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Abstract

A model of Emergent Gravity with the observed Cosmological Constant
from a BF-Chern-Simons-Higgs Model is revisited which allows to show how
a Conformal Gravity, Maxwell and SU(2) × SU(2) × U(1) × U(1) Yang-Mills
Unification model in four dimensions can be attained from a Clifford Gauge
Field Theory in a very natural and geometric fashion.
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1 Emergent Gravity and Cosmological Constant
from a BF-Chern-Simons-Higgs Model

In this introduction we shall review how Einstein Gravity with the observed
Cosmological Constant emerges from a BF-Chern-Simons-Higgs Model [1]. The
4D action is inspired from a BF-CS model defined on the boundary of the open
5D tubular region D2 ×R3, where D2 is the open domain of the two-dim disk.
For instance, AdS4 has the topology of S1×R3 which can be seen as the lateral
boundary of the tubular region D2×R3. The upper/lower boundaries at ±∞ of
the open tubular region have a topology of D2×S2. The relevant BF-CS-Higgs
inspired action is based on the isometry group of AdS4 space given by SO(3, 2),
that also coincides with the conformal group of the 3-dim projective boundary
of AdS4 of topology S1×S2. The action involves the SO(3, 2) valued gauge fields
AAB

µ and a family of Higgs scalars φA that are SO(3, 2) vector-valued 0-forms
and the indices run from A = 1, 2, 3, 4, 5. The action is comprised of an integral
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associated with the open tubular 5-dim region M5 and an integral associated
with the 4-dim boundary M4. It can be written in a compact notation using
gauge-covariant differential forms as

SBF−CS−Higgs =
∫

M4

φ F ∧ F + φ dAφ ∧ dAφ ∧ dAφ ∧ dAφ −

∫
M5

VH(φ) dAφ ∧ dAφ ∧ dAφ ∧ dAφ ∧ dAφ. (1)

Strictly speaking, because we are using a covariantized exterior differential
dA = d+A operator, we don’t have the standard BF-CS theory. For this reason
we use the terminology BF-CS-Higgs inspired model. The 5D origins of the
BF-CS inspired action is due to the correspondence∫

D2×R3
dφ ∧ F ∧ F ←→

∫
D2×R3

B ∧ F4. B = dφ. F4 = F ∧ F. (2)

and ∫
D2×R3

dφ ∧ F ∧ F =
∫

M4

φ F ∧ F∫
D2×R3

dφ ∧ dφ ∧ dφ ∧ dφ ∧ dφ =
∫

M4

φ dφ ∧ dφ ∧ dφ ∧ dφ. (3)

after an integration by parts when d is the ordinary exterior differential operator
obeying d2 = 0 and F = dA. When one uses the gauge-covariant exterior
differential dA = d + A, F and F ∧ F fields satisfy the Bianchi-identity:

F = dAA = dA + A ∧A. d2
Aφ = Fφ 6= 0. d2

AA = dAF = 0⇒ dA(F ∧ F ) = 0.
(4)

The Higgs-like potential is:

VH(φ) = κ (ηABφAφB − v2)2; ηAB = (+,+,+,−,−). κ = constant. (5)

The gauge covariant exterior differential is defined: dA = d + A so that dAφ =
dφ + A∧ φ and the SO(3, 2)-valued field strength F = dA + A∧A corresponds
to the SO(3, 2)-valued gauge fields in the adjoint representation

AAB
µ = Aab

µ ; A5a
µ ; a, b = 1, 2, 3, 4. (6)

which, after symmetry breaking, will be later identified as the Lorentz spin con-
nection ωab

µ and the vielbein field respectively: A5a
µ = λ ea

µ where λ is the inverse
scale of the throat of AdS4. Notice that the scalars ΦA are dimensionless and
so is the parameter κ, compared to the usual Higgs scalars in 4D of dimen-
sions of mass. Also, the action (1) does not have the standard kinetic terms
gµν(Dµϕ)(Dνϕ).

