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Abstract

A model of Emergent Gravity with the observed Cosmological Constant
from a BF-Chern-Simons-Higgs Model is revisited which allows to show how
a Conformal Gravity, Maxwell and SU(2) x SU(2) x U(1) x U(1) Yang-Mills
Unification model in four dimensions can be attained from a Clifford Gauge
Field Theory in a very natural and geometric fashion.
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1 Emergent Gravity and Cosmological Constant
from a BF-Chern-Simons-Higgs Model

In this introduction we shall review how Einstein Gravity with the observed
Cosmological Constant emerges from a BF-Chern-Simons-Higgs Model [1]. The
4D action is inspired from a BF-CS model defined on the boundary of the open
5D tubular region D? x R3, where D? is the open domain of the two-dim disk.
For instance, AdS, has the topology of S x R? which can be seen as the lateral
boundary of the tubular region D? x R3. The upper/lower boundaries at 400 of
the open tubular region have a topology of D? x S2. The relevant BF-CS-Higgs
inspired action is based on the isometry group of AdS, space given by SO(3,2),
that also coincides with the conformal group of the 3-dim projective boundary
of AdS, of topology S* xS2. The action involves the SO(3, 2) valued gauge fields
AfB and a family of Higgs scalars ¢ that are SO(3,2) vector-valued 0-forms
and the indices run from A = 1,2,3,4,5. The action is comprised of an integral



associated with the open tubular 5-dim region M5 and an integral associated
with the 4-dim boundary My. It can be written in a compact notation using
gauge-covariant differential forms as

SBF—CS—Higgs = GFNF+pdadpNdadp Ndadp Ndagp —
M,

/ Vir(#) dad A dad A dad A dad A dao. (1)
M

Strictly speaking, because we are using a covariantized exterior differential
da = d+ A operator, we don’t have the standard BF-CS theory. For this reason
we use the terminology BF-CS-Higgs inspired model. The 5D origins of the
BF-CS inspired action is due to the correspondence

/ dpAFNF —s BAF,. B=d. Fy=FAF (2
D2xR3 D2x R3

and

/ dd)/\F/\F:/ ¢ FAF
D2xR3 My

/ dp A dp Adp AdpAdp = b dpNddAdpAdp.  (3)
D2xR3

My

after an integration by parts when d is the ordinary exterior differential operator
obeying d> = 0 and F = dA. When one uses the gauge-covariant exterior
differential dy = d + A, F and F' A F fields satisfy the Bianchi-identity:

F=dpA=dA+ANA. d4¢=Fp#0. d3A=dsF=0=ds(FAF)=0.
(4)

The Higgs-like potential is:
VH(¢) = K (77AB¢A¢B - 02)2; NAB = (+7 +,+, - _) K = constant. (5)

The gauge covariant exterior differential is defined: d4 = d + A so that da¢ =
dp+ AN ¢ and the SO(3,2)-valued field strength F = dA + A A A corresponds
to the SO(3,2)-valued gauge fields in the adjoint representation

ANP = Ah o AP0 a,b=1,2,3,4. (6)

woo o

which, after symmetry breaking, will be later identified as the Lorentz spin con-
nection wzb and the vielbein field respectively: Af’ﬂ = A e}, where A is the inverse
scale of the throat of AdS,. Notice that the scalars ®4 are dimensionless and
so is the parameter x, compared to the usual Higgs scalars in 4D of dimen-
sions of mass. Also, the action (1) does not have the standard kinetic terms
9" (D) (Dyp).

