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THE PARTICLELIKE PROPERTIES OF
ELECTROMAGNETIC RADIATION

Thermal emission, the radiation emitted by all objects due to their temperatures, laid the
groundwork for the development of quantum mechanics around the beginning of the 20t

century. Today we use thermography for many applications, including the study of heat loss
by buildings, medical diagnostics, night vision and other surveillance, and monitoring
potential volcanoes.
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We now turn to a discussion of wave mechanics, the second theory on which
modern physics is based. One consequence of wave mechanics is the breakdown
of'the classical distinction between particles and waves. In this chapter we consider
the three early experiments that provided evidence that light, which we usually
regard as a wave phenomenon, has properties that we normally associate with
particles. Instead of spreading its energy smoothly over a wave front, the energy
is delivered in concentrated bundles like particles; a discrete bundle (quantum) of
electromagnetic energy is known as a photon.

Before we begin to discuss the experimental evidence that supports the
existence of the photon and the particlelike properties of light, we first review
some of the properties of electromagnetic waves.

3.1 REVIEW OF ELECTROMAGNETIC WAVES

An electromagnetic field is characterized by its electric field E and magnetic field
B. For example, the electric field at a distance » from a point charge ¢ at the
origin is

E=

1
12 3.1)

ey r

where f is a unit vector in the radial direction. The magnetic field at a distance r
from a long, straight, current-carrying wire along the z axis is

- Mol

B= " (3.2)

where ¢ is the unit vector in the azimuthal direction (in the xy plane) in cylindrical
coordinates.

If the charges are accelerated, or if the current varies with time, an electro-
magnetic wave is produced, in which E and B vary not only with ¥ but also
with 7. The mathematical expression that describes such a wave may have many
different forms, depending on the properties of the source of the wave and of the
medium through which the wave travels. One special form is the plane wave, in
which the wave fronts are planes. (A point source, on the other hand, produces
spherical waves, in which the wave fronts are spheres.) A plane electromagnetic
wave traveling in the positive z direction is described by the expressions

E = E, sin(kz — o), B = B, sin(kz — wi) (3.3)

where the wave number k is found from the wavelength A (k =27 /1) and the
angular frequency o is found from the frequency f (w = 27f). Because A and f
are related by ¢ = Af, k and w are also related by ¢ = w/k.

The polarization of the wave is represented by the vector EO, the plane of
polarization is determined by the direction of Eo and the direction of propagation,
the z axis in this case, Once we specify the direction of travel and the polarization
EO, the direction of BO is fixed by the requirements that B must be _perpendlcular
to both E and the direction of travel, and that the vector product E x B point 1n
the direction of travel. For example if Eo is in the x direction (Eo = Eol where i
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is a unit vector in the x direction), then ﬁo must be in the y direction (ﬁo = Boj).
Moreover, the magnitude of B, is determined by
Ey

B, = (3.4)

c
where c is the speed of light.

An electromagnetic wave transmits energy from one place to another; the
energy flux is specified by the Poynting vector S:

- 1 - -
S=—ExB (3.5)
o
For the plane wave, this reduces to
- 1 N
S = —E,B, sin’(kz — wh)k (3.6)
Ho

where K is a unit vector in the z direction. The Poynting vector has dimensions
of power (energy per unit time) per unit area—for example, J/ s/m* or W/m?.
Figure 3.1 shows the orientation of the vectors E, B, and S for this special case.

Let us imagine the following experiment. We place a detector of electromag-
netic radiation (a radio receiver or a human eye) at some point on the z axis,
and we determine the electromagnetic power that this plane wave delivers to the
receiver. The receiver is oriented with its sensitive area 4 perpendicular to the z
axis, so that the maximum signal is received; we can therefore drop the vector
representation of S and work only with its magnitude S. The power P entering the
receiver is then

1
P =S4 = —EyByAsin*(kz — wt) (3.7)
Mo
which we can rewrite using Eq. 3.4 as
1
P = —E}Asin® (kz — wt) (3.8)
o€

There are two important features of this expression that you should recognize:

1. The intensity (the average power per unit area) is proportional to E(z). This
is a general property of waves: the intensity is proportional to the square of the
amplitude. We will see later that this same property also characterizes the waves
that describe the behavior of material particles.

2. The intensity fluctuates with time, with the frequency 2f = 2(w/27). We
don’t usually observe this rapid fluctuation—visible light, for example, has a
frequency of about 10'3 oscillations per second, and because our eye doesn’t
respond that quickly, we observe the time average of many (perhaps 10'3) cycles.
If T is the observation time (perhaps 1072 s in the case of the eye) then the average
power is

1 T
P, = —/ Pdt 3.9
T Jo

and using Eq. 3.8 we obtain the intensity /:

P av 1 E2

I = = 0
A 2oC

(3.10)

because the average value of sin®6 is !/,.
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FIGURE 3.1 An electromagnetic wave
traveling in the z direction. The electric
field E lies in_the xz plane and the
magnetic field B lies in the yz plane.
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FIGURE 3.2 (a) Young’s double-
slit experiment. A plane wave front
passes through both slits; the wave
is diffracted at the slits, and inter-
ference occurs where the diffracted
waves overlap on the screen. (b) The
interference fringes observed on the
screen.

Interference and Diffraction

The property that makes waves a unique physical phenomenon is the principle
of superposition, which, for example, allows two waves to meet at a point, to
cause a combined disturbance at the point that might be greater or less than the
disturbance produced by either wave alone, and finally to emerge from the point
of “collision” with all of the properties of each wave totally unchanged by the
collision. To appreciate this important distinction between material objects and
waves, imagine trying that trick with two automobiles!

This special property of waves leads to the phenomena of interference and
diffraction. The simplest and best-known example of interference is Young’s
double-slit experiment, in which a monochromatic plane wave is incident on
a barrier in which two narrow slits have been cut. (This experiment was first
done with light waves, but in fact any wave will do as well, not only other
electromagnetic waves, such as microwaves, but also mechanical waves, such as
water waves or sound waves. We assume that the experiment is being done with
light waves.)

Figure 3.2 illustrates this experimental arrangement. The plane wave is
diffracted by each of the slits, so that the light passing through each slit covers a
much larger area on the screen than the geometric shadow of the slit. This causes
the light from the two slits to overlap on the screen, producing the interference.
If we move away from the center of the screen just the right distance, we reach
a point at which a wave crest passing through one slit arrives at exactly the
same time as the previous wave crest that passed through the other slit. When this
occurs, the intensity is a maximum, and a bright region appears on the screen. This
is conmstructive interference, and it occurs continually at the point on the screen
that is exactly one wavelength further from one slit than from the other. That is,
if X, and X, are the distances from the point on the screen to the two slits, then a
condition for maximum constructive interference is |[X; — X,| = A. Constructive
interference occurs when any wave crest from one slit arrives simultaneously
with another from the other slit, whether it is the next, or the fourth, or the
forty-seventh. The general condition for complete constructive interference is that
the difference between X and X, be an integral number of wavelengths:

X, - X, =nr n=0,1,2,... (3.11)

It is also possible for the crest of the wave from one slit to arrive at a point on
the screen simultaneously with the trough (valley) of the wave from the other slit.
When this happens, the two waves cancel, giving a dark region on the screen. This
is known as destructive interference. (The existence of destructive interference at
intensity minima immediately shows that we must add the electric field vectors E
of the waves from the two slits, and not their powers P, because P can never be
negative.) Destructive interference occurs whenever the distances X; and X, are
such that the phase of one wave differs from the other by one-half cycle, or by
one and one-half cycles, two and one-half cycles, and so forth:

X, =X = A 3030,... =+ DL n=0,1,2,... (3.12)

We can find the locations on the screen where the interference maxima occur in
the following way. Let d be the separation of the slits, and let D be the distance
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from the slits to the screen. If y, is the distance from the center of the screen to the
nth maximum, then from the geometry of Figure 3.3 we find (assuming X; > X,)

d 2 d 2

Subtracting these equations and solving for y,, we obtain

X - X} _ N+ X)X - X))
2d 2d

In experiments with light, D is of order 1 m, and y, and d are typically at most
1 mm; thus X; = Dand X, = D, so X; + X, = 2D, and to a good approximation

V= (3.14)

D
In =X - X)) (3.15)
Using Eq. 3.11 for the values of (X; — X,) at the maxima, we find
AD
Yn=n"7 (3.16)

Crystal Diffraction of X Rays

Another device for observing the interference of light waves is the diffraction
grating, in which the wave fronts pass through a barrier that has many slits
(often thousands or tens of thousands) and then recombine. The operation of this
device is illustrated in Figure 3.4; interference maxima corresponding to different
wavelengths appear at different angles 6, according to

dsin@ = ni (3.17)

where d is the slit spacing and » is the order number of the maximum
(n=1,2,3,...).

The advantage of the diffraction grating is its superior resolution—it enables us
to get very good separation of wavelengths that are close to one another, and thus it
is a very useful device for measuring wavelengths. Notice, however, that in order
to get reasonable values of the angle 8 —for example, sin 6 in the range of 0.3
to 0.5—we must have d of the order of a few times the wavelength. For visible
light this is not particularly difficult, but for radiations of very short wavelength,
mechanical construction of a grating is not possible. For example, for X rays with
a wavelength of the order of 0.1 nm, we would need to construct a grating in
which the slits were less than 1 nm apart, which is roughly the same as the spacing
between the atoms of most materials.

The solution to this problem has been known since the pioneering experiments
of Laue and Bragg:* use the atoms themselves as a diffraction grating! A beam
of X rays sees the regular spacings of the atoms in a crystal as a sort of
three-dimensional diffraction grating.

*Max von Laue (1879-1960, Germany) developed the method of X-ray diffraction for the study of
crystal structures, for which he received the 1914 Nobel Prize. Lawrence Bragg (1890—1971, England)
developed the Bragg law for X-ray diffraction while he was a student at Cambridge University. He
shared the 1915 Nobel Prize with his father, William Bragg, for their research on the use of X rays to
determine crystal structures.

—— d——+
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FIGURE 3.3 The geometry of the
double-slit experiment.

