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Robust Fault-Tolerant Control for Descriptor Systems

B. Marx, D. Koenig, and D. Georges

Abstract—A new architecture for fault tolerant controllers is proposed
for the generic class of descriptor systems. It is based on coprime factoriza-
tion of nonproper systems and on the Youla parameterization of stabilizing
controllers. Noticing that the Youla controllers include a so called residual
signal, fault tolerant control is achieved. Nominal control and robust fault
tolerance are addressed separately. Moreover, fault tolerant control can be
improved with a scheme integrating fault diagnosis. The design of the di-
agnosis and fault tolerant control filters reduce to a standard H ..-control
problem of usual state-space system.

Index Terms—Coprime factorization, descriptor systems, robust fault
tolerant control, Youla parameterization.

I. INTRODUCTION

Since systems are more and more complex, fault diagnosis and
fault tolerant control have become challenging problems in the area of
modern control theory; see [1] and [11]. Recently, efforts have been
provided to integrate diagnosis in the controller design; see [12], [15].

In order to take into consideration physical constraints or static re-
lations and more generally impulsive behaviors caused by an improper
transfer matrix, the descriptor formulation (i.e., £ = Ax + ---) ap-
pears in many fields of system design and control; see [3] and [8].
Concerning the fault diagnosis problems, few results have been gen-
eralized to the descriptor case. In [11, Ch. 5], fault detection is based
on observers, and unknown input observers are studied in [4]. In [7],
fault detection and isolation is considered in the H.-filtering frame-
work and in [9], diagnosis is performed via coprime factorization of the
nominal plant. However, none of these contributions envisaged fault
tolerant control.

This note aims at generalizing fault tolerant control proposed by [12]
to descriptor systems. Using the Youla parameterization, it is possible
to address the fault diagnosis (FD), the control and the fault tolerant
control (FTC) in distinct steps but in an unified approach. In the Youla
parameterization of the stabilizing controllers [14], an inner signal ap-
pears to be a residual and can be filtered to perform robust fault diag-
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nosis. Moreover, the residual signal can be exploited for FTC by mini-
mizing the output deviation caused by the fault and disturbance signals.
To improve the performance of the FTC system, filters devoted to each
fault (or combination of faults), should be synthesized and the appro-
priate filter is selected online according to the direction of the residual
signal. It is important to note that, although descriptor systems may be
improper, the design of the diagnosis and fault tolerant filters reduces
to standard H .. -control for usual systems. Moreover, contrary to most
residual generation or internal model methods, the matrix transfer of
the process is not duplicated in the controller, thus due to the coprime
factorization only proper filters are implemented, which is the major
interest of this approach.

The note is organized as follows. Section Il recalls some basics about
descriptor systems and coprime factorization. Fault tolerant control is
tackled in Section III. Before concluding, an example is provided.

II. PRELIMINARIES

In this section, some basics about descriptor systems are reminded,
mainly taken from [3], a particular attention is paid to the coprime fac-
torization which is the core of our approach.

Let us consider a linear time-invariant (LTI) descriptor system sub-
ject to fault and disturbance given by

{ Ei(t) = Ax(t) 4+ Bu(t) + R f(t) + E1d(t) 0
y(t) = Cx(t) + Du(t) + R2 f(t) + E2d(2)

where @ € R" is the descriptor variable, « € R™* is the control input,
y € R™ is the measured output, d € R"< is the disturbance, f €
R™/ is the fault and F', A, B,C, D, E,, F>, Ry, and R> are known
real constant matrices with compatible dimensions. As discussed in
[5], the unknown vector d(t) in the (1) embraces model uncertainties,
additive perturbation, input, and output multiplicative perturbation and
the vector f(t) stands for dysfunctions, actuator, or sensor faults.