The Lie algebra SO(3,2) generators obey the commutation relations:

[Map, Mcp) =npcMap —nacMpp +napMpc —nepMac. (7



We will show next how gravitational actions with the observed cosmological
constant can be obtained from an action inspired from a BF-CS-Higgs theory.
If one writes the action (1) explicitly in terms of coordinates, one can see that it
is spacetime covariant since the metric factors in the products of the covariant

epsilon symbol and measures [+/|g| d"z] [%] cancel out as they should.
g

In this sense one may view the action (1) as being ”topological” due to the
fact that the metric does not appear explicitly. Different actions where the
scalars play the role of a Jacobian-like measure have been proposed by [2].
Before we continue with our derivation we must emphasize that our action
(1) (and procedure) is not the same as the action studied by [3]; we have a
covariantized Chern-Simons term instead of a Jacobian-squared expression and
it is not necessary to choose a preferred volume, leaving a residual invariance
under volume-preserving diffeomorphisms, in order to retrieve the MacDowell-
Mansouri-Chamseddine-West (MMCW) action for gravity [4], [5].

We shall perform a separate minimization of the 4D and 5D terms. The
Higgs-like potential is minimized at tree level when the vev (vacuum expectation
values) are

<P> =wv. <¢*> =0 a=1,234. (8)

which means that one is freezing-in at each spacetime point the internal 5 di-
rection of the internal space of the group SO(3,2). Using these conditions
(8) in the definitions of the gauge covariant derivatives acting on the internal
SO(3,2)-vector-valued spacetime scalars ¢ (z), we have that at tree level:

Vud® = 0u0° + Ap" 9" = 0; V0" = 0,0° + AL ¢" + A9 = AL w. (9)

A variation of the action (1) w.r.t the scalars ¢* yields the zero torsion condi-
tion after imposing the results (8, 9) solely after the variations have been taken
place. Therefore it is not necessary to impose by hand the zero torsion condi-
tion like in the MMCW procedure. Despite that the v.e.v of ¢* (a = 1,2,34)
are 0 one must not forget the constraint equations which arise from their vari-
ation. Thus, varying the action w.r.t the ¢ yields the SO(3,2)-covariantized
Euler-Lagrange equations that lead naturally to the zero torsion 7y, condition
(without having to impose it by hand)

5S 58S
— —dp———— =0 = FP AF g = 0 =
opr — M6(daoe) cobed
FEB = Tﬁy = 8Nef,+wzcef/ —pev =0
= wzc = wff(ez) ~ et 9, e, — €°0, eﬁ. (10)

and one recovers the standard Levi-Civita (spin) connection in terms of the
(vielbein) metric. A variation w.r.t the remaining ¢° scalar yields after using
the relation A% = \e®:

ab rred vpT 4.4 a b _c .d voT
F‘/LV FpT €abceds e"PT + X% €, €, €, €1 €abeds eHVPT — () =



7é¢5 F;LIB F;-,(—i €abedb EHVPT —on—shell ¢5 v#qsa vu¢b vp¢c VT¢d €abeds €MVPT

(11)
The origins of the crucial factor 5 in (11) arises from the variation w.r.t ¢° of
the terms in the action (1)

6" Vud" V" Vo Ve €sapea €777 + ¢ Vug® Vi V07 V! €asea €77 +

....... + 9" V8" Vi6° V0! VP €apeas €707 (12)

Using these last equations (8-11), after the minimization procedure, will
allows us to eliminate on-shell all the scalars ¢ from the action (1) furnishing
the MacDowell-Mansouri-Chamseddine-West action for gravity as a result of an
spontaneous symmetry breaking of the internal SO(3,2) gauge symmetry due
to the Higgs mechanism leaving unbroken the SO(3,1) Lorentz symmetry:

4
Sumcew = 5V /d% F) FS? €apeds €77 (13)

with the main advantage that it is no longer necessary to impose by hand the
zero Torsion condition in order to arrive at the Einstein-Hilbert action. On
the contrary, the zero Torsion condition is a direct result of the spontaneous
symmetry breaking and the dynamics of the orginal BF-CS inspired action.
Upon performing the decomposition

Azb = wzb. AZE’ = /\BZ' (14a)

where ) is the inverse length scale of the model (like the AdS4 throat), taking
into account that 755 = —1, the antisymmetry A% = —A5% and inserting these
relations (14a) into the definition

Fab _ dAab T Aac/\Acb _ Aa5/\A5b —
dw™ + W AW F A2 et A’ = R® £ A2 et Acd. (14d)

leads to the MMCW action (13) comprised of the Einstein-Hilbert action, the
cosmological constant term (vacuum energy density) plus the Gauss-Bonnet
Topological invariant in D = 4, respectively