J Source

Grating

Blue

FIGURE 3.4 The use of a diffrac-
tion grating to analyze light into its
constituent wavelengths.
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Consider the set of atoms shown in Figure 3.5, which represents a small portion
of a two-dimensional slice of the crystal. The X rays are reflected from individual
atoms in all directions, but in only one direction will the scattered “wavelets”
constructively interfere to produce a reflected beam, and in this case we can

X rays

p _ o Reflection_ regard the reflection as occurring from a plane drawn through the row of atoms.
p planes .. . .. . . . . . .
e (This situation is identical with the reflection of light from a mirror—only in
:X one direction will there be a beam of reflected light, and in that direction we can
T b DOtk i regard the reflection as occurring on a plane with the angle of incidence equal to
the angle of reflection.)
FIGURE 35 A beam of X rays Suppose the rows of atoms are a distance d apart in the crystal. Then a portion

of the beam is reflected from the front plane, and a portion is reflected from the
second plane, and so forth. The wave fronts of the beam reflected from the second
plane lag behind those reflected from the front plane, because the wave reflected
from the second plane must travel an additional distance of 2d sin 0, where 0
is the angle of incidence as measured from the face of the crystal. (Note that
this is different from the usual procedure in optics, in which angles are defined
with respect to the normal to the surface.) If this path difference is a whole
number of wavelengths, the reflected beams interfere constructively and give an
intensity maximum; thus the basic expression for the interference maxima in
X-ray diffraction from a crystal is

reflected from a set of crystal planes
of spacing d. The beam reflected from
the second plane travels a distance 2d
sin 6 greater than the beam reflected
from the first plane.

2dsind =n\  n=1,203,... (3.18)

This result is known as Bragg’s law for X-ray diffraction. Notice the factor of 2
that appears in Eq. 3.18 but does not appear in the otherwise similar expression
of Eq. 3.17 for the ordinary diffraction grating.

| Example 3.1

A single crystal of table salt (NaCl) is irradiated with Solution
a beam of X rays of wavelength 0.250nm, and the first Solving Bragg’s law for the spacing d, we have
Bragg reflection is observed at an angle of 26.3°. What is N 0250 1m

n .

the atomic spacing of NaCl? d=—— = — = 0.282nm
2sinf  2sin26.3°

Incident Reflected Our drawing of Figure 3.5 was very arbitrary—we had no basis for choosing
which set of atoms to draw the reflecting planes through. Figure 3.6 shows a larger
section of the crystal. As you can see, there are many possible reflecting planes,
each with a different value of 6 and d. (Of course, d; and 6; are related and cannot
be varied independently.) If we used a beam of X rays of a single wavelength,
it might be difficult to find the proper angle and set of planes to observe the
interference. However, if we use a beam of X rays of a continuous range of
wavelengths, for each d; and 6; interference will occur for a certain wavelength
A;, and so there will be a pattern of interference maxima appearing at different
angles of reflection as shown in Figure 3.6. The pattern of interference maxima
depends on the spacing and the type of arrangement of the atoms in the crystal.
Figure 3.7 shows sample patterns (called Laue patterns) that are obtained
FIGURE 3.6 An incident beam of X  from X-ray scattering from two different crystals. The bright dots correspond to
rays can be reflected from many dif- interference maxima for wavelengths from the range of incident wavelengths that
ferent crystal planes. happen to satisfy Eq. 3.18. The three-dimensional pattern is more complicated
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FIGURE 3.7 (a) Apparatus for observing X-ray scattering by a crystal. An interference maximum (dot) appears on the
film whenever a set of crystal planes happens to satisfy the Bragg condition for a particular wavelength. (b) Laue pattern
of TiO, crystal. (c) Laue pattern of a polyethylene crystal. The differences between the two Laue patterns are due to the
differences in the geometric structure of the two crystals.

than our two-dimensional drawings, but the individual dots have the same
interpretation. Figure 3.8 shows the pattern obtained from a sample that consists
of many tiny crystals, rather than one single crystal. (It looks like Figure 3.7h
or 3.7¢ rotated rapidly about its center.) From such pictures it is also possible to
deduce crystal structures and lattice spacing.

All of the examples we have discussed in this section depend on the wave
properties of electromagnetic radiation. However, as we now begin to discuss,
there are other experiments that cannot be explained if we regard electromagnetic
radiation as waves.

3.2 THE PHOTOELECTRIC EFFECT

We’ll now turn to our discussion of the first of three experiments that cannot be
explained by the wave theory of light. When a metal surface is illuminated with
light, electrons can be emitted from the surface. This phenomenon, known as the
photoelectric effect, was discovered by Heinrich Hertz in 1887 in the process
of his research into electromagnetic radiation. The emitted electrons are called
photoelectrons.
A sample experimental arrangement for observing the photoelectric effect
is illustrated in Figure 3.9. Light falling on a metal surface (the emitter) can ®)
release electrons, which travel to the collector. The experiment must be done FIGURE 3.8 () Apparatus for ob-
in an evacuated tube, so that the electrons do not lose energy in collisions with . ) .
molecules of the air. Among the properties that can be measured are the rate of servglg dX-ray 150atter1;g from 1 a
electron emission and the maximum kinetic energy of the photoelectrons.* powderec ot .po'y.crys‘{a e slanlllp ©
The rate of electron emission can be measured as an electric current / by an Becaus§ the mdl.Vldua. crystals have
ammeter in the external circuit. The maximum kinetic energy of the electrons many different quentatlons, cach scat-
tered ray of Figure 3.7 becomes a

cone which forms a circle on the film.
b) Diffraction pattern (known as
*The electrons can be emitted with many different kinetic energies, depending on how tightly bound ) P (

they are to the metal. Here we are concerned only with the maximum kinetic energy, which depends 1! ebye-Scherrer pattern) of polycrys-
on the energy needed to remove the least tightly bound electron from the surface of the metal. talline gold.

Incident Scattered
X rays X rays

(@)
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FIGURE 3.9 Apparatus for observing
the photoelectric effect. The flow of
electrons from the emitter to the col-
lector is measured by the ammeter A4
as a current i in the external circuit.
A variable voltage source V,,, estab-
lishes a potential difference between
the emitter and collector, which is
measured by the voltmeter V.

TABLE 3.1 Some Photoelectric Work
Functions

Material @ (eV)
Na 2.28
Al 4.08
Co 3.90
Cu 4.70
Zn 4.31
Ag 4.73
Pt 6.35
Pb 4.14

can be measured by applying a negative potential to the collector that is just
enough to repel the most energetic electrons, which then do not have enough
energy to “climb” the potential energy hill. That is, if the potential difference
between the emitter and the collector is A} (a negative quantity), then electrons
traveling from the emitter to the collector would gain a potential energy of
AU =g AV = —e AV (a positive quantity) and would lose the same amount of
kinetic energy. Electrons leaving the emitter with a kinetic energy smaller than
this AU cannot reach the collector and are pushed back toward the emitter.

As the magnitude of the potential difference is increased, at some point even the
most energetic electrons do not have enough kinetic energy to reach the collector.
This potential, called the stopping potential V, is determined by increasing the
magnitude of the voltage until the ammeter current drops to zero. At this point
the maximum kinetic energy K .. of the electrons as they leave the emitter is just

max
equal to the kinetic energy eV lost by the electrons in “climbing” the hill:

J —a (3.19)

where e is the magnitude of the electric charge of the electron. Typical values of
V are a few volts.*

In the classical picture, the surface of the metal is illuminated by an electro-
magnetic wave of intensity /. The surface absorbs energy from the wave until
the energy exceeds the binding energy of the electron to the metal, at which
point the electron is released. The minimum quantity of energy needed to remove
an electron is called the work function ¢ of the material. Table 3.1 lists some
values of the work function of different materials. You can see that the values are
typically a few electron-volts.

The Classical Theory of the Photoelectric
Effect

What does the classical wave theory predict about the properties of the emitted
photoelectrons?

1. The maximum kinetic energy of the electrons should be proportional to the
intensity of the radiation. As the brightness of the light source is increased,
more energy is delivered to the surface (the electric field is greater) and
the electrons should be released with greater kinetic energies. Equivalently,
increasing the intensity of the light source increases the electric field E of the
wave, which also increases the force F = —¢E on the electron and its kinetic
energy when it eventually leaves the surface.

2. The photoelectric effect should occur for light of any frequency or wavelength.
According to the wave theory, as long as the light is intense enough to release
electrons, the photoelectric effect should occur no matter what the frequency
or wavelength.

3. The first electrons should be emitted in a time interval of the order of seconds
after the radiation begins to strike the surface. In the wave theory, the energy
of the wave is uniformly distributed over the wave front. If the electron
absorbs energy directly from the wave, the amount of energy delivered to any

*The potential difference AV read by the voltmeter is not equal to the stopping potential when the
emitter and collector are made of different materials. In that case a correction must be applied to
account for the contact potential difference between the emitter and collector.



electron is determined by how much radiant energy is incident on the surface
area in which the electron is confined. Assuming this area is about the size of
an atom, a rough calculation leads to an estimate that the time lag between
turning on the light and observing the first photoelectrons should be of the
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order of seconds (see Example 3.2).

| Example 3.2

A laser beam with an intensity of 120 W/m? (roughly that
of a small helium-neon laser) is incident on a surface of
sodium. It takes a minimum energy of 2.3 eV to release
an electron from sodium (the work function ¢ of sodium).
Assuming the electron to be confined to an area of radius
equal to that of a sodium atom (0.10 nm), how long will it
take for the surface to absorb enough energy to release an
electron?

Solution

The average power P,, delivered by the wave of intensity
I to an area 4 is [4. An atom on the surface dis-
plays a “target area” of 4 = 77> = 7(0.10 x 10" m)? =
3.1 x 1072°m?. If the entire electromagnetic power is
delivered to the electron, energy is absorbed at the rate

AE/At = P,,. The time interval At necessary to absorb an
energy AE = ¢ can be expressed as

AE
an=2E_2
P, 14

_(23eV)(1.6 x 107" J/eV)

© (120 W/m?)(3.1 x 10720 m?)

=0.10s

In reality, electrons in metals are not always bound to indi-
vidual atoms but instead can be free to roam throughout the
metal. However, no matter what reasonable estimate we
make for the area over which the energy is absorbed, the
characteristic time for photoelectron emission is estimated
to have a magnitude of the order of seconds, in a range
easily accessible to measurement.

The experimental characteristics of the photoelectric effect were well known

by the year 1902. How do the predictions of the classical theory compare with the
experimental results?

1.

For a fixed value of the wavelength or frequency of the light source, the
maximum kinetic energy of the emitted photoelectrons (determined from the
stopping potential) is totally independent of the intensity of the light source.
Figure 3.10 shows a representation of the experimental results. Doubling the
intensity of the source leaves the stopping potential unchanged, indicating no
change in the maximum kinetic energy of the electrons. This experimental
result disagrees with the wave theory, which predicts that the maximum
kinetic energy should depend on the intensity of the light.

