle wave, you «can start with a
thinkdsp.TriangleSignal:

class TriangleSignal(Sinusoid):

def evaluate(self, ts):


http://tinyurl.com/thinkdsp02
http://tinyurl.com/thinkdsp02
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Figure 2.1: Segment of a triangle signal at 200 Hz.

cycles = self.freq * ts + self.offset / PI2
frac, _ = np.modf(cycles)

ys = np.abs(frac - 0.5)

ys = normalize(unbias(ys), self.amp)

return ys

TriangleSignal inherits __init__ from Sinusoid, so it takes the same ar-
guments: freq, amp, and offset.

The only difference is evaluate. As we saw before, ts is the sequence of
sample times where we want to evaluate the signal.

There are many ways to generate a triangle wave. The details are not im-
portant, but here’s how evaluate works:

1. cycles is the number of cycles since the start time. np.modf splits the
number of cycles into the fraction part, stored in frac, and the integer
part, which is ignored E

2. frac is a sequence that ramps from 0 to 1 with the given frequency.
Subtracting 0.5 yields values between -0.5 and 0.5. Taking the absolute
value yields a waveform that zig-zags between 0.5 and 0.

3. unbias shifts the waveform down so it is centered at 0; then normalize
scales it to the given amplitude, amp.

Here’s the code that generates Figure

1Using an underscore as a variable name is a convention that means, “I don’t intend to
use this value.”
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Figure 2.2: Spectrum of a triangle signal at 200 Hz, shown on two verti-
cal scales. The version on the right cuts off the fundamental to show the
harmonics more clearly.

signal = thinkdsp.TriangleSignal(200)
signal.plot()

Next we can use the Signal to make a Wave, and use the Wave to make a
Spectrum:

wave = signal.make_wave(duration=0.5, framerate=10000)
spectrum = wave.make_spectrum()
spectrum.plot ()

Figure shows two views of the result; the view on the right is scaled to
show the harmonics more clearly. As expected, the highest peak is at the
fundamental frequency, 200 Hz, and there are additional peaks at harmonic
frequencies, which are integer multiples of 200.

But one surprise is that there are no peaks at the even multiples: 400, 800,
etc. The harmonics of a triangle wave are all odd multiples of the funda-
mental frequency, in this example 600, 1000, 1400, etc.

Another feature of this spectrum is the relationship between the amplitude
and frequency of the harmonics. Their amplitude drops off in proportion
to frequency squared. For example the frequency ratio of the first two har-
monics (200 and 600 Hz) is 3, and the amplitude ratio is approximately 9.
The frequency ratio of the next two harmonics (600 and 1000 Hz) is 1.7, and
the amplitude ratio is approximately 1.72 = 2.9. This relationship is called
the harmonic structure.
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Figure 2.3: Segment of a square signal at 100 Hz.

2.2 Square waves

thinkdsp also provides SquareSignal, which represents a square signal.
Here’s the class definition:

class SquareSignal (Sinusoid):

def evaluate(self, ts):
cycles = self.freq * ts + self.offset / PI2

frac, _ = np.modf(cycles)
ys = self.amp * np.sign(unbias(frac))
return ys

Like TriangleSignal, SquareSignal inherits __init__ from Sinusoid, so it
takes the same parameters.

And the evaluate method is similar. Again, cycles is the number of cycles
since the start time, and frac is the fractional part, which ramps from 0 to 1
each period.

unbias shifts frac so it ramps from -0.5 to 0.5, then np.sign maps the neg-
ative values to -1 and the positive values to 1. Multiplying by amp yields a
square wave that jumps between -amp and amp.

Figure|2.3|shows three periods of a square wave with frequency 100 Hz, and
Figure 2.4 shows its spectrum.

Like a triangle wave, the square wave contains only odd harmonics, which
is why there are peaks at 300, 500, and 700 Hz, etc. But the amplitude of the
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Figure 2.4: Spectrum of a square signal at 100 Hz.

harmonics drops off more slowly. Specifically, amplitude drops in propor-
tion to frequency (not frequency squared).

The exercises at the end of this chapter give you a chance to explore other
waveforms and other harmonic structures.

2.3 Aliasing

I'have a confession. I chose the examples in the previous section carefully to
avoid showing you something confusing. But now it’s time to get confused.

Figure [2.5 shows the spectrum of a triangle wave at 1100 Hz, sampled at
10,000 frames per second. Again, the view on the right is scaled to show the
harmonics.

The harmonics of this wave should be at 3300, 5500, 7700, and 9900 Hz. In
the figure, there are peaks at 1100 and 3300 Hz, as expected, but the third
peak is at 4500, not 5500 Hz. The fourth peak is at 2300, not 7700 Hz. And
if you look closely, the peak that should be at 9900 is actually at 100 Hz.
What's going on?

The problem is that when you evaluate the signal at discrete points in time,
you lose information about what happened between samples. For low fre-
quency components, that’s not a problem, because you have lots of samples
per period.
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Figure 2.5: Spectrum of a triangle signal at 1100 Hz sampled at 10,000
frames per second. The view on the right is scaled to show the harmon-
ics.

But if you sample a signal at 5000 Hz with 10,000 frames per second, you
only have two samples per period. That turns out to be enough, just barely,
but if the frequency is higher, it’s not.

To see why, let’s generate cosine signals at 4500 and 5500 Hz, and sample
them at 10,000 frames per second:

framerate = 10000

signal = thinkdsp.CosSignal(4500)

duration = signal.period*b

segment = signal.make_wave(duration, framerate=framerate)
segment.plot ()

signal = thinkdsp.CosSignal(5500)
segment = signal.make_wave(duration, framerate=framerate)
segment .plot ()

Figure[2.6)shows the result. I plotted the Signals with thin gray lines and the
samples using vertical lines, to make it easier to compare the two Waves.
The problem should be clear: even though the Signals are different, the
Waves are identical!

When we sample a 5500 Hz signal at 10,000 frames per second, the result
is indistinguishable from a 4500 Hz signal. For the same reason, a 7700 Hz
signal is indistinguishable from 2300 Hz, and a 9900 Hz is indistinguishable
from 100 Hz.
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Figure 2.6: Cosine signals at 4500 and 5500 Hz, sampled at 10,000 frames
per second. The signals are different, but the samples are identical.

This effect is called aliasing because when the high frequency signal is sam-
pled, it appears to be a low frequency signal.

In this example, the highest frequency we can measure is 5000 Hz, which
is half the sampling rate. Frequencies above 5000 Hz are folded back be-
low 5000 Hz, which is why this threshold is sometimes called the “fold-
ing frequency”. It is sometimes also called the Nyquist frequency. See
http://en.wikipedia.org/wiki/Nyquist_frequency.

The folding pattern continues if the aliased frequency goes below zero. For
example, the 5th harmonic of the 1100 Hz triangle wave is at 12,100 Hz.
Folded at 5000 Hz, it would appear at -2100 Hz, but it gets folded again
at 0 Hz, back to 2100 Hz. In fact, you can see a small peak at 2100 Hz in
Figure and the next one at 4300 Hz.

2.4 Computing the spectrum

We have seen the Wave method make_spectrum several times. Here is the
implementation (leaving out some details we’ll get to later):


http://en.wikipedia.org/wiki/Nyquist_frequency
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from np.fft import rfft, rfftfreq

# class Wave:
def make_spectrum(self):
n = len(self.ys)
d = 1 / self.framerate

hs
fs

rfft(self.ys)
rfftfreq(n, d)

return Spectrum(hs, fs, self.framerate)

The parameter self is a Wave object. n is the number of samples in the
wave, and d is the inverse of the frame rate, which is the time between
samples.

np.fft is the NumPy module that provides functions related to the Fast
Fourier Transform (FFT), which is an efficient algorithm that computes the
Discrete Fourier Transform (DFT).

make_spectrum uses rfft, which stands for “real FFT”, because the Wave
contains real values, not complex. Later we'll see the full FFT, which can
handle complex signals (see Section . The result of rfft, which I call hs,
is a NumPy array of complex numbers that represents the amplitude and
phase offset of each frequency component in the wave.

The result of rfftfreq, which I call s, is an array that contains frequencies
corresponding to the hs.

To understand the values in hs, consider these two ways to think about
complex numbers:

¢ A complex number is the sum of a real part and an imaginary part,
often written x + iy, where i is the imaginary unit, +/—1. You can
think of x and y as Cartesian coordinates.

* A complex number is also the product of a magnitude and a complex
exponential, Ae’?, where A is the magnitude and ¢ is the angle in
radians, also called the “argument”. You can think of A and ¢ as polar
coordinates.

Each value in hs corresponds to a frequency component: its magnitude is
proportional to the amplitude of the corresponding component; its angle is
the phase offset.
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The Spectrum class provides two read-only properties, amps and angles,
which return NumPy arrays representing the magnitudes and angles of the
hs. When we plot a Spectrum object, we usually plot amps versus fs. Some-
times it is also useful to plot angles versus fs.

Although it might be tempting to look at the real and imaginary parts of
hs, you will almost never need to. I encourage you to think of the DFT as
a vector of amplitudes and phase offsets that happen to be encoded in the
form of complex numbers.

To modify a Spectrum, you can access the hs directly. For example:

spectrum.hs *= 2
spectrum.hs[spectrum.fs > cutoff] = 0

The first line multiplies the elements of hs by 2, which doubles the ampli-
tudes of all components. The second line sets to 0 only the elements of hs
where the corresponding frequency exceeds some cutoff frequency.

But Spectrum also provides methods to perform these operations:

spectrum.scale(2)
spectrum.low_pass(cutoff)

You can read the documentation of these methods and others at http://
greenteapress.com/thinkdsp.html.

At this point you should have a better idea of how the Signal, Wave, and
Spectrum classes work, but I have not explained how the Fast Fourier Trans-
form works. That will take a few more chapters.

2.5 Exercises

Solutions to these exercises are in chap02soln. ipynb.

Exercise 2.1 If you use Jupyter, load chap02. ipynb and try out the examples.
You can also view the notebook athttp://tinyurl.com/thinkdsp02.

Exercise 2.2 A sawtooth signal has a waveform that ramps up linearly from
-1 to 1, then drops to -1 and repeats. See http://en.wikipedia.org/wiki/
Sawtooth_wave

Write a class called SawtoothSignal that extends Signal and provides
evaluate to evaluate a sawtooth signal.

Compute the spectrum of a sawtooth wave. How does the harmonic struc-
ture compare to triangle and square waves?


http://greenteapress.com/thinkdsp.html
http://greenteapress.com/thinkdsp.html
http://tinyurl.com/thinkdsp02
http://en.wikipedia.org/wiki/Sawtooth_wave
http://en.wikipedia.org/wiki/Sawtooth_wave
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Exercise 2.3 Make a square signal at 1100 Hz and make a wave that samples
it at 10000 frames per second. If you plot the spectrum, you can see that
most of the harmonics are aliased. When you listen to the wave, can you
hear the aliased harmonics?

Exercise 2.4 If you have a spectrum object, spectrum, and print the first few
values of spectrum.fs, you'll see that they start at zero. So spectrum.hs[0]
is the magnitude of the component with frequency 0. But what does that
mean?

Try this experiment:

1. Make a triangle signal with frequency 440 and make a Wave with du-
ration 0.01 seconds. Plot the waveform.

2. Make a Spectrum object and print spectrum.hs[0]. What is the am-
plitude and phase of this component?

3. Set spectrum.hs[0] = 100. What effect does this operation have on
the waveform? Hint: Spectrum provides a method called make_wave
that computes the Wave that corresponds to the Spectrum.

Exercise 2.5 Write a function that takes a Spectrum as a parameter and
modifies it by dividing each element of hs by the corresponding frequency
from fs. Hint: since division by zero is undefined, you might want to set
spectrum.hs[0] = 0.

Test your function using a square, triangle, or sawtooth wave.

1. Compute the Spectrum and plot it.
2. Modify the Spectrum using your function and plot it again.

3. Use Spectrum.make_wave to make a Wave from the modified Spec-
trum, and listen to it. What effect does this operation have on the
signal?

Exercise 2.6 Triangle and square waves have odd harmonics only; the saw-
tooth wave has both even and odd harmonics. The harmonics of the square
and sawtooth waves drop off in proportion to 1/ f; the harmonics of the tri-
angle wave drop off like 1/ f2. Can you find a waveform that has even and
odd harmonics that drop off like 1/ f 27

Hint: There are two ways you could approach this: you could construct the
signal you want by adding up sinusoids, or you could start with a signal
that is similar to what you want and modify it.
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Non-periodic signals

The signals we have worked with so far are periodic, which means that they
repeat forever. It also means that the frequency components they contain
do not change over time. In this chapter, we consider non-periodic signals,
whose frequency components do change over time. In other words, pretty
much all sound signals.

This chapter also presents spectrograms, a common way to visualize non-
periodic signals.

The code for this chapter is in chap03.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdsp03l

3.1 Linear chirp

We'll start with a chirp, which is a signal with variable frequency. thinkdsp
provides a Signal called Chirp that makes a sinusoid that sweeps linearly
through a range of frequencies.

Here’s an example that sweeps from 220 to 880 Hz, which is two octaves
from A3 to A5:

signal = thinkdsp.Chirp(start=220, end=880)

wave = signal.make_wave()

Figure 3.1| shows segments of this wave near the beginning, middle, and
end. It’s clear that the frequency is increasing.

Before we go on, let’s see how Chirp is implemented. Here is the class
definition:


http://tinyurl.com/thinkdsp03
http://tinyurl.com/thinkdsp03
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Figure 3.1: Chirp waveform near the beginning, middle, and end.

class Chirp(Signal):

def __init__(self, start=440, end=880, amp=1.0):
self.start = start
self.end = end
self.amp = amp

start and end are the frequencies, in Hz, at the start and end of the chirp.
amp is amplitude.

Here is the function that evaluates the signal:

def evaluate(self, ts):
freqs = np.linspace(self.start, self.end, len(ts)-1)
return self._evaluate(ts, freqs)

ts is the sequence of points in time where the signal should be evaluated;
to keep this function simple, I assume they are equally-spaced.

If the length of ts is n, you can think of it as a sequence of n — 1 intervals
of time. To compute the frequency during each interval, I use np.linspace,
which returns a NumPy array of n — 1 values between start and end.

_evaluate is a private method that does the rest of the mat

def _evaluate(self, ts, freqs):
dts = np.diff(ts)
dphis = PI2 * freqgs * dts

1Beginning a method name with an underscore makes it “private”, indicating that it is
not part of the API that should be used outside the class definition.
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phases = np.cumsum(dphis)

phases = np.insert(phases, 0, 0)
ys = self.amp * np.cos(phases)
return ys

np.diff computes the difference between adjacent elements of ts, returning
the length of each interval in seconds. If the elements of ts are equally
spaced, the dts are all the same.

The next step is to figure out how much the phase changes during each
interval. In Section [1.7|we saw that when frequency is constant, the phase,
¢, increases linearly over time:

¢ =2 ft

When frequency is a function of time, the change in phase during a short
time interval, At, is:

Ap =27t f(t)At
In Python, since freqgs contains f(¢) and dts contains the time intervals, we
can write
dphis = PI2 x freqgs * dts

Now, since dphis contains the changes in phase, we can get the total phase
at each timestep by adding up the changes:

phases = np.cumsum(dphis)
phases = np.insert(phases, 0, 0)

np.cumsum computes the cumulative sum, which is almost what we want,
but it doesn’t start at 0. So I use np. insert to add a 0 at the beginning.

The result is a NumPy array where the ith element contains the sum of the
tirst i terms from dphis; that is, the total phase at the end of the ith interval.
Finally, np. cos computes the amplitude of the wave as a function of phase
(remember that phase is expressed in radians).

If you know calculus, you might notice that the limit as At gets small is
dp =27 f(t)dt
Dividing through by dt yields

W —anfe)

In other words, frequency is the derivative of phase. Conversely, phase is
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the integral of frequency. When we used cumsum to go from frequency to
phase, we were approximating integration.

3.2 Exponential chirp

When you listen to this chirp, you might notice that the pitch rises quickly
at first and then slows down. The chirp spans two octaves, but it only takes
2/3 s to span the first octave, and twice as long to span the second.

The reason is that our perception of pitch depends on the logarithm of fre-
quency. As a result, the interval we hear between two notes depends on the
ratio of their frequencies, not the difference. “Interval” is the musical term
for the perceived difference between two pitches.

For example, an octave is an interval where the ratio of two pitches is 2. So
the interval from 220 to 440 is one octave and the interval from 440 to 880
is also one octave. The difference in frequency is bigger, but the ratio is the
same.

As a result, if frequency increases linearly, as in a linear chirp, the perceived
pitch increases logarithmically.

If you want the perceived pitch to increase linearly, the frequency has to
increase exponentially. A signal with that shape is called an exponential
chirp.

Here’s the code that makes one:
class ExpoChirp(Chirp):

def evaluate(self, ts):
start, end = np.loglO(self.start), np.loglO(self.end)
freqs = np.logspace(start, end, len(ts)-1)
return self._evaluate(ts, freqs)
Instead of np.linspace, this version of evaluate uses np.logspace, which
creates a series of frequencies whose logarithms are equally spaced, which
means that they increase exponentially.

That’s it; everything else is the same as Chirp. Here’s the code that makes
one:

signal = thinkdsp.ExpoChirp(start=220, end=880)

wave = signal.make_wave(duration=1)

You can listen to these examples in chap03.ipynb and compare the linear
and exponential chirps.
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Figure 3.2: Spectrum of a one-second one-octave chirp.

3.3 Spectrum of a chirp

What do you think happens if you compute the spectrum of a chirp? Here’s
an example that constructs a one-second, one-octave chirp and its spectrum:

signal = thinkdsp.Chirp(start=220, end=440)
wave = signal.make_wave(duration=1)
spectrum = wave.make_spectrum()

Figure shows the result. The spectrum has components at every fre-
quency from 220 to 440 Hz, with variations that look a little like the Eye of
Sauron (see http://en.wikipedia.org/wiki/Sauron).

The spectrum is approximately flat between 220 and 440 Hz, which in-
dicates that the signal spends equal time at each frequency in this range.
Based on that observation, you should be able to guess what the spectrum
of an exponential chirp looks like.

The spectrum gives hints about the structure of the signal, but it obscures
the relationship between frequency and time. For example, we cannot tell

by looking at this spectrum whether the frequency went up or down, or
both.

3.4 Spectrogram

To recover the relationship between frequency and time, we can break the
chirp into segments and plot the spectrum of each segment. The result is


http://en.wikipedia.org/wiki/Sauron
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Figure 3.3: Spectrogram of a one-second one-octave chirp.

called a short-time Fourier Transform (STFT).

There are several ways to visualize a STFT, but the most common is a spec-
trogram, which shows time on the x-axis and frequency on the y-axis. Each
column in the spectrogram shows the spectrum of a short segment, using
color or grayscale to represent amplitude.

As an example, I'll compute the spectrogram of this chirp:

signal = thinkdsp.Chirp(start=220, end=440)
wave = signal.make_wave(duration=1, framerate=11025)

Wave provides make_spectrogram, which returns a Spectrogram object:

spectrogram = wave.make_spectrogram(seg_length=512)
spectrogram.plot (high=700)

seg_length is the number of samples in each segment. I chose 512 because
FFT is most efficient when the number of samples is a power of 2.

Figure shows the result. The x-axis shows time from 0 to 1 seconds.
The y-axis shows frequency from 0 to 700 Hz. I cut off the top part of the
spectrogram; the full range goes to 5512.5 Hz, which is half of the frame
rate.

The spectrogram shows clearly that frequency increases linearly over time.
However, notice that the peak in each column is blurred across 2-3 cells.
This blurring reflects the limited resolution of the spectrogram.
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3.5 The Gabor limit

The time resolution of the spectrogram is the duration of the segments,
which corresponds to the width of the cells in the spectrogram. Since each
segment is 512 frames, and there are 11,025 frames per second, the duration
of each segment is about 0.046 seconds.