8 4 4
S = 5)\2’[}/R/\€/\6 +5/\4v/e/\e/\e/\e +gv/R/\R. (15)

which implies that the gravitational constant G = L%, ., (in natural units of
I = ¢ = 1) and the vacuum energy density p are fixed in terms of the throat-size
of the AdS, space (A\)~! and |v]| as

8
5

1 1
A2 = = .
W= Y6 = Tenrz

4
ol = 2 Aol (16)



Eliminating the vacuum expectation value (vev) value v from eq-(16) yields a
geometric mean relationship among the three scales:

A1
32r L%
By setting the throat-size of the AdSy space (1/\) = Ry to coincide precisely

with the Hubble radius Rz ~ 10 Lp, the relation (17) furnishes the observed
vacuum energy density [1]

= ol (17)

1 1 1 Lp 1

_— o~ (7)2 —_— ~ 107122 (MPlanck)4' (18)
32r R%, L3 Ry L5

lp| =

A value of A™' =1 = L, in (17) would yield a huge vacuum energy density
(cosmological constant). The (Anti) de Sitter throat size must be of the order
of the Hubble scale. The reason one can obtain the correct numerical value of
the cosmological constant is due to the key presence of the numerical factor
< ¢®> = v in (16) and whose value is not of the order of unity which would
have led to A™' ~ Lp and a huge cosmological constant. On the contrary, its
v.e.v value is of the order of |v| ~ (Ry/Ly)? ~ 10'?2. The results here also
apply to the de Sitter case with positive cosmological constant after replacing
the AdSy gauge group SO(3,2) with the dSs group SO(4,1) and breaking the
symmetry SO(4,1) — SO(3,1).

2 Conformal Gravity and Yang-Mills from Gauge
Field Theory based on Clifford Algebras

Let ap = (+,—, —, —), €123 = —€"123 = 1, the Clifford CI(1, 3) algebra associ-
ated with the tangent space of a 4D spacetime M is defined by {T', s} = 274
such that

[[a,Ty] =2Tqp, I's = —iTgTa 3Ty, (I5)® = 1; {[5,T.} = 0; (19)
1
Laved = €abed I's; Tap = 3 (Toy — T Ly) . (20a)
Fabc = €abed F5 Fd; Fabcd = €abed 1—‘5- (2Ob)
1
TaTy = Tap+7apy, T'ap I's = 5 €abed e, (21a)
Tep I'e = Tlbe r,— Nac I'y + €abed I's Fd (21b)
Fc Fab = TNac Fb — Tlbe Fa + €abed 1_‘5 Fd (216)
To Ty Do = 7ab e+ Mhe Ta = Nacls + €qpea [s T (21d)
T Dog = €,y T5 — 482 T — 2525, (21e)
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the generators I'yp, ['ape, Labeq are defined as usual by a signed-permutation sum
of the anti-symmetrizated products of the gammas. A representation of the
Cl1(1,3) algebra exists where the generators 1,1, I'5,I';T'5,7 = 1,2, 3 are chosen
to be Hermitian; while the generators —i I'g = I'y; Ty, Typ for a,b=1,2,3,4
are chosen to be anti-Hermitian. For instance, the anti-Hermitian generators
Iy for £ = 1,2,3 can be represented by 4 x 4 matrices, whose block diagonal
entries are 0 and the 2 x 2 block off-diagonal entries are comprised of +oy,
respectively, where oy, are the 3 Pauli’s spin Hermitian 2 x 2 matrices obeying
0;0j = 0;5 +1i€;,0%. The Hermitian generator I'g has zeros in the main diagonal
and —19y9, —1axo in the off-diagonal block so that —i I'g = I'y is anti-Hermitian.
The Hermitian I's chirality operator has 1942, —1oxo along its main diagonal
and zeros in the off-diagonal block. The unit operator 1444 has 1 along the
diagonal and zeros everywhere else.
Using eqs-(19-22) allows to write the CI(1,3) algebra-valued one-form as

1
A = (z 4 1+ib, Ts + €2 Ty +i foT, Ts + szb rab> dz". (23)

the anti-Hermitian gauge field obeys the condition (A,)T = — A,,.

