
MATLAB Basics

P. Howard

Fall, 2003

Contents

1 Introduction 2

2 Starting MATLAB at Texas A&M University 2

3 Simple Computations with MATLAB 2

3.1 Basic Computations . 2

3.1.1 Array Operations . 3

3.2 Basic Algebra . 4

3.2.1 Solving Algebraic Equations in MATLAB . 4

3.2.2 Inline Functions . 6

3.3 Basic Calculus . 6

3.3.1 Di�erentiation . 6

3.3.2 Integration . 7

3.3.3 Limits . 8

3.3.4 Sums and Products . 9

3.4 Taylor series . 10

3.5 The Subs Command . 10

3.6 M-Files . 10

3.6.1 Script M-Files . 10

3.6.2 Function M-�les . 11

3.7 File Management from MATLAB . 12

3.8 The Command Window . 12

3.9 The Command History . 12

3.10 The MATLAB Workspace . 12

4 Plots and Graphs in MATLAB 12

4.1 Simple x�y Plots . 12

4.2 Plotting Functions . 14

4.2.1 Ezplot . 14

4.2.2 More General Methods of Plotting . 15

4.3 Juxtaposing One Plot On Top of Another . 17

4.4 Multiple Plots . 17

4.5 Plotting Functions of Multiple Variables . 17

4.5.1 Contour Plots . 17

4.6 Saving Plots as Encapsulated Postscript Files . 19

5 Matrices 19

6 Miscellaneous Useful Commands 21

7 Graphical User Interface 21

1

8 SIMULINK 21

9 M-book 21

10 Useful Unix Commands 21

10.1 Creating Unix Commands . 22

10.2 More Help on Unix . 22

1 Introduction

MATLAB, which stands for MATrix LABoratory, is a software package developed by MathWorks, Inc. to

facillitate numerical computations. It di�ers from such packages as Maple, Mathematica, and Macsyma in

that while these three are primarily symbolic manipulation packages, MATLAB is best suited for the kind

of heavy duty numerics that often arise in industrial problems. This is not to say that MATLAB balks

entirely at the prospect of symbolic manipulation (or that Maple, Mathematica, or Macsyma are completely

hopeless when it comes to numerics), only that its focus is di�erent. MATLAB strikes me as being slightly

more di�cult to begin working with than the packages mentioned above, though once you get comfortable

with it, it o�ers greater �exibility. The main point of using it in M442 is that it is currently the package you

will most likely �nd yourself working with if you get a job in engineering or industrial mathematics.1

If you aren't familiar with MATLAB, you should use these notes as a (relatively) brief tutorial. Before

doing so, you should create some subdirectories in your account: matlab o� your main directory and examples
o� the matlab directory. Even if you are well versed in MATLAB, I strongly recommend that a MATLAB

subdirectory be created, and that a separate sub-subdirectory be created in matlab for each project. (See

Section 10 for an extremely brief discussion of Unix issues and, more important, a reference to how you can

learn more.)

Finally, it should be pointed out that these notes do not pretend to be any kind of thorough introduction

to MATLAB. They are simply meant to get you started on the kinds of things you'll need to know for M442.

Signi�cantly more detailed discussions can be found in the references listed at the end.

2 Starting MATLAB at Texas A&M University

You should have a calclab account assigned to you for M442 (I'll pass these out on the �rst day of class, or

as soon as I get them). Log in and click on the six pointed geometric �gure in the bottom left corner of your

screen. Go toMathematics and chooseMatlab. Congratulations! (Alternatively, click on the surface plot

icon at the foot of your screen.)2

For basic information on using calclab accounts at Texas A&M University�printing, access, etc.�get

Art Belmonte's Maple in Texas A&M's Mathematics Courses, available at the department web site:

http://calclab.math.tamu.edu/~belmonte/calclab/MapleIntro21.pdf.

3 Simple Computations with MATLAB

3.1 Basic Computations

The (default) MATLAB screen is divided into three windows, with a large command window on the right,

and two smaller ones that we won't worry about yet on the left. At the prompt, designated by two arrows,

>>, type 2 + 2 and press Enter. (Yes, I meant basic computations.) You should �nd that the answer has

been assigned to the default variable ans. Not so hard. Next, type 2+2; and hit Enter. Notice that unlike

Maple, the semicolon suppresses screen output in MATLAB.

We will refer to a series of commands as a MATLAB script. For example, we might type

1If you get a job in a particular �eld of engineering or industry (as opposed to engineering or industrial mathematics) you

will most likely used specialized software.
2By the way, since I don't actually have a student account, these speci�c directions may occasionally be wrong. Ask me if

you have any troubles. Not only will your life be easier; you will improve the lives of students for years to come.

