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Abstract--This paper introduces resistor network
analogy of Finite Element Modelling (FEM). The
nonlinear iterative algorithms for image
reconstruction in Electrical Impedance
Tomography (EIT) involve computation with large
matrices resulting from FEM. Consequently, it is
difficult to realise real-time solutions. By
recognising that a non-obtuse finite element model
can be considered to be equivalent to a resistor
network, the proposed technique employs matrices
of resistors that emulate the elements of a
conventional mesh. Software simulations explore
the accuracy in the forward solution for Electrical
Impedance Tomography application. Results of
simulation suggest that forward problem can be
solved efficiently using iterative methods with
reduced tolerance
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A. Introduction
Many problems in engineering and science
are characterised by partial differential
equations (PDEs). Solutions to these
equations can be solved either analytically
or numerically. However, in practical
models, analytical solutions are very
difficult to obtain and numerical
approximations are usually used to obtain
solutions by means of computers. The
finite element method (FEM) is a
numerical approximation that is feasible
for solving PDEs with complex geometries
and non-trivial boundary [1]. In order to
approximate solutions to complex
engineering problems, FEM subdivides the
problem into smaller more manageable
elements, which are finite. In this way,

Naskah ini diterima pada tangal 28 Mei 2007,
direvisi pada tanggal 3 Juli 2007 dan disetujui
untuk diterbitkan pada tanggal 1 Agusus 2007

partial differential equations that describe
the physical laws of the problems are
approximated by a set of linear equations,
which can easily be solved using the
standard techniques of matrix algebra.

In Electrical Impedance Tomography
(EIT), the inverse problem is to reconstruct
images that estimate the electrical
conductivity and/or permittivity
distributions in the interior of a body from
measurements on its boundary. Usually an
array of electrodes is mounted on the body,
currents are injected to the electrodes and
voltage measurements are collected from
the electrodes. FEM is employed as the
forward problem solver that determines the
calculated boundary data from
conductivity distribution by using
Laplace's equation. In order to solve the
inverse problem, the solution of the
forward problem is used as an integral part
of the inversion algorithm in which the
calculated response from the forward
problem is compared to the measured
response or observed data. Using nonlinear
iterative algorithms, the corresponding
calculated boundary that fits best to the
observed data is sought iteratively to
predict the conductivity distribution.

The nonlinear iterative algorithms for
image reconstruction in EIT involve
computation with large matrices.
Consequently, the computational demands
of solving the forward problem are
significant and it is difficult to realise real-
time solutions to satisfy the demands of
many industrial applications, and iterative
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image reconstruction is typically only
feasible for off-line processing. In order to
improve processing times, it is desirable to
exploit the parallelism that is inherent in
hardware solutions. By recognising that a
non-obtuse finite element model can be
considered to be equivalent to a resistor
network [2] it becomes natural to consider
the realisation of FEM using networks of
programmable components that emulate
the elements of a conventional mesh. The
idea of using such a resistor network to
solve field problems in real time is not new
[3] but it has become a practical reality
with the availability of sub-micron VLSI
technology.
Most EIT systems solve the forward
problem using software running on
conventional digital computers. Double
precision accuracy is usually used in the
computation in order to minimise the
truncation error. However for digital VLSI,
double precision arithmetic is very costly
in terms of silicon area and consequently a
high degree of parallelism is not readily
achievable. An alternative is to consider
analogue computation, which is unable to
offer “double precision” accuracy due to
the inherent effects of noise. Consequently,
it is necessary to investigate the effect of
reducing the accuracy of computation. This
paper describes the simulation of resistor
networks to determine the lower bounds on
accuracy that may be appropriate for
providing solutions for EIT.