The Clifford-valued anti-Hermitian gauge field A, transforms according to
A, = U A, U+ U'9,U under Clifford-valued gauge transformations.
The anti-Hermitian Clifford-valued field strength is F' = dA + [A, A] so that F'
transforms covariantly F/ = U~! F U. Decomposing the anti-Hermitian field
strength in terms of the Clifford algebra anti-Hermitian generators gives

1
Ts + F,Ta i FioTq Ts + —F Ty (24)

F., =iF,1+iF> 15w

ng pv

where F = % F,, dz* A dx”. The field-strength components are given by

FI}V = 0ua, — Ouay (25a)

Fp, = 0uby — Oyby + 262 fua — 265 fua (25b)

FS, = Ouel — 0p€l + wibeny —wileu + 2f1b, — 2f5b, (25¢)
FS = Oufd = Oufi +wil fur — i fup + 2€0b, — 2e5b,, (25d)
Flfff = Ouwl‘fb + wpwy, byyq (eZeﬁ’, — fl‘jf,lj) — V. (25¢€)

A Clifford-algebra-valued dimensionless anti-Hermitian scalar field ®(z#) =
®A(z#) T4 belonging to a section of the Clifford bundle in D = 4 can be
expanded as

= i¢MW1 4+ ¢, + ¢®Tap +i ¢ To D5 +i¢® Ty (26)



so that the covariant exterior differential is
da® = (da ®“)Tc = (0, ®° + A} @ f,F ) T'c da .
where
[Au, @ = A} @P T4, Tp] = Al @7 £, Tc. (27)

The generalization of the action in section 1 to the full-fledged Clifford-
algebra case is given by three terms. The first term is

I, = / d*z e < @A FE F TATp T > . (28)
My

where the operation < ....... >o denotes taking the scalar part of the Clifford
geometric product of 'y I'p T'¢. The scalar part of the Clifford geometric
product of the gammas is for example

< Fa Fb > = 6ab7 < Falag Fblbg > = 5(1161 6{121}2 - 60.11)2 5(12171

< Fal Fa2 Fa3 > = 0, < Fa1a2a3 Fb1b2b3 > = §a1b1 5,121,2 5a3b3 + ...
< Do Tay Tay Tay > = 6aras dasas — Oaras dasas + Oazas Oarays €EC ... (29)
The integrand of (28) is comprised of terms like

FopFed ) ¢y p) g FO) g6, pa p pas 45).
2 F% AF® oD, FOAF® gM. pG) A O 51,
FUONF? ¢ FUONF® gos; FUAF gg;
FONF, ¢5 FONFus 65 FNFC (heGa — Tacts);
FONAFC 6™ eppea; FONF 6 €aped; v (30)

The numerical factors and signs of each one of the above terms is determined
from the relations in eqs-(19-22). Due to the fact that e#?? = ¢?7"¥ the terms
like
Fab/\Fbc ¢ac = FbC/\F%) (bac = FCb/\Fba (bac =
FSAFY e = —FYANF" ¢y = FGAF" e = 0
FONFY o = 0; FOANFY ¢, = 0; FPAF” ¢ €gpeq =0, .. (31)
vanish. Thus the action (28) is a generalization of the McDowell-Mansouri-

Chamseddine-West action. The Clifford-algebra generalization of the Chern-
Simons terms are

I, = / < ®F dA N dDP NdDC NdRP Ty TaTp Tc Tp) >0 =
My



/ (6 do" A dg® g N d6 carea — 6 A6 N D A DTN AP capea +
My

(32)
The Clifford-algebra generalization of the Higgs-like potential is given by
I3 = —/ < d2HNdPPNdDCNADP NdDF Ty T T Tp Ty >0 V(®) =
Ms
— / d®® A d®® A dB® A dD° A dD? €gpeq V(D) + oo
M

where )