The frequency resolution is the frequency range between elements in the
spectrum, which corresponds to the height of the cells. With 512 frames,
we get 256 frequency components over a range from 0 to 5512.5 Hz, so the
range between components is 21.6 Hz.

More generally, if n is the segment length, the spectrum contains 7 /2 com-
ponents. If the frame rate is r, the maximum frequency in the spectrum is
r/2. So the time resolution is n/r and the frequency resolution is

r/2
n/2

which is r/n.

Ideally we would like time resolution to be small, so we can see rapid
changes in frequency. And we would like frequency resolution to be small
so we can see small changes in frequency. But you can’t have both. Notice
that time resolution, n/r, is the inverse of frequency resolution, r/n. So if
one gets smaller, the other gets bigger.

For example, if you double the segment length, you cut frequency resolu-
tion in half (which is good), but you double time resolution (which is bad).
Even increasing the frame rate doesn’t help. You get more samples, but the
range of frequencies increases at the same time.

This tradeoff is called the Gabor limit and it is a fundamental limitation of
this kind of time-frequency analysis.

3.6 Leakage

In order to explain how make_spectrogram works, I have to explain win-
dowing; and in order to explain windowing, I have to show you the prob-
lem it is meant to address, which is leakage.

The Discrete Fourier Transform (DFT), which we use to compute Spectrumes,
treats waves as if they are periodic; that is, it assumes that the finite segment
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Figure 3.4: Spectrum of a periodic segment of a sinusoid (left), a non-
periodic segment (middle), a windowed non-periodic segment (right).

it operates on is a complete period from an infinite signal that repeats over
all time. In practice, this assumption is often false, which creates problems.

One common problem is discontinuity at the beginning and end of the seg-
ment. Because DFT assumes that the signal is periodic, it implicitly connects
the end of the segment back to the beginning to make a loop. If the end does
not connect smoothly to the beginning, the discontinuity creates additional
frequency components in the segment that are not in the signal.

As an example, let’s start with a sine signal that contains only one frequency
component at 440 Hz.

signal = thinkdsp.SinSignal(freq=440)

If we select a segment that happens to be an integer multiple of the period,
the end of the segment connects smoothly with the beginning, and DFT
behaves well.

duration = signal.period * 30
wave = signal.make_wave(duration)
spectrum = wave.make_spectrum()

Figure [3.4] (left) shows the result. As expected, there is a single peak at 440
Hz.

But if the duration is not a multiple of the period, bad things happen. With
duration = signal.period * 30.25, the signal starts at 0 and ends at 1.
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Figure 3.5: Segment of a sinusoid (top), Hamming window (middle), prod-
uct of the segment and the window (bottom).

Figure 3.4 (middle) shows the spectrum of this segment. Again, the peak is
at 440 Hz, but now there are additional components spread out from 240 to
640 Hz. This spread is called spectral leakage, because some of the energy
that is actually at the fundamental frequency leaks into other frequencies.

In this example, leakage happens because we are using DFT on a segment
that becomes discontinuous when we treat it as periodic.

3.7 Windowing

We can reduce leakage by smoothing out the discontinuity between the be-
ginning and end of the segment, and one way to do that is windowing.

A “window” is a function designed to transform a non-periodic segment
into something that can pass for periodic. Figure 3.5|(top) shows a segment
where the end does not connect smoothly to the beginning.

Figure (middle) shows a “Hamming window”, one of the more com-
mon window functions. No window function is perfect, but some can be
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shown to be optimal for different applications, and Hamming is a good,
all-purpose window.

Figure 3.5/ (bottom) shows the result of multiplying the window by the orig-
inal signal. Where the window is close to 1, the signal is unchanged. Where
the window is close to 0, the signal is attenuated. Because the window
tapers at both ends, the end of the segment connects smoothly to the begin-
ning.

Figure 3.4 (right) shows the spectrum of the windowed signal. Windowing
has reduced leakage substantially, but not completely.

Here’s what the code looks like. Wave provides window, which applies a
Hamming window:

#class Wave:
def window(self, window):
self.ys *= window

And NumPy provides hamming, which computes a Hamming window with
a given length:

window = np.hamming(len(wave))
wave .window(window)

NumPy provides functions to compute other window functions, including
bartlett, blackman, hanning, and kaiser. One of the exercises at the end
of this chapter asks you to experiment with these other windows.

3.8 Implementing spectrograms

Now that we understand windowing, we can understand the implementa-
tion of make_spectrogram. Here is the Wave method that computes spectro-
grams:

#class Wave:
def make_spectrogram(self, seg_length):
window = np.hamming(seg_length)
i, j = 0, seg_length
step = seg_length / 2

spec_map = {}

while j < len(self.ys):
segment = self.slice(i, j)
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Figure 3.6: Overlapping Hamming windows.

segment . window (window)

t = (segment.start + segment.end) / 2
spec_map[t] = segment.make_spectrum()

1 += step
j += step

return Spectrogram(spec_map, seg_length)

This is the longest function in the book, so if you can handle this, you can
handle anything.

The parameter, self, is a Wave object. seg_length is the number of samples
in each segment.

window is a Hamming window with the same length as the segments.

i and j are the slice indices that select segments from the wave. step is
the offset between segments. Since step is half of seg_length, the segments
overlap by half. Figure 3.6 shows what these overlapping windows look
like.

spec_map is a dictionary that maps from a timestamp to a Spectrum.
p P y P P P

Inside the while loop, we select a slice from the wave and apply the win-
dow; then we construct a Spectrum object and add it to spec_map. The nom-
inal time of each segment, t, is the midpoint.
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Then we advance i and j, and continue as long as j doesn’t go past the end
of the Wave.

Finally, the method constructs and returns a Spectrogram object. Here is the
definition of the class:

class Spectrogram(object):
def __init__(self, spec_map, seg_length):
self.spec_map = spec_map
self .seg_length = seg_length

Like many init methods, this one just stores the parameters as attributes.

Spectrogram provides plot, which generates a pseudocolor plot with time
along the x-axis and frequency along the y-axis.

And that’s how Spectrograms are implemented.

3.9 Exercises

Solutions to these exercises are in chap03soln. ipynb.

Exercise 3.1 Run and listen to the examples in chap03.ipynb, which is in
the repository for this book, and also available at http://tinyurl.com/
thinkdsp03.

In the leakage example, try replacing the Hamming window with one of
the other windows provided by NumPy, and see what effect they have on
leakage. See http://docs.scipy.org/doc/numpy/reference/routines.
window.html

Exercise 3.2 Write a class called SawtoothChirp that extends Chirp and
overrides evaluate to generate a sawtooth waveform with frequency that
increases (or decreases) linearly.

Hint: combine the evaluate functions from Chirp and SawtoothSignal.

Draw a sketch of what you think the spectrogram of this signal looks like,
and then plot it. The effect of aliasing should be visually apparent, and if
you listen carefully, you can hear it.

Exercise 3.3 Make a sawtooth chirp that sweeps from 2500 to 3000 Hz, then
use it to make a wave with duration 1 s and frame rate 20 kHz. Draw a
sketch of what you think the spectrum will look like. Then plot the spec-
trum and see if you got it right.


http://tinyurl.com/thinkdsp03
http://tinyurl.com/thinkdsp03
http://docs.scipy.org/doc/numpy/reference/routines.window.html
http://docs.scipy.org/doc/numpy/reference/routines.window.html
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Exercise 3.4 In musical terminology, a “glissando” is a note that slides from
one pitch to another, so it is similar to a chirp.

Find or make a recording of a glissando and plot a spectrogram of the first
few seconds. One suggestion: George Gershwin’s Rhapsody in Blue starts
with a famous clarinet glissando, which you can download from http://
archive.org/details/rhapblue11924.

Exercise 3.5 A trombone player can play a glissando by extending the trom-
bone slide while blowing continuously. As the slide extends, the total length
of the tube gets longer, and the resulting pitch is inversely proportional to
length.

Assuming that the player moves the slide at a constant speed, how does
frequency vary with time?

Write a class called TromboneGliss that extends Chirp and provides
evaluate. Make a wave that simulates a trombone glissando from C3 up
to F3 and back down to C3. C3 is 262 Hz; F3 is 349 Hz.

Plot a spectrogram of the resulting wave. Is a trombone glissando more like
a linear or exponential chirp?

Exercise 3.6 Make or find a recording of a series of vowel sounds and look
at the spectrogram. Can you identify different vowels?


http://archive.org/details/rhapblue11924
http://archive.org/details/rhapblue11924
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Chapter 4

Noise

In English, “noise” means an unwanted or unpleasant sound. In the context
of signal processing, it has two different senses:

1. As in English, it can mean an unwanted signal of any kind. If two
signals interfere with each other, each signal would consider the other
to be noise.

2. “Noise” also refers to a signal that contains components at many fre-
quencies, so it lacks the harmonic structure of the periodic signals we
saw in previous chapters.

This chapter is about the second kind.

The code for this chapter is in chap04.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdsp04.

4.1 Uncorrelated noise

The simplest way to understand noise is to generate it, and the simplest
kind to generate is uncorrelated uniform noise (UU noise). “Uniform”
means the signal contains random values from a uniform distribution; that
is, every value in the range is equally likely. “Uncorrelated” means that the
values are independent; that is, knowing one value provides no information
about the others.

Here’s a class that represents UU noise:


http://tinyurl.com/thinkdsp04
http://tinyurl.com/thinkdsp04
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Figure 4.1: Waveform of uncorrelated uniform noise.

class UncorrelatedUniformNoise(_Noise):

def evaluate(self, ts):
ys = np.random.uniform(-self.amp, self.amp, len(ts))
return ys

UncorrelatedUniformNoise inherits from _Noise, which inherits from
Signal.

As usual, the evaluate function takes ts, the times when the signal should
be evaluated. It uses np.random.uniform, which generates values from a
uniform distribution. In this example, the values are in the range between
-amp to amp.

The following example generates UU noise with duration 0.5 seconds at
11,025 samples per second.

signal = thinkdsp.UncorrelatedUniformNoise ()
wave = signal.make_wave(duration=0.5, framerate=11025)

If you play this wave, it sounds like the static you hear if you tune a ra-
dio between channels. Figure |4.1|shows what the waveform looks like. As
expected, it looks pretty random.

Now let’s take a look at the spectrum:

spectrum = wave.make_spectrum()
spectrum.plot_power()

Spectrum.plot_power is similar to Spectrum.plot, except that it plots
power instead of amplitude. Power is the square of amplitude. I am switch-
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Figure 4.2: Power spectrum of uncorrelated uniform noise.

ing from amplitude to power in this chapter because it is more conventional
in the context of noise.

Figure 4.2/ shows the result. Like the signal, the spectrum looks pretty ran-
dom. In fact, it is random, but we have to be more precise about the word
“random”. There are at least three things we might like to know about a
noise signal or its spectrum:

¢ Distribution: The distribution of a random signal is the set of possible

values and their probabilities. For example, in the uniform noise sig-
nal, the set of values is the range from -1 to 1, and all values have the
same probability. An alternative is Gaussian noise, where the set of
values is the range from negative to positive infinity, but values near
0 are the most likely, with probability that drops off according to the
Gaussian or “bell” curve.

Correlation: Is each value in the signal independent of the others, or
are there dependencies between them? In UU noise, the values are
independent. An alternative is Brownian noise, where each value is
the sum of the previous value and a random “step”. So if the value
of the signal is high at a particular point in time, we expect it to stay
high, and if it is low, we expect it to stay low.

Relationship between power and frequency: In the spectrum of UU
noise, the power at all frequencies is drawn from the same distribu-
tion; that is, the average power is the same for all frequencies. An al-
ternative is pink noise, where power is inversely related to frequency;



40 Chapter 4. Noise

1.0

0.8

0.6

0.4

Cumulative fraction of total power

0.2

0.0

0 1000 2000 3000 4000 5000
Frequency (Hz)

Figure 4.3: Integrated spectrum of uncorrelated uniform noise.

that is, the power at frequency f is drawn from a distribution whose
mean is proportional to 1/ f.

4.2 Integrated spectrum

For UU noise we can see the relationship between power and frequency
more clearly by looking at the integrated spectrum, which is a function of
frequency, f, that shows the cumulative power in the spectrum up to f.

Spectrum provides a method that computes the IntegratedSpectrum:

def make_integrated_spectrum(self):
cs = np.cumsum(self.power)
cs /= cs[-1]
return IntegratedSpectrum(cs, self.fs)

self .power is a NumPy array containing power for each frequency.
np . cumsum computes the cumulative sum of the powers. Dividing through

by the last element normalizes the integrated spectrum so it runs from 0 to
1.

The result is an IntegratedSpectrum. Here is the class definition:

class IntegratedSpectrum(object):
def __init__(self, cs, fs):
self.cs = cs
self.fs = fs
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Figure 4.4: Waveform of Brownian noise.

Like Spectrum, IntegratedSpectrum provides plot_power, so we can com-
pute and plot the integrated spectrum like this:

integ = spectrum.make_integrated_spectrum()
integ.plot_power ()

The result, shown in Figuref4.3} is a straight line, which indicates that power
at all frequencies is constant, on average. Noise with equal power at all
frequencies is called white noise by analogy with light, because an equal
mixture of light at all visible frequencies is white.

4.3 Brownian noise

UU noise is uncorrelated, which means that each value does not depend on
the others. An alternative is Brownian noise, in which each value is the
sum of the previous value and a random “step”.

It is called “Brownian” by analogy with Brownian motion, in which a parti-
cle suspended in a fluid moves apparently at random, due to unseen inter-
actions with the fluid. Brownian motion is often described using a random
walk, which is a mathematical model of a path where the distance between
steps is characterized by a random distribution.

In a one-dimensional random walk, the particle moves up or down by a
random amount at each time step. The location of the particle at any point
in time is the sum of all previous steps.



42 Chapter 4. Noise

This observation suggests a way to generate Brownian noise: generate un-
correlated random steps and then add them up. Here is a class definition
that implements this algorithm:

class BrownianNoise(_Noise):

def evaluate(self, ts):
dys = np.random.uniform(-1, 1, len(ts))
ys = np.cumsum(dys)
ys = normalize(unbias(ys), self.amp)
return ys

evaluate uses np.random.uniform to generate an uncorrelated signal and
np . cumsum to compute their cumulative sum.

Since the sum is likely to escape the range from -1 to 1, we have to use
unbias to shift the mean to 0, and normalize to get the desired maximum
amplitude.

Here’s the code that generates a BrownianNoise object and plots the wave-
form.

signal = thinkdsp.BrownianNoise()
wave = signal.make_wave(duration=0.5, framerate=11025)
wave.plot ()

Figure[4.4shows the result. The waveform wanders up and down, but there
is a clear correlation between successive values. When the amplitude is
high, it tends to stay high, and vice versa.

If you plot the spectrum of Brownian noise on a linear scale, as in Figure
(left), it doesn’t look like much. Nearly all of the power is at the lowest
frequencies; the higher frequency components are not visible.

To see the shape of the spectrum more clearly, we can plot power and fre-
quency on a log-log scale. Here’s the code:

spectrum = wave.make_spectrum()
spectrum.plot_power (linewidth=1, alpha=0.5)
thinkplot.config(xscale='log', yscale='log')

The result is in Figure 4.5 (right). The relationship between power and fre-
quency is noisy, but roughly linear.

Spectrum provides estimate_slope, which uses SciPy to compute a least
squares fit to the power spectrum:
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Figure 4.5: Spectrum of Brownian noise on a linear scale (left) and log-log
scale (right).

#class Spectrum

def estimate_slope(self):
x = np.log(self.fs[1:])
y = np.log(self.power([1:])
t = scipy.stats.linregress(x,y)
return t

It discards the first component of the spectrum because this component cor-
responds to f = 0, and log 0 is undefined.

estimate_slope returns the result from scipy.stats.linregress, which
is an object that contains the estimated slope and intercept, coefficient of
determination (R?), p-value, and standard error. For our purposes, we only
need the slope.

For Brownian noise, the slope of the power spectrum is -2 (we’ll see why in
Chapter[J), so we can write this relationship:

logP =k —2log f

where P is power, f is frequency, and k is the intercept of the line, which is
not important for our purposes. Exponentiating both sides yields:

P =K/f?

where K is ek, but still not important. More relevant is that power is propor-
tional to 1/ f 2 which is characteristic of Brownian noise.
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Figure 4.6: Waveform of pink noise with g = 1.

Brownian noise is also called red noise, for the same reason that white noise
is called “white”. If you combine visible light with power proportional to
1/ f?, most of the power would be at the low-frequency end of the spectrum,
which is red. Brownian noise is also sometimes called “brown noise”, but 1
think that’s confusing, so I won't use it.

4.4 Pink Noise

For red noise, the relationship between frequency and power is
P=K/f?

There is nothing special about the exponent 2. More generally, we can syn-
thesize noise with any exponent, B.

P=K/fP

When B = 0, power is constant at all frequencies, so the result is white noise.
When B = 2 the result is red noise.

When B is between 0 and 2, the result is between white and red noise, so it
is called pink noise.

There are several ways to generate pink noise. The simplest is to gener-
ate white noise and then apply a low-pass filter with the desired exponent.
thinkdsp provides a class that represents a pink noise signal:
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Figure 4.7: Spectrum of white, pink, and red noise on a log-log scale.

class PinkNoise(_Noise):

def __init__(self, amp=1.0, beta=1.0):
self.amp = amp
self .beta = beta

amp is the desired amplitude of the signal. beta is the desired exponent.
PinkNoise provides make_wave, which generates a Wave.

def make_wave(self, duration=1, start=0, framerate=11025):
signal = UncorrelatedUniformNoise ()
wave = signal.make_wave(duration, start, framerate)
spectrum = wave.make_spectrum()

spectrum.pink_filter(beta=self.beta)

wave2 = spectrum.make_wave()
wave2.unbias ()
wave2.normalize(self.amp)
return wave2

duration is the length of the wave in seconds. start is the start time of the
wave; it is included so that make_wave has the same interface for all types of
signal, but for random noise, start time is irrelevant. And framerate is the
number of samples per second.

make_wave creates a white noise wave, computes its spectrum, applies a
filter with the desired exponent, and then converts the filtered spectrum
back to a wave. Then it unbiases and normalizes the wave.
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Figure 4.8: Normal probability plot for the real and imaginary parts of the
spectrum of Gaussian noise.

Spectrum provides pink_filter:

def pink_filter(self, beta=1.0):
denom = self.fs **x (beta/2.0)
denom[0] =1
self.hs /= denom

pink_filter divides each element of the spectrum by f#/2. Since power
is the square of amplitude, this operation divides the power at each com-
ponent by fP. It treats the component at f = 0 as a special case, partly to
avoid dividing by 0, and partly because this element represents the bias of
the signal, which we are going to set to 0 anyway.

Figure 4.6{shows the resulting waveform. Like Brownian noise, it wanders
up and down in a way that suggests correlation between successive values,
but at least visually, it looks more random. In the next chapter we will come
back to this observation and I will be more precise about what I mean by
“correlation” and “more random”.

Finally, Figure 4.7/ shows a spectrum for white, pink, and red noise on the
same log-log scale. The relationship between the exponent, 8, and the slope
of the spectrum is apparent in this figure.

4.5 Gaussian noise

We started with uncorrelated uniform (UU) noise and showed that, because
its spectrum has equal power at all frequencies, on average, UU noise is
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white.

But when people talk about “white noise”, they don’t always mean UU
noise. In fact, more often they mean uncorrelated Gaussian (UG) noise.

thinkdsp provides an implementation of UG noise:

class UncorrelatedGaussianNoise(_Noise):

def evaluate(self, ts):
ys = np.random.normal(0, self.amp, len(ts))
return ys

np.random.normal returns a NumPy array of values from a Gaussian distri-
bution, in this case with mean 0 and standard deviation self .amp. In theory
the range of values is from negative to positive infinity, but we expect about
99% of the values to be between -3 and 3.