The Lie algebra SO(3, 2) generators obey the commutation relations:

[MAB ,MCD] = ηBCMAD − ηACMBD + ηADMBC − ηBDMAC . (7)
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We will show next how gravitational actions with the observed cosmological
constant can be obtained from an action inspired from a BF-CS-Higgs theory.
If one writes the action (1) explicitly in terms of coordinates, one can see that it
is spacetime covariant since the metric factors in the products of the covariant
epsilon symbol and measures [

√
|g| dnx] [ εµ1µ2.....µn√

|g|
] cancel out as they should.

In this sense one may view the action (1) as being ”topological” due to the
fact that the metric does not appear explicitly. Different actions where the
scalars play the role of a Jacobian-like measure have been proposed by [2].
Before we continue with our derivation we must emphasize that our action
(1) (and procedure) is not the same as the action studied by [3]; we have a
covariantized Chern-Simons term instead of a Jacobian-squared expression and
it is not necessary to choose a preferred volume, leaving a residual invariance
under volume-preserving diffeomorphisms, in order to retrieve the MacDowell-
Mansouri-Chamseddine-West (MMCW) action for gravity [4], [5].

We shall perform a separate minimization of the 4D and 5D terms. The
Higgs-like potential is minimized at tree level when the vev (vacuum expectation
values) are

< φ5 > = v. < φa > = 0. a = 1, 2, 3, 4.. (8)

which means that one is freezing-in at each spacetime point the internal 5 di-
rection of the internal space of the group SO(3, 2). Using these conditions
(8) in the definitions of the gauge covariant derivatives acting on the internal
SO(3, 2)-vector-valued spacetime scalars φA(x), we have that at tree level:

∇µφ5 = ∂µφ5 + A5a
µ φa = 0; ∇µφa = ∂µφa + Aab

µ φb + Aa5
µ φ5 = Aa5

µ v. (9)

A variation of the action (1) w.r.t the scalars φa yields the zero torsion condi-
tion after imposing the results (8, 9) solely after the variations have been taken
place. Therefore it is not necessary to impose by hand the zero torsion condi-
tion like in the MMCW procedure. Despite that the v.e.v of φa ( a = 1, 2, 34)
are 0 one must not forget the constraint equations which arise from their vari-
ation. Thus, varying the action w.r.t the φa yields the SO(3, 2)-covariantized
Euler-Lagrange equations that lead naturally to the zero torsion T a

µν condition
(without having to impose it by hand)

δS

δφa
− dA

δS

δ(dAφa)
= 0 ⇒ F 5b ∧ F cd εabcd = 0 ⇒

F 5b
µν = T b

µν = ∂µeb
ν + ωbc

µ ec
ν − µ↔ ν = 0

⇒ ωbc
µ = ωbc

µ (ea
µ) ∼ eνb ∂ν ec

µ − eνc ∂ν eb
µ. (10)

and one recovers the standard Levi-Civita (spin) connection in terms of the
(vielbein) metric. A variation w.r.t the remaining φ5 scalar yields after using
the relation Aa5

µ = λea
µ:

F ab
µν F cd

ρτ εabcd5 εµνρτ + 5λ4v4 ea
µ eb

ν ec
ρ ed

τ εabcd5 εµνρτ = 0 ⇒
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−1
5
φ5 F ab

µν F cd
ρτ εabcd5 εµνρτ =on−shell φ5 ∇µφa ∇νφb ∇ρφ

c ∇τφd εabcd5 εµνρτ

(11)
The origins of the crucial factor 5 in (11) arises from the variation w.r.t φ5 of
the terms in the action (1)

φ5 ∇µφa ∇νφb ∇ρφ
c ∇τφd ε5abcd εµνρτ + φa ∇µφ5 ∇νφb ∇ρφ

c ∇τφd εa5bcd εµνρτ +

....... + φa ∇µφb ∇νφc ∇ρφ
d ∇τφ5 εabcd5 εµνρτ . (12)

Using these last equations (8-11), after the minimization procedure, will
allows us to eliminate on-shell all the scalars φA from the action (1) furnishing
the MacDowell-Mansouri-Chamseddine-West action for gravity as a result of an
spontaneous symmetry breaking of the internal SO(3, 2) gauge symmetry due
to the Higgs mechanism leaving unbroken the SO(3, 1) Lorentz symmetry:

SMMCW =
4
5

v

∫
d4x F ab

µν F cd
ρτ εabcd5 εµνρτ . (13)

with the main advantage that it is no longer necessary to impose by hand the
zero Torsion condition in order to arrive at the Einstein-Hilbert action. On
the contrary, the zero Torsion condition is a direct result of the spontaneous
symmetry breaking and the dynamics of the orginal BF-CS inspired action.
Upon performing the decomposition

Aab
µ = ωab

µ . Aa5
µ = λea

µ. (14a)

where λ is the inverse length scale of the model (like the AdS4 throat), taking
into account that η55 = −1, the antisymmetry Aa5 = −A5a, and inserting these
relations (14a) into the definition

F ab = dAab + Aac ∧Acb − Aa5 ∧A5b =

dωab + ωac ∧ ωcb + λ2 ea ∧ eb = Rab + λ2 ea ∧ eb. (14b)

leads to the MMCW action (13) comprised of the Einstein-Hilbert action, the
cosmological constant term (vacuum energy density) plus the Gauss-Bonnet
Topological invariant in D = 4, respectively

S =
8
5
λ2v

∫
R ∧ e ∧ e +

4
5
λ4v

∫
e ∧ e ∧ e ∧ e +

4
5
v

∫
R ∧R. (15)

which implies that the gravitational constant G = L2
Planck (in natural units of

h̄ = c = 1) and the vacuum energy density ρ are fixed in terms of the throat-size
of the AdS4 space (λ)−1 and |v| as

8
5

λ2 |v| =
1

16πG
=

1
16πL2

P

; |ρ| =
4
5

λ4 |v|. (16)
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Eliminating the vacuum expectation value (vev) value v from eq-(16) yields a
geometric mean relationship among the three scales:

λ2

32π

1
L2

P

= |ρ|. (17)

By setting the throat-size of the AdS4 space (1/λ) = RH to coincide precisely
with the Hubble radius RH ∼ 1061 LP , the relation (17) furnishes the observed
vacuum energy density [1]

|ρ| =
1

32π

1
R2

H

1
L2

P

∼ (
LP

RH
)2

1
L4

P

∼ 10−122 (MPlanck)4. (18)

A value of λ−1 = l = Lp in (17) would yield a huge vacuum energy density
(cosmological constant). The (Anti) de Sitter throat size must be of the order
of the Hubble scale. The reason one can obtain the correct numerical value of
the cosmological constant is due to the key presence of the numerical factor
< φ5 > = v in (16) and whose value is not of the order of unity which would
have led to λ−1 ∼ LP and a huge cosmological constant. On the contrary, its
v.e.v value is of the order of |v| ∼ (RH/Lp)2 ∼ 10122. The results here also
apply to the de Sitter case with positive cosmological constant after replacing
the AdS4 gauge group SO(3, 2) with the dS4 group SO(4, 1) and breaking the
symmetry SO(4, 1)→ SO(3, 1).

2 Conformal Gravity and Yang-Mills from Gauge
Field Theory based on Clifford Algebras

Let ηab = (+,−,−,−), ε0123 = −ε0123 = 1, the Clifford Cl(1, 3) algebra associ-
ated with the tangent space of a 4D spacetimeM is defined by {Γa,Γb} = 2ηab

such that

[Γa,Γb] = 2Γab, Γ5 = − i Γ0 Γ2 Γ3 Γ4, (Γ5)2 = 1; {Γ5,Γa} = 0; (19)

Γabcd = εabcd Γ5; Γab =
1
2

(ΓaΓb − ΓbΓa) . (20a)

Γabc = εabcd Γ5 Γd; Γabcd = εabcd Γ5. (20b)

Γa Γb = Γab + ηab, Γab Γ5 =
1
2
εabcd Γcd, (21a)

Γab Γc = ηbc Γa − ηac Γb + εabcd Γ5 Γd (21b)

Γc Γab = ηac Γb − ηbc Γa + εabcd Γ5 Γd (21c)