The photoelectric effect does not occur at all if the frequency of the light
source is below a certain value. This value, which is characteristic of the
kind of metal surface used in the experiment, is called the cutoff frequency f..
Above f,, any light source, no matter how weak, will cause the emission of
photoelectrons; below £, no light source, no matter how strong, will cause the
emission of photoelectrons. This experimental result also disagrees with the
predictions of the wave theory.

The first photoelectrons are emitted virtually instantaneously (within 10~°s)
after the light source is turned on. The wave theory predicts a measurable
time delay, so this result also disagrees with the wave theory.

These three experimental results all suggest the complete failure of the wave
theory to account for the photoelectric effect.

Current i

12 = 2[1

I

0
Potential difference AV

FIGURE 3.10 The photoelectric cur-
rent 7 as a function of the potential
difference AV for two different val-
ues of the intensity of the light. When
the intensity / is doubled, the current
is doubled (twice as many photoelec-
trons are emitted), but the stopping
potential V' remains the same.
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The Quantum Theory of the Photoelectric
Effect

A successful theory of the photoelectric effect was developed in 1905 by Albert
Einstein. Five years earlier, in 1900, the German physicist Max Planck had
developed a theory to explain the wavelength distribution of light emitted by
hot, glowing objects (called thermal radiation, which is discussed in the next
section of this chapter). Based partly on Planck’s ideas, Einstein proposed that the
energy of electromagnetic radiation is not continuously distributed over the wave
front, but instead is concentrated in localized bundles or quanta (also known as
photons). The energy of a photon associated with an electromagnetic wave of
frequency f is

E=hf (3.20)
where / is a proportionality constant known as Planck’s constant. The photon

energy can also be related to the wavelength of the electromagnetic wave by
substituting /= ¢/, which gives

_hc
Y

E (3.21)
We often speak about photons as if they were particles, and as concentrated
bundles of energy they have particlelike properties. Like the electromagnetic
waves, photons travel at the speed of light, and so they must obey the relativistic
relationship p = E/c. Combining this with Eq. 3.21, we obtain

p=7 (3.22)
Photons carry linear momentum as well as energy, and thus they share this
characteristic property of particles.

Because a photon travels at the speed of light, it must have zero mass. Otherwise
its energy and momentum would be infinite. Similarly, a photon’s rest energy
E, = mc* must also be zero.

In Einstein’s interpretation, a photoelectron is released as a result of an
encounter with a single photon. The entire energy of the photon is delivered
instantaneously to a single photoelectron. If the photon energy Af is greater than
the work function ¢ of the material, the photoelectron will be released. If the
photon energy is smaller than the work function, the photoelectric effect will not
occur. This explanation thus accounts for two of the failures of the wave theory:
the existence of the cutoff frequency and the lack of any measurable time delay.

If the photon energy /f exceeds the work function, the excess energy appears
as the kinetic energy of the electron:

Kyax =hf — ¢ (3.23)

The intensity of the light source does not appear in this expression! For a fixed
frequency, doubling the intensity of the light means that twice as many photons
strike the surface and twice as many photoelectrons are released, but they all have
precisely the same maximum kinetic energy.



You can think of Eq. 3.23 as giving a relationship between energy quantities in
analogy to making a purchase at a store. The quantity 4f represents the payment
you hand to the cashier, the quantity ¢ represents the cost of the object, and K,
represents the change you receive. In the photoelectric effect, 4f is the amount
of energy that is available to “purchase” an electron from the surface, the work
function ¢ is the “cost” of removing the least tightly bound electron from the
surface, and the difference between the available energy and the removal cost is
the leftover energy that appears as the kinetic energy of the emitted electron. (The
more tightly bound electrons have a greater “cost” and so emerge with smaller
kinetic energies.)

A photon that supplies an energy equal to ¢, exactly the minimum amount
needed to remove an electron, corresponds to light of frequency equal to the cutoff
frequency f,. At this frequency, there is no excess energy for kinetic energy, so
Eq. 3.23 becomes Af, = ¢, or

¢
f=5% (3.24)
The corresponding cutoff wavelength A, = c/f; is
h
he = = (3.25)
¢

The cutoff wavelength represents the /argest wavelength for which the photoelec-
tric effect can be observed for a surface with the work function ¢.

The photon theory appears to explain all of the observed features of the
photoelectric effect. The most detailed test of the theory was done by Robert
Millikan in 1915. Millikan measured the maximum kinetic energy (stopping
potential) for different frequencies of the light and obtained a plot of Eq. 3.23. A
sample of his results is shown in Figure 3.11. From the slope of the line, Millikan
obtained a value for Planck’s constant of

h=6.57x107347-5s

In part for his detailed experiments on the photoelectric effect, Millikan was
awarded the 1923 Nobel Prize in physics. Einstein was awarded the 1921 Nobel
Prize for his photon theory as applied to the photoelectric effect.

As we discuss in the next section, the wavelength distribution of thermal
radiation also yields a value for Planck’s constant, which is in good agreement
with Millikan’s value derived from the photoelectric effect. Planck’s constant is
one of the fundamental constants of nature; just as c is the characteristic constant
of relativity, 4 is the characteristic constant of quantum mechanics. The value of
Planck’s constant has been measured to great precision in a variety of experiments.
The presently accepted value is

h=6.6260696 x 1073*7J.5s

This is an experimentally determined value, with a relative uncertainty of about
5 x 1078 (43 units in the last digit).
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Robert A. Millikan (1868—1953,
United States). Perhaps the best exper-
imentalist of his era, his work included
the precise determination of Planck’s
constant using the photoelectric effect
(for which he received the 1923 Nobel
Prize) and the measurement of the
charge of the electron (using his
famous “oil-drop” apparatus).
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FIGURE 3.11 Millikan’s results for
the photoelectric effect in sodium. The
slope of the line is /1/¢; the experimen-
tal determination of the slope gives a
way of determining Planck’s constant.
The intercept should give the cut-
off frequency; however, in Millikan’s
time the contact potentials of the elec-
trodes were not known precisely and
so the vertical scale is displaced by
a few tenths of a volt. The slope not
affected by this correction.
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| Example 3.3

(@) What are the energy and momentum of a photon of red
light of wavelength 650 nm? (b) What is the wavelength of
a photon of energy 2.40eV?

Solution
(a) Using Eq. 3.21 we obtain

he  (6.63 x 10734 J.5)(3.00 x 10° m/s)
A 650 x 10~ m
=3.06 x 107177

E =

Converting to electron-volts, we have

. 3.06x 107197
T 1.60 x 1019 J/eV

=1091eV

This type of problem can be simplified if we express the
combination /c in units of eV - nm:

he 1240eV -nm

E —_— e — S

= = =191eV
A 650 nm

The momentum is found in a similar way, using
Eq.3.22

_h . lhc_l 1240 eV -nm
P=3=ecr "¢ 650 nm

) =191eV/e

The momentum could also be found directly from the
energy:

E _191eV

Cc

=1091eV/e

p:

(It may be helpful to review the discussion in Example 2.11
about these units of momentum.)
(b) Solving Eq. 3.21 for A, we find

he _ 1240 eV -nm

A= — =
E 240eV

= 517nm

| Example 3.4

The work function for tungsten metal is 4.52 eV. (@) What
is the cutoff wavelength A, for tungsten? (b) What is the
maximum kinetic energy of the electrons when radiation
of wavelength 198 nm is used? (c) What is the stopping
potential in this case?

Solution
(a) Equation 3.25 gives

L _ he _ 1240eV-nm

e =274
cT % 4520V i

in the ultraviolet region.

(b) At the shorter wavelength,

h
Kmaxzhf_q&:f_(p

1240 eV -nm
= —— —452¢eV
198 nm

=1.74eV

(c) The stopping potential is the voltage corresponding
to K

max*

K 1.74eV
VF%:T‘?:LMV

3.3 THERMAL RADIATION

The second type of experiment we discuss that cannot be explained by the classical
wave theory is thermal radiation, which is the electromagnetic radiation emitted
by all objects because of their temperature. At room temperature the thermal
radiation is mostly in the infrared region of the spectrum, where our eyes are not
sensitive. As we heat objects to higher temperatures, they may emit visible light.



A typical experimental arrangement is shown in Figure 3.12. An object is
maintained at a temperature 7. The radiation emitted by the object is detected
by an apparatus that is sensitive to the wavelength of the radiation. For example,
a dispersive medium such as a prism can be used so that different wavelengths
appear at different angles 6. By moving the radiation detector to different angles
6 we can measure the intensity” of the radiation at a specific wavelength. The
detector is not a geometrical point (hardly an efficient detector!) but instead
subtends a small range of angles A6, so what we really measure is the amount of
radiation in some range A at 6, or, equivalently, in some range AA at A.

Many experiments were done in the late 19th century to study the wavelength
spectrum of thermal radiation. These experiments, as we shall see, gave results that
totally disagreed with the predictions of the classical theories of thermodynamics
and electromagnetism; instead, the successful analysis of the experiments provided
the first evidence of the quantization of energy, which would eventually be seen
as the basis for the new quantum theory.

Let’s first review the experimental results. The goal of these experiments was
to measure the intensity of the radiation emitted by the object as a function of
wavelength. Figure 3.13 shows a typical set of experimental results when the
object is at a temperature 7; = 1000 K. If we now change the temperature of the
object to a different value 7, we obtain a different curve, as shown in Figure 3.13
for 7, = 1250 K. If we repeat the measurement for many different temperatures,
we obtain systematic results for the radiation intensity that reveal two important
characteristics:

1. The total intensity radiated over all wavelengths (that is, the area under each
curve) increases as the temperature is increased. This is not a surprising result:
we commonly observe that a glowing object glows brighter and thus radiates
more energy as we increase its temperature. From careful measurement, we
find that the total intensity increases as the fourth power of the absolute or
kelvin temperature:

[=oT* (3.26)
where we have introduced the proportionality constant o. Equation 3.26 is
called Stefan’s law and the constant o is called the Stefan-Boltzmann constant.
Its value can be determined from experimental results such as those illustrated
in Figure 3.13:

o =5.67037 x 1078 W/m?.K*

2. The wavelength A, at which the emitted intensity reaches its maximum
value decreases as the temperature is increased, in inverse proportion to the
temperature: A, o< 1/7. From results such as those of Figure 3.13, we can
determine the proportionality constant, so that

AT = 2.8978 x 1073 m-K (3.27)

max
This result is known as Wien'’s displacement law; the term “displacement”
refers to the way the peak is moved or displaced as the temperature is

*As always, intensity means energy per unit time per unit area (or power per unit area), as in Eq. 3.10.
Previously, “unit area” referred to the wave front, such as would be measured if we recorded the waves
with an antenna of a certain area. Here, “unit area” indicates the electromagnetic radiation emitted
from each unit area of the surface of the object whose thermal emissions are being observed.
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Object at
temperature 7,

Prism

0 « e
~ © Detector
FIGURE 3.12 Measurement of the
spectrum of thermal radiation. A
device such as a prism is used to sep-

arate the wavelengths emitted by the
object.
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FIGURE 3.13 A possible result of the
measurement of the radiation intensity
overmany different wavelengths. Each
different temperature of the emitting
body gives a different peak A, .
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| Example 3.5

varied. Wien’s law is qualitatively consistent with our common observation
that heated objects first begin to glow with a red color, and at higher temper-
atures the color becomes more yellow. As the temperature is increased, the
wavelength at which most of the radiation is emitted moves from the longer-
wavelength (red) part of the visible region toward medium wavelengths. The
term “white hot” refers to an object that is hot enough to produce the mixture
of all wavelengths in the visible region to make white light.