UG noise is similar in many ways to UU noise. The spectrum has equal
power at all frequencies, on average, so UG is also white. And it has one
other interesting property: the spectrum of UG noise is also UG noise. More
precisely, the real and imaginary parts of the spectrum are uncorrelated
Gaussian values.

To test that claim, we can generate the spectrum of UG noise and then gen-
erate a “normal probability plot”, which is a graphical way to test whether
a distribution is Gaussian.

signal = thinkdsp.UncorrelatedGaussianNoise()
wave = signal.make_wave(duration=0.5, framerate=11025)
spectrum = wave.make_spectrum()

thinkstats2.NormalProbabilityPlot (spectrum.real)
thinkstats2.NormalProbabilityPlot (spectrum.imag)

NormalProbabilityPlot is provided by thinkstats2, which is included in
the repository for this book. If you are not familiar with normal proba-
bility plots, you can read about them in Chapter 5 of Think Stats at http:
//thinkstats2.com.

Figure 4.8/ shows the results. The gray lines show a linear model fit to the
data; the dark lines show the data.

A straight line on a normal probability plot indicates that the data come
from a Gaussian distribution. Except for some random variation at the ex-
tremes, these lines are straight, which indicates that the spectrum of UG
noise is UG noise.


http://thinkstats2.com
http://thinkstats2.com
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The spectrum of UU noise is also UG noise, at least approximately. In fact,
by the Central Limit Theorem, the spectrum of almost any uncorrelated
noise is approximately Gaussian, as long as the distribution has finite mean
and standard deviation, and the number of samples is large.

4.6 Exercises

Solutions to these exercises are in chap04soln.ipynb.

Exercise 4.1 “A Soft Murmur” is a web site that plays a mixture of natural
noise sources, including rain, waves, wind, etc. At http://asoftmurmur.
com/about/ you can find their list of recordings, most of which are at http:
//freesound.org.

Download a few of these files and compute the spectrum of each signal.
Does the power spectrum look like white noise, pink noise, or Brownian
noise? How does the spectrum vary over time?

Exercise 4.2 In a noise signal, the mixture of frequencies changes over time.
In the long run, we expect the power at all frequencies to be equal, but in
any sample, the power at each frequency is random.

To estimate the long-term average power at each frequency, we can break
a long signal into segments, compute the power spectrum for each seg-
ment, and then compute the average across the segments. You can read
more about this algorithm at http://en.wikipedia.org/wiki/Bartlett’
s_method.

Implement Bartlett’s method and use it to estimate the power spectrum for
a noise wave. Hint: look at the implementation of make_spectrogram.

Exercise 4.3 At http://www.coindesk.com you can download the daily
price of a BitCoin as a CSV file. Read this file and compute the spectrum
of BitCoin prices as a function of time. Does it resemble white, pink, or
Brownian noise?

Exercise 4.4 A Geiger counter is a device that detects radiation. When an
ionizing particle strikes the detector, it outputs a surge of current. The total
output at a point in time can be modeled as uncorrelated Poisson (UP) noise,
where each sample is a random quantity from a Poisson distribution, which
corresponds to the number of particles detected during an interval.

Write a class called UncorrelatedPoissonNoise that inherits from
thinkdsp._Noise and provides evaluate. It should use np.random.poisson


http://asoftmurmur.com/about/
http://asoftmurmur.com/about/
http://freesound.org
http://freesound.org
http://en.wikipedia.org/wiki/Bartlett's_method
http://en.wikipedia.org/wiki/Bartlett's_method
http://www.coindesk.com
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to generate random values from a Poisson distribution. The parameter of
this function, 1am, is the average number of particles during each interval.
You can use the attribute amp to specify 1am. For example, if the frame rate
is 10 kHz and amp is 0.001, we expect about 10 “clicks” per second.

Generate about a second of UP noise and listen to it. For low values of
amp, like 0.001, it should sound like a Geiger counter. For higher values it
should sound like white noise. Compute and plot the power spectrum to
see whether it looks like white noise.

Exercise 4.5 The algorithm in this chapter for generating pink noise is con-
ceptually simple but computationally expensive. There are more efficient
alternatives, like the Voss-McCartney algorithm. Research this method, im-
plement it, compute the spectrum of the result, and confirm that it has the
desired relationship between power and frequency.
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Chapter 5

Autocorrelation

In the previous chapter I characterized white noise as “uncorrelated”, which
means that each value is independent of the others, and Brownian noise as
“correlated”, because each value depends on the preceding value. In this
chapter I define these terms more precisely and present the autocorrelation
function, which is a useful tool for signal analysis.

The code for this chapter is in chap05.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdspOb.

5.1 Correlation

In general, correlation between variables means that if you know the value
of one, you have some information about the other. There are several
ways to quantify correlation, but the most common is the Pearson product-
moment correlation coefficient, usually denoted p. For two variables, x and
y, that each contain N values:

Y (i — p) (Wi — py)
Noyoy

p:

Where py and p,, are the means of x and y, and oy and oy, are their standard
deviations.

Pearson’s correlation is always between -1 and +1 (including both). If p is
positive, we say that the correlation is positive, which means that when one


http://tinyurl.com/thinkdsp05
http://tinyurl.com/thinkdsp05
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Figure 5.1: Two sine waves that differ by a phase offset of 1 radian; their
coefficient of correlation is 0.54.

variable is high, the other tends to be high. If p is negative, the correlation
is negative, so when one variable is high, the other tends to be low.

The magnitude of p indicates the strength of the correlation. If pis 1 or -1,
the variables are perfectly correlated, which means that if you know one,
you can make a perfect prediction about the other. If p is near zero, the
correlation is probably weak, so if you know one, it doesn’t tell you much
about the others,

I say “probably weak” because it is also possible that there is a nonlinear
relationship that is not captured by the coefficient of correlation. Nonlin-
ear relationships are often important in statistics, but less often relevant for
signal processing, so I won’t say more about them here.

Python provides several ways to compute correlations. np.corrcoef takes
any number of variables and computes a correlation matrix that includes
correlations between each pair of variables.

I'll present an example with only two variables. First, I define a function
that constructs sine waves with different phase offsets:
def make_sine(offset):

signal = thinkdsp.SinSignal(freq=440, offset=offset)

wave = signal.make_wave(duration=0.5, framerate=10000)

return wave

Next I instantiate two waves with different offsets:

make_sine(offset=0)
make_sine(offset=1)

wavel

wave?2
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Correlation

Offset (radians)

Figure 5.2: The correlation of two sine waves as a function of the phase
offset between them. The result is a cosine.

Figure 5.T|shows what the first few periods of these waves look like. When
one wave is high, the other is usually high, so we expect them to be corre-
lated.

>>> corr_matrix = np.corrcoef(wavel.ys, wave2.ys, ddof=0)
[ 1. 0.54]
[ 0.54 1. 1]

The option ddof=0 indicates that corrcoef should divide by N, as in the
equation above, rather than use the default, N — 1.

The result is a correlation matrix: the first element is the correlation of wavel
with itself, which is always 1. Similarly, the last element is the correlation of
wave?2 with itself.

The off-diagonal elements contain the value we’re interested in, the corre-
lation of wavel and wave2. The value 0.54 indicates that the strength of the
correlation is moderate.

As the phase offset increases, this correlation decreases until the waves are
180 degrees out of phase, which yields correlation -1. Then it increases until
the offset differs by 360 degrees. At that point we have come full circle and
the correlation is 1.

Figure|5.2|shows the relationship between correlation and phase offset for a
sine wave. The shape of that curve should look familiar; it is a cosine.

thinkdsp provides a simple interface for computing the correlation between
waves:
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>>> wavel.corr(wave?2)
0.54

5.2 Serial correlation

Signals often represent measurements of quantities that vary in time. For
example, the sound signals we’ve worked with represent measurements of
voltage (or current), which correspond to the changes in air pressure we
perceive as sound.

Measurements like this almost always have serial correlation, which is the
correlation between each element and the next (or the previous). To com-
pute serial correlation, we can shift a signal and then compute the correla-
tion of the shifted version with the original.

def serial_corr(wave, lag=1):
n = len(wave)
yl = wave.ys[lag:]
y2 = wave.ys[:n-lag]
corr = np.corrcoef(yl, y2, ddof=0) [0, 1]
return corr

serial_corr takes a Wave object and lag, which is the integer number of
places to shift the wave. It computes the correlation of the wave with a
shifted version of itself.

We can test this function with the noise signals from the previous chapter.
We expect UU noise to be uncorrelated, based on the way it’s generated (not
to mention the name):

signal = thinkdsp.UncorrelatedGaussianNoise()
wave = signal.make_wave(duration=0.5, framerate=11025)
serial_corr(wave)

When I ran this example, I got 0.006, which indicates a very small serial
correlation. You might get a different value when you run it, but it should
be comparably small.

In a Brownian noise signal, each value is the sum of the previous value and
a random “step”, so we expect a strong serial correlation:

signal = thinkdsp.BrownianNoise ()
wave = signal.make_wave(duration=0.5, framerate=11025)
serial_corr(wave)
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Figure 5.3: Serial correlation for pink noise with a range of parameters.

Sure enough, the result I got is greater than 0.999.

Since pink noise is in some sense between Brownian noise and UU noise,
we might expect an intermediate correlation:

signal = thinkdsp.PinkNoise(beta=1)
wave = signal.make_wave(duration=0.5, framerate=11025)
serial_corr(wave)

With parameter = 1, I got a serial correlation of 0.851. As we vary the pa-
rameter from B = 0, which is uncorrelated noise, to f = 2, which is Brown-
ian, serial correlation ranges from 0 to almost 1, as shown in Figure

5.3 Autocorrelation

In the previous section we computed the correlation between each value
and the next, so we shifted the elements of the array by 1. But we can easily
compute serial correlations with different lags.

You can think of serial_corr as a function that maps from each value of
lag to the corresponding correlation, and we can evaluate that function by
looping through values of 1ag:

def autocorr(wave):
lags = range(len(wave.ys)//2)
corrs = [serial_corr(wave, lag) for lag in lags]
return lags, corrs
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Figure 5.4: Autocorrelation functions for pink noise with a range of param-
eters.

autocorr takes a Wave object and returns the autocorrelation function as a
pair of sequences: lags is a sequence of integers from 0 to half the length of
the wave; corrs is the sequence of serial correlations for each lag.

Figure 5.4/ shows autocorrelation functions for pink noise with three values
of B. For low values of B, the signal is less correlated, and the autocorrela-
tion function drops off to zero quickly. For larger values, serial correlation is
stronger and drops off more slowly. With g = 1.7 serial correlation is strong
even for long lags; this phenomenon is called long-range dependence, be-
cause it indicates that each value in the signal depends on many preceding
values.

5.4 Autocorrelation of periodic signals

The autocorrelation of pink noise has interesting mathematical properties,
but limited applications. The autocorrelation of periodic signals is more
useful.

As an example, I downloaded from freesound.org a recording of some-
one singing a chirp; the repository for this book includes the file: 28042_
_bcjordan__voicedownbew.wav. You can use the Jupyter notebook for this
chapter, chap05. ipynb, to play it.

Figure|5.5/shows the spectrogram of this wave. The fundamental frequency
and some of the harmonics show up clearly. The chirp starts near 500 Hz
and drops down to about 300 Hz, roughly from C5 to E4.


freesound.org
28042__bcjordan__voicedownbew.wav
28042__bcjordan__voicedownbew.wav
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Figure 5.5: Spectrogram of a vocal chirp.
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Figure 5.6: Spectrum of a segment from a vocal chirp.
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Figure 5.7: Two segments from a chirp, one starting 0.0023 seconds after the
other.

To estimate pitch at a particular point in time, we could use the spectrum,
but it doesn’t work very well. To see why not, I'll take a short segment from
the wave and plot its spectrum:

duration = 0.01

segment = wave.segment (start=0.2, duration=duration)
spectrum = segment.make_spectrum()

spectrum.plot (high=1000)

This segment starts at 0.2 seconds and lasts 0.01 seconds. Figure 5.6{shows
its spectrum. There is a clear peak near 400 Hz, but it is hard to identify the
pitch precisely. The length of the segment is 441 samples at a frame rate of
44100 Hz, so the frequency resolution is 100 Hz (see Section[3.5). That means
the estimated pitch might be off by 50 Hz; in musical terms, the range from
350 Hz to 450 Hz is about 5 semitones, which is a big difference!

We could get better frequency resolution by taking a longer segment, but
since the pitch is changing over time, we would also get “motion blur”; that
is, the peak would spread between the start and end pitch of the segment,
as we saw in Section[3.3

We can estimate pitch more precisely using autocorrelation. If a signal is
periodic, we expect the autocorrelation to spike when the lag equals the
period.

To show why that works, I'll plot two segments from the same recording.

def plot_shifted(wave, offset=0.001, start=0.2):
thinkplot.preplot(2)
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Figure 5.8: Autocorrelation function for a segment from a chirp.

segmentl = wave.segment(start=start, duration=0.01)
segmentl.plot(linewidth=2, alpha=0.8)

segment2 = wave.segment (start=start-offset, duration=0.01)
segment2.shift (offset)
segment2.plot(linewidth=2, alpha=0.4)

corr = segmentl.corr(segment?2)

text = r'$\rho =$ %.2g' % corr
thinkplot.text(segmentl.start+0.0005, -0.8, text)
thinkplot.config(xlabel="'Time (s)')

One segment starts at 0.2 seconds; the other starts 0.0023 seconds later. Fig-
ure shows the result. The segments are similar, and their correlation
is 0.99. This result suggests that the period is near 0.0023 seconds, which
corresponds to a frequency of 435 Hz.

For this example, I estimated the period by trial and error. To automate the
process, we can use the autocorrelation function.

lags, corrs = autocorr(segment)
thinkplot.plot(lags, corrs)

Figure shows the autocorrelation function for the segment starting at
t = 0.2 seconds. The first peak occurs at 1lag=101. We can compute the
frequency that corresponds to that period like this:

period = lag / segment.framerate
frequency = 1 / period
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The estimated fundamental frequency is 437 Hz. To evaluate the precision
of the estimate, we can run the same computation with lags 100 and 102,
which correspond to frequencies 432 and 441 Hz. The frequency precision
using autocorrelation is less than 10 Hz, compared with 100 Hz using the
spectrum. In musical terms, the expected error is about 30 cents (a third of
a semitone).

5.5 Correlation as dot product
I started the chapter with this definition of Pearson’s correlation coefficient:

i (= pa) (Yi — py)
Noyoy

p:

Then I used p to define serial correlation and autocorrelation. That’s consis-
tent with how these terms are used in statistics, but in the context of signal
processing, the definitions are a little different.

In signal processing, we are often working with unbiased signals, where
the mean is 0, and normalized signals, where the standard deviation is 1. In
that case, the definition of p simplifies to:

1
== leiyi
And it is common to simplify even further:
r= inyi
i
This definition of correlation is not “standardized”, so it doesn’t generally

fall between -1 and 1. But it has other useful properties.

If you think of x and y as vectors, you might recognize this formula as the
dot product, x - y. See http://en.wikipedia.org/wiki/Dot_product.

The dot product indicates the degree to which the signals are similar. If they
are normalized so their standard deviations are 1,

X-y=cost

where 6 is the angle between the vectors. And that explains why Figure
is a cosine curve.


http://en.wikipedia.org/wiki/Dot_product
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Figure 5.9: Autocorrelation function computed with np.correlate.

5.6 Using NumPy

NumPy provides a function, correlate, that computes the correlation of
two functions or the autocorrelation of one function. We can use it to com-
pute the autocorrelation of the segment from the previous section:

corrs2 = np.correlate(segment.ys, segment.ys, mode='same')

The option mode tells correlate what range of lag to use. With the value
>same’, the range is from —N /2 to N/2, where N is the length of the wave
array.

Figure shows the result. It is symmetric because the two signals are
identical, so a negative lag on one has the same effect as a positive lag on
the other. To compare with the results from autocorr, we can select the
second half:

N = len(corrs2)
half = corrs2[N//2:]

If you compare Figure 5.9/ to Figure you’ll notice that the correlations
computed by np. correlate get smaller as the lags increase. That’s because
np.correlate uses the unstandardized definition of correlation; as the lag
gets bigger, the number of points in the overlap between the two signals
gets smaller, so the magnitude of the correlations decreases.

We can correct that by dividing through by the lengths:

lengths = range(N, N//2, -1)
half /= lengths

Finally, we can normalize the results so the correlation with 1ag=0is 1.
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half /= half[0]

With these adjustments, the results computed by autocorr and
np.correlate are nearly the same. They still differ by 1-2%. The reason
is not important, but if you are curious: autocorr standardizes the correla-
tions independently for each lag; for np.correlate, we standardized them
all at the end.

More importantly, now you know what autocorrelation is, how to use it to
estimate the fundamental period of a signal, and two ways to compute it.

5.7 Exercises

Solutions to these exercises are in chap05soln. ipynb.

Exercise 5.1 The Jupyter notebook for this chapter, chap05. ipynb, includes
an interaction that lets you compute autocorrelations for different lags. Use
this interaction to estimate the pitch of the vocal chirp for a few different
start times.

Exercise 5.2 The example code in chap05. ipynb shows how to use autocor-
relation to estimate the fundamental frequency of a periodic signal. Encap-
sulate this code in a function called estimate_fundamental, and use it to
track the pitch of a recorded sound.

To see how well it works, try superimposing your pitch estimates on a spec-
trogram of the recording.

Exercise 5.3 If you did the exercises in the previous chapter, you down-
loaded the historical price of BitCoins and estimated the power spectrum
of the price changes. Using the same data, compute the autocorrelation of
BitCoin prices. Does the autocorrelation function drop off quickly? Is there
evidence of periodic behavior?

Exercise 5.4 In the repository for this book you will find a Jupyter note-
book called saxophone.ipynb that explores autocorrelation, pitch percep-
tion, and a phenomenon called the missing fundamental. Read through
this notebook and run the examples. Try selecting a different segment of
the recording and running the examples again.

Vi Hart has an excellent video called “What is up with Noises? (The Sci-
ence and Mathematics of Sound, Frequency, and Pitch)”; it demonstrates
the missing fundamental phenomenon and explains how pitch percep-
tion works (at least, to the degree that we know). Watch it at https:
//www.youtube.com/watch?v=i_0DXxNeaQoO.


https://www.youtube.com/watch?v=i_0DXxNeaQ0
https://www.youtube.com/watch?v=i_0DXxNeaQ0

Chapter 6

Discrete Cosine Transform

The topic of this chapter is the Discrete Cosine Transform (DCT), which is
used in MP3 and related formats for compressing music; JPEG and similar
formats for images; and the MPEG family of formats for video.

DCT is similar in many ways to the Discrete Fourier Transform (DFT),
which we have been using for spectral analysis. Once we learn how DCT
works, it will be easier to explain DFT.

Here are the steps to get there:

1. We'll start with the synthesis problem: given a set of frequency com-
ponents and their amplitudes, how can we construct a wave?

2. Next we'll rewrite the synthesis problem using NumPy arrays. This
move is good for performance, and also provides insight for the next
step.

3. We'll look at the analysis problem: given a signal and a set of frequen-
cies, how can we find the amplitude of each frequency component?
We’ll start with a solution that is conceptually simple but slow.

4. Finally, we’ll use some principles from linear algebra to find a more
efficient algorithm. If you already know linear algebra, that’s great,
but I'll explain what you need as we go.