Γa Γb Γc = ηab Γc + ηbc Γa − ηacΓb + εabcd Γ5 Γd (21d)

Γab Γcd = εab
cd Γ5 − 4δ

[a
[c Γb]

d] − 2δab
cd . (21e)
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δab
cd =

1
2

(δa
c δb

d − δa
d δb

c ). (22)

the generators Γab,Γabc,Γabcd are defined as usual by a signed-permutation sum
of the anti-symmetrizated products of the gammas. A representation of the
Cl(1, 3) algebra exists where the generators 1,Γ0,Γ5,ΓiΓ5, i = 1, 2, 3 are chosen
to be Hermitian; while the generators −i Γ0 ≡ Γ4; Γa, Γab for a, b = 1, 2, 3, 4
are chosen to be anti-Hermitian. For instance, the anti-Hermitian generators
Γk for k = 1, 2, 3 can be represented by 4 × 4 matrices, whose block diagonal
entries are 0 and the 2 × 2 block off-diagonal entries are comprised of ±σk,
respectively, where σk, are the 3 Pauli’s spin Hermitian 2× 2 matrices obeying
σiσj = δij +iεijkσk. The Hermitian generator Γ0 has zeros in the main diagonal
and−12×2,−12×2 in the off-diagonal block so that−i Γ0 = Γ4 is anti-Hermitian.
The Hermitian Γ5 chirality operator has 12×2,−12×2 along its main diagonal
and zeros in the off-diagonal block. The unit operator 14×4 has 1 along the
diagonal and zeros everywhere else.

Using eqs-(19-22) allows to write the Cl(1, 3) algebra-valued one-form as

A =
(

i aµ 1 + i bµ Γ5 + ea
µ Γa + i fa

µ Γa Γ5 +
1
4
ωab

µ Γab

)
dxµ. (23)

the anti-Hermitian gauge field obeys the condition (Aµ)† = − Aµ.
The Clifford-valued anti-Hermitian gauge field Aµ transforms according to

A′
µ = U−1 Aµ U + U−1∂µU under Clifford-valued gauge transformations.

The anti-Hermitian Clifford-valued field strength is F = dA + [A,A] so that F
transforms covariantly F ′ = U−1 F U . Decomposing the anti-Hermitian field
strength in terms of the Clifford algebra anti-Hermitian generators gives

Fµν = i F 1
µν 1 + i F 5

µν Γ5 + F a
µν Γa + i F a5

µν Γa Γ5 +
1
4
F ab

µν Γab. (24)

where F = 1
2 Fµν dxµ ∧ dxν . The field-strength components are given by

F 1
µν = ∂µaν − ∂νaµ (25a)

F 5
µν = ∂µbν − ∂νbµ + 2ea

µfνa − 2ea
νfµa (25b)

F a
µν = ∂µea

ν − ∂νea
µ + ωab

µ eνb − ωab
ν eµb + 2fa

µbν − 2fa
ν bµ (25c)

F a5
µν = ∂µfa

ν − ∂νfa
µ + ωab

µ fνb − ωab
ν fµb + 2ea

µbν − 2ea
νbµ (25d)

F ab
µν = ∂µωab

ν + ωac
µ ω b

νc + 4
(
ea
µeb

ν − fa
µf b

ν

)
− µ←→ ν. (25e)

A Clifford-algebra-valued dimensionless anti-Hermitian scalar field Φ(xµ) =
ΦA(xµ) ΓA belonging to a section of the Clifford bundle in D = 4 can be
expanded as

Φ = i φ(1) 1 + φa Γa + φab Γab + i φa5 Γa Γ5 + i φ(5) Γ5 (26)
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so that the covariant exterior differential is

dA Φ = (dA ΦC) ΓC =
(

∂µ ΦC + AA
µ ΦB f C

AB

)
ΓC dxµ .

where
[Aµ, Φ] = AA

µ ΦB [ΓA, ΓB ] = AA
µ ΦB f C

AB ΓC . (27)

The generalization of the action in section 1 to the full-fledged Clifford-
algebra case is given by three terms. The first term is