2

>>t=4;

>>s=sin(t)

MATLAB will report that s = -.7568. (Notice that MATLAB assumes that t is in radians, not degrees.)

While we're at it, type the up arrow key on your keyboard, and notice that the command s=sin(t) comes
back up on your screen. Hit the up arrow key again and t=4; will appear at the prompt. Using the down

arrow, you can scroll back the other way, giving you a convenient way to bring up old commands without

retyping them.

Occasionally, you will �nd that an expression you are typing in is getting out of hand and needs to be

continued to the next line. You can accomplish this by putting in three dots and typing Enter. Try the

following:3

>>2+3+4+...

+5+6

ans =

20

Notice that 2+3+4+... was typed at the Command Window prompt, followed by Enter. When you do this,

MATLAB will proceed to the next line, but it will not o�er a new prompt. This means that it is waiting for

you to �nish the line you're working on.

As with any other software package, the most important MATLAB command is help. You can type this

at the prompt just as you did the commands above. For help on a particular topic such as the integration

command int, type help int. If the screen's input �ies by too quickly, you can stop it with the command

more on. Finally, MATLAB has a nice help browser that can be invoked by typing helpdesk.
Let's get some practice with MATLAB help by computing the inverse sine of -.7568. First, we need to

look up MATLAB's expression for inverse sine. At the prompt, type helpdesk. Next, in the left-hand window

of the pop-up menu, click on the index tab (second from left), and in the data box type inverse. In the box

below your input, you should now see a list of inverse subtopics. Using your mouse, scroll down to sine and

click on it. An example should appear in the right window, showing you that MATLAB uses the function

asin() as its inverse for sine. Close help (by clicking on the upper right X as usual), and at the prompt type

asin(-.7568). The answer should be -.8584. (Pop quiz: If asin() is the inverse of sin(), why isn't the answer

4?)

Final comment: MATLAB uses double-precision �oating point arithmetic, accurate to approximately 15

digits. By default, only a certain number of these digits are shown, typically �ve. To display more digits, type

format long at the beginning of a session. All subsequent numerical output will show the greater precision.

Type format short to return to shorter display. MATLAB's four basic data types are �oating point (which
we've just been discussing), symbolic (see Section 3.2), character string , and inline function (see Section

3.2).

3.1.1 Array Operations

Section 5 of these notes is devoted to matrices, but I want to jump ahead while we're talking about basic

computations and warn you about something early on. De�ne the vector X =




1
2
3


 by typing X=[1; 2;

3] at the command prompt. De�ne a second vector Y =
(

4 5 6
)
by typing Y=(4 5 6) at the command

prompt. Notice in particular that while X is a column vector (each row was ended by a semicolon), Y is a

row vector. Let's examine the signi�cance of this by computing �rst Y ∗ X , then X ∗ Y :

3In the MATLAB examples of these notes, you can separate the commands I've typed in from MATLAB's responses by

picking out those lines that begin with the command line prompt, >>. All such examples have been created directly from a

MATLAB session using the diary command. Typing diary �lename begins a session, and typing diary o� ends it. The session

is then stored as a text �le under the name �lename.

3

>>Y*X

ans =

32

>>X*Y

ans =

4 5 6

8 10 12

12 15 18

Notice that while Y ∗ X is the usual vector dot product, the dimensions of X and Y are such that X ∗ Y
forms a matrix. Here's what I actually want to warn you about. Very often, you will want to multiply two

vectors together element by element: the �rst entry of X by the �rst entry of Y , the second entry of X by

the second entry of Y and so on. To accomplish this, MATLAB has the odd-looking operator .* (also ./ and

.^). To see how this works, type at the command prompt X=[1 2 3], so that X and Y are both row vectors.

First�and, be warned, this won't work�try typing X ∗ Y . MATLAB should inform you that your matrix

dimensions must agree (it can create neither a dot product nor a matrix product from this combination).

(By the way, you will get this message a lot, that your matrix dimensions don't agree, so keep this example

in mind and remember how to �x it.) Try now X. ∗ Y . Notice that MATLAB returns a vector in which the

elements of X have been multiplied by the elements of Y .

3.2 Basic Algebra

Variables can be manipulated algebraically in MATLAB if they are declared as symbols by the syms com-

mand. Try, for example,

>>syms x y

>>z=(x - y)*(x+y)

>>expand(z)

Type help symbolic to learn more about this. It may happen that during a particularly long MATLAB session,

you lose track of what variables have been assigned. Type whos to get a list. To clear the assignment of a

variable x, type clear x.