The code for this chapter is in chap06.ipynb which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdspO6.


http://tinyurl.com/thinkdsp06
http://tinyurl.com/thinkdsp06
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6.1 Synthesis

Suppose I give you a list of amplitudes and a list of frequencies, and ask
you to construct a signal that is the sum of these frequency components.
Using objects in the thinkdsp module, there is a simple way to perform this
operation, which is called synthesis:

def synthesizel(amps, fs, ts):
components = [thinkdsp.CosSignal(freq, amp)
for amp, freq in zip(amps, fs)]
signal = thinkdsp.SumSignal (*components)

ys = signal.evaluate(ts)
return ys

amps is a list of amplitudes, fs is the list of frequencies, and ts is the se-
quence of times where the signal should be evaluated.

components is a list of CosSignal objects, one for each amplitude-frequency
pair. SumSignal represents the sum of these frequency components.

Finally, evaluate computes the value of the signal at each time in ts.

We can test this function like this:

amps = np.array([0.6, 0.25, 0.1, 0.05])
fs = [100, 200, 300, 400]
framerate = 11025

ts = np.linspace(0, 1, framerate)
ys = synthesizel(amps, fs, ts)
wave = thinkdsp.Wave(ys, framerate)

This example makes a signal that contains a fundamental frequency at 100
Hz and three harmonics (100 Hz is a sharp G2). It renders the signal for one
second at 11,025 frames per second and puts the results into a Wave object.

Conceptually, synthesis is pretty simple. But in this form it doesn’t help
much with analysis, which is the inverse problem: given the wave, how do
we identify the frequency components and their amplitudes?

6.2 Synthesis with arrays

Here’s another way to write synthesize:
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Figure 6.1: Synthesis with arrays.

def synthesize2(amps, fs, ts):
args = np.outer(ts, fs)
M = np.cos(PI2 * args)
ys = np.dot(M, amps)
return ys

This function looks very different, but it does the same thing. Let’s see how
it works:

1. np.outer computes the outer product of ts and fs. The result is an
array with one row for each element of ts and one column for each
element of £s. Each element in the array is the product of a frequency
and a time, ft.

2. We multiply args by 27t and apply cos, so each element of the result is
cos(27tft). Since the ts run down the columns, each column contains
a cosine signal at a particular frequency, evaluated at a sequence of
times.

3. np.dot multiplies each row of M by amps, element-wise, and then adds
up the products. In terms of linear algebra, we are multiplying a ma-
trix, M, by a vector, amps. In terms of signals, we are computing the
weighted sum of frequency components.

Figure 6.1/ shows the structure of this computation. Each row of the matrix,
M, corresponds to a time from 0.0 to 1.0 seconds; t, is the time of the nth
row. Each column corresponds to a frequency from 100 to 400 Hz; fj is the
frequency of the kth column.
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I labeled the nth row with the letters a through d; as an example, the value
of a is cos[271(100)t,].

The result of the dot product, ys, is a vector with one element for each row
of M. The nth element, labeled e, is the sum of products:

e = 0.6a +0.25b + 0.1¢ + 0.05d

And likewise with the other elements of ys. So each element of y is the sum
of four frequency components, evaluated at a point in time, and multiplied
by the corresponding amplitudes. And that’s exactly what we wanted.

We can use the code from the previous section to check that the two versions
of synthesize produce the same results.

ysl = synthesizel(amps, fs, ts)

ys2 = synthesize2(amps, fs, ts)

max(abs(ysl - ys2))

The biggest difference between ys1 and ys2 is about 1e-13, which is what
we expect due to floating-point errors.

Writing this computation in terms of linear algebra makes the code smaller
and faster. Linear algebra provides concise notation for operations on ma-
trices and vectors. For example, we could write synthesize like this:

M = cos(2mt® f)
y = Ma

where a is a vector of amplitudes, t is a vector of times, f is a vector of
frequencies, and ® is the symbol for the outer product of two vectors.

6.3 Analysis

Now we are ready to solve the analysis problem. Suppose I give you a
wave and tell you that it is the sum of cosines with a given set of frequen-
cies. How would you find the amplitude for each frequency component? In
other words, given ys, ts and £fs, can you recover amps?

In terms of linear algebra, the first step is the same as for synthesis: we
compute M = cos(27tt ® f). Then we want to find a so that y = Ma; in other
words, we want to solve a linear system. NumPy provides linalg.solve,
which does exactly that.

Here’s what the code looks like:
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def analyzel(ys, fs, ts):
args = np.outer(ts, fs)
M = np.cos(PI2 * args)
amps = np.linalg.solve(M, ys)
return amps

The first two lines use ts and fs to build the matrix, M. Then
np.linalg.solve computes amps.

But there’s a hitch. In general we can only solve a system of linear equations
if the matrix is square; that is, the number of equations (rows) is the same
as the number of unknowns (columns).

In this example, we have only 4 frequencies, but we evaluated the signal at
11,025 times. So we have many more equations than unknowns.

In general if ys contains more than 4 elements, it is unlikely that we can
analyze it using only 4 frequencies.

But in this case, we know that the ys were actually generated by adding
only 4 frequency components, so we can use any 4 values from the wave
array to recover amps.

For simplicity, I'll use the first 4 samples from the signal. Using the values
of ys, fs and ts from the previous section, we can run analyzel like this:

n = len(fs)

amps2 = analyzel(ys[:n], fs, ts[:n])

And sure enough, amps? is
[0.6 0.26 0.1 0.05]
This algorithm works, but it is slow. Solving a linear system of equations

takes time proportional to n3, where n is the number of columns in M. We
can do better.

6.4 Orthogonal matrices

One way to solve linear systems is by inverting matrices. The inverse of a
square matrix M is written M~!, and it has the property that MM = I. I
is the identity matrix, which has the value 1 on all diagonal elements and 0
everywhere else.

So, to solve the equation y = Ma, we can multiply both sides by M~!, which
yields:
My =M"1Ma
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On the right side, we can replace M ~IM with I:
M ly=1Ia

If we multiply I by any vector g, the result is 4, so
M ly=a

This implies that if we can compute M~ efficiently, we can find a with a
simple matrix multiplication (using np.dot). That takes time proportional
to n2, which is better than #3.

Inverting a matrix is slow, in general, but some special cases are faster. In
particular, if M is orthogonal, the inverse of M is just the transpose of M,
written MT. In NumPy transposing an array is a constant-time operation. It
doesn’t actually move the elements of the array; instead, it creates a “view”
that changes the way the elements are accessed.

Again, a matrix is orthogonal if its transpose is also its inverse; that is, MT =
M~1. That implies that M' M = I, which means we can check whether a
matrix is orthogonal by computing MT M.

So let’s see what the matrix looks like in synthesize2. In the previous ex-
ample, M has 11,025 rows, so it might be a good idea to work with a smaller
example:

def testl():
amps = np.array([0.6, 0.25, 0.1, 0.05])
N=4.0
time_unit = 0.001
ts = np.arange(N) / N * time_unit
max_freq = N / time_unit / 2
fs = np.arange(N) / N * max_freq
ys = synthesize2(amps, fs, ts)

amps is the same vector of amplitudes we saw before. Since we have 4 fre-

quency components, we'll sample the signal at 4 points in time. That way,
M is square.

ts is a vector of equally spaced sample times in the range from 0 to 1 time
unit. I chose the time unit to be 1 millisecond, but it is an arbitrary choice,
and we will see in a minute that it drops out of the computation anyway.

Since the frame rate is N samples per time unit, the Nyquist frequency is
N / time_unit / 2, which is 2000 Hz in this example. So fs is a vector of
equally spaced frequencies between 0 and 2000 Hz.
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With these values of ts and fs, the matrix, M, is:

[[1. 1. 1. 1. 1]
[ 1. 0.707 O. -0.707]
[ 1. 0. -1. -0. 1]
[ 1. -0.707 -0. 0.707]]

You might recognize 0.707 as an approximation of v/2/2, which is cos 77 /4.
You also might notice that this matrix is symmetric, which means that the
element at (j, k) always equals the element at (k, j). This implies that M is
its own transpose; that is, MT = M.

But sadly, M is not orthogonal. If we compute MT M, we get:

[[ 4. 1. -0. 1.]
[1. 2. 1. -0.]
[-0. 1. 2. 1.]
[1. -0. 1. 2.11

And that’s not the identity matrix.

6.5 DCI-IV

But if we choose ts and fs carefully, we can make M orthogonal. There are
several ways to do it, which is why there are several versions of the Discrete
Cosine Transform (DCT).

One simple option is to shift ts and fs by a half unit. This version is called
DCT-IV, where “IV” is a roman numeral indicating that this is the fourth of
eight versions of the DCT.

Here’s an updated version of test1:

def test2():
amps = np.array([0.6, 0.25, 0.1, 0.05])
N=4.0
ts = (0.5 + np.arange(N)) / N
fs = (0.5 + np.arange(N)) / 2
ys = synthesize2(amps, fs, ts)

If you compare this to the previous version, you’ll notice two changes. First,
I added 0.5 to ts and fs. Second, I canceled out time_units, which simpli-
fies the expression for fs.

With these values, M is
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[[ 0.981 0.831 0.556 0.195]
[ 0.831 -0.195 -0.981 -0.556]
[ 0.556 -0.981 0.195 0.831]
[ 0.195 -0.556 0.831 -0.981]]

And MTM is

[[2. 0. 0. O.
[ 0. 2. -0. 0.
[ 0. -0. 2. -0.]
[ 0. 0. -0. 2.1]

—_

Some of the off-diagonal elements are displayed as -0, which means that
the floating-point representation is a small negative number. This matrix is
very close to 21, which means M is almost orthogonal; it’s just off by a factor
of 2. And for our purposes, that’s good enough.

Because M is symmetric and (almost) orthogonal, the inverse of M is just
M/2. Now we can write a more efficient version of analyze:

def analyze2(ys, fs, ts):
args = np.outer(ts, fs)
M = np.cos(PI2 * args)
amps = np.dot(M, ys) / 2
return amps

Instead of using np.linalg.solve, we just multiply by M /2.

Combining test2 and analyze2, we can write an implementation of DCT-
IV:

def dct_iv(ys):
N = len(ys)
ts = (0.5 + np.arange(N)) / N
fs = (0.5 + np.arange(N)) / 2
args = np.outer(ts, fs)
M = np.cos(PI2 * args)
amps = np.dot(M, ys) / 2
return amps

Again, ys is the wave array. We don’t have to pass ts and fs as parameters;
dct_iv can figure them out based on N, the length of ys.

If we’ve got it right, this function should solve the analysis problem; that is,
given ys it should be able to recover amps. We can test it like this.

amps = np.array([0.6, 0.25, 0.1, 0.05])
N=4.0
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ts = (0.5 + np.arange(N)) / N
fs = (0.5 + np.arange(N)) / 2
ys = synthesize2(amps, fs, ts)

amps2 = dct_iv(ys)
max (abs (amps - amps2))

Starting with amps, we synthesize a wave array, then use dct_iv to com-
pute amps2. The biggest difference between amps and amps?2 is about 1e-16,
which is what we expect due to floating-point errors.

6.6 Inverse DCT

Finally, notice that analyze2 and synthesize2 are almost identical. The
only difference is that analyze2 divides the result by 2. We can use this
insight to compute the inverse DCT:

def inverse_dct_iv(amps):
return dct_iv(amps) * 2

inverse_dct_iv solves the synthesis problem: it takes the vector of ampli-
tudes and returns the wave array, ys. We can test it by starting with amps,
applying inverse_dct_iv and dct_iv, and testing that we get back what
we started with.

amps = [0.6, 0.25, 0.1, 0.05]
ys = inverse_dct_iv(amps)
amps2 = dct_iv(ys)

max (abs (amps - amps2))

Again, the biggest difference is about 1e-16.

6.7 The Dct class

thinkdsp provides a Dct class that encapsulates the DCT in the same way
the Spectrum class encapsulates the FFT. To make a Dct object, you can in-
voke make_dct on a Wave.

signal = thinkdsp.TriangleSignal (freq=400)

wave = signal.make_wave(duration=1.0, framerate=10000)
dct = wave.make_dct()

dct.plot ()



72 Chapter 6. Discrete Cosine Transform

8000 |

6000 |
G 4000}
[a]

2000 -

0 — — —

0 1000 2000 3000 4000 5000
Frequency (Hz)

Figure 6.2: DCT of a triangle signal at 400 Hz, sampled at 10 kHz.

The result is the DCT of a triangle wave at 400 Hz, shown in Figure The
values of the DCT can be positive or negative; a negative value in the DCT
corresponds to a negated cosine or, equivalently, to a cosine shifted by 180
degrees.

make_dct uses DCT-II, which is the most common type of DCT, provided
by scipy.fftpack.

import scipy.fftpack

# class Wave:
def make_dct(self):
N = len(self.ys)
hs = scipy.fftpack.dct(self.ys, type=2)
fs = (0.5 + np.arange(N)) / 2
return Dct(hs, fs, self.framerate)

The results from dct are stored in hs. The corresponding frequencies, com-
puted as in Section[6.5] are stored in fs. And then both are used to initialize
the Dct object.

Dct provides make_wave, which performs the inverse DCT. We can test it
like this:

wave2 = dct.make_wave()
max (abs (wave.ys-wave2.ys))

The biggest difference between ys1 and ys2 is about 1e-16, which is what
we expect due to floating-point errors.

make_wave uses scipy.fftpack.idct:
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# class Dct
def make_wave(self):
n = len(self.hs)
ys = scipy.fftpack.idct(self.hs, type=2) / 2 / n
return Wave(ys, framerate=self.framerate)

Be default, the inverse DCT doesn’t normalize the result, so we have to
divide through by 2N.

6.8 Exercises

For the following exercises, I provide some starter code in
chapO6starter.ipynb. Solutions are in chapO6soln.ipynb.

Exercise 6.1 In this chapter I claim that analyzel takes time proportional
to n° and analyze2 takes time proportional to n?. To see if that’s true, run
them on a range of input sizes and time them. In Jupyter, you can use the
“magic command” % timeit.

If you plot run time versus input size on a log-log scale, you should get a
straight line with slope 3 for analyzel and slope 2 for analyze?2.

You also might want to test dct_iv and scipy.fftpack.dct.

Exercise 6.2 One of the major applications of the DCT is compression for
both sound and images. In its simplest form, DCT-based compression
works like this:

1. Break a long signal into segments.
2. Compute the DCT of each segment.

3. Identify frequency components with amplitudes so low they are in-
audible, and remove them. Store only the frequencies and amplitudes
that remain.

4. To play back the signal, load the frequencies and amplitudes for each
segment and apply the inverse DCT.

Implement a version of this algorithm and apply it to a recording of music
or speech. How many components can you eliminate before the difference
is perceptible?
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In order to make this method practical, you need some way to store a sparse
array; that is, an array where most of the elements are zero. NumPy pro-
vides several implementations of sparse arrays, which you can read about
athttp://docs.scipy.org/doc/scipy/reference/sparse.html.

Exercise 6.3 In the repository for this book you will find a Jupyter notebook
called phase.ipynb that explores the effect of phase on sound perception.
Read through this notebook and run the examples. Choose another seg-
ment of sound and run the same experiments. Can you find any general
relationships between the phase structure of a sound and how we perceive
it?


http://docs.scipy.org/doc/scipy/reference/sparse.html

Chapter 7

Discrete Fourier Transform

We’ve been using the Discrete Fourier Transform (DFT) since Chapter but
I haven’t explained how it works. Now is the time.

If you understand the Discrete Cosine Transform (DCT), you will under-
stand the DFT. The only difference is that instead of using the cosine func-
tion, we'll use the complex exponential function. I'll start by explaining
complex exponentials, then I'll follow the same progression as in Chapter [6}

1. We'll start with the synthesis problem: given a set of frequency com-
ponents and their amplitudes, how can we construct a signal? The
synthesis problem is equivalent to the inverse DFT.

2. Then I'll rewrite the synthesis problem in the form of matrix multipli-
cation using NumPy arrays.

3. Next we'll solve the analysis problem, which is equivalent to the DFT:
given a signal, how do we find the amplitude and phase offset of its
frequency components?

4. Finally, we'll use linear algebra to find a more efficient way to compute
the DFT.

The code for this chapter is in chap07.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdspO7.


http://tinyurl.com/thinkdsp07
http://tinyurl.com/thinkdsp07
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7.1 Complex exponentials

One of the more interesting moves in mathematics is the generalization of
an operation from one type to another. For example, factorial is a function
that operates on integers; the natural definition for factorial of n is the prod-
uct of all integers from 1 to n.

If you are of a certain inclination, you might wonder how to compute the
factorial of a non-integer like 3.5. Since the natural definition doesn’t apply,
you might look for other ways to compute the factorial function, ways that
would work with non-integers.

In 1730, Leonhard Euler found one, a generalization of the factorial function
that we know as the gamma function (seehttp://en.wikipedia.org/wiki/
Gamma_function).

Euler also found one of the most useful generalizations in applied mathe-
matics, the complex exponential function.

The natural definition of exponentiation is repeated multiplication. For ex-
ample, ¢> = ¢ - ¢ - ¢. But this definition doesn’t apply to non-integer expo-
nents.

However, exponentiation can also be expressed as a power series:
e’ =14 ¢+¢?/21 4+ ¢> /3! + ...

This definition works with real numbers, imaginary numbers and, by a sim-
ple extension, with complex numbers. Applying this definition to a pure
imaginary number, i¢, we get

e =1+4ip—¢?/2! —i¢>/3! + ...
By rearranging terms, we can show that this is equivalent to:
e'? = cos¢ +ising

You can see the derivation at http://en.wikipedia.org/wiki/Euler’s_
formula.

This formula implies that ¢? is a complex number with magnitude 1; if you
think of it as a point in the complex plane, it is always on the unit circle.
And if you think of it as a vector, the angle in radians between the vector
and the positive x-axis is the argument, ¢.


http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Euler's_formula
http://en.wikipedia.org/wiki/Euler's_formula
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In the case where the exponent is a complex number, we have:
e = o1l = Apl?

where A is a real number that indicates amplitude and ¢’? is a unit complex
number that indicates angle.

NumPy provides a version of exp that works with complex numbers:

>>> phi = 1.5

>>> z = np.exp(1lj * phi)
>>> z

(0.0707+0.9973)

Python uses j to represent the imaginary unit, rather than i. A number
ending in j is considered imaginary, so 1j is just i.

When the argument to np . exp is imaginary or complex, the result is a com-
plex number; specifically, an np.complex128, which is represented by two
64-bit floating-point numbers. In this example, the result is 0.0707+0.997].

Complex numbers have attributes real and imag:

>>> z.real
0.0707
>>> z.imag
0.997

To get the magnitude, you can use the built-in function abs or np. absolute:

>>> abs(z)

1.0

>>> np.absolute(z)
1.0

To get the angle, you can use np.angle:

>>> np.angle(z)
1.5

This example confirms that ¢'¢ is a complex number with magnitude 1 and
angle ¢ radians.
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7.2 Complex signals

If ¢(t) is a function of time, ¢/?(*) is also a function of time. Specifically,
') = cos () + i sin ¢(t)

This function describes a quantity that varies in time, so it is a signal. Specif-
ically, it is a complex exponential signal.

In the special case where the frequency of the signal is constant, ¢(t) is 27t ft
and the result is a complex sinusoid:

2t = cos2mft + isin 27 ft
Or more generally, the signal might start at a phase offset ¢, yielding

ei(27‘cft+¢o)

thinkdsp provides an implementation of this signal, ComplexSinusoid:

class ComplexSinusoid(Sinusoid):

def evaluate(self, ts):
phases = PI2 * self.freq * ts + self.offset
ys = self.amp * np.exp(lj * phases)
return ys

ComplexSinusoid inherits __init__ from Sinusoid. It provides a version of
evaluate that is almost identical to Sinusoid.evaluate; the only difference
is that it uses np . exp instead of np.sin.

The result is a NumPy array of complex numbers:

>>> signal = thinkdsp.ComplexSinusoid(freq=1, amp=0.6, offset=1)
>>> wave = signal.make_wave(duration=1, framerate=4)

>>> wave.ys

[ 0.324+0.505j -0.505+0.324j -0.324-0.505] 0.505-0.324j]

The frequency of this signal is 1 cycle per second; the amplitude is 0.6 (in
unspecified units); and the phase offset is 1 radian.