(a) At what wavelength does a room-temperature (7' =

(b) For A, = 650nm, we again use Wien’s displacement

20°C) object emit the maximum thermal radiation?
(b) To what temperature must we heat it until its peak
thermal radiation is in the red region of the spectrum

law to find the new temperature T, :

28978 x 10 m-K

(A =650 nm)? (¢) How many times as much thermal
radiation does it emit at the higher temperature?

Solution

(a) Using the absolute temperature, 7; =273 + 20 =
293 K, Wien’s displacement law gives

_ 2.8978 x 103 m-K
= T

2.8978 x 103 m-K
- 293K

max

This is in the infrared region of the electromagnetic

spectrum.

T, =
2 A

max

~ 2.8978 x 103 m-K
T 650 x 10°m

= 4460 K

(c) The total intensity of radiation is proportional to 7%, so
the ratio of the total thermal emissions will be

I, oTy (4460 K)"
— 9.89 um L oTf (93K
=537 x 10*

Be sure to notice the use of absolute (kelvin) temperatures
in this example.

FIGURE 3.14 A cavity filled with
electromagnetic radiation in thermal
equilibrium with its walls at tem-
perature 7. Some radiation escapes
through the hole, which represents an
ideal blackbody.

The theoretical analysis of the emission of thermal radiation from an arbitrary
object is extremely complicated. It depends on details of the surface properties
of the object, and it also depends on how much radiation the object reflects from
its surroundings. To simplify our analysis, we consider a special type of object
called a blackbody, which absorbs all radiation incident on it and reflects none of
the incident radiation.

To simplify further, we consider a special type of blackbody: a hole in a
hollow metal box whose walls are in thermal equilibrium at temperature 7. The
box is filled with electromagnetic radiation that is emitted and reflected by the
walls. A small hole in one wall of the box allows some of the radiation to escape
(Figure 3.14). It is the hole, and not the box itself, that is the blackbody. Radiation
from outside that is incident on the hole gets lost inside the box and has a
negligible chance of reemerging from the hole; thus no reflections occur from the
blackbody (the hole). The radiation that emerges from the hole is just a sample
of the radiation inside the box, so understanding the nature of the radiation inside
the box allows us to understand the radiation that leaves through the hole.



Let’s consider the radiation inside the box. It has an energy density (energy
per unit volume) per unit wavelength interval u(A). That is, if we could look into
the interior of the box and measure the energy density of the electromagnetic
radiation with wavelengths between A and A + dA in a small volume element,
the result would be u(A)dA. For the radiation in this wavelength interval, what
is the corresponding intensity (power per unit area) emerging from the hole? At
any particular instant, half of the radiation in the box will be moving away from
the hole. The other half of the radiation is moving toward the hole at velocity
of magnitude ¢ but directed over a range of angles. Averaging over this range
of angles to evaluate the energy flowing perpendicular to the surface of the hole
introduces another factor of /2, so the contribution of the radiation in this small
wavelength interval to the intensity passing through the hole is

1) = zu(x) (3.28)

The quantity 7/(A)dX is the radiant intensity in the small interval dX at the
wavelength X. This is the quantity whose measurement gives the results displayed
in Figure 3.13. Each data point represents a measurement of the intensity in a small
wavelength interval. The goal of the theoretical analysis is to find a mathematical
function /()) that gives a smooth fit through the data points of Figure 3.13.

If we wish to find the total intensity emitted in the region between wavelengths
A and A,, we divide the region into narrow intervals dX and add the intensities in
each interval, which is equivalent to the integral between those limits:

s
[(:hy) = / 1) dn (3.29)

A

This is similar to Eq. 1.27 for determining the number of molecules with energies
between two limits. The total emitted intensity can be found by integrating over
all wavelengths:

I= f c>o1()\) d (3.30)
0

This total intensity should work out to be proportional to the 4th power of the
temperature, as required by Stefan’s law (Eq. 3.26).

Classical Theory of Thermal Radiation

Before discussing the quantum theory of thermal radiation, let’s see what the
classical theories of electromagnetism and thermodynamics can tell us about the
dependence of 7 on L. The complete derivation is not given here, only a brief
outline of the theory.” The derivation involves first computing the amount of
radiation (number of waves) at each wavelength and then finding the contribution
of each wave to the total energy in the box.

*For a more complete derivation, see R. Eisberg and R. Resnick, Quantum Theory of Atoms, Molecules,
Solids, Nuclei, and Particles, 2nd edition (Wiley, 1985), pp. 9—13.
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1. The box is filled with electromagnetic standing waves. 1f the walls of the box
are metal, radiation is reflected back and forth with a node of the electric field
at each wall (the electric field must vanish inside a conductor). This is the
same condition that applies to other standing waves, like those on a stretched
string or a column of air in an organ pipe.

2. The number of standing waves with wavelengths between A and ). + d\ is

NM)dr = 8;t—4V d (3.31)
where V' is the volume of the box. For one-dimensional standing waves, as
on a stretched string of length L, the allowed wavelength are A = 2L/n, (n =
1,2,3,...). The number of possible standing waves with wavelengths between
Ay and A, is ny —np = 2L(1/A, — 1/A;). In the small interval from A to
A + dx, the number of standing waves is N(A\)dA = |dn/d\|d\ = (2L/A?)d.
Equation 3.31 can be obtained by extending this approach to three dimensions.

3. Each individual wave contributes an average energy of kT to the radiation
in the box. This result follows from an analysis similar to that of Section 1.3
for the statistical mechanics of gas molecules. In this case we are interested
in the statistics of the oscillating atoms in the walls of the cavity, which are
responsible for setting up the standing electromagnetic waves in the cavity.
For a one-dimensional oscillator, the energies are distributed according to the
Maxwell-Boltzmann distribution:*

N
N(E) = —e E/HT 3.32
(E) o (3.32)

Recall from Section 1.3 that N(E) is defined so that the number of oscillators
with energies between £ and E + dE is dN = N(E)dE, and thus the total
number of oscillators at all energies is ['dN = [;~ N(E)dE, which (as you
should show) works out to N. The average energy per oscillator is then found
in the same way as the average energy of a gas molecule (Eq. 1.25):

1 [ L[ —E/KT
Eavzﬁfo EN(E)dE = ﬁ/o E e M g (3.33)

which does indeed work out to £, = kT

Putting all these ingredients together, we can find the energy density of
radiation in the wavelength interval dA inside the cavity: energy density = (number
of standing waves per unit volume) x (average energy per standing wave) or

N(L) dA

8
u(l) dir = kT = FkT dx (3.34)

The corresponding intensity per unit wavelength interval dA is

c c 8w 2mce
IA) = —u(A) = ——kT = —kT 3.35
() = quM) =773 e (3:35)

This result is known as the Rayleigh-Jeans formula; based firmly on the classical
theories of electromagnetism and thermodynamics, it represents our best attempt

*The exponential part of this expression is that same as that of Eq. 1.22 for gas molecules, but the rest of
the equation is different, because the statistical behavior of one-dimensional oscillators is different from
that of gas molecules moving in three dimensions. We’ll consider these calculations in greater detail in
Chapter 10.



to apply classical physics to understanding the problem of blackbody radiation.
In Figure 3.15 the intensity calculated from the Rayleigh-Jeans formula is
compared with typical experimental results. The intensity calculated with
Eq. 3.35 approaches the data at long wavelengths, but at short wavelengths, the
classical theory (which predicts u — oo as A — 0) fails miserably. The failure
of the Rayleigh-Jeans formula at short wavelengths is known as the ultraviolet
catastrophe and represents a serious problem for classical physics, because the
theories of thermodynamics and electromagnetism on which the Rayleigh-Jeans
formula is based have been carefully tested in many other circumstances and
found to give extremely good agreement with experiment. It is apparent in the
case of blackbody radiation that the classical theories do not work, and that a
new kind of physical theory is needed.

Quantum Theory of Thermal Radiation

The new physics that gave the correct interpretation of thermal radiation was
proposed by the German physicist Max Planck in 1900. The ultraviolet catastrophe
occurs because the Rayleigh-Jeans formula predicts too much intensity at short
wavelengths (or equivalently at high frequencies). What is needed is a way to
make u — 0 as A — 0, or as f — oo. Again considering the electromagnetic
standing waves to result from the oscillations of atoms in the walls of the cavity,
Planck tried to find a way to reduce the number of high-frequency standing
waves by reducing the number of high-frequency oscillators. He did this by a
bold assumption that formed the cornerstone of a new physical theory, quantum
physics. Associated with this theory is a new version of mechanics, known
as wave mechanics or quantum mechanics. We discuss the methods of wave
mechanics in Chapter 5; for now we show how Planck’s theory provided the
correct interpretation of the emission spectrum of thermal radiation.

Planck suggested that an oscillating atom can absorb or emit energy only in
discrete bundles. This bold suggestion was necessary to keep the average energy
of a low-frequency (long-wavelength) oscillator equal to A7 (in agreement with
the Rayleigh-Jeans law at long wavelength), but it also made the average energy
of a high-frequency (low-wavelength) oscillator approach zero. Let’s see how
Planck managed this remarkable feat.