The matrix E may be rank deficient: rank( E') = r < n. The system
(1) has an unique solution, for any initial condition, if it is regular (i.e.,
det (sE — A) # 0). Let note ¢ = degdet (sE — A). (1) has ¢ finite
dynamic modes, (n—r) static modes and (7 — ¢) impulsive modes. The
finite modes correspond to the finite eigenvalues of the pencil matrix
(E, A). The system is called stable if and only if the finite modes are
stable, i.e., the finite eigenvalues of (E, A) lie in the open left half-
plane. The impulsive modes may cause impulse terms in the response
and thus are highly undesirable. A system has no impulsive mode and
is said to be impulse free if and only if deg(det(sE — A)) = rank(E).
Since the transfer matrix of any impulse free descriptor system is (non
strictly) proper it can be realized by an usual state-space representation
(A,B,C,D).

A descriptor system is impulse observable (respectively, RR-de-
tectable) if and only if it satisfies (2) [respectively, (3)]

T
rank {57 ;T (E)T] =n +rank E 2)
rank {bEC_, 4] =n

Vs € C withR(s) >0. (3)

If (2) is verified, there exists a matrix gain L such that the pencil matrix
(FE, A+ LC) is impulse free. If (3) is verified, the unstable finite eigen-
values of (E, A + LC') can be arbitrarily placed by the matrix gain L.
If (3) is verified for all s, all the finite eigenvalues of (E, A + LC')
can be arbitrarily placed, and the system is called R-observable. Dual
notions are defined for the controllability [3]. If (E, A) is stable and
impulse free, it is called admissible.
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In the remainder of this note, the only necessary assumptions are the
following.

Al) (E.A,C) is impulse observable and detectable.
A2) (E. A, B) is impulse controllable and stabilizable.
A3) (E.A) is regular.

The LTI descriptor system (1) can also be described by y(s) = G (s)-
u(s)+Gs(s) f(5)+Gals)-d(s) where G (s) = C(sE—A)"'B+
D,Gy(s) = C(sE—A) 'Ei+Ey,andG;(s) = C(sE—A) 'Ri+
R»>. A coprime factorization of the system (1) and of a stabilizing con-
troller Ko(s) is given by

Gu=N,M;"=M;'N, 4)
Gy=NiM;' = M;'Ny (5)
Ga=NsM;' =M;'N, (6)
Ko=UV '=V'U @

where the transfer matrices in (4) and (6) should satisfy the following

double Bezout equation:
I 0] [V -U|[M. U
0 I|  |-N. M,||N, V

M, U \4 -U

M,
Let K (s) be an observer-based feedback controller defined by

{ Ei.= Ai.+ Bu+ L(C#.+ Du —y) ©)
uw=Fz.
or, equivalently

A,,O(S):{E’{A+LC+£F+LDF | —OLH (10)

where the matrices L and F' ensure the admissibility of (E, A + LC)
and (E, A + BF), respectively. The matrices in (4) and (6) can be
defined by [9]

v o [A+LC | =(B+LD) L
[_N,‘, 1[] il Rl ! 0
e -D I
(11)
Ny . [A+BF | B -L
“f H: E, F I 0 (12)
|C+DF | D I

The transfer matrices N¢, N’f./ My, M ¢, Na, Na, My, and My in (5),
(6), (7) are easily deduced from (11) and (12). Moreover, a key point
is that AL = .Wf = Mu = M holds. Since the matrices L and F are
chosen such that (£, A+ LC') and (E, A+ BF') are admissible, all the
transfer matrices My, Ni., My, and N}, are proper for k € {u,d, f}.
The impulsive terms in G, (s), Gf(s), and G4(s) are caused by their
inverse M, ' or J\TI{ ! which may be strictly improper. System (1) can
thus be written as

y=M "(Nyu+ Nagd + Nsf). (13)
The set of all stabilizing controllers is given in [13].

Lemma 1: The set of all stabilizing controllers for G, (s) is given
by K(s) = (M,Q + U)(N,Q + V)™! or, equivalently, K(s) =
(V4+QN,.) " (U+QM), where ( is an arbitrary proper stable transfer
matrix.
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Fig. 1. Scheme of fault tolerant control.