This example evaluates the signal at 4 places equally spaced between 0 and
1 second. The resulting samples are complex numbers.
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7.3 The synthesis problem

Just as we did with real sinusoids, we we can create compound signals by
adding up complex sinusoids with different frequencies. And that brings us
to the complex version of the synthesis problem: given the frequency and
amplitude of each complex component, how do we evaluate the signal?

The simplest solution is to create ComplexSinusoid objects and add them
up.
def synthesizel(amps, fs, ts):

components = [thinkdsp.ComplexSinusoid(freq, amp)

for amp, freq in zip(amps, fs)]

signal = thinkdsp.SumSignal (xcomponents)

ys = signal.evaluate(ts)

return ys

This function is almost identical to synthesize1 in Section[6.I the only dif-
tference is that I replaced CosSignal with ComplexSinusoid.

Here’s an example:

amps = np.array([0.6, 0.25, 0.1, 0.05])
fs = [100, 200, 300, 400]

framerate = 11025

ts = np.linspace(0, 1, framerate)

ys = synthesizel(amps, fs, ts)

The result is:

[ 1.000 +0.000e+00j 0.995 +9.093e-02j 0.979 +1.803e-01j ...,
0.979 -1.803e-01j 0.995 -9.093e-02j 1.000 -5.081e-15j]

At the lowest level, a complex signal is a sequence of complex numbers. But
how should we interpret it? We have some intuition for real signals: they
represent quantities that vary in time; for example, a sound signal repre-
sents changes in air pressure. But nothing we measure in the world yields
complex numbers.

So what is a complex signal? I don’t have a satisfying answer to this ques-
tion. The best I can offer is two unsatisfying answers:

1. A complex signal is a mathematical abstraction that is useful for com-
putation and analysis, but it does not correspond directly with any-
thing in the real world.

2. If you like, you can think of a complex signal as a sequence of complex
numbers that contains two signals as its real and imaginary parts.
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Figure 7.1: Real and imaginary parts of a mixture of complex sinusoids.

Taking the second point of view, we can split the previous signal into its real
and imaginary parts:
n = 500
thinkplot.plot(ts[:n]l, ys[:n].real, label='real')
thinkplot.plot(ts[:n], ys[:n].imag, label='imag')

Figure|7.1{shows a segment of the result. The real part is a sum of cosines;
the imaginary part is a sum of sines. Although the waveforms look differ-
ent, they contain the same frequency components in the same proportions.
To our ears, they sound the same (in general, we don’t hear phase offsets).

7.4 Synthesis with matrices

As we saw in Section[6.2} we can also express the synthesis problem in terms
of matrix multiplication:

PI2 = np.pi * 2

def synthesize2(amps, fs, ts):
args = np.outer(ts, fs)
M = np.exp(1j * PI2 * args)
ys = np.dot(M, amps)
return ys

Again, amps is a NumPy array that contains a sequence of amplitudes.

fs is a sequence containing the frequencies of the components. ts contains
the times where we will evaluate the signal.
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args contains the outer product of ts and fs, with the ts running down the
rows and the fs running across the columns (you might want to refer back

to Figure[6.T).

Each column of matrix M contains a complex sinusoid with a particular fre-
quency, evaluated at a sequence of ts.

When we multiply M by the amplitudes, the result is a vector whose ele-
ments correspond to the ts; each element is the sum of several complex
sinusoids, evaluated at a particular time.

Here’s the example from the previous section again:

>>> ys = synthesize2(amps, fs, ts)

>>> ys

[ 1.000 +0.000e+00j 0.995 +9.093e-02j 0.979 +1.803e-01j ...,
0.979 -1.803e-01j 0.995 -9.093e-02j 1.000 -5.081e-15j]

The result is the same.

In this example the amplitudes are real, but they could also be complex.
What effect does a complex amplitude have on the result? Remember that
we can think of a complex number in two ways: either the sum of a real and
imaginary part, x + iy, or the product of a real amplitude and a complex ex-
ponential, Ae'%0. Using the second interpretation, we can see what happens
when we multiply a complex amplitude by a complex sinusoid. For each
frequency, f, we have:

Aeiqbo . ei27‘(ft — Aei27fft+¢0

Multiplying by Ae'® multiplies the amplitude by A and adds the phase
offset ¢p.

We can test that claim by running the previous example with complex am-
plitudes:

phi = 1.5
amps2 = amps * np.exp(lj * phi)
ys2 = synthesize2(amps2, fs, ts)

thinkplot.plot(ts[:n], ys.reall:n])
thinkplot.plot(ts[:n], ys2.reall:n])

Since amps is an array of reals, multiplying by np.exp(1j * phi) yields an
array of complex numbers with phase offset phi radians, and the same mag-
nitudes as amps.
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Figure 7.2: Real part of two complex signals that differ by a phase offset.

Figure shows waveforms with different phase offsets. With ¢9 = 1.5
each frequency component gets shifted by about a quarter of a cycle. But
components with different frequencies have different cycles; as a result,
each component is shifted by a different amount in time. When we add
up the components, the resulting waveforms look different.

Now that we have the more general solution to the synthesis problem — one
that handles complex amplitudes — we are ready for the analysis problem.

7.5 The analysis problem

The analysis problem is the inverse of the synthesis problem: given a se-
quence of samples, y, and knowing the frequencies that make up the signal,
can we compute the complex amplitudes of the components, a?

As we saw in Section we can solve this problem by forming the syn-
thesis matrix, M, and solving the system of linear equations, Ma = y for
a.

def analyzel(ys, fs, ts):
args = np.outer(ts, fs)
M = np.exp(1j * PI2 * args)
amps = np.linalg.solve(M, ys)
return amps
analyzel takes a (possibly complex) wave array, ys, a sequence of real fre-

quencies, fs,and a sequence of real times, ts. It returns a sequence of com-
plex amplitudes, amps.
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Continuing the previous example, we can confirm that analyzel recovers
the amplitudes we started with. For the linear system solver to work, M has
to be square, so we need ys, fs and ts to have the same length. I'll ensure
that by slicing ys and ts down to the length of fs:

>>> n = len(fs)

>>> amps2 = analyzel(ys[:n], fs, ts[:n])
>>> amps?2

[ 0.60+0.j 0.25-0.j 0.10+0.j 0.05-0.]]

These are approximately the amplitudes we started with, although each
component has a small imaginary part due to floating-point errors.

7.6 Efficient analysis

Unfortunately, solving a linear system of equations is slow. For the DCT, we
were able to speed things up by choosing fs and ts so that M is orthogonal.
That way, the inverse of M is the transpose of M, and we can compute both
DCT and inverse DCT by matrix multiplication.

We’ll do the same thing for the DFT, with one small change. Since M is
complex, we need it to be unitary, rather than orthogonal, which means
that the inverse of M is the conjugate transpose of M, which we can compute
by transposing the matrix and negating the imaginary part of each element.
Seehttp://en.wikipedia.org/wiki/Unitary_matrix.

The NumPy methods conj and transpose do what we want. Here’s the
code that computes M for N = 4 components:

N=4

ts = np.arange(N) / N

fs = np.arange(N)

args = np.outer(ts, fs)

M = np.exp(1j * PI2 * args)
If M is unitary, M*M = I, where M* is the conjugate transpose of M, and I
is the identity matrix. We can test whether M is unitary like this:

MstarM = M.conj() .transpose() .dot (M)

The result, within the tolerance of floating-point error, is 41, so M is unitary
except for an extra factor of N, similar to the extra factor of 2 we found with
the DCT.

We can use this result to write a faster version of analyze1l:


http://en.wikipedia.org/wiki/Unitary_matrix
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def analyze2(ys, fs, ts):
args = np.outer(ts, fs)
M = np.exp(1j * PI2 * args)
amps = M.conj().transpose().dot(ys) / N
return amps

And test it with appropriate values of fs and ts:

N=24

amps = np.array([0.6, 0.25, 0.1, 0.05])
fs = np.arange(N)

ts = np.arange(N) / N

ys = synthesize2(amps, fs, ts)

amps3 = analyze2(ys, fs, ts)

Again, the result is correct within the tolerance of floating-point arithmetic.

[ 0.60+0.j 0.25+0.j 0.10-0.j 0.05-0.]]

7.7 DFT

As a function, analyze2 would be hard to use because it only works if fs
and ts are chosen correctly. Instead, I will rewrite it to take just ys and
compute freq and ts itself.

First, I'll make a function to compute the synthesis matrix, M:

def synthesis_matrix(N):
ts = np.arange(N) / N
fs = np.arange(N)
args = np.outer(ts, fs)
M = np.exp(1j * PI2 * args)
return M

Then I'll write the function that takes ys and returns amps:

def analyze3(ys):
N = len(ys)
M = synthesis_matrix(N)
amps = M.conj().transpose().dot(ys) / N
return amps

We are almost done; analyze3 computes something very close to the DFT,
with one difference. The conventional definition of DFT does not divide by
N:
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def dft(ys):
N = len(ys)
M = synthesis_matrix(N)
amps = M.conj() .transpose() .dot(ys)
return amps

Now we can confirm that my version yields the same result as np . fft.fft:

>>> dft(ys)
[ 2.4+0.j 1.0+0.j 0.4-0.j 0.2-0.j]

The result is close to amps * N. And here’s the version innp. fft:
>>> np.fft.fft(ys)
[ 2.4+0.j 1.0+0.j 0.4-0.j 0.2-0.j]

They are the same, within floating point error.

The inverse DFT is almost the same, except we don’t have to transpose and
conjugate M, and now we have to divide through by N:

def idft(ys):
N = len(ys)
M = synthesis_matrix(N)
amps = M.dot(ys) / N
return amps

Finally, we can confirm that dft (idft (amps)) yields amps.

>>> ys = idft(amps)
>>> dft(ys)
[ 0.60+0.j 0.25+0.j 0.10-0.j 0.05-0.3]

If I could go back in time, I might change the definition of DFT so it divides
by N and the inverse DFT doesn’t. That would be more consistent with my
presentation of the synthesis and analysis problems.

Or I might change the definition so that both operations divide through by
V/N. Then the DFT and inverse DFT would be more symmetric.

But I can’t go back in time (yet!), so we're stuck with a slightly weird con-
vention. For practical purposes it doesn’t really matter.

7.8 The DFT is periodic

In this chapter I presented the DFT in the form of matrix multiplication. We
compute the synthesis matrix, M, and the analysis matrix, M*. When we
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multiply M* by the wave array, y, each element of the result is the product
of a row from M* and y, which we can write in the form of a summation:

DFT(y)[k] =} y[n] exp(—2mink/N)

where k is an index of frequency from 0 to N — 1 and 7 is an index of time
from 0 to N — 1. So DFT(y)[k] is the kth element of the DFT of y.

Normally we evaluate this summation for N values of k, running from 0
to N — 1. We could evaluate it for other values of k, but there is no point,
because they start to repeat. That is, the value at k is the same as the value
atk+ Nork+2Nork— N, etc.

We can see that mathematically by plugging k + N into the summation:

DFT(y)[k+ N] = Zy[n exp(—2min(k+ N)/N)

Since there is a sum in the exponent, we can break it into two parts:

DFT(y)[k+ N] = Zy n) exp(—2mink/N) exp(—27inN/N)

In the second term, the exponent is always an integer multiple of 27, so the
result is always 1, and we can drop it:

DFT(y)[k+ N] = Zy n) exp(—2mink/N)

And we can see that this summation is equivalent to DFT(y)[k|. So the DFT
is periodic, with period N. You will need this result for one of the exercises
below, which asks you to implement the Fast Fourier Transform (FFT).

As an aside, writing the DFT in the form of a summation provides an in-
sight into how it works. If you review the diagram in Section 6.2} you'll see
that each column of the synthesis matrix is a signal evaluated at a sequence
of times. The analysis matrix is the (conjugate) transpose of the synthesis
matrix, so each row is a signal evaluated at a sequence of times.

Therefore, each summation is the correlation of y with one of the signals in
the array (see Section [5.5). That is, each element of the DFT is a correlation
that quantifies the similarity of the wave array, y, and a complex exponential
at a particular frequency.
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Figure 7.3: DFT of a 500 Hz sawtooth signal sampled at 10 kHz.

7.9 DFT of real signals

The Spectrum class in thinkdsp is based on np.ftt.rfft, which computes
the “real DFT”; that is, it works with real signals. But the DFT as presented
in this chapter is more general than that; it works with complex signals.

So what happens when we apply the “full DFT” to a real signal? Let’s look
at an example:

signal = thinkdsp.SawtoothSignal(freq=500)

wave = signal.make_wave(duration=0.1, framerate=10000)
hs = dft(wave.ys)

amps = np.absolute(hs)

This code makes a sawtooth wave with frequency 500 Hz, sampled at frame
rate 10 kHz. hs contains the complex DFT of the wave; amps contains the
amplitude at each frequency. But what frequency do these amplitudes cor-
respond to? If we look at the body of dft, we see:

fs = np.arange(N)

It's tempting to think that these values are the right frequencies. The prob-
lem is that dft doesn’t know the sampling rate. The DFT assumes that the
duration of the wave is 1 time unit, so it thinks the sampling rate is N per
time unit. In order to interpret the frequencies, we have to convert from
these arbitrary time units back to seconds, like this:

fs = np.arange(N) * framerate / N

With this change, the range of frequencies is from 0 to the actual frame rate,
10 kHz. Now we can plot the spectrum:
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thinkplot.plot(fs, amps)
thinkplot.config(xlabel="'frequency (Hz)',
ylabel='amplitude"')

Figure|7.3|shows the amplitude of the signal for each frequency component
from 0 to 10 kHz. The left half of the figure is what we should expect: the
dominant frequency is at 500 Hz, with harmonics dropping off like 1/ f.

But the right half of the figure is a surprise. Past 5000 Hz, the amplitude of
the harmonics starts growing again, peaking at 9500 Hz. What's going on?

The answer: aliasing. Remember that with frame rate 10000 Hz, the folding
frequency is 5000 Hz. As we saw in Section a component at 5500 Hz
is indistinguishable from a component at 4500 Hz. When we evaluate the
DFT at 5500 Hz, we get the same value as at 4500 Hz. Similarly, the value at
6000 Hz is the same as the one at 4000 Hz, and so on.

The DFT of a real signal is symmetric around the folding frequency. Since
there is no additional information past this point, we can save time by eval-
uating only the first half of the DFT, and that’s exactly what np.fft.rfft
does.

7.10 Exercises

Solutions to these exercises are in chap07soln.ipynb.

Exercise 7.1 The notebook for this chapter, chap07.ipynb, contains addi-
tional examples and explanations. Read through it and run the code.

Exercise 7.2 In this chapter, I showed how we can express the DFT and in-
verse DFT as matrix multiplications. These operations take time propor-
tional to N2, where N is the length of the wave array. That is fast enough
for many applications, but there is a faster algorithm, the Fast Fourier Trans-
form (FFT), which takes time proportional to N log N.

The key to the FFT is the Danielson-Lanczos lemma:
DFT(y)[n] = DFT(e)[n] + exp(—2min/N)DFT(o)[n]

Where DFT(y)[n] is the nth element of the DFT of y; e is a wave array con-
taining the even elements of i, and o contains the odd elements of y.

This lemma suggests a recursive algorithm for the DFT:
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1. Given a wave array, y, split it into its even elements, ¢, and its odd
elements, o.

2. Compute the DFT of e and 0 by making recursive calls.

3. Compute DFT(y) for each value of n using the Danielson-Lanczos
lemma.

For the base case of this recursion, you could wait until the length of y is 1.
In that case, DFT(y) = y. Or if the length of y is sufficiently small, you could
compute its DFT by matrix multiplication, possibly using a precomputed
matrix.

Hint: I suggest you implement this algorithm incrementally by starting with
a version that is not truly recursive. In Step 2, instead of making a recursive
call, use dft, as defined in Section or np.fft.fft. Get Step 3 working,
and confirm that the results are consistent with the other implementations.
Then add a base case and confirm that it works. Finally, replace Step 2 with
recursive calls.

One more hint: Remember that the DFT is periodic; you might find np.tile
useful.

You can read more about the FFT at https://en.wikipedia.org/wiki/
Fast_Fourier_transform.


https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
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Chapter 8

Filtering and Convolution

In this chapter I present one of the most important and useful ideas related
to signal processing: the Convolution Theorem. But before we can under-
stand the Convolution Theorem, we have to understand convolution. I'll
start with a simple example, smoothing, and we’ll go from there.

The code for this chapter is in chap08.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdsp0s.

8.1 Smoothing

Smoothing is an operation that tries to remove short-term variations from
a signal in order to reveal long-term trends. For example, if you plot daily
changes in the price of a stock, it would look noisy; a smoothing operator
might make it easier to see whether the price was generally going up or
down over time.

A common smoothing algorithm is a moving average, which computes the
mean of the previous n values, for some value of n.

For example, Figure[8.T|shows the daily closing price of Facebook from May
17, 2012 to December 8, 2015. The gray line is the raw data, the darker line
shows the 30-day moving average. Smoothing removes the most extreme
changes and makes it easier to see long-term trends.

Smoothing operations also apply to sound signals. As an example, I'll start
with a square wave at 440 Hz. As we saw in Section the harmonics of


http://tinyurl.com/thinkdsp08
http://tinyurl.com/thinkdsp08
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Figure 8.1: Daily closing price of Facebook stock and a 30-day moving av-
erage.

a square wave drop off slowly, so it contains many high-frequency compo-
nents.

First I'll construct the signal and two waves:

signal = thinkdsp.SquareSignal(freq=440)
wave = signal.make_wave(duration=1, framerate=44100)
segment = wave.segment (duration=0.01)

wave is a 1-second slice of the signal; segment is a shorter slice I'll use for
plotting.

To compute the moving average of this signal, I'll use a window similar to
the ones in Section Previously we used a Hamming window to avoid
spectral leakage caused by discontinuity at the beginning and end of a sig-
nal. More generally, we can use windows to compute the weighted sum of
samples in a wave.

For example, to compute a moving average, I'll create a window with 11
elements and normalize it so the elements add up to 1.

window = np.ones(11)
window /= sum(window)

Now I can compute the average of the first 11 elements by multiplying the
window by the wave array:

ys = segment.ys
N = len(ys)
padded = thinkdsp.zero_pad(window, N)
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Figure 8.2: A square signal at 400 Hz (gray) and an 11l-element moving
average.

prod = padded * ys
sum(prod)

padded is a version of the window with zeros added to the end so it is the
same length as segment .ys. Adding zeros like this is called padding.

prod is the product of the window and the wave array. The sum of the
elementwise products is the average of the first 11 elements of the array.
Since these elements are all -1, their average is -1.

To compute the next element of the moving average, we roll the window,
which shifts the ones to the right and wraps one of the zeros from the end
around to the beginning.

When we multiply the rolled window and the wave array, we get the av-
erage of the next 11 elements of the wave array, starting with the second.

rolled = np.roll(rolled, 1)
prod = rolled * ys
sum (prod)

The result is -1 again.
We can compute the rest of the elements the same way. The following func-

tion wraps the code we have seen so far in a loop and stores the results in
an array.

def smooth(ys, window):
N = len(ys)
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smoothed = np.zeros(N)
padded = thinkdsp.zero_pad(window, N)
rolled = padded

for i in range(N):
smoothed[i] = sum(rolled * ys)
rolled = np.roll(rolled, 1)
return smoothed

smoothed is the array that will contain the results; padded is an array that
contains the window and enough zeros to have length N; and rolled is
a copy of padded that gets shifted to the right by one element each time
through the loop.

Inside the loop, we multiply ys by rolled to select 11 elements and add
them up.