V(®) = k (@4 @* —v?) (33)
and

Sa &4 = 61 Gy + ¢ dat+ ¢ Gub + 6% bus + 0O b5 (34)

Vacuum solutions can be found of the form
<¢® > =v; <M > = <¢?2> = <¢p®> = <¢®> = 0. (35)

Similarly as it occurred in section 1, a variation of I; + Is 4+ I3 given by
eqs-(28,32,33) w.r.t ¢°, following similar steps as in eqs-(9,11,12) and tak-
ing into account the v.e.v of eq-(35) which minimize the potential (33) solely
after the variation w.r.t the scalar fields is taken place, allows to eliminate the
scalars on-shell leading to

4
L+ L+ 13 = gV / d4$ (Fab/\ch €abed + F(l) /\F(S) + Fa/\Fat'))
M

g v /M d'z ( FY Pl eqpea + F\Y) FSD) + Fi, Fo2 ) eP7. (36)
where Einstein’s summation convention over repeated indices is implied.

The upshot of having started with the action I; + Iy + I3 involving the
three expressions of eqs-(28,32,33) is that one does not have to impose by hand
constraints on the field strengths in eq-(36) in order to recover Einstein gravity.
Despite that one has chosen the v.e.v conditions (35) on the scalars, one must
not forget the equations which result from their variations. Hence, performing
a variation of I + Iy + I3 w.r.t the remaining scalars ¢!, %, ¢®*, ¢®°, following
similar steps as in eqs-(9,11,12) and taking into account the v.e.v of eq-(35)
which minimize the potential (33), yields

2FAANFY + FOAFD 4 FO ARG 4 FAANFE, + F®AF,;; = 0. (37a)

FOANF® 4+ F®AFC g, = 0. (37b)
FONE, + FEAF® egpeq = 0. (37¢)



FONF;s + FAF eqpeq = 0. (37d)

From eqs-(37) one can infer that F! = F* = 0, a = 1,2,3,4 are solutions
compatible with eqs-(37b, 37c, 37d), while the non-zero values F, F® [ will
be constrained to obey

2FCAFS, + FOANF®) 4 F®AF,s = 0. (37¢)
Therefore, when F! = F% = ( the action (36) will then reduce to

4
S= v /M d'z (F) Fd eapea ) €7 (38)
A solution to the the zero torsion condition F'* = 0 can be simply found by
setting f; = 0in eq-(25¢), and which in turn, furnishes the Levi-Civita spin con-

nection wzb(eﬁ) in terms of the tetrad ej;. Upon doing so, the field strength Fab

in eq-(25¢) when f% =0 and w?’(e%) becomes then F° = R (wi) + 4e® A e,
where R = %Rﬁ’; dz* A dz¥ is the standard expression for the Lorentz-

curvature two-form in terms of the Levi-Civita spin connection. Finally, the
action (38) becomes once again the Macdowell-Mansouri-Chamseddine-West ac-
tion

4
S = 5v/ d*z (R® +4e*NeP ) A (R +4eNet ) eqpeq. (39)

comprised of the Gauss-Bonnet term R A R; the Einstein-Hilbert term RAeAe,
and the cosmological constant term e Ae Ae Ae.

In order to have the proper dimensions of (length)~2 in the above curvature
R+ eAe terms, one has to introduce the suitable length scale parameter [ in the
terms l%e Ae. If we wish to recover the same results as those found in section 1
obtained after the elimination of the v.e.v < ¢° >= v in eq-(16), and consistent
with the correct value of the observed vacuum energy density one requires to set
I~ Ryg. Avalue of | = L, would yield a huge cosmological constant. The (Anti)
de Sitter throat size can be set to the Hubble scale as we explained above in
section 1 due to the key presence of the numerical factor < ¢° >= v in eq-(16)
and whose value is not of the order of unity.