I1 =
∫

M4

d4x εµνρσ < ΦA FB
µν FC

ρσ ΓA ΓB ΓC >0 . (28)

where the operation < ....... >0 denotes taking the scalar part of the Clifford
geometric product of ΓA ΓB ΓC . The scalar part of the Clifford geometric
product of the gammas is for example

< Γa Γb > = δab, < Γa1a2 Γb1b2 > = δa1b1 δa2b2 − δa1b2 δa2b1

< Γa1 Γa2 Γa3 > = 0, < Γa1a2a3 Γb1b2b3 > = δa1b1 δa2b2 δa3b3 ± ......

< Γa1 Γa2 Γa3 Γa4 > = δa1a2 δa3a4 − δa1a3 δa2a4 + δa2a3 δa1a4 , etc ...... (29)

The integrand of (28) is comprised of terms like

F ab ∧ F cd φ(5) εabcd; F (1) ∧ F (5) φ(5); F a ∧ F a5 φ(5);

2 F a
b ∧ F b

a φ(1); F (1) ∧ F (1) φ(1); F (5) ∧ F (5) φ(1);

F (1) ∧ F ab φab; F (1) ∧ F a5 φa5; F (1) ∧ F a φa;

F a ∧ Fa φ(1); F a5 ∧ Fa5 φ(1); F ab ∧ F c (ηbcφa − ηacφb);

F ab ∧ F c φ5d εabcd; F a ∧ F b5 φcd εabcd; ........ (30)

The numerical factors and signs of each one of the above terms is determined
from the relations in eqs-(19-22). Due to the fact that εµνρσ = ερσµν the terms
like

F a
b ∧ F bc φac = F bc ∧ F a

b φac = F cb ∧ F a
b φac =

F c
b ∧ F ba φac = − F a

b ∧ F bc φac ⇒ F a
b ∧ F bc φac = 0

F a ∧F b φab = 0; F a5 ∧F b5 φab = 0; F a5 ∧F b5 φcd εabcd = 0, ........ (31)

vanish. Thus the action (28) is a generalization of the McDowell-Mansouri-
Chamseddine-West action. The Clifford-algebra generalization of the Chern-
Simons terms are

I2 =
∫

M4

< ΦE dΦA ∧ dΦB ∧ dΦC ∧ dΦD Γ[E ΓA ΓB ΓC ΓD] >0 =
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∫
M4

(
φ(5) dφa ∧ dφb ∧ dφc ∧ dφd εabcd − φa dφ(5) ∧ dΦb ∧ dΦc ∧ dΦd εabcd + .........

)
.

(32)
The Clifford-algebra generalization of the Higgs-like potential is given by

I3 = −
∫

M5

< dΦA∧dΦB∧dΦC∧dΦD∧dΦE Γ[A ΓB ΓC ΓD ΓE] >0 V (Φ) =

−
∫

M5

dΦ5 ∧ dΦa ∧ dΦb ∧ dΦc ∧ dΦd εabcd V (Φ) + .......

where
V (Φ) = κ

(
ΦA ΦA − v2

)2
(33)

and
ΦA ΦA = φ(1) φ(1) + φa φa + φab φab + φa5 φa5 + φ(5) φ(5). (34)

Vacuum solutions can be found of the form

< φ(5) > = v; < φ(1) > = < φa > = < φab > = < φa5 > = 0. (35)

Similarly as it occurred in section 1, a variation of I1 + I2 + I3 given by
eqs-(28,32,33) w.r.t φ5, following similar steps as in eqs-(9,11,12) and tak-
ing into account the v.e.v of eq-(35) which minimize the potential (33) solely
after the variation w.r.t the scalar fields is taken place, allows to eliminate the
scalars on-shell leading to

I1+ I2+ I3 =
4
5

v
∫

M

d4x
(

F ab ∧ F cd εabcd + F (1) ∧ F (5) + F a ∧ F a5
)

=

4
5

v
∫

M

d4x
(

F ab
µν F cd

ρσ εabcd + F (1)
µν F (5)