Figure 8.2/ shows the result for a square wave. The gray line is the original
signal; the darker line is the smoothed signal. The smoothed signal starts
to ramp up when the leading edge of the window reaches the first transi-
tion, and levels off when the window crosses the transition. As a result, the
transitions are less abrupt, and the corners less sharp. If you listen to the
smoothed signal, it sounds less buzzy and slightly muffled.

8.2 Convolution

The operation we just performed — applying a window function to each
overlapping segment of a wave —is called convolution.

Convolution it is such a common operation that NumPy provides an imple-
mentation that is simpler and faster than my version:

convolved = np.convolve(ys, window, mode='valid')
smooth2 = thinkdsp.Wave(convolved, framerate=wave.framerate)

np.convolve computes the convolution of the wave array and the window.
The mode flag valid indicates that it should only compute values when the
window and the wave array overlap completely, so it stops when the right
edge of the window reaches the end of the wave array. Other than that, the
result is the same as in Figure

Actually, there is one other difference. The loop in the previous section
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actually computes cross-correlation:

N-1
(fx&)ln] = Z_;Of[m]g[n +mj

where f is a wave array with length N, ¢ is the window, and « is the symbol
for cross-correlation. To compute the nth element of the result, we shift ¢ to
the right, which is why the index is n + m.

The definition of convolution is slightly different:

N-1
(f*&)lnl = Z_;Of[m]g[n —m]

The symbol * represents convolution. The difference is in the index of g:
m has been negated, so the summation iterates the elements of ¢ backward
(assuming that negative indices wrap around to the end of the array).

Because the window we used in this example is symmetric, cross-
correlation and convolution yield the same result. When we use other win-
dows, we will have to be more careful.

You might wonder why convolution is defined like this, with the window
applied in a way that seems backwards. There are two reasons:

¢ This definition comes up naturally for several applications, especially
analysis of signal-processing systems, which is the topic of Chapter|[I0|

* Also, this definition is the basis of the Convolution Theorem, coming
up very soon.

Finally, a note for people who know too much: in the presentation so far
I have not distinguished between convolution and circular convolution.
We'll get to it.

8.3 The frequency domain

Smoothing makes the transitions in a square signal less abrupt, and makes
the sound slightly muffled. Let’s see what effect this operation has on the
spectrum. First I'll plot the spectrum of the original wave:

spectrum = wave.make_spectrum()
spectrum.plot (color=GRAY)
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Figure 8.3: Spectrum of the square wave before and after smoothing.

Then the smoothed wave:

convolved = np.convolve(wave.ys, window, mode='same')
smooth = thinkdsp.Wave(convolved, framerate=wave.framerate)
spectrum? = smooth.make_spectrum()

spectrum2.plot ()

The mode flag same indicates that the result should have the same length as
the input. In this example, it will include a few values that “wrap around”,
but that’s ok for now.

Figure shows the result. The fundamental frequency is almost un-
changed; the first few harmonics are attenuated, and the higher harmon-
ics are almost eliminated. So smoothing has the effect of a low-pass filter,
which we saw in Section [.5]and Section 4.4l

To see how much each component has been attenuated, we can compute the
ratio of the two spectrums:

amps = spectrum.amps

amps2 = spectrum2.amps

ratio = amps2 / amps

ratio[amps<560] = 0

thinkplot.plot(ratio)

ratio is the ratio of the amplitude before and after smoothing. When amps
is small, this ratio can be big and noisy, so for simplicity I set the ratio to 0
except where the harmonics are.

Figure 8.4 shows the result. As expected, the ratio is high for low frequen-
cies and drops off at a cutoff frequency near 4000 Hz. But there is another
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Figure 8.4: Ratio of spectrums for the square wave, before and after smooth-
ing.

feature we did not expect: above the cutoff, the ratio bounces around be-
tween 0 and 0.2. What’s up with that?

8.4 The Convolution Theorem

The answer is the Convolution Theorem. Stated mathematically:
DFT(f * g) = DFT(f) - DFT(g)

where f is a wave array and g is a window. In words, the Convolution
Theorem says that if we convolve f and g, and then compute the DFT, we
get the same answer as computing the DFT of f and g, and then multiplying
the results element-wise.

When we apply an operation like convolution to a wave a wave, we say
we are working in the time domain, because the wave is a function of time.
When we apply an operation like multiplication to the DFT, we are working
in the frequency domain, because the DFT is a function of frequency.

Using these terms, we can state the Convolution Theorem more concisely:

Convolution in the time domain corresponds to multiplication
in the frequency domain.

And that explains Figure 8.4} because when we convolve a wave and a win-
dow, we multiply the spectrum of the wave with the spectrum of the win-
dow. To see how that works, we can compute the DFT of the window:
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Figure 8.5: Ratio of spectrums for the square wave, before and after smooth-
ing, along with the DFT of the smoothing window.

padded = zero_pad(window, N)
dft_window = np.fft.rfft(padded)
thinkplot.plot (abs(dft_window))

padded contains the smoothing window, padded with zeros to be the same
length as wave; dft_window contains the DFT of padded.

Figure |8.5/shows the result, along with the ratios we computed in the pre-
vious section. The ratios are exactly the amplitudes in dft_window. Mathe-
matically:

abs(DFT(f * g))/abs(DFT(f)) = abs(DFT(g))

In this context, the DFT of a window is called a filter. For any convolution
window in the time domain, there is a corresponding filter in the frequency
domain. And for any filter that can be expressed by element-wise multipli-
cation in the frequency domain, there is a corresponding window.

8.5 Gaussian filter

The moving average window we used in the previous section is a low-pass
filter, but it is not a very good one. The DFT drops off steeply at first, but
then it bounces around. Those bounces are called sidelobes, and they are
there because the moving average window is like a square wave, so its
spectrum contains high-frequency harmonics that drop off proportionally
to 1/ f, which is relatively slow.



8.5. Gaussian filter 99

0.25

-
— boxcar
Gaussian

0.20 -

0.15

0.10

0.05 -

0.00
0

2 4 6 8 10
Index

Figure 8.6: Boxcar and Gaussian windows.

We can do better with a Gaussian window. SciPy provides functions that
compute many common convolution windows, including gaussian:

gaussian = scipy.signal.gaussian(M=11, std=2)
gaussian /= sum(gaussian)

M is the number of elements in the window; std is the standard deviation
of the Gaussian distribution used to compute it. Figure8.6|shows the shape
of the window. It is a discrete approximation of the Gaussian “bell curve”.
The figure also shows the moving average window from the previous ex-
ample, which is sometimes called a boxcar window because it looks like a
rectangular railway car.

I ran the computations from the previous sections again with this window,
and generated Figure which shows the ratio of the spectrums before
and after smoothing, along with the DFT of the Gaussian window.

As a low-pass filter, Gaussian smoothing is better than a simple moving
average. After the ratio drops off, it stays low, with almost none of the
sidelobes we saw with the boxcar window. So it does a better job of cutting
off the higher frequencies.

The reason it does so well is that the DFT of a Gaussian curve is also a
Gaussian curve. So the ratio drops off in proportion to exp(—f2), which is
much faster than 1/ f.
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Figure 8.7: Ratio of spectrums before and after Gaussian smoothing, and
the DFT of the window.

8.6 Efficient convolution

One of the reasons the FFT is such an important algorithm is that, combined
with the Convolution Theorem, it provides an efficient way to compute con-
volution, cross-correlation, and autocorrelation.

Again, the Convolution Theorem states

DFT(f ) = DFT(f) - DFT(g)
So one way to compute a convolution is:

f =g = IDFT(DFT(f) - DFT(g))

where IDFT is the inverse DFT. A simple implementation of convolution
takes time proportional to N?; this algorithm, using FFT, takes time propor-
tional to N'log N.

We can confirm that it works by computing the same convolution both
ways. As an example, I'll apply it to the Facebook data shown in Figure

import pandas as pd

names = ['date', 'open', 'high', 'low', 'close', 'volume']
df = pd.read_csv('fb.csv', header=0, names=names)
ys = df.close.values[::-1]

This example uses Pandas to read the data from the CSV file (included in the
repository for this book). If you are not familiar with Pandas, don’t worry:
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I'm not going to do much with it in this book. But if you're interested, you
can learn more about it in Think Stats athttp://thinkstats2.com.

The result, df, is a DataFrame, one of the data structures provided by Pan-
das. close is a NumPy array that contains daily closing prices.

Next I'll create a Gaussian window and convolve it with close:

window = scipy.signal.gaussian(M=30, std=6)
window /= window.sum()
smoothed = np.convolve(ys, window, mode='valid')

fft_convolve computes the same thing using FFT:

from np.fft import fft, ifft

def fft_convolve(signal, window):
fft_signal = fft(signal)
fft_window = fft(window)
return ifft(fft_signal * fft_window)

We can test it by padding the window to the same length as ys and then
computing the convolution:

padded = zero_pad(window, N)
smoothed2 = fft_convolve(ys, padded)

The result has M — 1 bogus values at the beginning, where M is the length
of the window. We can slice off the bogus values like this:

M = len(window)
smoothed2 = smoothed2[M-1:]

The result agrees with fft_convolve with about 12 digits of precision.

8.7 Efficient autocorrelation

In Section [8.2]I presented definitions of cross-correlation and convolution,
and we saw that they are almost the same, except that in convolution the
window is reversed.

Now that we have an efficient algorithm for convolution, we can also use
it to compute cross-correlations and autocorrelations. Using the data from
the previous section, we can compute the autocorrelation Facebook stock
prices:

corrs = np.correlate(close, close, mode='same')


http://thinkstats2.com
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Figure 8.8: Autocorrelation functions computed by NumPy and
fft_correlate.

With mode=’same’, the result has the same length as close, corresponding
to lags from —N /2 to N/2 — 1. The gray line in Figure|8.8[shows the result.
Except at 1ag=0, there are no peaks, so there is no apparent periodic behav-
ior in this signal. However, the autocorrelation function drops off slowly,
suggesting that this signal resembles pink noise, as we saw in Section[5.3]

To compute autocorrelation using convolution, we have to zero-pad the sig-
nal to double the length. This trick is necessary because the FFT is based on
the assumption that the signal is periodic; that is, that it wraps around from
the end to the beginning. With time-series data like this, that assumption is
invalid. Adding zeros, and then trimming the results, removes the bogus
values.

Also, remember that convolution reverses the direction of the window. In
order to cancel that effect, we reverse the direction of the window before
calling £ft_convolve, using np.flipud, which flips a NumPy array. The
result is a view of the array, not a copy, so this operation is fast.

def fft_autocorr(signal):
N = len(signal)
signal = thinkdsp.zero_pad(signal, 2xN)
window = np.flipud(signal)

corrs = fft_convolve(signal, window)
corrs = np.roll(corrs, N//2+1)[:N]
return corrs

The result from fft_convolve haslength 2N. Of those, the first and last N /2
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are valid; the rest are the result of zero-padding. To select the valid element,
we roll the results and select the first N, corresponding to lags from —N /2
toN/2 —1.

As shown in Figure [8.8] the results from fft_autocorr and np.correlate
are identical (with about 9 digits of precision).

Notice that the correlations in Figure 8.8 are large numbers; we could nor-
malize them (between -1 and 1) as shown in Section 5.6

The strategy we used here for auto-correlation also works for cross-
correlation. Again, you have to prepare the signals by flipping one and
padding both, and then you have to trim the invalid parts of the result. This
padding and trimming is a nuisance, but that’s why libraries like NumPy
provide functions to do it for you.

8.8 Exercises

Solutions to these exercises are in chap08soln. ipynb.

Exercise 8.1 The notebook for this chapter is chap08. ipynb. Read through
it and run the code.

It contains an interactive widget that lets you experiment with the param-
eters of the Gaussian window to see what effect they have on the cutoff
frequency.

What goes wrong when you increase the width of the Gaussian, std, with-
out increasing the number of elements in the window, M?

Exercise 8.2 In this chapter I claimed that the Fourier transform of a Gaus-
sian curve is also a Gaussian curve. For Discrete Fourier Transforms, this
relationship is approximately true.

Try it out for a few examples. What happens to the Fourier transform as
you vary std?

Exercise 8.3 If you did the exercises in Chapter |3, you saw the effect of the
Hamming window, and some of the other windows provided by NumPy,
on spectral leakage. We can get some insight into the effect of these win-
dows by looking at their DFTs.

In addition to the Gaussian window we used in this chapter, create a Ham-
ming window with the same size. Zero-pad the windows and plot their
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DFTs. Which window acts as a better low-pass filter? You might find it
useful to plot the DFTs on a log-y scale.

Experiment with a few different windows and a few different sizes.



Chapter 9

Differentiation and Integration

This chapter picks up where the previous chapter left off, looking at the re-
lationship between windows in the time domain and filters in the frequency
domain.

In particular, we’ll look at the effect of a finite difference window, which
approximates differentiation, and the cumulative sum operation, which ap-
proximates integration.

The code for this chapter is in chap09.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdsp09.

9.1 Finite differences

In Section we applied a smoothing window to the stock price of Face-
book and found that a smoothing window in the time domain corresponds
to a low-pass filter in the frequency domain.

In this section, we'll look at daily price changes and see that computing the
difference between successive elements, in the time domain, corresponds to
a high-pass filter.

Here’s the code to read the data, store it as a wave, and compute its spec-
trum.

import pandas as pd

names = ['date', 'open', 'high', 'low', 'close', 'volume']
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Figure 9.1: Daily closing price of Facebook and the spectrum of this time
series.

df pd.read_csv('fb.csv', header=0, names=names)
ys = df.close.values[::-1]

close = thinkdsp.Wave(ys, framerate=1)

spectrum = wave.make_spectrum()

This example uses Pandas to read the CSV file; the result is a DataFrame, df,
with columns for the opening price, closing price, and high and low prices.
I select the closing prices and save them in a Wave object. The frame rate is
1 sample per day.

Figure 9.1 shows this time series and its spectrum. Visually, the time se-
ries resembles Brownian noise (see Section [.3). And the spectrum looks
like a straight line, albeit a noisy one. The estimated slope is -1.9, which is
consistent with Brownian noise.

Now let’s compute the daily price change using np.diff:

diff = np.diff(ys)
change = thinkdsp.Wave(diff, framerate=1)
change_spectrum = change.make_spectrum()

Figure 9.2| shows the resulting wave and its spectrum. The daily changes
resemble white noise, and the estimated slope of the spectrum, -0.06, is near
zero, which is what we expect for white noise.
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Figure 9.2: Daily price change of Facebook and the spectrum of this time
series.

9.2 The frequency domain

Computing the difference between successive elements is the same as con-
volution with the window [1, -1]. If the order of those elements seems
backward, remember that convolution reverses the window before apply-
ing it to the signal.

We can see the effect of this operation in the frequency domain by comput-
ing the DFT of the window.

diff_window = np.array([1.0, -1.0])

padded = thinkdsp.zero_pad(diff_window, len(close))
diff_wave = thinkdsp.Wave(padded, framerate=close.framerate)
diff_filter = diff_wave.make_spectrum()

Figure [9.3| shows the result. The finite difference window corresponds to
a high-pass filter: its amplitude increases with frequency, linearly for low
frequencies, and then sublinearly after that. In the next section, we’ll see

why.

9.3 Differentiation

The window we used in the previous section is a numerical approximation
of the first derivative, so the filter approximates the effect of differentiation.
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Figure 9.3: Filters corresponding to the diff and differentiate operators (left)
and integration operator (right, log-y scale).

Differentiation in the time domain corresponds to a simple filter in the fre-
quency domain; we can figure out what it is with a little math.

Suppose we have a complex sinusoid with frequency f:
Ef(t) — eZm'ft
The first derivative of E is

i _ s 2mift
thf(t) = 27tife

which we can rewrite as

%Ef(t) — 2mifE; (1)

In other words, taking the derivative of Ey is the same as multiplying by
27if, which is a complex number with magnitude 271 f and angle 77/2.
We can compute the filter that corresponds to differentiation, like this:

deriv_filter = close.make_spectrum()
deriv_filter.hs = PI2 * 1j * deriv_filter.fs

I started with the spectrum of close, which has the right size and frame
rate, then replaced the hs with 27tif. Figure 9.3| (left) shows this filter; it is a
straight line.

As we saw in Section multiplying a complex sinusoid by a complex
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number has two effects: it multiplies the amplitude, in this case by 27f,
and shifts the phase offset, in this case by /2.

If you are familiar with the language of operators and eigenfunctions, each
Ey is an eigenfunction of the differentiation operator, with the correspond-
ing eigenvalue 27tif. See http://en.wikipedia.org/wiki/Eigenfunction.

If you are not familiar with that language, here’s what it means:

* An operator is a function that takes a function and returns another
function. For example, differentiation is an operator.

* A function, g, is an eigenfunction of an operator, A, if applying A to g
has the effect of multiplying the function by a scalar. Thatis, Ag = Ag.

¢ In that case, the scalar A is the eigenvalue that corresponds to the
eigenfunction g.

¢ A given operator might have many eigenfunctions, each with a corre-
sponding eigenvalue.

Because complex sinusoids are eigenfunctions of the differentiation opera-
tor, they are easy to differentiate. All we have to do is multiply by a complex
scalar.

For signals with more than one component, the process is only slightly
harder:

1. Express the signal as the sum of complex sinusoids.
2. Compute the derivative of each component by multiplication.

3. Add up the differentiated components.

If that process sounds familiar, that’s because it is identical to the algorithm
for convolution in Section compute the DFT, multiply by a filter, and
compute the inverse DFT.

Spectrum provides a method that applies the differentiation filter:

# class Spectrum:

def differentiate(self):
self.hs *= PI2 x 1j x self.fs


http://en.wikipedia.org/wiki/Eigenfunction
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Figure 9.4: Comparison of daily price changes computed by np.diff and
by applying the differentiation filter.

We can use it to compute the derivative of the Facebook time series:

deriv_spectrum = close.make_spectrum()
deriv_spectrum.differentiate()
deriv = deriv_spectrum.make_wave ()

Figure|9.4|compares the daily price changes computed by np.diff with the
derivative we just computed. I selected the first 50 values in the time series
so we can see the differences more clearly.

The derivative is noisier, because it amplifies the high frequency compo-
nents more, as shown in Figure|9.3| (left). Also, the first few elements of the
derivative are very noisy. The problem there is that the DFI-based deriva-
tive is based on the assumption that the signal is periodic. In effect, it con-
nects the last element in the time series back to the first element, which
creates artifacts at the boundaries.

To summarize, we have shown:

¢ Computing the difference between successive values in a signal can
be expressed as convolution with a simple window. The result is an
approximation of the first derivative.

¢ Differentiation in the time domain corresponds to a simple filter in the
frequency domain. For periodic signals, the result is the first deriva-
tive, exactly. For some non-periodic signals, it can approximate the
derivative.
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Figure 9.5: Comparison of the original time series and the integrated deriva-
tive.

Using the DFT to compute derivatives is the basis of spectral meth-
ods for solving differential equations (seehttp://en.wikipedia.org/wiki/
Spectral_method).

In particular, it is useful for the analysis of linear, time-invariant systems,
which is coming up in Chapter

9.4 Integration

In the previous section, we showed that differentiation in the time domain
corresponds to a simple filter in the frequency domain: it multiplies each
component by 27if. Since integration is the inverse of differentiation, it
also corresponds to a simple filter: it divides each component by 27rif.

We can compute this filter like this:

integ_filter = close.make_spectrum()
integ_filter.hs = 1 / (PI2 * 1j * integ_filter.fs)

Figure 9.3| (right) shows this filter on a log-y scale, which makes it easier to
see.
Spectrum provides a method that applies the integration filter:

# class Spectrum:

def integrate(self):
self.hs /= PI2 x 1j * self.fs


http://en.wikipedia.org/wiki/Spectral_method
http://en.wikipedia.org/wiki/Spectral_method
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Figure 9.6: A sawtooth wave and its spectrum.