At this stage we can also provide the relation of the action (36) to the
Conformal Gravity action based in gauging the conformal group SO(4,2) ~
SU(2,2) in 4D . The anti-Hermitian operators of the Conformal algebra can be
written in terms of the Clifford algebra anti-Hermitian generators as [6]

P, = %ra (1 +iT5); K, = %Fa (1-iTs); D = % Ts, Loy — % I

(40)
P, (a=1,2,3,4) are the translation generators; K, are the conformal boosts; D
is the dilation generator and L, are the Lorentz generators. The total number
of generators is respectively 4 +4 + 1 + 6 = 15. Having established this, a real-
valued tetrad V' field and its real-valued partner Vlf can be defined in terms of
the real-valued gauge fields ey, fj;, as follows



e+ fi=Vio el — fi= V5 (41)

such that the combination
ez r, +1 f;j ', s = Vj P, + V/f K,. (42)

is anti-Hermitian for real-valued ej, f/ fields. The components of the torsion and
conformal-boost curvature two-forms of conformal gravity are given respectively
by the linear combinations of eqs-(25¢, 25d)

Fﬁu+F5;:Fsu[P]7 F,SyiFS;:FSy[K}é

F% T, +i F%

N2 nv

T, Ts = F.[P] P, + F[K] K,. (43)

The components of the curvature two-form corresponding to the Weyl dila-
tion generator are F’ 31, (25b). The Lorentz curvature two-form is contained in
F ;}L’ dzt Ndx” (25e) and the Maxwell curvature two-form is F;,, da* Adx” (25a).
To sum up, the real-valued tetrad gauge field V}} (that gauges the translations

P, ) and the real-valued conformal boosts gauge field ‘7; (that gauges the con-
formal boosts K,) of conformal gravity are given, respectively, by the linear
combination of the gauge fields e}, + f associated with the anti-Hermitian
Ty, i Ty T'5 generators of the Clifford algebra CI(1,3) of the tangent space of
spacetime M? after performing a Wick rotation —i I'y = I'4.

If one wishes to recover ordinary Einstein gravity directly from the action
(36) without invoking the equations of motion (37) resulting from a variation
of Iy + Iy + I5 w.r.t the scalar components of ®4, one would require, firstly, to
set the fields f = 0 and b, = 0 in the expressions for the field strengths in
eqs-(25). Secondly, by i 1rnp051ng by hand the zero torsion and conformal boost
curvature conditions F“ LIP] = Fa JK] =0 = F%, = F = 0 in eqs-(25c,
25d), furnish the Levi- Civita spin Connection w“b(eu), S0 that F in eq-(25e¢)

m
becomes then F* = R®™(wi?) + 4e® A €”, where R = $ R dxt A dz” is the

nv
standard expression for the Lorentz- curvature two- form in terms of the Levi-

Civita spin connection. Since Fi 0 in eq-(25b) when f7 = = 0, the
remaining nonvanishing terms in the action (36), after setting ¢5 = v and
Fy, = Fj v = F}, °, = 0, are comprised once again of the Gauss-Bonnet term

R /\ R; the Elnsteln Hilbert term R A e A e, and the cosmological constant term
eNeNeAle.

One should emphasize that our results in this section are based on a very
dif ferent action (28) (plus the terms in eqs-(32,33)) than the invariant grav-
itational action studied by Chameseddine [7] based on the constrained gauge
group U(2,2) broken down to U(1,1) x U(1,1). In general, our action (28) is
comprised of many more terms displayed by eq-(30) than the action chosen by
Chamseddine

I = /M Tr (Ts F A F). (44)

10



Secondly, as shown in section 1, our procedure furnishes the correct value of
the cosmological constant via the key presence of the v.e.v < ¢° >= v in all
the terms of the action (15). Thirdly, by invoking the equations of motion (37)
resulting from a variation of I + Iy + I3 w.r.t the scalar components of ®4,
one does not need to impose by hand the zero torsion constraints as done by
[7]. The condition F® = 0 results from solving eqs-(37).