B. Physical models in EIT
In order to reconstruct an image of a
conductivity distribution inside the body,
the first step is to construct a physical
model in which a set of equations is
derived to relate the injected currents and
measured voltages on the boundary with a
conductivity distribution inside the body.
Figure 1 (a) shows a tank having 16
electrodes around the boundary with
conductive and non-conductive materials
inside the tank. Physical models in EIT are

constructed from Maxwell’s equations of
electromagnetism [4]. The equations of
physical models can be separated into two
parts, the equation inside the body and the
equation on the boundary.
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Figure1: (a) A tank with 16 electrodes
imaging perspex and a copper rod in tap
water and (b) the block diagram of a
typical EIT system

The governing equation inside the body
that describes the potential distribution
everywhere within an inhomogeneous and
isotropic region is

  0  (1)
The boundary conditions refer to electrode
models that arise from the current injection
and voltage measurement through the
electrodes. The model should reflect the
exact boundary location, geometry and
contact impedance of the electrode pair [5].
The realistic model is the complete
electrode model that takes into account
both the shunting effect of the electrodes
and contact impedances between the
electrode and the tissue or the saline
solution. Somersalo et al [6] has shown
that this model agrees well with physical
measurement. The complete electrode
model in EIT is shown in Figure 2 [7]
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Figure 2: The complete electrode pair
model in electrical resistance tomography

where  is the electric scalar potential,  is
conductivity, z is contact impedance,  is
the outward normal vector and lV is the

potential on electrode l . The index l
ranges from 1 to L, and L is the number of
electrodes. Figure 2 illustrates the
complete electrode model that consists of
Equation (1) and the boundary conditions.
Current on the source electrode is as
follows

I



 


(2)

EIT hardware
The structure of a typical EIT system
consists of three main parts: electrodes that
are attached on the surface of the body, a
data acquisition system that is used to
inject current(s) and to measure the voltage
signals and a computer to process the
measured data that are used to reconstruct
the image. Figure 1 (b) depicts the block
diagram of an EIT system. A set of linearly
independent measurements has to be
collected by probing via boundary
electrodes in order to obtain the maximum
amount of information about the
conductivity distribution inside the body.
In the adjacent strategy, current is injected
through two adjacent electrodes and the
voltage measured between pairs of
neighbouring electrodes. The procedure is
repeated for all electrodes in order to
collect all independent measurements.
With this strategy, a 16 electrode
arrangement has 120 independent voltage

measurements since the reciprocity
theorem states that an identical value of
conductivity will be obtained by reversing
the injected current and voltage
measurement electrodes [8]. However,
voltage measurement at current-injecting
electrodes is avoided due to the contact
impedance problem. Hence, only 104
independent measurements are collected
from 16 electrodes or in general, there are
N(N-3)/2 independent measurements M for
N number of electrodes.

C. Finite Element Modelling as the
Forward Problem Solver in EIT

To solve Equation (1) in domain  using
FEM, the continuous function (x,y) of the
problem is turned into piecewise
approximation (x,y) by  discretising the
solution domain into a finite number of
elements. The accuracy of the
approximation is strongly dependent on the
quality of discretisation. A large number of
small-sized elements can approximate the
continuous function more accurately than
few large elements. In each element, the
conductivity is assumed to be
homogeneous and isotropic. The popular
fundamental element shapes in 2D are
triangles. In this paper, triangles are used
as elements and the vertices of triangles are
called the nodes. Figure 3 (b) shows
triangular elements used to discretise a
circular domain in Figure 3 (a).

x

y

x

y

(a) (b)

Actual Boundary
Approximate

Boundary

Element

Figure 3: (a) Solution domain , (b)
discretisation solution domain using
triangular elements.
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The approximated solution with N
elements can be expressed as follows,

 



N

e

e yxyx
1

,),( (3)

where the superscript e identifies the
element, and ),( yxe is an approximation
of  the element such that,

0),(  yxi for i = 1 to N, and i  e (4)

Figure 4 (a) shows a single element in a 2D
domain with conductivity . For every
single element in Figure 3 (b), the
potentials are adequately approximated by
a linear interpolation function based on
Figure 4 (a),

a bx cy    (5)
where a , b and c are coefficients that can
be obtained by solving three independent
simultaneous equations in (5)

1 1 1

2 2 2

3 3 3

a bx cy

a bx cy

a bx cy

   
   
   

(6)

where 1 , 2 and 3 are potentials at the

three vertices. The energy associated with
a single triangular element is

3 3

1 1

1

2
e

i i j j
i j S

W ds  
 

      (7)

The integral term defines the i, j-th matrix
element


















333231

232221

131211

YYY

YYY

YYY
eY

(8)
where

e
ij i jY dS    

 
4 i j i jb b c c

A


  (9)