3.2.1 Solving Algebraic Equations in MATLAB

There are two basic methods for solving algebraic equations in MATLAB, in line and with function �les. As

we will see, the function �le method is considerably more robust, but the inline method is fairly easy. First,

let's solve the simple algebraic equation x2 − 2x − 4 = 0. The command is solve and the equation must

appear in single quotes.

>>solve('x^2 - 2*x - 4 = 0')

ans =

[5^(1/2)+1]

[1-5^(1/2)]

Alternatively, if we simply have an expression between single quotes, rather than an equation, MATLAB

will set the expression to 0 by default. That is, the MATLAB command solve('x^2-2*x-4') also solves the

equation x2 − 2x − 4 = 0. Next, let's solve the system of equations

x2 − y = 2
y − 2x = 5.

We use

4

>>[x,y]=solve('x^2 - y = 2','y-2*x=5')

x =

[1+2*2^(1/2)]

[1-2*2^(1/2)]

y =

[7+4*2^(1/2)]

[7-4*2^(1/2)]

Incidentally, you might decide that what you require are decimal representations of x and y. These can be

obtained with the eval() command. Continuing the code above, we have,

>>eval(x)

ans =

3.8284

-1.8284

>>eval(y)

ans =

12.6569

1.3431

Finally, we solve the more di�cult equation, e−x − sin x = 0, using the numerical solver fzero.

>>fzero(inline('exp(-x)-sin(x)'),.5)

ans =

0.5885

In the command fzero, the value .5 is an initial guess as to the solution of

e−x − sin(x) = 0.

While solve is an algebraic function, fzero is numerical. In this last example, we could also have de�ned our

function beforehand:

>>f=inline('exp(-x)-sin(x)','x')

f =

Inline function:

f(x) = exp(-x)-sin(x)

>>fzero(f,1)

ans =

0.5885

5

3.2.2 Inline Functions

In the examples above, we de�ned functions with the command inline(). Later, we will see that most

functions in MATLAB are de�ned through M-�les, but simple functions can be de�ned with inline. Once

a function has been de�ned with inline, it can easily be solved, evaluated etc. In the following MATLAB

code, the function f(x) = x2 + sin x is de�ned and evaluated at the point x = 1.

>>f=inline('x^2+sin(x)','x')

f =

Inline function:

f(x) = x^2+sin(x)

>>f(1)

ans =

1.8415

3.3 Basic Calculus

Of course, MATLAB comes equipped with a number of tools for evaluating basic calculus expressions.

3.3.1 Di�erentiation

Symbolic derivatives can be computed with di�(). To compute the derivative of x3, type:

>>syms x;

>>di�(x^3)

ans =

3*x^2

or

>>di�('x^3','x')

ans =

3*x^2

Alternatively, you can �rst de�ne x3 as a function of f .

>>f=inline('x^3','x');

>>di�(f(x))

ans =

3*x^2

Higher order derivatives can be computed simply by putting the order of di�erentiation after the function,

separated by a comma.

>>di�(f(x),2)

ans =

6*x

Finally, MATLAB can compute partial derivatives. See if you can make sense of the following input and

output.

6

>>syms y;

>>g=inline('x^2*y^2','x','y')

g =

Inline function:

g(x,y) = x^2*y^2

>>di�(g(x,y),y)

ans =

2*x^2*y

3.3.2 Integration

Symbolic integration is similar to symbolic di�erentiation. To integrate x2, use

>>int('x^2','x')

ans =

1/3*x^3

or

>>syms x;

>>int(x^2)

ans =

1/3*x^3

or, �nally,

>>f=inline('x^2','x')

f =

Inline function:

f(x) = x^2

>>int(f(x))

ans =

1/3*x^3

The integration with limits
∫ 1

0 x2dx can easily be computed if f is de�ned inline as above:

>>int(f(x),0,1)

ans =

1/3

For double integrals, such as
∫ π

0

∫ sin x

0 (x2 + y2)dydx, simply put one int() inside another:

7

>>syms y

>>int(int(x^2 + y^2,y,0,sin(x)),0,pi)

ans =

pi^2-32/9

Numerical integration is accomplished through the commands quad , quad8, and quadl . For example,

quadl(vectorize('exp(-x^4)'),0,1)

ans =

0.8448

(If x has been de�ned as a symbolic variable, you don't need the single quotes.) You might also experiment

with the numerical double integration function dblquad . Notice that the function to be numerically integrated
must be a vector; hence, the vectorize command. In particular, the vectorize command changes all operations
in an expression into array operations. For more information on vectorize, type help vectorize at the MATLAB

Command Window.