To sum up, ordinary gravity with the correct value of the cosmological con-
stant emerges from a very specific vacuum solution. Furthermore, there are
many other vacuum solutions of the more fundamental action associated with
the expressions I + I + I3 of eqs-(28, 32, 33) and involving all of the terms in
eq-(30). For example, for constant field configurations ®4, the inclusion of all
the gauge field strengths in eq-(30) contain the Euler type terms F% A Feyp.q;
theta type terms F'AF'; F? AF® corresponding to the Maxwell a, and Weyl di-
latation b,, fields, respectively; Pontryagin type terms F'q A F® : torsion squared
terms F'* A F'®, etc ... all in one stroke.

Tensorial Generalized Yang-Mills in C-spaces (Clifford spaces) based on
poly-vector valued (anti-symmetric tensor fields) gauge fields A/ (X) and field
strengths Fysn(X) have ben studied in [6] where X = X, T'™ is a C-space poly-
vector valued coordinate and Ay (X) = AL, (X) Ty is a Clifford-value gauge
field whose Clifford algebra is spanned by the I'; generators. The Clifford-
algebra-valued gauge field AfL (z#)T'; in ordinary spacetime is naturally embed-
ded into a far richer object in C-spaces. In order to retrieve (Conformal) Gravity
one required earlier to choose the ClI(1,3) tangent spacetime algebra because
the chosen signature of the underlying spacetime manifold was chosen to be
(+,—,—,—). The advantage of recurring to C-spaces associated with the 4D
spacetime manifold is that one can have a Conformal Gravity, Maxwell and
SU(2) Yang-Mills unification in a very geometric fashion. To briefly illustrate
how it can be attained, let us write in 4D the several components of the C-space
poly-vector valued gauge field A(X) as

.AI

Al = @1, AZL; Al p

_ AT . I _ Y
(7278 - GMVPU A07 A;u/po - eltV/JU (b . ()

where @,5 correspond to the scalar (pseudo-scalars) components of a poly-
vector. Let us freeze all the degrees of freedom of the poly-vector C-space
coordinate X in A(X) except those of the ordinary spacetime vector coordi-
nates x*. As we have shown in this section, Conformal Gravity and Maxwell
are encoded in the components of Aft. The antisymmetric tensorial gauge field

of rank three A{W o, 1s dual to the vector JZ{, and has 4 independent spacetime

components (o = 1,2,3,4), the same number as the vector gauge field AIIL.

Therefore, the Yang-Mills group U(2,2) is encoded in .Z(I,, it has 16 generators
and contains the compact subgroup U(2) xU(2) = SU(2)x SU(2)xU(1) xU(1)
after symmetry breaking. U(4) is not large enough to accommodate the Stan-
dard Model Group SU(3) x SU(2) x U(1) as its maximally compact subgroup.
The GUT group SU(5) is large enough to achieve this goal. In general, the

group SU(m + n) has SU(m) x SU(n) x U(1) for compact subgroups. Other

11



approaches, for instance, to Grand Unification with Gravity based on C-spaces
and Clifford algebras have been proposed by [9] and [10], respectively. In the
model by [9] the 16-dim C-space (corresponding to 4D Clifford algebra) metric
G has enough components to accommodate ordinary gravity and Yang-Mills
in the decomposition G, = g + AL Al gi;. Furthermore, it is shown how a
unified theory of generalized branes coupled to gauge fields, including the grav-
itational and Kalb-Ramond fields can be attained in C-spaces. A large number
of references pertaining the role of Clifford algebras in Geometric Unification
models is also provided. The Gravity-Yang-Mills-Maxwell-Matter GUT model
in [10] relies on the CI(8) algebra in 8D. In forthcoming work we will present
further details of the Unification program within the C-space framework. To
conclude, Conformal Gravity, Maxwell and SU(2) x SU(2) Yang-Mills unifica-
tion can be attained in a very natural and geometric way in four dimensions. To
incorporate the SU(3) (QCD) symmetry and the fermion family flavor symme-
try requires going to higher dimensions. For instance, the Es Geometry of the
Clifford Superspace associated with C1(16) and Conformal Gravity Yang-Mills
Grand Unification can be found in [§].
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