We can confirm that the integration filter is correct by applying it to the
spectrum of the derivative we just computed:

integ_spectrum = deriv_spectrum.copy()
integ_spectrum.integrate ()

But notice that at f = 0, we are dividing by 0. The result in NumPy is
NaN, which is a special floating-point value that represents “not a number”.
We can partially deal with this problem by setting this value to 0 before
converting the spectrum back to a wave:

integ_spectrum.hs[0] = 0
integ_wave = integ_spectrum.make_wave ()

Figure shows this integrated derivative along with the original time
series. They are almost identical, but the integrated derivative has been
shifted down. The problem is that when we clobbered the f = 0 compo-
nent, we set the bias of the signal to 0. But that should not be surprising;
in general, differentiation loses information about the bias, and integration
can’t recover it. In some sense, the NaN at f = 0 is telling us that this
element is unknown.

If we provide this “constant of integration”, the results are identical, which
confirms that this integration filter is the correct inverse of the differentia-
tion filter.
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Figure 9.7: A parabolic wave and its spectrum.

9.5 Cumulative sum

In the same way that the diff operator approximates differentiation, the cu-
mulative sum approximates integration. I'll demonstrate with a Sawtooth
signal.

signal = thinkdsp.SawtoothSignal (freq=50)

in_wave = signal.make_wave(duration=0.1, framerate=44100)

Figure 9.6 shows this wave and its spectrum.

Wave provides a method that computes the cumulative sum of a wave array
and returns a new Wave object:

# class Wave:

def cumsum(self):
ys = np.cumsum(self.ys)
ts = self.ts.copy(O
return Wave(ys, ts, self.framerate)

We can use it to compute the cumulative sum of in_wave:

out_wave = in_wave.cumsum()
out_wave.unbias ()

Figure 9.7| shows the resulting wave and its spectrum. If you did the ex-
ercises in Chapter [2, this waveform should look familiar: it’s a parabolic
signal.

Comparing the spectrum of the parabolic signal to the spectrum of the saw-
tooth, the amplitudes of the components drop off more quickly. In Chap-
ter[2, we saw that the components of the sawtooth drop off in proportion to
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1/f. Since the cumulative sum approximates integration, and integration
filters components in proportion to 1/ f, the components of the parabolic
wave drop off in proportion to 1/ f2.

We can see that graphically by computing the filter that corresponds to the
cumulative sum:

cumsum_filter = diff_filter.copy()
cumsum_filter.hs = 1 / cumsum_filter.hs

Because cumsum is the inverse operation of diff, we start with a copy of
diff_filter, which is the filter that corresponds to the diff operation, and
then invert the hs.

Figure 9.8/ shows the filters corresponding to cumulative sum and integra-
tion. The cumulative sum is a good approximation of integration except at
the highest frequencies, where it drops off a little faster.

To confirm that this is the correct filter for the cumulative sum, we can com-
pare it to the ratio of the spectrum out_wave to the spectrum of in_wave:

in_spectrum = in_wave.make_spectrum()
out_spectrum = out_wave.make_spectrum()
ratio_spectrum = out_spectrum.ratio(in_spectrum, thresh=1)

And here’s the method that computes the ratios:

def ratio(self, denom, thresh=1):
ratio_spectrum = self.copy()
ratio_spectrum.hs /= denom.hs
ratio_spectrum.hs[denom.amps < thresh] = np.nan
return ratio_spectrum
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Figure 9.9: Filter corresponding to cumulative sum and actual ratios of the
before-and-after spectrums.

When denom. amps is small, the resulting ratio is noisy, so I set those values
to NaN.

Figure 9.9 shows the ratios and the filter corresponding to the cumulative
sum. They agree, which confirms that inverting the filter for diff yields the
filter for cumsum.

Finally, we can confirm that the Convolution Theorem applies by applying
the cumsun filter in the frequency domain:

out_wave2 = (in_spectrum * cumsum_filter) .make_wave()

Within the limits of floating-point error, out_wave2 is identical to out_wave,
which we computed using cumsum, so the Convolution Theorem works! But
note that this demonstration only works with periodic signals.

9.6 Integrating noise

In Section we generated Brownian noise by computing the cumulative
sum of white noise. Now that we understand the effect of cumsum in the
frequency domain, we have some insight into the spectrum of Brownian
noise.

White noise has equal power at all frequencies, on average. When we com-
pute the cumulative sum, the amplitude of each component is divided by
f. Since power is the square of magnitude, the power of each component is
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divided by f2. So on average, the power at frequency f is proportional to
1/ f%

P; = K/ f?
where K is a constant that’s not important. Taking the log of both sides

yields:
long = log K —2log f

And that’s why, when we plot the spectrum of Brownian noise on a log-log
scale, we expect to see a straight line with slope -2, at least approximately.

In Section 9.1| we plotted the spectrum of closing prices for Facebook, and
estimated that the slope is -1.9, which is consistent with Brownian noise.
Many stock prices have similar spectrums.

When we use the diff operator to compute daily changes, we multiplied
the amplitude of each component by a filter proportional to f, which means
we multiplied the power of each component by 2. On a log-log scale, this
operation adds 2 to the slope of the power spectrum, which is why the es-
timated slope of the result is near 0.1 (but a little lower, because diff only
approximates differentiation).

9.7 Exercises

Solutions to these exercises are in chap09soln. ipynb.

Exercise 9.1 The notebook for this chapter is chap09.ipynb. Read through
it and run the code.

In Section I mentioned that some of the examples don’t work with non-
periodic signals. Try replacing the sawtooth wave, which is periodic, with
the Facebook data, which is not, and see what goes wrong.

Exercise 9.2 The goal of this exercise is to explore the effect of diff and
differentiate on a signal. Create a triangle wave and plot it. Apply
diff and plot the result. Compute the spectrum of the triangle wave, ap-
ply differentiate, and plot the result. Convert the spectrum back to a
wave and plot it. Are there differences between the effect of diff and
differentiate for this wave?

Exercise 9.3 The goal of this exercise is to explore the effect of cumsum and
integrate on a signal. Create a square wave and plot it. Apply cumsum and
plot the result. Compute the spectrum of the square wave, apply integrate,
and plot the result. Convert the spectrum back to a wave and plot it. Are
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there differences between the effect of cumsum and integrate for this wave?

Exercise 9.4 The goal of this exercise is the explore the effect of integrat-
ing twice. Create a sawtooth wave, compute its spectrum, then apply
integrate twice. Plot the resulting wave and its spectrum. What is the
mathematical form of the wave? Why does it resemble a sinusoid?

Exercise 9.5 The goal of this exercise is to explore the effect of the 2nd dif-
ference and 2nd derivative. Create a CubicSignal, which is defined in
thinkdsp. Compute the second difference by applying diff twice. What
does the result look like? Compute the second derivative by applying
differentiate to the spectrum twice. Does the result look the same?

Plot the filters that correspond to the 2nd difference and the 2nd derivative
and compare them. Hint: In order to get the filters on the same scale, use a
wave with frame rate 1.
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Chapter 10

LTI systems

This chapter presents the theory of signals and systems, using musical
acoustics as an example. It explains an important application of the Con-
volution Theorem, characterization of linear, time-invariant systems (which
I'll define soon).

The code for this chapter is in chap10.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdsp10.

10.1 Signals and systems

In the context of signal processing, a system is an abstract representation of
anything that takes a signal as input and produces a signal as output.

For example, an electronic amplifier is a circuit that takes an electrical signal
as input and produces a (louder) signal as output.

As another example, when you listen to a musical performance, you can
think of the room as a system that takes the sound of the performance at the
location where it is generated and produces a somewhat different sound at
the location where you hear it.

A linear, time-invariant systemﬂ is a system with these two properties:

1. Linearity: If you put two inputs into the system at the same time,
the result is the sum of their outputs. Mathematically, if an input x;

My presentation here follows http://en.wikipedia.org/wiki/LTI_system_theory.


http://tinyurl.com/thinkdsp10
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produces output y; and another input xp produces y», then ax; + bx,
produces ay; + by,, where a and b are scalars.

2. Time invariance: The effect of the system doesn’t vary over time, or
depend on the state of the system. So if inputs x; and x, differ only by
a shift in time, their outputs y; and y, differ by the same shift, but are
otherwise identical.

Many physical systems have these properties, at least approximately.

* Circuits that contain only resistors, capacitors and inductors are LTI,
to the degree that the components behave like their idealized models.

* Mechanical systems that contain springs, masses and dashpots are
also LTI, assuming linear springs (force proportional to displacement)
and dashpots (force proportional to velocity).

¢ Also, and most relevant to applications in this book, the media that
transmit sound (including air, water and solids) are well-modeled by
LTI systems.

LTI systems are described by linear differential equations, and the solutions
of those equations are complex sinusoids (see http://en.wikipedia.org/
wiki/Linear_differential_equation).

This result provides an algorithm for computing the effect of an LTI system
on an input signal:

1. Express the signal as the sum of complex sinusoid components.

2. For each input component, compute the corresponding output com-
ponent.

3. Add up the output components.

At this point, I hope this algorithm sounds familiar. It’s the same algorithm
we used for convolution in Section[8.6, and for differentiation in Section[9.3
This process is called spectral decomposition because we “decompose” the
input signal into its spectral components.

In order to apply this process to an LTI system, we have to characterize
the system by finding its effect on each component of the input signal. For
mechanical systems, it turns out that there is a simple and efficient way to
do that: you kick it and record the output.


http://en.wikipedia.org/wiki/Linear_differential_equation
http://en.wikipedia.org/wiki/Linear_differential_equation
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Technically, the “kick” is called an impulse and the output is called the
impulse response. You might wonder how a single impulse can completely
characterize a system. You can see the answer by computing the DFT of an
impulse. Here’s a wave array with an impulse at ¢ = 0:

impulse = np.zeros(8)
impulse[0] = 1
impulse_spectrum = np.fft.fft(impulse)

Here’s the wave array:

1. 0. 0. 0. 0. 0. 0. 0.]

And here’s its spectrum:

[ 1.40.j 1.+0.j 1.+#0.j 1.40.j 1.+0.j 1.+0.j 1.+0.j 1.+0.j]

The spectrum is all ones; that is, an impulse is the sum of components with
equal magnitudes at all frequencies. This spectrum should not be confused
with white noise, which has the same average power at all frequencies, but
varies around that average.

When you test a system by inputting an impulse, you are testing the re-
sponse of the system at all frequencies. And you can test them all at the
same time because the system is linear, so simultaneous tests don’t interfere
with each other.

10.2 Windows and filters

To show why this kind of system characterization works, I will start with
a simple example: a 2-element moving average. We can think of this op-
eration as a system that takes a signal as an input and produces a slightly
smoother signal as an output.

In this example we know what the window is, so we can compute the cor-
responding filter. But that’s not usually the case; in the next section we’ll
look at an example where we don’t know the window or the filter ahead of
time.

Here’s a window that computes a 2-element moving average (see Sec-
tion [8.1)):

window_array = np.array([0.5, 0.5, 0, O, O, O, O, 0,])
window = thinkdsp.Wave(window_array, framerate=8)

We can find the corresponding filter by computing the DFT of the window:

filtr = window.make_spectrum(full=True)
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Figure 10.1: DFT of a 2-element moving average window.

Figure shows the result. The filter that corresponds to a moving aver-
age window is a low-pass filter with the approximate shape of a Gaussian
curve.

Now imagine that we did not know the window or the corresponding filter,
and we wanted to characterize this system. We would do that by inputting
an impulse and measuring the impulse response.

In this example, we can compute the impulse response by multiplying the
spectrums of the impulse and the filter, and then converting the result from
a spectrum to a wave:

product = impulse_spectrum * filtr
filtered = product.make_wave()

Since impulse_spectrum is all ones, the product is identical to the filter, and
the filtered wave is identical to the window.

This example demonstrates two things:

¢ Because the spectrum of an impulse is all ones, the DFT of the impulse
response is identical to the filter that characterizes the system.

* Therefore, the impulse response is identical to the convolution win-
dow that characterizes the system.
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Figure 10.2: Waveform of a gunshot.

10.3 Acoustic response

To characterize the acoustic response of a room or open space, a simple way
to generate an impulse is to pop a balloon or fire a gun. The result is an input
signal that approximates an impulse, so the sound you hear approximates
the impulse response.

As an example, I'll use a recording of a gunshot to characterize the room
where the gun was fired, then use the impulse response to simulate the
effect of that room on a violin recording.

This example is in chap10.ipynb, which is in the repository for this book;
you can also view it, and listen to the examples, at http://tinyurl.com/
thinkdsp10.

Here’s the gunshot:

response = thinkdsp.read_wave('180961__kleeb__gunshots.wav')
response = response.segment(start=0.26, duration=5.0)
response.normalize()

response.plot()

I select a segment starting at 0.26 seconds to remove the silence before the
gunshot. Figure (left) shows the waveform of the gunshot. Next we
compute the DFT of response:

transfer = response.make_spectrum()
transfer.plot()

Figure (right) shows the result. This spectrum encodes the response
of the room; for each frequency, the spectrum contains a complex number
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Figure 10.3: The waveform of the violin recording before and after convo-
lution.

that represents an amplitude multiplier and a phase shift. This spectrum
is called a transfer function because it contains information about how the
system transfers the input to the output.

Now we can simulate the effect this room would have on the sound of a
violin. Here is the violin recording we used in Section [L.1]

violin = thinkdsp.read_wave('92002__jcveliz__violin-origional.wav')
violin.truncate(len(response))
violin.normalize ()

The violin and gunshot waves were sampled at the same frame rate, 44,100
Hz. And coincidentally, the duration of both is about the same. I trimmed
the violin wave to the same length as the gunshot.

Next I compute the DFT of the violin wave:
spectrum = violin.make_spectrum()

Now I know the magnitude and phase of each frequency component in the
input, and I know the transfer function of the system. Their product is the
DFT of the output, which we can use to compute the output wave:

output = (spectrum * transfer).make_wave()
output.normalize ()
output.plot ()

Figure shows the input (top) and output (bottom) of the system. They
are substantially different, and the differences are clearly audible. Load
chap10. ipynb and listen to them. One thing I find striking about this exam-
ple is that you can get a sense of what the room was like; to me, it sounds
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Figure 10.4: Sum of a wave and a shifted, scaled copy.

like a long, narrow room with hard floors and ceilings. That is, like a firing
range.

There’s one thing I glossed over in this example that I'll mention in case
it bothers anyone. The violin recording I started with has already been
transformed by one system: the room where it was recorded. So what I
really computed in my example is the sound of the violin after two trans-
formations. To properly simulate the sound of a violin in a different room,
I should have characterized the room where the violin was recorded and
applied the inverse of that transfer function first.

10.4 Systems and convolution

If you think the previous example is black magic, you are not alone. I've
been thinking about it for a while and it still makes my head hurt.

In the previous section, I suggested one way to think about it:

* An impulse is made up of components with amplitude 1 at all fre-
quencies.

¢ The impulse response contains the sum of the responses of the system
to all of these components.

¢ The transfer function, which is the DFT of the impulse response, en-
codes the effect of the system on each frequency component in the
form of an amplitude multiplier and a phase shift.
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¢ For any input, we can compute the response of the system by break-
ing the input into components, computing the response to each com-
ponent, and adding them up.

But if you don’t like that, there’s another way to think about it altogether:
convolution! By the Convolution Theorem, multiplication in the frequency
domain corresponds to convolution in the time domain. In this example,
the output of the system is the convolution of the input and the system
response.

Here are the keys to understanding why that works:

* You can think of the samples in the input wave as a sequence of im-
pulses with varying amplitude.

e Each impulse in the input yields a copy of the impulse response,
shifted in time (because the system is time-invariant) and scaled by
the amplitude of the input.

* The output is the sum of the shifted, scaled copies of the impulse re-
sponse. The copies add up because the system is linear.

Let’s work our way up gradually. Suppose that instead of firing one gun,
we fire two: a big one with amplitude 1 at ¢ = 0 and a smaller one with
amplitude 0.5 at £ = 1.

We can compute the response of the system by adding up the original im-
pulse response and a scaled, shifted copy of itself. Here’s a function that
makes a shifted, scaled copy of a wave:

def shifted_scaled(wave, shift, factor):
res = wave.copy()
res.shift(shift)
res.scale(factor)
return res

The parameter shift is a time shift in seconds; factor is a multiplicative
factor.
Here’s how we use it to compute the response to a two-gun salute:

shift = 1
factor = 0.5
gun2 = response + shifted_scaled(response, shift, factor)
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Figure 10.5: Diagram of the sum of scaled and shifted copies of g.

Figure shows the result. You can hear what it sounds like in
chap10.ipynb. Not surprisingly, it sounds like two gunshots, the first one
louder than the second.

Now suppose instead of two guns, you add up 100 guns fired at a rate of
441 shots per second. This loop computes the result:
dt = 1 / 441
total = 0
for k in range(100):
total += shifted_scaled(response, k*xdt, 1.0)

With 441 shots per second, you don’t hear the individual shots. Instead, it
sounds like a periodic signal at 441 Hz. If you play this example, it sounds
like a car horn in a garage.

And that brings us to a key insight: you can think of any wave as a series of
samples, where each sample is an impulse with a different amplitude.

As a example, I'll generate a sawtooth signal at 441 Hz:

signal = thinkdsp.SawtoothSignal (freq=441)
wave = signal.make_wave(duration=0.1,
framerate=response.framerate)

Now I'll loop through the series of impulses that make up the sawtooth,
and add up the impulse responses:

total = 0O
for t, y in zip(wave.ts, wave.ys):
total += shifted_scaled(response, t, y)

The result is what it would sound like to play a sawtooth wave in a firing
range. Again, you can listen to it in chap10. ipynb.

Figure shows a diagram of this computation, where f is the sawtooth,
g is the impulse response, and  is the sum of the shifted, scaled copies of g.

For the example shown:
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h(2] = flolgl2] + f[1]g[1] + f(2]g[0]

And more generally,

N-1

hin] = ) flm]g[n —m]

m=0

You might recognize this equation from Section[8.2] It is the convolution of
f and g. This shows that if the input is f and the impulse response of the
system is g, the output is the convolution of f and g.

In summary, there are two ways to think about the effect of a system on a
signal:

1. The input is a sequence of impulses, so the output is the sum of scaled,
shifted copies of the impulse response; that sum is the convolution of
the input and the impulse response.

2. The DFT of the impulse response is a transfer function that encodes
the effect of the system on each frequency component as a magnitude
and phase offset. The DFT of the input encodes the magnitude and
phase offset of the frequency components it contains. Multiplying the
DFT of the input by the transfer function yields the DFT of the output.

The equivalence of these descriptions should not be a surprise; it is basically
a statement of the Convolution Theorem: convolution of f and g in the time
domain corresponds to multiplication in the frequency domain.

And if you wondered why convolution is defined as it is, which seemed
backwards when we talked about smoothing and difference windows, now
you know the reason: the definition of convolution appears naturally in the
response of an LTI system to a signal.

10.5 Proof of the Convolution Theorem

Well, I've put it off long enough. It’s time to prove the Convolution Theorem
(CT), which states:

DFT(f * g) = DFT(f)DFT(g)
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where f and g are vectors with the same length, N.

I'll proceed in two steps:

1. T'll show that in the special case where f is a complex exponential,
convolution with g has the effect of multiplying f by a scalar.

2. In the more general case where f is not a complex exponential, we
can use the DFT to express it as a sum of exponential components,
compute the convolution of each component (by multiplication) and
then add up the results.

Together these steps prove the Convolution Theorem. But first, let’s assem-
ble the pieces we’ll need. The DFT of g, which I'll call G, is:

DFT(g)[k Z ¢[n] exp(—2mink/N)

where k is an index of frequency from 0 to N — 1 and 7 is an index of time
from 0 to N — 1. The result is a vector of N complex numbers.