3.3.3 Limits

MATLAB can also compute limits, such as

lim
x→0

sin x

x
= 1.

We have,

>>syms x;

>>limit(sin(x)/x,x,0)

ans =

1

For left and right limits

lim
x→0−

|x|
x

= −1; lim
x→0+

|x|
x

= +1,

we have

>>limit(abs(x)/x,x,0,'left')

ans =

-1

>>limit(abs(x)/x,x,0,'right')

ans =

1

Finally, for in�nite limits of the form

lim
x→∞

x4 + x2 − 3
3x4 − log x

=
1
3
,

we can type

8

>>limit((x^4 + x^2 - 3)/(3*x^4 - log(x)),x,Inf)

ans =

1/3

3.3.4 Sums and Products

We often want to take the sum or product of a sequence of numbers. For example, we might want to compute

7∑
n=1

n = 28.

We use MATLAB's sum command:

>>X=1:7

X =

1 2 3 4 5 6 7

>>sum(X)

ans =

28

Similarly, for the product
7∏

n=1

n = 1 · 2 · 3 · 4 · 5 · 6 · 7 = 5040,

we have

>>prod(X)

ans =

5040

MATLAB is also equipped for evaluating sums symbolically. Suppose we want to evaluate

n∑
k=1

(
1
k
− 1

k + 1
) = 1 − 1

n + 1
.

We type

>>syms k n;

>>symsum(1/k - 1/(k+1),1,n)

ans =

-1/(n+1)+1

9

3.4 Taylor series

Certainly one of the most useful tools in mathematics is the Taylor expansion, whereby local information (at

a single point) can be used to obtain global information (in a neighborhood of the point and sometimes on

an in�nite domain). The Tayor expansion for sin x up to tenth order can be obtained through the commands

>>syms x;

>>taylor(sin(x),x,10)

ans =

x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9

We can also employ MATLAB for computing the Taylor series of a function about points other than 0.4 For

example, the �rst four terms in the Taylor series of ex about the point x = 2 can be obtained through

>>taylor(exp(x),4,2)

ans =

exp(2)+exp(2)*(x-2)+1/2*exp(2)*(x-2)^2+1/6*exp(2)*(x-2)^3

3.5 The Subs Command

An extremely useful command in MATLAB is subs(), which can be used to evaluate an expression at a

particular variable value. For example, suppose we would like to evaluate the second Taylor expansion of

Section 3.4 at x = 2.1. We use simply subs(ans,2.1). More generally, suppose we have a symbolic expression

of multiple variables. If any parameter values are de�ned in the workspace, the subs command substitutes

them for the parameters. In the following example, a general quadratic equation is solved, and then one of

the parameters in the root is evaluated.

>>r=solve('a*x^2+b*x+c=0','x')

r =

[1/2/a*(-b+(b^2-4*a*c)^(1/2))]

[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

a=1;

subs(r)

ans =

[-1/2*b+1/2*(b^2-4*c)^(1/2)]

[-1/2*b-1/2*(b^2-4*c)^(1/2)]

3.6 M-Files

3.6.1 Script M-Files

The heart of MATLAB lies in its use of M-�les. We will begin with a script M-�le, which as we will see,

simply contains a list of commands like the one given in Sections 3.1 and 3.2, above. To create an M-�le,

click on File at the upper left corner of your MATLAB window, then select New, followed by M-�le. A

window will appear in the upper left corner of your screen with MATLAB's default editor. (You are free to

use an editor of your own choice, but for the brief demonstration here, let's stick with MATLAB's. It's not

the most powerful thing you'll ever come across, but it's not a complete slouch either.) In this window, type

the following lines (MATLAB reads everything following a % sign as a comment to be ignored):

4You may recall that the Taylor series of a function about the point 0 is also referred to as a Maclaurin series.