In Planck’s theory, each oscillator can emit or absorb energy only in quantities
that are integer multiples of a certain basic quantity of energy ¢,

E,=ne n=123,... (3.36)

where 7 is the number of quanta. Furthermore, the energy of each of the quanta is
determined by the frequency

e=hf (3.37)

where 4 is the constant of proportionality, now known as Planck’s constant. From
the mathematical standpoint, the difference between Planck’s calculation and
the classical calculation using Maxwell-Boltzmann statistics is that the energy
of an oscillator at a certain wavelength or frequency is no longer a continuous
variable—it is a discrete variable that takes only the values given by Eq. 3.36.
The integrals in the classical calculation are then replaced by sums, and the
number of oscillators with energy E, is then

N, = N(1 — e ¢/kT)gne/kT (3.38)
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FIGURE 3.15 The failure of the clas-
sical Rayleigh-Jeans formula to fit
the observed intensity. At long wave-
lengths the theory approaches the data,
but at short wavelengths the classical
formula fails miserably.

Max Planck (1858—1947, Germany).
His work on the spectral distribution
of radiation, which led to the quan-
tum theory, was honored with the
1918 Nobel Prize. In his later years,
he wrote extensively on religious and
philosophical topics.
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FIGURE 3.16 Planck’s function fits
the observed data perfectly.

Intensity

c Frequency

FIGURE 3.17 Data from the COBE
satellite, launched in 1989 to deter-
mine the temperature of the cosmic
microwave background radiation from
the early universe. The data points
exactly fit the Planck function corre-
sponding to a temperature of 2.725 K.
To appreciate the remarkable precision
of this experiment, note that the sizes
of the error bars have been increased
by a factor of 400 to make them vis-
ible! (Source: NASA Office of Space
Science)

(Compare this result with Eq. 3.32 for the continuous case.) Here N, represents
the number of oscillators with energy E,, while N is the total number. You should

oo
be able to show that Y N, = N, again giving the total number of oscillators when

n=0
summed over all possible energies. Planck’s calculation then gives the average
energy:

1 00 - [} »
%=szg=ww”%2mm”” (3.39)
n=0 n=0
which gives (see Problem 14)
h he/
E © / ¢/ (3.40)

av T e/AT _ | T GW/KT _ | T ghe/MT _ |

Note from this equation that £,, = kT at small /" (large 1) but that £,, — 0 at
large f (small ). Thus the small-wavelength oscillators carry a vanishingly small
energy, and the ultraviolet catastrophe is solved!

Based on Planck’s result, the intensity of the radiation then becomes (using
Eqgs. 3.28 and 3.31):

c (8m he /A 2mhe? 1
I(A)ZZ & ) | ehe/IT — 1 | T T a5 ehe/MT _ | (3.41)

(An alternative approach to deriving this result is given in Section 10.6.) The
perfect agreement between experiment and Planck’s formula is illustrated in
Figure 3.16.

In Problems 15 and 16 at the end of this chapter you will demonstrate that
Planck’s formula can be used to deduce Stefan’s law and Wien’s displacement
law. In fact, deducing Stefan’s law from Planck’s formula results in a relationship
between the Stefan-Boltzmann constant and Planck’s constant:

273k
o= ——
15¢2h3

By determining the value of the Stefan-Boltzmann constant from the intensity
data available in 1900, Planck was able to determine a value of the constant % :

(3.42)

h=656x10"37.5

which agrees very well with the value of /4 that Millikan deduced 15 years later
based on the analysis of data from the photoelectric effect. The good agreement
of these two values is remarkable, because they are derived from very different
kinds of experiments—one involves the emission and the other the absorption of
electromagnetic radiation. This suggests that the quantization property is not an
accident arising from the analysis of one particular experiment, but is instead a
property of the electromagnetic field itself. Along with many other scientists of
his era, Planck was slow to accept this interpretation. However, later experimental
evidence (including the Compton effect) proved to be so compelling that it left
no doubt about Einstein’s photon theory and the particlelike structure of the
electromagnetic field.
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Planck’s formula still finds important applications today in the measurement
of temperature. By measuring the intensity of radiation emitted by an object
at a particular wavelength (or, as in actual experiments, in a small interval of
wavelengths), Eq. 3.41 can be used to deduce the temperature of the object. Note
that only one measurement, at any wavelength, is all that is required to obtain
the temperature. A radiometer is a device for measuring the intensity of thermal
radiation at selected wavelengths, enabling a determination of temperature.
Radiometers in orbiting satellites are used to measure the temperature of the land
and sea areas of the Earth and of the upper surface of clouds. Other orbiting
radiometers have been aimed toward “empty space” to measure the temperature
of the radiation from the early history of the universe (Figure 3.17).

| Example 3.6

You are using a radiometer to observe the thermal radiation The given temperature corresponds to k7 = (8.6174 x
from an object that is heated to maintain its temperature at 107> eV/K)(1278 K) = 0.1101 eV. The radiation intensity
1278 K. The radiometer records radiation in a wavelength  in this small wavelength interval is

interval of 12.6 nm. By changing the wavelength at which

you are measuring, you set the radiometer to record the [G)do. = 21 he? 1 m

most intense radiation emission from the object. What is A5 ehe/MT ]

the intensity of the emitted radiation in this interval?

= 27(6.626 x 10734 J.5)(2.998 x 108 m/s)?

Solution . . o x(12.6 x 1072 m)(2.267 x 107° m)~>
The wavelength setting for the most intense radiation is x (e(1240€Vnm)/(22670m)(0.1101eV) _ 1y—1

determined from Wien’s displacement law:

= 552 W/m’
28978 x 10 m-K  2.8978 x 10* m-K

max T - 1278 K
=2.267 x 107°m = 2267 nm

3.4 THE COMPTON EFFECT

Another way for radiation to interact with matter is by means of the Compton
effect, in which radiation scatters from loosely bound, nearly free electrons. Part
of the energy of the radiation is given to the electron; the remainder of the energy
is reradiated as electromagnetic radiation. According to the wave picture, the
scattered radiation is less energetic than the incident radiation (the difference
going into the kinetic energy of the electron) but has the same wavelength. As we
will see, the photon concept leads to a very different prediction for the scattered
radiation.

The scattering process is analyzed simply as an interaction (a “collision” in
the classical sense of particles) between a single photon and an electron, which
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FIGURE 3.18 The geometry of

Compton scattering.

Arthur H. Compton (1892-1962,
United States). His work on X-ray scat-
tering verified Einstein’s photon theory
and earned him the 1927 Nobel Prize.
He was a pioneer in research with X
rays and cosmic rays. During World
War IT he directed a portion of the U.S.
atomic bomb research.

we assume to be at rest. Figure 3.18 shows the process. Initially, the photon has
energy E and linear momentum p given by
he E

E=hf=— and p=-— (3.43)
A c
The electron, initially at rest, has rest energy m,c?. After the scattering, the photon
has energy £’ = hc/A" and momentum p’ = E’/c, and it moves in a direction at an
angle 6 with respect to the direction of the incident photon. The electron has total
final energy E. and momentum p, and moves in a direction at an angle ¢ with
respect to the initial photon. (To allow for the possibility of high-energy incident
photons giving energetic scattered electrons, we use relativistic kinematics for the
electron.) The conservation laws for total relativistic energy and momentum are
then applied:

Epitial = Efinal E+mc® =E +E, (3.44a)
Dxjinitial = P final p =P cos ¢+ p' cos 6 (3.44b)
Pynitial = Py final 0=p.sing —p'sin6 (3.44¢)

We have three equations with four unknowns (6, ¢, E.,E'; p, and p’ are not
independent unknowns) that cannot be solved uniquely, but we can eliminate any
two of the four unknowns by solving the equations simultaneously. If we choose
to measure the energy and direction of the scattered photon, we eliminate £, and
¢. The angle ¢ is eliminated by first rewriting the momentum equations:

p.cos¢ =p—p'cosf and p,.sing =p'sinf (3.45)
Squaring these equations and adding the results, we obtain
pg =p* —2pp’ cos 6 + p? (3.46)

The relativistic relationship between energy and momentum is, according to
Eq. 2.39, E2 = ?p2 + m?c*. Substituting in this equation for £, from Eq. 3.44a
and for p? from Eq. 3.46, we obtain

(E 4+ m,c* — EN? = A (p* — 2pp’ cos b + p?) + m>c* (3.47)
and after a bit of algebra, we find
1 1 1
= H(l — cosh) (3.48)
In terms of wavelength, this equation can also be written as
N—A= Lc(l — cos ) (3.49)

(]

where A is the wavelength of the incident photon and A’ is the wavelength of the
scattered photon. The quantity /1/m,c is known as the Compton wavelength of the
electron and has a value of 0.002426 nm; however, keep in mind that it is not a
true wavelength but rather is a change of wavelength.

Equations 3.48 and 3.49 give the change in energy or wavelength of the photon,
as a function of the scattering angle 6. Because the quantity on the right-hand side
is never negative, £’ is always less than E, so that the scattered photon has less
energy than the original incident photon; the difference £ — E’ is just the kinetic
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energy given to the electron, E, — m.c?. Similarly, A’ is greater than A, meaning
the scattered photon always has a longer wavelength than the incident photon; the
change in wavelength ranges from 0 at = 0° to twice the Compton wavelength
at & = 180°. Of course the descriptions in terms of energy and wavelength are
equivalent, and the choice of which to use is merely a matter of convenience.

Using E, = K, + m,c?, where K, is the kinetic energy of the electron, conser-
vation of energy (Eq. 3.44a) can also be written as E + m.c* = E' + K, + m.c*.
Solving for K., we obtain

K,=E—FE (3.50)

That is, the kinetic energy acquired by the electron is equal to the difference
between the initial and final photon energies.

We can also find the direction of the electron’s motion by dividing the two
momentum relationships in Equation 3.45:

sin /sin @ E'sin®
tang = 2 o p _

= = (3.51)
p.cos¢ p—p'cosd E—E' cosb

where the last result comes from using p = E/candp’ = E'/c.

| Example 3.7

89

X rays of wavelength 0.2400 nm are Compton-scattered, (b) The energy £’ can be found directly from A’ :
and the scattered beam is observed at an angle of 60.0°

relative to the incident beam. Find: (@) the wavelength B — E _ 1240eV-nm — 514l eV

of the scattered X rays, (b) the energy of the scattered A 0.2412nm

X-ray photons, (c¢) the kinetic energy of the scattered

electrons, and (d) the direction of travel of the scattered

(¢) The initial photon energy E is hic/X = 5167 ¢V, so

electrons. K,=E—E =5167eV — 5141 eV = 26eV
Solution (d) From Eq. 3.51,
(a) A’ can be found immediately from Eq. 3.49:
_, E'sinf
h ¢=tan' —————
VN =xr4+—( —cosh) E — E'cos 6
mec — o (5141 eV)(sin60°)
= 0.2400 + (0.00243 nm)(1 — cos 60°) T 5167eV) — (5141 eV)(cos 60°)
= 0.2412nm = 59.7°

The first experimental demonstration of this type of scattering was done by
Arthur Compton in 1923. A diagram of his experimental arrangement is shown in
Figure 3.19. A beam of X rays of a single wavelength A is incident on a scattering
target, for which Compton used carbon. (Although no scattering target contains
actual “free” electrons, the outer or valence electrons in many materials are very
weakly attached to the atom and behave like nearly free electrons. The binding
energies of these electrons in the atom are so small compared with the energies of
the incident X-ray photons that they can be regarded as nearly “free” electrons.) A
movable detector measured the energy of the scattered X rays at various angles 6.
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FIGURE 3.19 Schematic diagram of Compton-scattering apparatus. The wave-
length 1" of the scattered X rays is measured by the detector, which can be moved
to different positions 6. The wavelength difference A’ — A varies with 6.