III. FAULT TOLERANT CONTROL

In this section, an architecture of fault tolerant controllers is pro-
posed for descriptor systems. On the one hand, nominal control per-
formance, such as admissibility and pole placement of the nominal
closed-loop system, are targeted. On the other hand, the deviation from
the nominal response caused by the exogenous inputs d(s) and f(s) is
minimized to achieve fault tolerant control. The proposed controller
structure is depicted in Fig. 1. One should recognize the Youla param-
eterized controller.

This structure is interesting since, from (13), the internal signal, r,
appears to be a residual signal

r(s) = M(s)(s)y(s) = Nu(s)u(s)
Ny(s)f(s) + Na(s)d(s).

(14)

Thus, fault tolerance (FT) aspects can easily be taken into consider-
ation. Moreover, the reference signal “ref” does not impact on the
residual generation. The response of the closed-loop system is given
by (13), where u is defined by

TN Uy + QC(My - N”uu)) + ref
TN Uy + Qu(Nad + Nif)) + ref

as)
16)

e
Il

e
Il

combining (13) and (16), the response of the closed-loop system is
givenbyy = (M — N, V'U)™" (N, ref + (I + N,V™'Q.)(Nad +
N’f 7)). From (8) and matrix inversion formulas, one can derive that
V=(M-NV'U)  andV(I+ N,V 'Qc) =V + NuQ., and
then finally obtain

y=VN, ref + (V4 N,Q.)(Nud + Ny f). a7)
From (17), it is clear that, on the one hand, the nominal control perfor-
mances are set by V' IV, thus by L and F' and, on the other hand, the
fault tolerance is obtained by the appropriate choice of Q.(s). When
no exogenous signal enter the system, the inner loop is inactive since
r(s) = 0. Consequently, the choice of (.(s) does not affect the nom-
inal performance of the controller. Thus, nominal control and fault tol-
erance are addressed separately.

The controller is not necessary implemented as shown on Fig. 1 since
it involves high order controller. Nevertheless, this formalism is ap-
pealing, not only for the sake of clarity, but also in the case of online
reconfiguration of the controller, when (). is monitored accordingly to
a fault diagnosis filter (see Section III-C).
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A. Nominal Control

It is readily verified that the nominal response corresponds to an ob-
server based controller since

v =g A+BF+LC+LDF | —L (18)
F | 0
and the closed-loop response is given by
E 0 A+ BF -LC -LD
VN, = { 0 E] ) 0 A+ LC B+ LD
C + DF C | D
19)

where the well-known separation principle holds. The admissibility of
the closed-loop system is secured by A1) and A2), moreover, the finite
dynamics of the closed-loop system can be arbitrarily chosen, provided
(E,A,B)and (E, A, C) are R-controllable and R-observable respec-
tively. The temporal characteristics of the response can be fixed by se-
lecting F’ and L to ensure pole clustering of the closed-loop system. As
introduced in [2], the concept of LMI region is an efficient tool to de-
scribe every convex region of the complex plane, which is symmetric
with respect to the real axis, by two matrices o and 3 (e.g., the left
half-plane is defined by &« = 0 and 3 = 1). The LMI characterization
of pole-clustering in LMI region for descriptor systems is treated in
[10], and as a result F' and L can be determined by solving strict LMI
in order to ensure the pole clustering of the closed-loop system.

Theorem 1: For a given LMI region D, of the left half-plane de-
fined by v and /3, there exist L and F’ such that the closed-loop system
(19) is D-admissible (i.e., is impulse free and has its finite pole in
D), if and only if there exist symmetric positive definite matrices Pr
and P;, € R™*" and matrices Sp and S;, € RO"=X(=") Fp ¢
Rx( =) g, e R™*) L€ RX(77) and L, € R™X"
such that

[ak,,EPFET + OkI(APyE'" + BLyEY) + BH U"

+ AVSEUT + Bk (EPFAT + ELI'BT)