ρσ + F a
µν F a5

ρσ

)
εµνρσ. (36)

where Einstein’s summation convention over repeated indices is implied.
The upshot of having started with the action I1 + I2 + I3 involving the

three expressions of eqs-(28,32,33) is that one does not have to impose by hand
constraints on the field strengths in eq-(36) in order to recover Einstein gravity.
Despite that one has chosen the v.e.v conditions (35) on the scalars, one must
not forget the equations which result from their variations. Hence, performing
a variation of I1 + I2 + I3 w.r.t the remaining scalars φ1, φa, φab, φa5, following
similar steps as in eqs-(9,11,12) and taking into account the v.e.v of eq-(35)
which minimize the potential (33), yields

2 F a
b ∧F b

a + F (1) ∧F (1) + F (5) ∧F (5) + F a ∧Fa + F a5 ∧Fa5 = 0. (37a)

F (1) ∧ F a + F ab ∧ F c ηbc = 0. (37b)

F (1) ∧ Fab + F c ∧ F d5 εabcd = 0. (37c)
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F (1) ∧ Fa5 + F bc ∧ F d εabcd = 0. (37d)

From eqs-(37) one can infer that F 1 = F a = 0, a = 1, 2, 3, 4 are solutions
compatible with eqs-(37b, 37c, 37d), while the non-zero values F ab, F 5, F a5 will
be constrained to obey

2 F a
b ∧ F b

a + F (5) ∧ F (5) + F a5 ∧ Fa5 = 0. (37e)

Therefore, when F 1 = F a = 0 the action (36) will then reduce to

S =
4
5

v
∫

M

d4x
(

F ab
µν F cd

ρσ εabcd

)
εµνρσ. (38)

A solution to the the zero torsion condition F a = 0 can be simply found by
setting fa

µ = 0 in eq-(25c), and which in turn, furnishes the Levi-Civita spin con-
nection ωab

µ (ea
µ) in terms of the tetrad ea

µ. Upon doing so, the field strength F ab

in eq-(25e) when fa
µ = 0 and ωab

µ (ea
µ) becomes then F ab = Rab(ωab

µ ) + 4ea ∧ eb,
where Rab = 1

2Rab
µν dxµ ∧ dxν is the standard expression for the Lorentz-

curvature two-form in terms of the Levi-Civita spin connection. Finally, the
action (38) becomes once again the Macdowell-Mansouri-Chamseddine-West ac-
tion

S =
4
5

v
∫

d4x ( Rab + 4 ea ∧ eb ) ∧ ( Rcd + 4 ec ∧ ed ) εabcd. (39)

comprised of the Gauss-Bonnet term R∧R; the Einstein-Hilbert term R∧e∧e,
and the cosmological constant term e ∧ e ∧ e ∧ e.

In order to have the proper dimensions of (length)−2 in the above curvature
R+e∧e terms, one has to introduce the suitable length scale parameter l in the
terms 1

l2 e∧ e. If we wish to recover the same results as those found in section 1
obtained after the elimination of the v.e.v < φ5 >= v in eq-(16), and consistent
with the correct value of the observed vacuum energy density one requires to set
l ∼ RH . A value of l = Lp would yield a huge cosmological constant. The (Anti)
de Sitter throat size can be set to the Hubble scale as we explained above in
section 1 due to the key presence of the numerical factor < φ5 >= v in eq-(16)
and whose value is not of the order of unity.

At this stage we can also provide the relation of the action (36) to the
Conformal Gravity action based in gauging the conformal group SO(4, 2) ∼
SU(2, 2) in 4D . The anti-Hermitian operators of the Conformal algebra can be
written in terms of the Clifford algebra anti-Hermitian generators as [6]

Pa =
1
2
Γa (1 + i Γ5); Ka =

1
2
Γa (1 − i Γ5); D =

i

2
Γ5, Lab =

1
2

Γab.