Compton’s original results are illustrated in Figure 3.20. At each angle,
two peaks appear, corresponding to scattered X-ray photons with two different
energies or wavelengths. The wavelength of one peak does not change as the
angle is varied; this peak corresponds to scattering that involves “inner” electrons
of the atom, which are more tightly bound to the atom so that the photon can
scatter with no loss of energy. The wavelength of the other peak, however, varies
strongly with angle; as can be seen from Figure 3.21, this variation is exactly as
the Compton formula predicts.

Similar results can be obtained for the scattering of gamma rays, which
are higher-energy (shorter wavelength) photons emitted in various radioactive
decays. Compton also measured the variation in wavelength of scattered
gamma rays, as illustrated in Figure 3.22. The change in wavelength in the
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FIGURE 3.21 The scattered X-ray FIGURE 3.22 Compton’s results for
wavelengths A/, from Figure 3.20, gamma-ray scattering. The wave-
for different scattering angles. The lengths are much smaller than for
expected slope is 2.43 x 10712 m, in X-rays, but the slope is the same as
agreement with the measured slope in Figure 3.21, which the Compton

of Compton’s data points. formula, Eq. 3.49, predicts.
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gamma-ray measurements is identical with the change in wavelength in the X-ray
measurements, as Eq. 3.49 predicts—the change in wavelength does not depend
on the incident wavelength.

3.5 OTHER PHOTON PROCESSES

Although thermal radiation, the photoelectric effect, and Compton scattering pro-
vided the earliest experimental evidence in support of the quantization (particlelike
behavior) of electromagnetic radiation, there are numerous other experiments that
can also be interpreted correctly only if we assume the existence of photons as
discrete quanta of electromagnetic radiation. In this section we discuss some of
these processes, which cannot be understood if we consider only the wave nature
of electromagnetic radiation. As you study the descriptions of these processes,
note how photons interact with atoms or electrons by delivering energy in discrete
bundles, in contrast to the wave interpretation in which the energy can be regarded
as arriving continuously.

Interactions of Photons with Atoms

The emission of electromagnetic radiation from atoms takes place in discrete
amounts characterized by one or more photons. When an atom emits a photon
of energy E, the atom loses an equivalent amount of energy. Consider an atom
at rest that has an initial energy E;. The atom emits a photon of energy E. After
the emission, the atom is left with a final energy E;, which we will take as the
energy associated with the internal structure of the atom. Because of conservation
of momentum, the final atom must have a momentum that is equal and opposite
to the momentum of the emitted photon, so the atom must also have a “recoil”
kinetic energy K. (Normally this kinetic energy is very small.) Conservation of
energy then gives

The energy of the emitted photon is equal to the net energy lost by the atom,
minus a negligibly small contribution to the recoil kinetic energy of the atom.

In the reverse process, an atom can absorb a photon of energy E. If the atom
is initially at rest, it must again acquire a small recoil kinetic energy in order to
conserve momentum. Now conservation of energy gives

E+E=E+K o E—E=E—K (3.53)

The energy available to add to the atom’s internal supply of energy is the photon
energy, less a recoil kinetic energy that is usually negligible.

Photon emission and absorption experiments are among the most important
techniques for acquiring information about the internal structure of atoms, as we
discuss in Chapter 6.
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Bremsstrahlung and X-ray Production

When an electric charge, such as an electron, is accelerated or decelerated, it
radiates electromagnetic energy; according to the quantum interpretation, we
would say that it emits photons. Suppose we have a beam of electrons, which
has been accelerated through a potential difference AV, so that the electrons
experience a loss in potential energy of —e AV and thus acquire a kinetic energy
of K = e AV (Figure 3.23). When the electrons strike a target they are slowed
down and eventually come to rest, because they make collisions with the atoms
of the target material. In such a collision, momentum is transferred to the atom,
the electron slows down, and photons are emitted. The recoil kinetic energy of
the atom is small (because the atom is so massive) and can safely be neglected. If
the electron has a kinetic energy K before the encounter and if it leaves after the
collision with a smaller kinetic energy K’, then the photon energy Af = hc/A is

h
h = TC —K—K (3.54)

The amount of energy lost, and therefore the energy and wavelength of the
emitted photon, are not uniquely determined, because K is the only known energy
in Eq. 3.54. An electron usually will make many collisions, and therefore emit
many different photons, before it is brought to rest; the photons then will range
all the way from very small energies (large wavelengths) corresponding to small
energy losses, up to a maximum photon energy /f;,,, equal to K, corresponding
to an electron that loses all of its kinetic energy K in a single encounter (that is,
when K’ = 0). The smallest emitted wavelength A_ . is therefore determined by
the maximum possible energy loss,

min

Ay = — = (3.55)

X-ray photon
hf

Target atom K

X rays
(@) ()

FIGURE 3.23 (a) Apparatus for producing bremsstrahlung. Electrons from a
cathode C are accelerated to the anode A through the potential difference AV.
When an electron encounters a target atom of the anode, it can lose energy, with the
accompanying emission of an X-ray photon. (b) A schematic representation of the
bremsstrahlung process.



For typical accelerating voltages in the range of 10,000 V, A ... is in the range of
a few tenths of nm, which corresponds to the X-ray region of the spectrum. This
continuous distribution of X rays (which is very different from the discrete X-ray
energies that are emitted in atomic transitions; more about these in Chapter 8) is
called bremsstrahlung, which is German for braking, or decelerating, radiation.
Some sample bremsstrahlung spectra are illustrated in Figure 3.24.

Symbolically we can write the bremsstrahlung process as

electron — electron + photon
This is just the reverse process of the photoelectric effect, which is
electron + photon — electron

However, neither process occurs for free electrons. In both cases there must be a
heavy atom in the neighborhood to take care of the recoil momentum.

Pair Production and Annihilation

Another process that can occur when photons encounter atoms is pair production,
in which the photon loses all its energy and in the process two particles are
created: an electron and a positron. (A positron is a particle that is identical in
mass to the electron but has a positive electric charge; more about antiparticles
in Chapter 14.) Here we have an example of the creation of rest energy. The
electron did not exist before the encounter of the photon with the atom (it was not
an electron that was part of the atom). The photon energy 4f is converted into the
relativistic total energies £, and E_ of the positron and electron:

W =E, +E_ = (mc* +K,) + (mc* +K_) (3.56)
Because K and K_ are always positive, the photon must have an energy of
at least 2m,c? = 1.02MeV in order for this process to occur; such high-energy
photons are in the region of nuclear gamma rays. Symbolically,

photon — electron + positron

This process, like bremsstrahlung, will not occur unless there is an atom nearby
to supply the necessary recoil momentum. The reverse process,

electron + positron — photon
also occurs; this process is known as electron-positron annihilation and can occur
for free electrons and positrons as long as at least two photons are created. In
this process the electron and positron disappear and are replaced by two photons.

Conservation of energy requires that

(mec® +K) + (mc* +K_) =E, + E, (3.57)
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FIGURE 3.24 Some typical brems-
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ating voltage A V.
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FIGURE 3.25 Apparatus for delayed
choice experiment. Photons from the
laser strike the beam splitter and can
then travel paths A or B. The switch
in path A can deflect the beam into
a detector. If the switch is off, the
beam on path A recombines with the
beam on path B to form an interfer-
ence pattern. [Source: A. Shimony,
“The Reality of the Quantum World,”
Scientific American 258, 46 (January
1988)].

where E; and £, are the photon energies. Usually the kinetic energies K, and K_
are negligibly small, so we can assume the positron and electron to be essentially
at rest. Momentum conservation then requires the two photons to have equal and
opposite momenta and thus equal energies. The two annihilation photons have
equal energies of 0.511 MeV (= m,c?) and move in exactly opposite directions.

3.6 WHAT IS A PHOTON?

We can describe photons by giving a few of their basic properties:

¢ like an electromagnetic wave, photons move with the speed of light;

* they have zero mass and rest energy;

* they carry energy and momentum, which are related to the frequency and
wavelength of the electromagnetic wave by £ = hfandp = h/A ;

« they can be created or destroyed when radiation is emitted or absorbed;

« they can have particlelike collisions with other particles such as electrons.

In this chapter we have described some experiments that favor the photon
interpretation of electromagnetic radiation, according to which the energy of the
radiation is concentrated in small bundles. Other experiments, such as interference
and diffraction, favor the wave interpretation, according to which the energy of
the radiation is spread over its entire wavefront. For example, the explanation of
the double-slit interference experiment requires that the wavefront be divided so
that some of its intensity can pass through each slit. A particle must choose to go
through one slit or the other; only a wave can go through both.

If we regard the wave and particle pictures as valid but exclusive alternatives,
we must assume that the light emitted by a source must travel either as waves or
as particles. How does the source know what kind of light (particles or waves) to
emit? Suppose we place a double-slit apparatus on one side of the source and a
photoelectric cell on the other side. Light emitted toward the double slit behaves
like a wave and light emitted toward the photocell behaves like particles. How
did the source know in which direction to aim the waves and in which direction
to aim the particles?

Perhaps nature has a sort of “secret code” in which the kind of experiment we
are doing is signaled back to the source so that it knows whether to emit particles
or waves. Let us repeat our dual experiment with light from a distant galaxy,
light that has been traveling toward us for a time roughly equal to the age of
the universe (13 x 10° years). Surely the kind of experiment we are doing could
not be signaled back to the limits of the known universe in the time it takes us
to remove the double-slit apparatus from the laboratory table and replace it with
the photoelectric apparatus. Yet we find that the starlight can produce both the
double-slit interference and also the photoelectric effect.