A is the area of triangle and

123312231

213132321

,,

,,

xxcxxcxxc

yybyybyyb




(10)

(a)

(b)
Figure 4: (a) A typical triangular element
in x-y plane (b) Circuit representation of
triangular element where 0ijY 

Resistance Network Analogy
It has been noted since the earliest
development of FEM that an equivalent
electrical network composed of familiar
components such as capacitors, inductors
and resistors can represent the triangular
mesh.  In the case of EIT, the finite
element model with linear approximation
is equivalent to a resistor network. This
representation is only reliable for non-
obtuse triangles since the obtuse angles can
give negative resistances that are not
physically possible. Fortunately, non-
obtuse triangles are desirable to construct
“well-shaped” elements in FEM  [9] since
obtuse triangles can affect numerical
stability and convergence to undesirable
behaviour [10]. The circuit representation
for an element in a conductance system
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with linear approximation depicted in
Figure 4 (a) is shown in Figure 4 (b).

 , 1, 2,3ijY i j  is a conductance between

node i and node j which relates the element
geometry to the element conductivity given
by

 

1

2

1
   cot

2

i j i j
ij

i j i j

k

b b c c
Y

b c c b


 


 





(11)

ib and ic are geometric coefficients as

given in (10),  is the element
conductivity, and angles k are the non-
obtuse corner angles of the element. The
admittance matrix for a single
disconnected element is defined as

12 13 12 13 1 1

12 12 23 23 2 2

13 23 13 23 3 3

Y Y Y Y v i

Y Y Y Y v i

Y Y Y Y v i

       
             
            

(12)

where  1,2,3ii i  is a prescribed current

which flows into i th node and

 1,2,3iv i  is a nodal potential on the

three vertices of the triangle. The
procedure to assemble elements as above
can be expressed by modelling each
element as a three-resistor network as
shown in Figure 5. Using this model, it is
well known that the parallel arrangement
of conductances can be replaced by a
conductance whose value is simply the
sum of the individual conductances.
The boundary conditions involve electrode
models that arise from current injection
and voltage measurement through the
electrodes. Using the complete electrode
model, Equation is as follows [11],

0con Z V con
T D

V D L

Y Y Y U

Y Y V I

     
     
   

(13)

Components ZY , VY and DY results from

the complete electrode model. For the

elements with no contact with the
electrodes, the corresponding ZY entries

are zero. In order to preserve the existence
and uniqueness of the forward solution the
following additional conditions have to be
imposed [6]

1

0
L

D
i

l

I


 (14)

1

0
L

L
l

V


 (15)

where L is the number of electrodes.
Equation (14) and (15), corresponding to
Kirchoff’s laws, state that the net current
flowing into a body equals to zero and the
sum of the voltage drops in any closed path
in a circuit and the electromotive forces in
that path is equal to zero.

A resistance network for the complete
electrode model can be extracted from
Equation (13). Assuming that l elements
are located underneath an electrode as

1

l

E Ei
i

   (16)

and substituting the equation beneath
electrode in Figure 2 and (6) into (2), the
following equation is obtained

   
1

1

1 1

1 1

E Ei

Ei

l

l l l j j
il l

l

l l j j
il l

I V dl V dl
z z

E V dl
z z

 



 





   

  

 

 

(17)

where 1, ,3j   and lE is the length

of the electrode. The components l

l

E

z
and

1

1
Ei

l

j
i l

dl
z






  in (13) form the

compartments DY and VY of the global

conductance matrix in (14) respectively. It
can be shown that lE equals to

1 Ei

l

j
i

dl



 .
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For an element underneath the electrode l ,
let E be the area of the element and

E be its boundary that shares the same

line with the electrode as shown in Figure
5 (a). Applying the Galerkin method leads
to

0
E

i 


   (18)

Boundary conditions can be expressed
using the left part of (18) by applying the
Gauss’s theorem

E E
i i v

  
 


  

  (19)

Substituting the equation beneath each
electrode in Figure 2 and (7) into (19)
leads to

 1

E

E

j i j ii i

i l j j
l

dxdy
x x y y

V dl
z

  

 





     
     

 




(20)

where ( , ) 1, ,3i j   . Equation (20) can
be written as

  0j
con z v

l

Y Y Y
V

 
     