(40)
Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D
is the dilation generator and Lab are the Lorentz generators. The total number
of generators is respectively 4 + 4 + 1 + 6 = 15. Having established this, a real-
valued tetrad V a

µ field and its real-valued partner Ṽ a
µ can be defined in terms of

the real-valued gauge fields ea
µ, fa

µ , as follows
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ea
µ + fa

µ = V a
µ ; ea

µ − fa
µ = Ṽ a

µ . (41)

such that the combination

ea
µ Γa + i fa

µ ΓaΓ5 = V a
µ Pa + Ṽ a

µ Ka. (42)

is anti-Hermitian for real-valued ea
µ, fa

µ fields. The components of the torsion and
conformal-boost curvature two-forms of conformal gravity are given respectively
by the linear combinations of eqs-(25c, 25d)

F a
µν + F a5

µν = F̃ a
µν [P ]; F a

µν − F a5
µν = F̃ a

µν [K] ⇒

F a
µν Γa + i F a5

µν Γa Γ5 = F̃ a
µν [P ] Pa + F̃ a

µν [K] Ka. (43)

The components of the curvature two-form corresponding to the Weyl dila-
tion generator are F 5

µν (25b). The Lorentz curvature two-form is contained in
F ab

µν dxµ∧dxν (25e) and the Maxwell curvature two-form is F 1
µν dxµ∧dxν (25a).

To sum up, the real-valued tetrad gauge field V a
µ (that gauges the translations

Pa ) and the real-valued conformal boosts gauge field Ṽ a
µ (that gauges the con-

formal boosts Ka) of conformal gravity are given, respectively, by the linear
combination of the gauge fields ea

µ ± fa
µ associated with the anti-Hermitian

Γa, i Γa Γ5 generators of the Clifford algebra Cl(1, 3) of the tangent space of
spacetime M4 after performing a Wick rotation −i Γ0 = Γ4.

If one wishes to recover ordinary Einstein gravity directly from the action
(36) without invoking the equations of motion (37) resulting from a variation
of I1 + I2 + I3 w.r.t the scalar components of ΦA, one would require, firstly, to
set the fields fa

µ = 0 and bµ = 0 in the expressions for the field strengths in
eqs-(25). Secondly, by imposing by hand the zero torsion and conformal boost
curvature conditions F̃ a

µν [P ] = F̃ a
µν [K] = 0 ⇒ F a

µν = F a5
µν = 0 in eqs-(25c,

25d), furnish the Levi-Civita spin connection ωab
µ (ea

µ), so that F ab in eq-(25e)
becomes then F ab = Rab(ωab

µ ) + 4ea ∧ eb, where Rab = 1
2Rab

µν dxµ ∧ dxν is the
standard expression for the Lorentz-curvature two-form in terms of the Levi-
Civita spin connection. Since F 5

µν = 0 in eq-(25b) when fa
µ = bµ = 0, the

remaining nonvanishing terms in the action (36), after setting φ5 = v and
F a

µν = F a5
µν = F 5

µν = 0, are comprised once again of the Gauss-Bonnet term
R ∧R; the Einstein-Hilbert term R ∧ e∧ e, and the cosmological constant term
e ∧ e ∧ e ∧ e.

One should emphasize that our results in this section are based on a very
different action (28) (plus the terms in eqs-(32,33)) than the invariant grav-
itational action studied by Chameseddine [7] based on the constrained gauge
group U(2, 2) broken down to U(1, 1) × U(1, 1). In general, our action (28) is
comprised of many more terms displayed by eq-(30) than the action chosen by
Chamseddine

I =
∫

M

Tr (Γ5 F ∧ F ) . (44)
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Secondly, as shown in section 1, our procedure furnishes the correct value of
the cosmological constant via the key presence of the v.e.v < φ5 >= v in all
the terms of the action (15). Thirdly, by invoking the equations of motion (37)
resulting from a variation of I1 + I2 + I3 w.r.t the scalar components of ΦA,
one does not need to impose by hand the zero torsion constraints as done by
[7]. The condition F a = 0 results from solving eqs-(37).