Figure 3.25 shows a recent experiment that was designed to test whether this
dual nature is an intrinsic property of light or of our apparatus. A light beam
from a laser goes through a beam splitter, which separates the beam into two
components (A and B). The mirrors reflect the two component beams so that they
can recombine to form an interference pattern. In path A there is a switch that can
deflect the beam into a detector. If the switch is off, beam A is not deflected and
will combine with beam B to produce the interference pattern. If the switch is on,



beam A is deflected and observed in the detector, indicating that the light traveled
a definite path, as would be characteristic of a particle. To put this another way, if
the switch is off, the light beam is observed as a wave; if it is on, the light beam
is observed as particles.

If light behaves like particles, the beam splitter sends it along either path A
or path B; either path can be randomly chosen for the particle, but each particle
can travel only one path. If light behaves like a wave, on the other hand, the beam
splitter sends it along both paths, dividing its intensity between the two. Perhaps
the beam splitter can somehow sense whether the switch is open or closed, so
that it knows whether we are doing a particle-type or a wave-type experiment.
If this were true, then the beam splitter would “know” whether to send all of
the intensity down one path (so that we would observe a particle) or to split
the intensity between the paths (so that we would observe a wave). However, in
this experiment the experimenters used a very fast optical switch whose response
time was shorter than the time it takes for light to travel through the apparatus
to the switch. That is, the state of the switch could be changed affer the light
had already passed through the beam splitter, and so it was impossible for the
beam splitter to “know” how the switch was set and thus whether a particle-type
or a wave-type experiment was being done. This kind of experiment is called a
“delayed choice” experiment, because the experimenter makes the choice of what
kind of experiment to do after the light is already traveling on its way to the
observation apparatus.

In this experiment, the investigators discovered that whenever they had the
switch off, they observed the interference pattern characteristic of waves. When
they had the switch on, they observed particles in the detector and no interference
pattern. That is, whenever they did a wave-type experiment they observed waves,
and whenever they did a particle-type experiment they observed particles. The
wave and particle natures are both present simultaneously in the light, and this dual
nature is clearly associated with the light and is not characteristic of the apparatus.

Many other experiments of this type have been done, and they all produce
similar results. We are therefore trapped into an uncomfortable conclusion: Light
is not either particles or waves; it is somehow both particles and waves, and
only shows one or the other aspect, depending on the kind of experiment we are
doing. A particle-type experiment shows the particle nature, while a wave-type
experiment shows the wave nature. Our failure to classify light as either particle
or wave is not so much a failure to understand the nature of light as it is a failure of
our limited vocabulary (based on experiences with ordinary particles and waves)
to describe a phenomenon that is more elegant and mysterious than either simple
particles or waves.

Wave-Particle Duality

The dilemma of the dual particle+wave nature of light, which is called wave-
particle duality, cannot be resolved with a simple explanation; physicists and
philosophers have struggled with this problem ever since the quantum theory was
introduced. The best we can do is to say that neither the wave nor the particle
picture is wholly correct all of the time, that both are needed for a complete
description of physical phenomena, and that in fact the two are complementary to
one another.

Suppose we use a photographic film to observe the double-slit interference
pattern. The film responds to individual photons. When a single photon is absorbed
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by the film, a single grain of the photographic emulsion is darkened; a complete
picture requires a large number of grains to be darkened.

Let us imagine for the moment that we could see individual grains of the film
as they absorbed photons and darkened, and let us do the double-slit experiment
with a light source that is so weak that there is a relatively long time interval
between photons. We would see first one grain darken, then another, and so forth,
until after a large number of photons we would see the interference pattern begin
to emerge. Some areas of the film (the interference maxima) show evidence for
the arrival of a large number of photons, while in other areas (the interference
minima) few photons arrive.

Alternatively, the wave picture of the double-slit experiment suggests that we
could find the net electric field of the wave that strikes the screen by superimposing
the electric fields of the portions of the incident wave fronts that pass through the
two slits; the intensity or power in that combined wave could then be found by a
procedure similar to Egs. 3.7 through 3.10, and we would expect that the resultant
intensity should show maxima and minima just like the observed double-slit
interference pattern.

In summary, the correct explanation of the origin and appearance of the
interference pattern comes from the wave picture, and the correct interpretation
of the evolution of the pattern on the film comes from the photon picture; the
two explanations, which according to our limited vocabulary and common-sense
experience cannot simultaneously be correct, must somehow be taken together to
give a complete description of the properties of electromagnetic radiation.

Keep in mind that “photon” and “wave” represent descriptions of the behavior
of electromagnetic radiation when it encounters material objects. It is not correct
to think of light as being “composed” of photons, just as we don’t think of light as
being “composed” of waves. The explanation in terms of photons applies to some
interactions of radiation with matter, while the explanation in terms of waves
applies to other interactions. For example, when we say that an atom “emits” a
photon, we don’t mean that there is a supply of photons stored within the atom;
instead, we mean that the atom has given up a quantity of its internal energy to
create an equivalent amount of energy in the form of electromagnetic radiation.

In the case of the double-slit experiment, we might reason as follows: the
interaction between a “source” of radiation and the electromagnetic field is
quantized, so that we can think of the emission of radiation by the atoms of the
source in terms of individual photons. The interaction at the opposite end of the
experiment, the photographic film, is also quantized, and we have the similarly
useful view of atoms absorbing radiation as individual photons. In between, the
electromagnetic radiation propagates smoothly and continuously as a wave and
can show wave-type behavior (interference or diffraction) when it encounters the
double slit.

Where the wave has large intensity, the film reveals the presence of many
photons; where the wave has small intensity, few photons are observed. Recalling
that the intensity of the wave is proportional to the square of its amplitude, we
then have

probability to observe photons  |electric field amplitude|?

It is this expression that provides the ultimate connection between the wave
behavior and the particle behavior, and we will see in the next two chapters that
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a similar expression connects the wave and the particle aspects of those objects,
such as electrons, which have been previously considered to behave as classical

particles.

Section Section
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1. The diameter of an atomic nucleus is about 10 x 10~ m. 8. In the photoelectric effect, how can a photon moving in one

Suppose you wanted to study the diffraction of photons
by nuclei. What energy of photons would you choose?
Why?

2. How is the wave nature of light unable to account for the
observed properties of the photoelectric effect?

3. In the photoelectric effect, why do some electrons have
kinetic energies smaller than K, ?

4. Why doesn’t the photoelectric effect work for free electrons?

5. What does the work function tell us about the properties of a
metal? Of the metals listed in Table 3.1, which has the least
tightly bound electrons? Which has the most tightly bound?

6. Electric current is charge flowing per unit time. If we increase
the kinetic energy of the photoelectrons (by increasing
the energy of the incident photons), shouldn’t the cur-
rent increase, because the charge flows more rapidly? Why
doesn’t it?

7. What might be the effects on a photoelectric effect exper-
iment if we were to double the frequency of the incident
light? If we were to double the wavelength? If we were to
double the intensity?

10.

11.

12.

direction eject an electron moving in a different direction?
What happens to conservation of momentum?

In Figure 3.10, why does the photoelectric current rise
slowly to its saturation value instead of rapidly, when the
potential difference is greater than ¥ ? What does this figure
indicate about the experimental difficulties that might arise
from trying to determine V in this way?

Suppose that the frequency of a certain light source is just
above the cutoff frequency of the emitter, so that the pho-
toelectric effect occurs. To an observer in relative motion,
the frequency might be Doppler shifted to a lower value
that is below the cutoff frequency. Would this moving
observer conclude that the photoelectric effect does not
occur? Explain.

Why do cavities that form in a wood fire seem to glow
brighter than the burning wood itself? Is the temperature
in such cavities hotter than the surface temperature of the
exposed burning wood?

What are the fields of classical physics on which the clas-
sical theory of blackbody radiation is based? Why don’t
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13.

14.

15.

16.

17.
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we believe that the “ultraviolet catastrophe” suggests that
something is wrong with one of those classical theories?

In what region of the electromagnetic spectrum do room-
temperature objects radiate? What problems would we have
if our eyes were sensitive in that region?

How does the total intensity of thermal radiation vary when
the temperature of an object is doubled?
Compton-scattered photons of wavelength A’ are observed
at 90°. In terms of A’, what is the scattered wavelength
observed at 180° ?

The Compton-scattering formula suggests that objects
viewed from different angles should show scattered light
of different wavelengths. Why don’t we observe a change in
color of objects as we change the viewing angle?

You have a monoenergetic source of X rays of energy 84
keV, but for an experiment you need 70 keV X rays. How
would you convert the X-ray energy from 84 to 70 keV?

3.1 Review of Electromagnetic Waves

1.

A double-slit experiment is performed with sodium light
(& = 589.0nm). The slits are separated by 1.05 mm, and the
screen is 2.357 m from the slits. Find the separation between
adjacent maxima on the screen.

In Example 3.1, what angle of incidence will produce the
second-order Bragg peak?

Monochromatic X rays are incident on a crystal in the geom-
etry of Figure 3.5. The first-order Bragg peak is observed
when the angle of incidence is 34.0°. The crystal spacing
is known to be 0.347nm. (a) What is the wavelength of
the X rays? (b) Now consider a set of crystal planes that
makes an angle of 45° with the surface of the crystal (as
in Figure 3.6). For X rays of the same wavelength, find the
angle of incidence measured from the surface of the crystal
that produces the first-order Bragg peak. At what angle from
the surface does the emerging beam appear in this case?

A certain device for analyzing electromagnetic radiation is
based on the Bragg scattering of the radiation from a crystal.
For radiation of wavelength 0.149 nm, the first-order Bragg
peak appears centered at an angle of 15.15°. The aperture of
the analyzer passes radiation in the angular range of 0.015°.
What is the corresponding range of wavelengths passing
through the analyzer?

3.2 The Photoelectric Effect

5.

Find the momentum of («) a 10.0-MeV gamma ray; (b) a
25-keV Xray; (¢) a 1.0-pum infrared photon; (d) a 150-MHz
radio-wave photon. Express the momentum in kg - m/s and
eV/e.

Radio waves have a frequency of the order of 1 to 100 MHz.
What is the range of energies of these photons? Our bodies

20.

21.

10.

11.

TV sets with picture tubes can be significant emitters of
X rays. What is the origin of these X rays? Estimate their
wavelengths.

The X-ray peaks of Figure 3.20 are not sharp but are spread
over a range of wavelengths. What reasons might account
for that spreading?

A beam of photons passes through a block of matter. What
are the three ways discussed in this chapter that the photons
can lose energy in interacting with the material?

Of the photon processes discussed in this chapter (pho-
toelectric effect, thermal radiation, Compton scattering,
bremsstrahlung, pair production, electron-positron annihila-
tion), which conserve momentum? Energy? Mass? Number
of photons? Number of electrons? Number of electrons
minus number of positrons?

are continuously bombarded by these photons. Why are they
not dangerous to us?