L USEVTAT & UHJZBT] <0 (20)
1<k, I<p
[ak,ETPLE + BkI(A"PLE+ CTLLE)+ CTHI V!
+ATus, VT 4 Bk (ETPLA i ETLfc)
+vsTUT A+ VH, C] <0 Q1)
1<k, l<p
where the notation M = [Mg]1<k,<m means that M is an m x

m block matrix with generic block My;. U and V' are of full-column
rank and are composed of bases of Ker(E) and Ker(E™), respectively.
Then, F' and L are given by

F=(LrET + HrUTY(PrET +VSpUT) ! (22)
L=(PLE+US VY (L, E4+H VT, (23)
Proof: This result is easily deduced from [10, Th. 1]. ]

B. Fault Tolerance

In the absence of any fault and disturbance, the reconfiguration loop
is inactive and does not affect the performance of the nominal closed-
loop system. In the presence of an exogeneous signal, Q. (s) provides
a corrective term in order to compensate the effects of the exogenous
signals. Indeed, it can be seen as an internal model based controller,
with the major difference that 117[(3) and _\Vu(.s) are always impulse
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d(s) os)
f(s)
— [ A4l Blg By |I——
" Cra| Di1a Diza
Crq| D21qa Dazg
r(s) rs)
AQ| By
CQ‘ D,

Fig. 2. Equivalent standard H control problem.

free, even for impulsive nominal plants. From (17) a natural solution to
FTC problem is to synthesize the parameter ()..(s) in order to minimize
the H - -norm of the transfer matrix from d and f to y, thus to minimize
the criterion (24)

Te= IV + NuQo)[Na Nyl 24)

All the factors in (24) are proper and minimizing the criterion J.. re-
duces to the model matching problem of minimizing || 77 +7% Q75| o<,
where Ty, 75>, and T3 are given by

E 0
n=qlo
A+BF -LC -LE; ~LR,
0 A+LC | Ex+LE; Ri+LR,
C+DF C | B R,
(25)
B A+BF | B
TQ_{E’{C‘—I—DF DH (26
_ A+ILC | BEx+LE; Ri+LR,
Tg_{E,{ c B o H @7

Since 711,75, and T3 are impulse free, these transfer matrices can
be realized by usual state-space systems, let note (A;, Bi, C;, D;)
a minimal realization of T;, for ¢ € {1,2,3}. The minimiza-
tion of .J. can be formulated in the standard H.. framework
as finding the controller (). that minimizes the H.,-norm of
the closed-loop system depicted on Fig. 2, where the system
(Ac, Blm Bza C1c, Czc, Duc, D12, Doy, Dzzc), is defined by

. r 17
A, = diag(A,, A, A3) Bi. = [31 0 33]

T
BZC:[O BT 0]
Cro=[C1 C» 0]
Co=[0 0 C4
DZIC:D3

Di1. = Dy
DZZc =0.

Diae = Do
and

(28)

The LMI-based solution of [6] can be applied, provided ( 4., Ba., C's¢)
is stabilizable and detectable, and provided the direct transfer from the
control input to the measured output is null. These necessary conditions
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v

Fig. 3.

Scheme of improved fault tolerant control.

are verified since (E, A+ BF) and (E, A + LC) are admissible, thus
stable, and since D22 = 0, respectively.

Remark 1: A weighting function can be added in the criterion to
enhance the robustness at high frequency or to put an emphasis on a
particular frequency range if the power spectrum of the fault and dis-
turbance is known.

Remark 2: The design of reduced order controller is highly encour-
aged since A, is a (4r x 4r) matrix. The following algorithm summa-
rizes the fault tolerant control process.

Algorithm 1: To implement the fault tolerant controller

1) solve (20)—(21), to find L and F such that the nominal closed-

loop system is D-admissible;

2) find Q. by solving the equivalent standard H ., control problem

for (28);
3) implement the optimally robust fault tolerant controller

u(s) = (V4 Q.N.,)" (U4 QM)y(s)+ V ref(s)).