To sum up, ordinary gravity with the correct value of the cosmological con-
stant emerges from a very specific vacuum solution. Furthermore, there are
many other vacuum solutions of the more fundamental action associated with
the expressions I1 + I2 + I3 of eqs-(28, 32, 33) and involving all of the terms in
eq-(30). For example, for constant field configurations ΦA, the inclusion of all
the gauge field strengths in eq-(30) contain the Euler type terms F ab∧F cdεabcd;
theta type terms F 1∧F 1;F 5∧F 5 corresponding to the Maxwell aµ and Weyl di-
latation bµ fields, respectively; Pontryagin type terms F a

b∧F b
a; torsion squared

terms F a ∧ F a, etc ... all in one stroke.
Tensorial Generalized Yang-Mills in C-spaces (Clifford spaces) based on

poly-vector valued (anti-symmetric tensor fields) gauge fields AM (X) and field
strengths FMN (X) have ben studied in [6] where X = XMΓM is a C-space poly-
vector valued coordinate and AM (X) = AI

M (X) ΓI is a Clifford-value gauge
field whose Clifford algebra is spanned by the ΓI generators. The Clifford-
algebra-valued gauge field AI

µ(xµ)ΓI in ordinary spacetime is naturally embed-
ded into a far richer object in C-spaces. In order to retrieve (Conformal) Gravity
one required earlier to choose the Cl(1, 3) tangent spacetime algebra because
the chosen signature of the underlying spacetime manifold was chosen to be
(+,−,−,−). The advantage of recurring to C-spaces associated with the 4D
spacetime manifold is that one can have a Conformal Gravity, Maxwell and
SU(2) Yang-Mills unification in a very geometric fashion. To briefly illustrate
how it can be attained, let us write in 4D the several components of the C-space
poly-vector valued gauge field A(X) as

AI
0 = ΦI ; AI

µ; AI
µν ; AI

µνρ = εµνρσ ÃI
σ; AI

µνρσ = εµνρσ Φ̃I . ()

where Φ, Φ̃ correspond to the scalar (pseudo-scalars) components of a poly-
vector. Let us freeze all the degrees of freedom of the poly-vector C-space
coordinate X in A(X) except those of the ordinary spacetime vector coordi-
nates xµ. As we have shown in this section, Conformal Gravity and Maxwell
are encoded in the components of AI

µ. The antisymmetric tensorial gauge field
of rank three AI

µνρ is dual to the vector ÃI
σ and has 4 independent spacetime

components (σ = 1, 2, 3, 4), the same number as the vector gauge field AI
µ.

Therefore, the Yang-Mills group U(2, 2) is encoded in ÃI
σ, it has 16 generators

and contains the compact subgroup U(2)×U(2) = SU(2)×SU(2)×U(1)×U(1)
after symmetry breaking. U(4) is not large enough to accommodate the Stan-
dard Model Group SU(3)× SU(2)×U(1) as its maximally compact subgroup.
The GUT group SU(5) is large enough to achieve this goal. In general, the
group SU(m + n) has SU(m) × SU(n) × U(1) for compact subgroups. Other
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approaches, for instance, to Grand Unification with Gravity based on C-spaces
and Clifford algebras have been proposed by [9] and [10], respectively. In the
model by [9] the 16-dim C-space (corresponding to 4D Clifford algebra) metric
GMN has enough components to accommodate ordinary gravity and Yang-Mills
in the decomposition Gµν = gµν + Ai

µ Aj
ν gij . Furthermore, it is shown how a

unified theory of generalized branes coupled to gauge fields, including the grav-
itational and Kalb-Ramond fields can be attained in C-spaces. A large number
of references pertaining the role of Clifford algebras in Geometric Unification
models is also provided. The Gravity-Yang-Mills-Maxwell-Matter GUT model
in [10] relies on the Cl(8) algebra in 8D. In forthcoming work we will present
further details of the Unification program within the C-space framework. To
conclude, Conformal Gravity, Maxwell and SU(2)× SU(2) Yang-Mills unifica-
tion can be attained in a very natural and geometric way in four dimensions. To
incorporate the SU(3) (QCD) symmetry and the fermion family flavor symme-
try requires going to higher dimensions. For instance, the E8 Geometry of the
Clifford Superspace associated with Cl(16) and Conformal Gravity Yang-Mills
Grand Unification can be found in [8].
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