 
(21)

The local matrices   3 3,conY i j  ,

  3 3,zY i j  and   3,vY i j  that

depend on the actual location of the
element arise from the various factors of
(20) as the following

 ,
E

j j j ji i
conY i j dx dy

x x y y

  


     
      


(22)

  1
,

E
z i j

l

Y i j dl
z
 


  (23)

  1
E

v i
l

Y i dl
z



  (24)

(1) (1) (1) (1)
12 13 12 13

(1) (1) (1) (1) (1)
12 12 23 23
(1) (1) (1) (1)

13 23 13 23

Y Y Y Y

Y Y Y Y Y

Y Y Y Y

   
     
    

(2) (2) (2) (2)
12 13 12 13

(2) (2) (2) (2) (2)
12 12 23 23
(2) (2) (2) (2)

13 23 13 23

Y Y Y Y

Y Y Y Y Y

Y Y Y Y

   
     
    

12 13 14 12 13 14

12 12 23 24 23 24

13 23 13 23 34 34

14 24 34 14 24 34

Y Y Y Y Y Y

Y Y Y Y Y Y
Y

Y Y Y Y Y Y

Y Y Y Y Y Y

     
      
     
       

Figure 5 (a) Assembly of two triangular elements (b) conductance arrangement in parallel
(c) the overall admittance matrix
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 
 

 

12 1 12 1 1

12 12 2 2 2

1 2 1 2

0

0
z v z v

z z v v

v v v v l l

Y Y Y Y

Y Y Y Y

Y Y Y Y V I

        
               
             

(25)

 
 

 

12 13 12 13 1

12 12 23 23 2

13 23 13 23 3

0

0

0

con con con con

con con con con

con con con con

Y Y Y Y

Y Y Y Y

Y Y Y Y

        
               
             

(26)

   
   

 
 

12 13 12 1 12 12 13 1 1

12 12 12 23 12 2 23 2 2

13 23 13 23 3

1 2 1 2

0

0
.

0 0

0

con con z v con z con v

con z con con z v con v

con con con con

v v v v l l

Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

Y Y Y Y

Y Y Y Y V I

             
                  
        
             

(27)

Let one element is located underneath of
an electrode. Equations (22), (23) and (24),
the resistor networks can be written as
follows, where Equation (25) and (26)
represent the electrode and the element
underneath of the electrode respectively.
Figure 6(b) shows the resistor networks
resulting from those equations. The bottom
resistor network represents conY whereas

the top resistor network represents zY and

vY . It can be seen from Equation (26), the

non-diagonal component of conductance

12zY in the conductance matrix is positive.

Figure 6(b) shows the realised conductance
of 12zY resulting from Equation (26). By

assembling the top and bottom resistor
networks, the resulting matrix as follows,
Figure 6(c) shows the resistor network
resulting from the assembly process.
Although conductance zY is negative, the

resulting conductance  12 12con zY Y can be

positive and this can be achieved by setting

12conY greater than 12zY and the positive

conductance can be achieved as follows,

 1 1

2 6
l

k
l

E
Cot

z
   (28)

For an electrode with some elements,
Equations (17), (22), (23) and (24) are

evaluated for each of the elements and are
assembled in order to construct the global
conductance matrix (13).

D. Results of Simulation
A 16-electrode sensor is assumed into
which current is injected on an adjacent
pair and on which voltage measurements
are made with reference to the centre of the
body. 'True' measurements are calculated
using the direct method by introducing
Gaussian noise of 0.3 x 10-4 to the forward
solution consisting of 3,136 elements and
1,633 vertices. With this noise level, four
significant digit accuracy of 'true'
measurements is guaranteed.  Using the
same mesh, the forward solution is
calculated with incomplete Cholesky
factorisation for a sequence of tolerances
ranging from 10-1 to 10-12. To evaluate the
quality of boundary measurements, an
error is defined as the average of
discrepancies between the 'true' measured
voltages on the electrodes and the
calculated voltages for each tolerance. The
error is given by

 
1 100%

true fwdm n
i i

true
i i

V V

V
Error

m n







 



(29)



Komarudin: Resistor Network Analogy of  Non-obtuse Finite Element Model

Volume: 1, No.1 | September 2007

8

Figure 6: (a) An element underneath the electrode l , (b) the resistance network
representations, (c) the sum of resistance network representations

where m is the calculated voltage on the
boundary for each n current drive pair.
Figure 7 shows the relationship between
tolerance of the forward solution and error
on the boundary voltage. The graph
suggests that the error is fixed at 0.01 %
for the tolerance range 4 x 10-4 to 2 x 10-12

and any refinement performed within this
range have no impact on the quality of
calculated boundary voltage.