C. Improving the FTC Robustness

In the previous scheme, the control filter (). was designed to obtain
optimal tolerance faced to all the possible faults. Assuming that sev-
eral faults do not occur at the same time, dedicated controllers can be
designed. n s control filters ().; are synthesized by minimizing the cri-
terion

Jei = ||(V + A"uQCi)[Nd NYfL']Hx (29)

where N"fz- is the i¢th column of ﬁ"f. Another filter, dedicated to the
fault-free case, is determined by minimizing the following criterion:
Jeo = [[(V 4+ NuQei) Nallo- (30)

Remark 3: 1f simultaneous faults may appear, a combination of fault
should be considered, but the methodology remains.

This structure, depicted on Fig. 3, permits to significantly reduce the
conservatism introduced by the H.. design of Q.. The selection of
the appropriate control filter is done by a simple logic, exploiting the
residual given by a diagnosis filter, (4, synthesized by standard H .
techniques, presented in [9]. (4 is determined in order to shape the
response of the filter to the faults, while minimizing its sensitivity to to
the disturbance. This is achieved by minimizing the criterion

Ja=[QuNa QuNy — Tl 31)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 10, OCTOBER 2004 1873

25 T T T T T T T T T

2_ —

1.5 1

05 _

2.5 T T T T T T T T

05 _

0

05 | I | | | I 1 |
0 0.5 1 15 2 25 3 3.5 4 45 5

Fig. 4. Fault estimation.
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Fig. 5. Comparison of the obtained output y1 (#) for different control methodologies.

where T'(s) is the desired frequency response to the faults. This model — posed in [9]. Each component of the signal 7 is compared with a fixed
matching problem reduces to standard H.. control problem for usual  threshold. A natural threshold is the optimal .J; obtained when synthe-
systems and can be addressed by LMI-based solution of [6], as pro-  sizing the diagnosis filter Q4.
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Fig. 6. Comparison of the obtained output y2 (%) for different control methodologies.

IV. NUMERICAL EXAMPLE

Let us consider (1), affected by an actuator biais f1 (), a sensor biais
f2(t) and an unknown input d(¢). The exogenous signals are defined
by fi(t) = {2,for 1 < ¢ < 2,0 else}, fo(t) = {2,for 3.5 <
t < 4.5,0 else} and d(t) is a random number uniformly distributed

1,

in[—1,1]
T 0 0 0 -15 1 0 0
01 0 0 5 —10 0 0
E= 00 0 1 A= 0 0 1 0
100 0 0 0 0 1
10
00 .
B= E,=[0,00 0 0 0
0 0 1= ]
10 1
-1 0 0 0] 01 0 0
P”__o 000] C‘[ 010}
[0 0 0
D: E‘:
o o) == o]
and
0 0
-0

One can check that the necessary assumptions are verified. Following
the proposed methodology, we chose the nominal controller such that
the real part of the closed-loop poles A; verify —10 < R(A\;) < —1.
The obtained results are displayed in Figs. 4-6. The estimation of the
faults is shown on Fig. 4. Figs. 5 and 6 give the outputs y; (¢) and y=(¢)
respectively in different cases. The disturbance and fault free, nom-
inal response is represented with circles. The observer-based control
affected by disturbance and fault is represented by the dashed lines.
The FT control is represented by the crossed lines and the improved

FT control is represented by the solid lines. It is clearly seen, on both
Figs. 5 and 6 that the observer-based controller does not match the fault
and disturbance free case, whereas the proposed FT does. The improv-
ment of the FTC obtained with adaptative controller appears in Fig. 5.

V. CONCLUSION

In this note, fault tolerant feedback control is extended to descriptor
systems. The coprime factorization of descriptor systems permits to
build a pre residual signal. Then different filters are synthesized, by
standard H . -techniques, to perform fault tolerant control. The fault
tolerant controller is based on the well known Youla controller param-
eterization. The parameterizing filter is designed to minimize the devi-
ation of the output caused by the fault and the disturbance. A high-per-
formance FTC architecture includes a fault diagnosis filter to adapt on-
line the controller parameter and thus improve the fault tolerance by
selecting a controller dedicated to the appearing fault, and limit the
conservatism introduced in the Ho, design of the FTC filter.
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