The inverse DFT of F, which I'll call £, is:

IDFT(F)[n] = f[n] = ;F[k] exp(27mtink/N)

Here’s the definition of convolution:
(f *&)nl =Y flm]g[n —m]

where m is another index of time from 0 to N — 1. Convolution is commu-
tative, so I could equivalently write:

fxgQ)[n] = an—

Now let’s consider the special case where f is a complex exponential with
frequency k, which I'll call ¢;:

fn] = ex[n] = exp(2mink/N)
where k is an index of frequency and 7 is an index of time.

Plugging ey into the second definition of convolution yields

(ex * g)[n] = ) _exp(2mi(n — m)k/N)g[m]

m
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We can split the first term into a product:

(exx9)] Zexp 2mtink/N) exp(—2mimk/N)g[m]

The first half does not depend on m, so we can pull it out of the summation:
(ex * g)[n] = exp(2mink/N) ) _exp(—2mimk/N)g[m]
m

Now we recognize that the first term is e, and the summation is G[k| (using
m as the index of time). So we can write:

(e + 8)[n] = ex[n]G[K]

which shows that for each complex exponential, e;, convolution with g has
the effect of multiplying e; by G[k|]. In mathematical terms, each ¢ is an
eigenvector of this operation, and GJk| is the corresponding eigenvalue (see
Section 9.3).

Now for the second part of the proof. If the input signal, f, doesn’t happen
to be a complex exponential, we can express it as a sum of complex expo-
nentials by computing its DFT, F. For each value of k from 0 to N — 1, F[k]
is the complex magnitude of the component with frequency k.

Each input component is a complex exponential with magnitude F k], so
each output component is a complex exponential with magnitude F[k]Glk],
based on the first part of the proof.

Because the system is linear, the output is just the sum of the output com-
ponents:
fxg)[n] = ZF

Plugging in the definition of ¢ yields

(fxg)[n] = ZF k] exp(2mink/N)

The right hand side is the inverse DFT of the product FG. Thus:
(f xg) = IDFT(FG)
Substituting F = DFT(f) and G = DFT(g):

(f *g) = IDFT(DFT(f)DFT(g))
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Finally, taking the DFT of both sides yields the Convolution Theorem:
DFT(f * g) = DFT(f)DFT(g)

QED

10.6 Exercises

Solutions to these exercises are in chap10soln.ipynb.

Exercise 10.1 In Section I describe convolution as the sum of shifted,
scaled copies of a signal.

But in Section when we multiply the DFT of the signal by the trans-
fer function, that operation corresponds to circular convolution, which as-
sumes that the signal is periodic. As a result, you might notice that the
output contains an extra note at the beginning, which wraps around from
the end.

Fortunately, there is a standard solution to this problem. If you add enough
zeros to the end of the signal before computing the DFT, you can avoid the
wrap-around effect.

Modify the example in chap10.ipynb and confirm that zero-padding elimi-
nates the extra note at the beginning of the output.

Exercise 10.2 The Open AIR library provides a “centralized... on-line re-
source for anyone interested in auralization and acoustical impulse re-
sponse data” (http://www.openairlib.net). Browse their collection of im-
pulse response data and download one that sounds interesting. Find a short
recording that has the same sample rate as the impulse response you down-
loaded.

Simulate the sound of your recording in the space where the impulse re-
sponse was measured, computed two ways: by convolving the recording
with the impulse response and by computing the filter that corresponds to
the impulse response and multiplying by the DFT of the recording.


http://www.openairlib.net
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Chapter 11

Modulation and sampling

In Section we saw that when a signal is sampled at 10,000 Hz, a compo-
nent at 5500 Hz is indistinguishable from a component at 4500 Hz. In this
example, the folding frequency, 5000 Hz, is half of the sampling rate. But I
didn’t explain why.

This chapter explores the effect of sampling and presents the Sampling The-
orem, which explains aliasing and the folding frequency.

I'll start by exploring the effect of convolution with impulses; I'll use that
effect to explain amplitude modulation (AM), which turns out to be useful
for understanding the Sampling Theorem.

The code for this chapter is in chap11.ipynb, which is in the repository for
this book (see Section [0.2). You can also view it at http://tinyurl.com/
thinkdsp-chll.

11.1 Convolution with impulses

As we saw in Section convolution of a signal with a series of impulses
has the effect of adding up shifted, scaled copies of the signal.
As an example, I'll read a signal that sounds like a beep:

filename = '253887__themusicalnomad__positive-beeps.wav'
wave = thinkdsp.read_wave(filename)
wave.normalize()

And I'll construct a wave with four impulses:


http://tinyurl.com/thinkdsp-ch11
http://tinyurl.com/thinkdsp-ch11
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Figure 11.1: The effect of convolving a signal (top left) with a series of im-
pulses (bottom left). The result (right) is the sum of shifted, scaled copies of
the signal.

imp_sig = thinkdsp.Impulses([0.005, 0.3, 0.6, 0.9],

amps=[1, 0.5, 0.25, 0.1])

impulses = imp_sig.make_wave(start=0, duration=1.0,
framerate=wave.framerate)

And then convolve them:
convolved = wave.convolve(impulses)

Figure shows the results, with the signal in the top left, the impulses in
the lower left, and the result on the right.

You can hear the result in chap11. ipynb; it sounds like a series of four beeps
with decreasing loudness.

The point of this example is just to demonstrate that convolution with im-
pulses makes shifted, scaled copies. This result will be useful in the next
section.
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Figure 11.2: Demonstration of amplitude modulation. The top row is the
spectrum of the signal; the next row is the spectrum after modulation; the
next row is the spectrum after demodulation; the last row is the demodu-
lated signal after low-pass filtering.
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11.2 Amplitude modulation

Amplitude modulation (AM) is used to broadcast AM radio, among other
applications. At the transmitter, the signal (which might contain speech,
music, etc.) is “modulated” by multiplying it with a cosine signal that
acts as a “carrier wave”. The result is a high-frequency wave that is
suitable for broadcast by radio. Typical frequencies for AM radio in the
United States are 500-1600 kHz (see https://en.wikipedia.org/wiki/AM_
broadcasting).

At the receiving end, the broadcast signal is “demodulated” to recover
the original signal. Surprisingly, demodulation works by multiplying the
broadcast signal, again, by the same carrier wave.

To see how that works, I'll modulate a signal with a carrier wave at 10 kHz.
Here’s the signal:

filename = '105977__wcfl1l0__favorite-station.wav'
wave = thinkdsp.read_wave(filename)

wave.unbias ()

wave.normalize ()

And here’s the carrier:

carrier_sig = thinkdsp.CosSignal(freq=10000)
carrier_wave = carrier_sig.make_wave(duration=wave.duration,
framerate=wave.framerate)

We can multiply them using the * operator, which multiplies the wave ar-
rays elementwise:

modulated = wave * carrier_wave

The result sounds pretty bad. You can hear it in chap11.ipynb.

Figure shows what’s happening in the frequency domain. The top row
is the spectrum of the original signal. The next row is the spectrum of the
modulated signal, after multiplying by the carrier. It contains two copies of
the original spectrum, shifted by plus and minus 10 kHz.

To understand why, recall that convolution in the time domain corresponds
to multiplication in the frequency domain. Conversely, multiplication in the
time domain corresponds to convolution in the frequency domain. When
we multiply the signal by the carrier, we are convolving its spectrum with
the DFT of the carrier.

Since the carrier is a simple cosine wave, its DFT is two impulses, at plus
and minus 10 kHz. Convolution with these impulses makes shifted, scaled


https://en.wikipedia.org/wiki/AM_broadcasting
https://en.wikipedia.org/wiki/AM_broadcasting
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copies of the spectrum. Notice that the amplitude of the spectrum is smaller
after modulation. The energy from the original signal is split between the
copies.

We demodulate the signal, by multiplying by the carrier wave again:

demodulated = modulated * carrier_wave

The third row of Figure shows the result. Again, multiplication in the
time domain corresponds to convolution in the frequency domain, which
makes shifted, scaled copies of the spectrum.

Since the modulated spectrum contains two peaks, each peak gets split in
half and shifted by plus and minus 20 kHz. Two of the copies meet at 0 kHz
and get added together; the other two copies end up centered at plus and
minus 20 kHz.

If you listen to the demodulated signal, it sounds pretty good. The extra
copies of the spectrum add high frequency components that were not in the
original signal, but they are so high that most speakers can’t play them and
most people can’t hear them. But if you have good speakers and good ears,
you might.

In that case, you can get rid of the extra components by applying a low-pass
filter:

demodulated_spectrum = demodulated.make_spectrum(full=True)
demodulated_spectrum.low_pass(10000)
filtered = demodulated_spectrum.make_wave ()

The result is quite close to the original wave, although about half of the
power is lost after demodulating and filtering. That’s not a problem in prac-
tice, because much more of the power is lost in transmitting and receiving
the broadcast signal. Since we have to amplify the result anyway, another
factor of 2 is not an issue.

11.3 Sampling

I explained amplitude modulation in part because it is interesting, but
mostly because it will help us understand sampling. “Sampling” is the pro-
cess of measuring an analog signal at a series of points in time, usually with
equal spacing.

For example, the WAV files we have used as examples were recorded by
sampling the output of a microphone using an analog-to-digital converter
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Figure 11.3: Spectrum of a signal before (top) and after (bottom) sampling.

(ADC). The sampling rate for most of them is 44.1 kHz, which is the stan-
dard rate for “CD quality” sound, or 48 kHz, which is the standard for DVD
sound.

At 48 kHz, the folding frequency is 24 kHz, which is higher than most peo-
ple can hear (see https://en.wikipedia.org/wiki/Hearing_range).

In most of these waves, each sample has 16 bits, so there are 216 distinct
levels. This “bit depth” turns out to be enough that adding more bits does
not improve the sound quality noticeably (seehttps://en.wikipedia.org/
wiki/Digital_audio).

Of course, applications other than audio signals might require higher sam-
pling rates in order to capture higher frequencies, or higher bit-depth in
order to reproduce waveforms with more fidelity.

To demonstrate the effect of the sampling process, I am going to start with a
wave sampled at 44.1 kHz and select samples from it at about 11 kHz. This
is not exactly the same as sampling from an analog signal, but the effect is
the same.

First I'll load a recording of a drum solo:

filename = '263868__kevcio__amen-break-a-160-bpm.wav'
wave = thinkdsp.read_wave(filename)
wave.normalize ()


https://en.wikipedia.org/wiki/Hearing_range
https://en.wikipedia.org/wiki/Digital_audio
https://en.wikipedia.org/wiki/Digital_audio

11.3. Sampling 139

Impulse train DFT of impulse train

0.8

0.6

0.4}

0.2}

0.0 0.2 0.4 0.6 0.8 1.0 —20000 —10000 0 10000 20000

. . . . . . L . .
0.0 0.2 0.4 0.6 0.8 1.0 —20000 -10000 0 10000 20000
Time (ms) Frequency (Hz)

Figure 11.4: The DFT of an impulse train is also an impulse train.

Figure (top) shows the spectrum of this wave. Now here’s the function
that samples from the wave:

def sample(wave, factor=4):
ys = np.zeros(len(wave))
ys[::factor] = wave.ys[::factor]
return thinkdsp.Wave(ys, framerate=wave.framerate)

I'll use it to select every fourth element:
sampled = sample(wave, 4)

The result has the same frame rate as the original, but most of the elements
are zero. If you play the sampled wave, it doesn’t sound very good. The
sampling process introduces high-frequency components that were not in
the original.

Figure (bottom) shows the spectrum of the sampled wave. It contains
four copies of the original spectrum (it looks like five copies because one is
split between the highest and lowest frequencies).

To understand where these copies come from, we can think of the sampling
process as multiplication with a series of impulses. Instead of using sample
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to select every fourth element, we could use this function to make a series
of impulses, sometimes called an impulse train:

def make_impulses(wave, factor):
ys = np.zeros(len(wave))
ys[::factor] =1
ts = np.arange(len(wave)) / wave.framerate
return thinkdsp.Wave(ys, ts, wave.framerate)

And then multiply the original wave by the impulse train:

impulses = make_impulses(wave, 4)
sampled = wave * impulses

The result is the same; it still doesn’t sound very good, but now we under-
stand why. Multiplication in the time domain corresponds to convolution
in the frequency domain. When we multiply by an impulse train, we are
convolving with the DFT of an impulse train. As it turns out, the DFT of an
impulse train is also an impulse train.

Figure shows two examples. The top row is the impulse train in the
example, with frequency 11,025 Hz. The DFT is a train of 4 impulses, which
is why we get 4 copies of the spectrum. The bottom row shows an impulse
train with a lower frequency, about 5512 Hz. Its DFT is a train of 8 impulses.
In general, more impulses in the time domain correspond to fewer impulses
in the frequency domain.

In summary:

* We can think of sampling as multiplication by an impulse train.

* Multiplying by an impulse train corresponds to convolution with an
impulse train in the frequency domain.

¢ Convolution with an impulse train makes multiple copies of the sig-
nal’s spectrum.

11.4 Aliasing

In Section [11.2} after demodulating an AM signal, we got rid of the extra
copies of the spectrum by applying a low-pass filter. We can do the same
thing after sampling, but it turns out not to be a perfect solution.

Figure shows why not. The top row is the spectrum of the drum solo.
It contains high frequency components that extend past 10 kHz. When we
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Figure 11.5: Spectrum of the drum solo (top), spectrum of the impulse train
(second row), spectrum of the sampled wave (third row), after low-pass
tiltering (bottom).
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Figure 11.6: Spectrum of a bass guitar solo (top), its spectrum after sampling
(middle), and after filtering (bottom).

sample this wave, we convolve the spectrum with the impulse train (second
row), which makes copies of the spectrum (third row). The bottom row
shows the result after applying a low-pass filter with a cutoff at the folding
frequency, 5512 Hz.

If we convert the result back to a wave, it is similar to the original wave, but
there are two problems:

* Because of the low-pass filter, the components above 5500 Hz have
been lost, so the result sounds muted.

* Even the components below 5500 Hz are not quite right, because they
include contributions from the spectral copies we tried to filter out.

If the spectral copies overlap after sampling, we lose information about the
spectrum and we won't be able to recover it.
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Figure 11.7: A brick wall low-pass filter (right) and the corresponding con-
volution window (left).

But if the copies don’t overlap, things work out pretty well. As a second
example, I loaded a recording of a bass guitar solo.

Figure shows its spectrum (top row), which contains no visible energy
above 5512 Hz. The second row shows the spectrum of the sampled wave,
and the third row shows the spectrum after the low pass filter. The ampli-
tude is lower because we’ve filtered out some of the energy, but the shape
of the spectrum is almost exactly what we started with. And if we convert
back to a wave, it sounds the same.

11.5 Interpolation

The low-pass filter I used in the last step is a so-called brick wall filter;
frequencies above the cutoff are removed completely, as if they hit a brick
wall.

Figure (right) shows what this filter looks like. Of course, multiplica-
tion by this filter in the frequency domain corresponds to convolution with
a window in the time domain. We can find out what that window is by
computing the inverse DFT of the filter, which is shown in Figure (left).

That function has a name; it is the normalized sinc function, or at least a
discrete approximation of it (see https://en.wikipedia.org/wiki/Sinc_

function):
) sin 7tx
sinc(x) = —
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Figure 11.8: Close up view of a sequence of samples (vertical gray lines),
interpolating sinc functions (thin curves), and the original wave (thicker
line across the top).

When we apply the low-pass filter, we are convolving with a sinc function.
We can think of this convolution as the sum of shifted, scaled copies of the
sinc function.

The value of sinc is 1 at 0 and 0 at every other integer value of x. When
we shift the sinc function, we move the zero point. When we scale it, we
change the height at the zero point. So when we add up the shifted, scaled
copies, they interpolate between the sampled points.

Figure shows how that works using a short segment of the bass guitar
solo. The line across the top is the original wave. The vertical gray lines
show the sampled values. The thin curves are the shifted, scaled copies of
the sinc function. The sum of these sinc functions is identical to the original
wave.

I'll say that again, because it is surprising and important:
The sum of these sinc functions is identical to the original wave.

Because we started with a signal that contained no energy above 5512 Hz,
and we sampled at 11,025 Hz, we were able to recover the original spectrum
exactly. And if we have the original spectrum, exactly, we can recover the
original wave exactly.

In this example, I started with a wave that had already been sampled at
44,100 Hz, and I resampled it at 11,025 Hz. After resampling, the gap be-
tween the spectral copies is 11.025 kHz.
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If the original wave contains no energy above 5512 Hz, the spectral copies
don’t overlap, we don’t lose information, and we can recover the original
signal exactly.

This result is known as the Nyquist-Shannon sampling theorem (see https:
//en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem).

This example does not prove the Sampling Theorem, but I hope it helps you
understand what it says and why it works.

Notice that the argument I made does not depend on the original sampling
rate, 44.1 kHz. The result would be the same if the original had been sam-
pled at a higher frequency, or even if the original had been a continuous
analog signal: if we sample at frame rate f, we can recover the original sig-
nal exactly, as long as it contains no energy at frequencies above f/2. A
signal like that is called bandwidth limited.

11.6 Summary

Congratulations! You have reached the end of the book (well, except for a
few more exercises). Before you close the book, I want to review how we
got here:

* We started with periodic signals and their spectrums, and I introduced
the key objects in the thinkdsp library: Signal, Wave, and Spectrum.

* We looked at the harmonic structure of simple waveforms and record-
ings of musical instruments, and we saw the effect of aliasing.

* Using spectrograms, we explored chirps and other sounds whose
spectrum changes over time.

* We generated and analyzed noise signals, and characterized natural
sources of noise.

¢ We used the autocorrelation function for pitch estimation and addi-
tional characterization of noise.

* We learned about the Discrete Cosine Transform (DCT), which is use-
ful for compression and also a step toward understanding the Discrete
Fourier Transform (DFT).


https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
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* We used complex exponentials to synthesize complex signals, then we
inverted the process to develop the DFT. If you did the exercises at the
end of the chapter, you implemented the Fast Fourier Transform, one
of the most important algorithms of the 20th century.

¢ Starting with smoothing, I presented the definition of convolution
and stated the Convolution Theorem, which relates operations like
smoothing in the time domain to filters in the frequency domain.

* We explored differentiation and integration as linear filters, which is
the basis of spectral methods for solving differential equations. It also
explains some of the effects we saw in previous chapters, like the rela-
tionship between white noise and Brownian noise.

* We learned about LTI system theory and used the Convolution Theo-
rem to characterize LTI systems by their impulse response.

¢ [ presented amplitude modulation (AM), which is important in radio
communication and also a step toward understanding the Sampling
Theorem, a surprising result that is critical for digital signal process-
ing.

If you got this far, you should have a good balance of practical knowledge
— how to work with signals and spectrums using computational tools — and
theory — an understanding of how and why sampling and filtering work.

I hope you had some fun along the way. Thank you!

11.7 Exercises

Solutions to these exercises are in chapllsoln.ipynb.

Exercise 11.1 The code in this chapter is in chap11l.ipynb. Read through it
and listen to the examples.

Exercise 11.2 Chris “Monty” Montgomery has an excellent video called
“D/A and A/D | Digital Show and Tell”; it demonstrates the Sampling
Theorem in action, and presents lots of other excellent information about
sampling. Watch it at https://www.youtube.com/watch?v=cIQ9IXSUzuM.

Exercise 11.3 As we have seen, if you sample a signal at too low a frame
rate, frequencies above the folding frequency get aliased. Once that hap-
pens, it is no longer possible to filter out these components, because they
are indistinguishable from lower frequencies.


https://www.youtube.com/watch?v=cIQ9IXSUzuM
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It is a good idea to filter out these frequencies before sampling; a low-pass
filter used for this purpose is called an anti-aliasing filter.

Returning to the drum solo example, apply a low-pass filter before sam-
pling, then apply the low-pass filter again to remove the spectral copies
introduced by sampling. The result should be identical to the filtered sig-
nal.
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