Figure 7: Error of boundary voltages for
various tolerances of the forward problem
solution

It is interesting to see the graph in Figure 7
as sequences of approximations to the
solution, starting from low accuracy (87%
error) at tolerance 9 x 10-1 and halting the
sequence when accuracy is compatible
with the accuracy of the measurements.
This view suggests that the forward
problem can be solved efficiently using
iterative methods with reduced tolerance.
Iterative methods produce a sequence of
approximations to the solution of a linear
system of equations by repeatedly
improving an approximate solution until it
is close enough to the true solution.
Usually, the longer one iterates, the closer
one is able to get to the true solution. The
distinctive feature of iterative methods is
the rate of convergence, which determines
how fast they achieve the solution. To
improve the rate of convergence, iterative
methods involve a preconditioner that
transforms the coefficient matrix into a
more favourable spectrum.
The advantage of using iterative methods
in solving the EIT problem, is that target
accuracies can be chosen that are suitable
for each application ranging from low
accuracy which only requires quick
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calculations up to very accurate solutions
that need more iterations for refinement.
Figure 2.13 depicts the forward solution
using the same mesh and boundary
conditions for sequences of tolerance
ranging from 1.7x10-9 to 1.7x10-1. The
conjugate gradient iterative method
preconditioned by incomplete Cholesky
(ICCG) has been used for solving the
forward problem. The figure shows that
after seven iterations the error is about
10-4. Performing more iteration does not
decrease the boundary error even though
the tolerance of the forward solver is
getting smaller.
To improve the efficiency of calculating
the forward problem in EIT, the tolerance
of resistance values can be reduced so that
the result matches the measurement
accuracy. By recognising that a non-obtuse
finite element model can be considered to
be equivalent to a resistor network, the
accuracy of the resistors in the finite
element mesh in section 2.4.3 can be
reduced. To study the effect of resistance
accuracy in relation to boundary
measurements, a finite element mesh with
a range of accuracies for the resistor values
in the network has been simulated. The
boundary voltages resulting from the
forward solution are compared to the 'true'
data resulting from the fine mesh that is
introduced by Gaussian noise. The fine
mesh consists of 3,136 elements and 1,633
vertices as mentioned in section 2.4.6.2. In
this study 10 different cases of resistance
accuracy, 15bits, 14 bits, 13 bits, 12 bits,
11 bits, 10 bits, 9 bits, 8 bits, 7 bits and 6
bits, are compared. To evaluate the various
cases, (2.72) is used where fwdV are the
predicted voltages resulting from the
resistor network with different accuracies.
The simulation results are shown in Figure
8.
The graph in Figure 9 shows that the error
decreases as the number of bits increases.
The error of using 9 bits, 10 bits, 11 bits
and 12 bits are 0.08%, 0.03% 0.02% and

0.01%, respectively compared to the 'true'
data. On the other hand, the error beyond
12 bits does not go lower than 0.01%.
Increasing resistor accuracy in the region
12 bits – 15 bits does not significantly
improve the error on the boundary. The
results suggest the possibility of
constructing a resistor network with low
accuracy resistors.

Figure 8: Error of calculated voltages on
the boundary

Figure 9: Error of predicted voltages on the
boundary of a resistor network

E Conclusion
In this paper, the basic concept of the finite
element modelling for electrical resistance
tomography has been presented. The
complete electrode model, which gives
accurate results that agree with physical
measurements is incorporated in the
forward problem algorithms. FEM, which
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is used as a forward problem solver in
image reconstructions, transforms the
solution of the conductivity equation to a
linear system of equations. To solve the
linear system of equations in ERT
efficiently, the tolerance of the forward
solution can be reduced to match the
measurement accuracy. The results
suggests a 12- bit accuracy can be used.
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