(a) What is the wavelength of an X-ray photon of energy
10.0 keV? (b) What is the wavelength of a gamma-ray pho-
ton of energy 1.00 MeV? (c¢) What is the range of energies
of photons of visible light with wavelengths 350 to 700 nm?
What is the cutoff wavelength for the photoelectric effect
using an aluminum surface?

A metal surface has a photoelectric cutoff wavelength
of 325.6nm. It is illuminated with light of wavelength
259.8 nm. What is the stopping potential?

When light of wavelength A illuminates a copper surface,
the stopping potential is V. In terms of ¥, what will be
the stopping potential if the same wavelength is used to
illuminate a sodium surface?

The cutoff wavelength for the photoelectric effect in a cer-
tain metal is 254 nm. (¢) What is the work function for
that metal? (b) Will the photoelectric effect be observed for
A>254nm or for A < 254nm?

A surface of zinc is illuminated and photoelectrons are
observed. (a) What is the largest wavelength that will cause
photoelectrons to be emitted? (b) What is the stopping
potential when light of wavelength 220.0 nm is used?

3.3 Blackbody Radiation

13.

14.

(a) Show that in the classical result for the energy distribu-
tion of the cavity wall oscillators (Eq. 3.32), the total number
of oscillators at all energies is N. (b) Show that E,, = kT
for the classical oscillators.

(a) Writing the discrete Maxwell-Boltzmann distribution
for Planck’s cavity wall oscillators as N, = e En/kT
(where A4 is a constant to be determined), show that the



15.

16.

17.

18.

19.

20.

21.

22.

23.

o0
condition ) N, =N gives 4 = N(1 — e /¥y as in Eq.

n=0
o0
3.38. [Hint: Use Y ™ = (1 —e")~! ]. (b) By taking the
=0
derivative with rgspect to x of the equation given in the
o0
hint, show that ) ne™ = ¢€*/(1 — €%)2. (¢) Use this result

to derive Eq. 3.40 (%rom Eq. 3.39. (d) Show that E,, = kT at
large A and E,, — 0 for small A.

By differentiating Eq. 3.41 show that /() has its maximum
as expected according to Wien’s displacement law, Eq. 3.27.
Integrate Eq. 3.41 to obtain Eq. 3.26. Use the definite inte-
gral fooo x3dx/(e* — 1) = w*/15 to obtain Eq. 3.42 relating
the Stefan-Boltzmann constant to Planck’s constant.

Use the numerical value of the Stefan-Boltzmann constant to
find the numerical value of Planck’s constant from Eq. 3.42.
The surface of the Sun has a temperature of about 6000 K. At
what wavelength does the Sun emit its peak intensity? How
does this compare with the peak sensitivity of the human eye?
The universe is filled with thermal radiation, which has a
blackbody spectrum at an effective temperature of 2.7 K (see
Chapter 15). What is the peak wavelength of this radiation?
What is the energy (in eV) of quanta at the peak wavelength?
In what region of the electromagnetic spectrum is this peak
wavelength?

(@) Assuming the human body (skin temperature 34°C)
to behave like an ideal thermal radiator, find the wave-
length where the intensity from the body is a maximum.
In what region of the electromagnetic spectrum is radiation
with this wavelength? (b) Making whatever (reasonable)
assumptions you may need, estimate the power radiated by
a typical person isolated from the surroundings. (¢) Estimate
the radiation power absorbed by a person in a room in which
the temperature is 20°C.

A cavity is maintained at a temperature of 1650 K. At
what rate does energy escape from the interior of the cavity
through a hole in its wall of diameter 1.00 mm?

An analyzer for thermal radiation is set to accept wave-
lengths in an interval of 1.55 nm. What is the intensity of the
radiation in that interval at a wavelength of 875 nm emitted
from a glowing object whose temperature is 1675 K?

(a) Assuming the Sun to radiate like an ideal thermal source
at a temperature of 6000 K, what is the intensity of the
solar radiation emitted in the range 550.0 nm to 552.0 nm?
(b) What fraction of the total solar radiation does this
represent?

3.4 The Compton Effect

24.
25.

Show how Eq. 3.48 follows from Eq. 3.47.

Incident photons of energy 10.39 keV are Compton scat-
tered, and the scattered beam is observed at 45.00° relative
to the incident beam. (a) What is the energy of the scattered
photons at that angle? () What is the kinetic energy of the
scattered electrons?

26.

27.

28.
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X-ray photons of wavelength 0.02480 nm are incident on a
target and the Compton-scattered photons are observed at
90.0°. («) What is the wavelength of the scattered photons?
(b) What is the momentum of the incident photons? Of the
scattered photons? (c¢) What is the kinetic energy of the
scattered electrons? (d) What is the momentum (magnitude
and direction) of the scattered electrons?

High-energy gamma rays can reach a radiation detector
by Compton scattering from the surroundings, as shown
in Figure 3.26. This effect is known as back-scattering.
Show that, when £ > mec2, the back-scattered photon has
an energy of approximately 0.25 MeV, independent of the
energy of the original photon, when the scattering angle is
nearly 180°.

Detector

FIGURE 3.26 Problem 27.

Gamma rays of energy 0.662 MeV are Compton scattered.
(a) What is the energy of the scattered photon observed at a
scattering angle of 60.0°? (b) What is the kinetic energy of
the scattered electrons?

3.5 Other Photon Processes

29.

30.

31.

Suppose an atom of iron at rest emits an X-ray photon
of energy 6.4 keV. Calculate the “recoil” momentum and
kinetic energy of the atom. (Hint: Do you expect to need
classical or relativistic kinetic energy for the atom? Is the
kinetic energy likely to be much smaller than the atom’s rest
energy?)

What is the minimum X-ray wavelength produced in
bremsstrahlung by electrons that have been accelerated
through 2.50 x 10* V?

An atom absorbs a photon of wavelength 375 nm and imme-
diately emits another photon of wavelength 580 nm. What
is the net energy absorbed by the atom in this process?

General Problems

32.

33.

A certain green light bulb emits at a single wavelength of
550 nm. It consumes 55 W of electrical power and is 75%
efficient in converting electrical energy into light. (a) How
many photons does the bulb emit in one hour? (b) Assuming
the emitted photons to be distributed uniformly in space,
how many photons per second strike a 10 cm by 10 cm paper
held facing the bulb at a distance of 1.0 m?

When sodium metal is illuminated with light of wavelength
4.20 x 10 nm, the stopping potential is found to be 0.65 V;
when the wavelength is changed to 3.10 x 10% nm, the
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34.

35.

36.

37.

38.

39.

stopping potential is 1.69 V. Using only these data and the
values of the speed of light and the electronic charge, find the
work function of sodium and a value of Planck’s constant.
A photon of wavelength 192 nm strikes an aluminum sur-
face along a line perpendicular to the surface and releases
a photoelectron traveling in the opposite direction. Assume
the recoil momentum is taken up by a single aluminum
atom on the surface. Calculate the recoil kinetic energy of
the atom. Would this recoil energy significantly affect the
kinetic energy of the photoelectron?

A certain cavity has a temperature of 1150 K. (a) At what
wavelength will the intensity of the radiation inside the cavity
have its maximum value? (b) As a fraction of the maximum
intensity, what is the intensity at twice the wavelength found
in part (a)?

In Compton scattering, calculate the maximum kinetic
energy given to the scattered electron for a given photon
energy.

The COBE satellite was launched in 1989 to study the
cosmic background radiation and measure its temperature.
By measuring at many different wavelengths, researchers
were able to show that the background radiation exactly
followed the spectral distribution expected for a black-
body. At a wavelength of 0.133 cm, the radiant intensity is
1.440 x 10~7 W/m? in a wavelength interval of 0.00833 cm.
What is the temperature of the radiation that would be
deduced from these data?

The WMAP satellite launched in 2001 studied the cosmic
microwave background radiation and was able to chart small
fluctuations in the temperature of different regions of the
background radiation. These fluctuations in temperature cor-
respond to regions of large and small density in the early
universe. The satellite was able to measure differences in
temperature of 2 x 107> K at a temperature of 2.7250 K. At
the peak wavelength, what is the difference in the radiation
intensity per unit wavelength interval between the “hot” and
“cold” regions of the background radiation?

You have been hired as an engineer on a NASA project
to design a microwave spectrometer for an orbital mis-
sion to measure the cosmic background radiation, which
has a blackbody spectrum with an effective temperature
of 2.725 K. (a) The spectrometer is to scan the sky
between wavelengths of 0.50 mm and 5.0 mm, and at each
wavelength it accepts radiation in a wavelength range of

40.

41.

42.

43.

44,

3.0 x 107*mm. What maximum and minimum radiation
intensity do you expect to find in this region? (b) The
photon detector in the spectrometer is in the form of a
disk of diameter 0.86 cm. How many photons per second
will the spectrometer record at its maximum and minimum
intensities?

A photon of wavelength 7.52 pm scatters from a free elec-
tron at rest. After the interaction, the electron is observed to
be moving in the direction of the original photon. Find the
momentum of the electron.

A hydrogen atom is moving at a speed of 125.0 m/s. It
absorbs a photon of wavelength 97 nm that is moving in the
opposite direction. By how much does the speed of the atom
change as a result of absorbing the photon?

Before a positron and an electron annihilate, they form a sort
of “atom” in which each orbits about their common center
of' mass with identical speeds. As a result of this motion, the
photons emitted in the annihilation show a small Doppler
shift. In one experiment, the Doppler shift in energy of the
photons was observed to be 2.41 keV. (a) What would be
the speed of the electron or positron before the annihilation
to produce this Doppler shift? (b) The positrons form these
atom-like structures with the nearly “free” electrons in a
solid. Assuming the positron and electron must have about
the same speed to form this structure, find the kinetic energy
of the electron. This technique, called “Doppler broaden-
ing,” is an important method for learning about the energies
of electrons in materials.

Prove that it is not possible to conserve both momentum
and total relativistic energy in the following situation: A
free electron moving at velocity V emits a photon and then
moves at a slower velocity V'.

A photon of energy E interacts with an electron at rest
and undergoes pair production, producing a positive elec-
tron (positron) and an electron (in addition to the original
electron):

photon+e~ — et +e e

The two electrons and the positron move off with iden-
tical momenta in the direction of the initial photon. Find
the kinetic energy of the three final particles and find the
energy E of the photon. (Hint: Conserve momentum and
total relativistic energy.)



