Parallel Algorithms

A Simple Model for Parallel Processing

) several operations can be executed at the same time

» many problems are most naturally modeled with
parallelism

* A Simple Model for Parallel Processing

* Approaches to the design of parallel algorithms
* Speedup and Efficiency of parallel algorithms

* A class of problems NC

* Parallel algorithms, e.g.

dLCH

Computer Science

« Parallel Random Access Machine (PRAM) model
~a number of processors all can access
-~ a large share memory
- all processors are synchronized
~-all processor running the same program

> each processor has an unique id, pid. and
> may instruct to do different things depending on their pid

ey - -

C e
‘ 5] I JJ__=_’ ! Mg‘m‘ory m—1

PRAM models

Approaches to
the design of parallel algorithms

* PRAM models vary according
~ how they handle write conflicts

> The models differ in how fast they can solve various
problems.

» Concurrent Read Exclusive Write (CREW)
> only one processor are allow to write to
) one particular memory cell at any one step
* Concurrent Read Concurrent Write (CRCW)
* Algorithm works correctly for CREW
> will also works correctly for CRCW
- but not vice versa

* Modify an existing sequential algorithm
- exploiting those parts of the algorithm that are
naturally parallelizable.
+ Design a completely new parallel algorithm that
- may have no natural sequential analog.

 Brute force Methods for parallel processing:
~ Using an existing sequential algorithm but
> each processor using differential initial conditions
~ Using compiler to optimize sequential algorithm
= Using advanced CPU to optimize code

Speedup and Efficiency of parallel algorithms

~ Let T*(n) be the time complexity of a sequential
algorithm to solve a problem P of input size n

> Let T, (n) be the time complexity of a parallel algorithm
to solves P on a parallel computer with p processors

* Speedup
+S,(n) = T*(n) / T,(n)
FS,m) <=p

- Best possible, S (n) = p
> when T (n) = T*(n)/p
« Efficiency
FE) =T,@)/ (p Ty(n))
> where T,(n) is when the parallel algorithm run in 1 processor
- Best possible, E (n) = 1

A class of problems NC

* The class NC consists of problems that
> can be solved by parallel algorithm using
> polynomially bounded number of processors p(n)
> p(n) € O(n*) for problem size n and some constant k
-~ the number of time steps bounded by a polynomial in
the logarithm of the problem size n

> T(n) € O((log n)™) for some constant m

* Theorem:
»>NCcP

FParallel algorithms, e.g.
Binary Fan-In Technique

Algorithm: Parallel Tournament for Max

Processors

Step 1
Read 8[1] into tempa.

Step 2
Fread M[i+1] into temet
Bl - e, e 6 [E3 (& 23 23 e

»
Write tig Inte MU} 1 L
ar = =3 e

Seap 3 - B

Fioad sa[i] into tempa. 15 [E] 7 23 23 e "

CA TS NEN
Seep 4 e

Maad #A[i=2] into temsl. 17
Bl = e e, i
Worite hieg into ML

ar
Stap 5
Raad #401] into temao. el
o [RERN 3
Step & -
Beoad M[iea] into lema . 23~ y -
Big = maxitemoo, teme); 23 23 23 23 23 19 n a
Write big into MU 1. S S N N W S |
- ar 33 [23 [23 [a3 [s [8 [s]

Algorithm:Parallel Tournament for Maximum
Input: Keys x[0],x[1],...x[n-1],

« initially in memory cells M[0] ,...,M[n-1], and integer n.
Output:The largest key will be left in M[0].

« parTournamentMax(M,n)

* intincr
* Write -(some very small value) into M[n+pid]
. incr=1;

* while(incr<n)

. key big, temp0,temp1;

. Read M[pid] into temp0

. Read M[pid+incr] into temp1
. big=max(temp0,temp1);

. Write big into M[pid].

. incr=2*incr;

Analysis: Use n processor and 8(log n) time

Algorithm: Finding Max in Constant Time

¢ CRCW method

Input loser array

Initial memory contents (r = 4) | 2 | 7 1 3 J_ 6]_0]0 1—0] 0 l
0 I 7

Foa Poz Fos Pz Pa3 Pia
It I

Alffter Step 2

Aterseps (7] | [| [[[]

Algorithm: Common-Write Max of n Keys

« Uses n? processors, does only three read/write steps!

fastMax(M, n)
1. Compute i and j from pid.
if (i = j) return;

P ; reads x; (from M[i]).
2. P, reads x; (from M(j}).
P, j compares ; and x;.
Let k be the index of the smaller key (i if tied).
P; j writes 1 in loser[k].
/¢ At this point, every key other than the largest
// has lost a comparison,
3. Pijsi reads loser(i] (and By .- reads loser(n=1]).
The processor that read a 0 writes x; in M{0]. { Pgq-1 would write x,-.)
// This processor already has the needed x in its local memary
// from steps | and 2.