10

%JUNK: A script �le that computes sin(4),

%where 4 is measured in degrees.

t=4; %De�ne a variable for no particularly good reason

radiant=pi*t/180; %Converts 4 degrees to radians

s=sin(radiant) %No semicolon means output is printed to screen

Save this �le by choosing File, Save As from the main menu. Choose your directory matlab and your

subdirectory examples, and save this M-�le as junk.m. Close or minimize your editor window. Finally, go

to the top middle of your screen, where you'll �nd a box marked Current Directory. Change the path to

.../username/matlab/examples, where by username I mean your username. Back at the command line,

type simply help junk, and notice that the description you typed in as the header of your script �le appears

on the screen. Now, type junk at the prompt, and MATLAB will report that s=.0698. It has simply gone

through your �le line by line and executed each command as it came to it. One more useful command along

these lines is type. Try the following:

>>type junk

The entire text of your �le junk.m should appear on your screen. Since you've just �nished typing this stu�

in, this isn't so exciting, but try typing, for example, type mean. MATLAB will display its internal M-�le

mean.m. Perusing MATLAB's internal M-�les like this is a great way to learn how to write them yourself.

In fact, you can often tweak MATLAB's M-�les into serving your own purposes. Simply use type �lename
in the Command Window, then choose and copy the M-�le text using the Edit option. Finally, copy it into

your own M-�le and edit it. (Though keep in mind that if you ever publish a routine you've worked out this

way, you need to acknowledge the source.)

3.6.2 Function M-�les

The second type of M-�le is called a function M-�le and typically (though not inevitably) these will involve

some variable or variables sent to the M-�le and processed. As an example, let's suppose we want to solve

the algebraic equation

ex = x2. (3.1)

We begin by writing a function f(x) that has zeros at solutions of (3.1). Here,

f(x) = ex − x2.

We now de�ne the function f(x) as a function M-�le. To accomplish this, go back through the File, New,

M-�le mumbo jumbo as before, and create an M-�le entitled fname.m with the following lines:

function f = fname(x);

%FNAME: computes f(x) = exp(x) - x^2

%call syntax: f=fname(x);

f = exp(x) - x^2;

Every function M-�le begins with the command function. The next expression, f here, is the value the

function returns, while the �le name on the right-hand side of the equality is the name of the function �le

(with .m omitted). Finally, the input variable appears in parentheses. First, let's evaluate the function

fname at a few values. At the command line prompt, type fname(1), and MATLAB should return the value

of the function at x = 1. Next, type a = 0, followed by fname(a). MATLAB should return the value of

the function at x = 0. Okay, enough of that. To solve this equation, (3.1), we will use a built-in MATLAB

function fzero() (see also Section 3.2, above). At the command line prompt, type

x = fzero('fname', -.5)

to which MATLAB should respond by informing you that x = −.7035. Notice that -.5 served as an initial

guess, and could have been found, for example, from a graph.

11

3.7 File Management from MATLAB

There are certain commands in MATLAB that will manipulate �les on its primary directory. For example, if

you happen to have the �le junk.m in your working MATLAB directory, you can delete it simply by typing

delete junk.m at the MATLAB command prompt. Much more generally, if you precede a command with an

exclamation point, MATLAB will read it as a unix shell command (see Section 10 of these notes for more

on Unix shell commands). So, for example, the three commands !ls, !cp junk.m morejunk.m, and !ls serve

to list the contents of the directory you happen to be in, copy the �le junk.m to the �le morejunk.m, and
list the �les again to make sure it's there. Try it.

3.8 The Command Window

Occasionally, the Command Window will become too cluttered, and you will essentially want to start over.

You can clear it by choosing Edit, Clear Command Window. Before doing this, you might want to save

the variables in your workspace. This can be accomplished with the menu option File, Save Workspace

As, which will allow you to save your workspace as a .mat �le. Later, you can open this �le simply by

choosing File, Open, and selecting it. A word of warning, though: This does not save every command you

have typed into your workspace; it only saves your variable assignments. For bringing all commands from a

session back, see the discussion under Command History.

3.9 The Command History

The Command History window will open with each MATLAB session, displaying a list of recent commands

issued at the prompt. Often, you will want to incorporate some of these old commands into a new session. A

method slightly less gauche than simply cutting and pasting is to right-click on a command in the Command

History window, and while holding the right mouse button down, to choose Evaluate Selection. This is

exactly equivalent to typing your selection into the Command Window.

3.10 The MATLAB Workspace

As we've seen, MATLAB uses several types of data, and sometimes it can be di�cult to remember what

type each variable in your session is. Fortunately, this information is all listed for you in the MATLAB

Workspace. Look in the upper left corner of your MATLAB window and see if your Workspace is already

open. If not, choose View,Workspace from the main MATLAB menu and it should appear. Each variable

you de�ne during your session will be listed in the Workspace, along with its size and type. Observe the

di�erences, for example, in the following variables.

>>t=5;

>>v=[1 2];

>>s='howdy'

>>y=solve('a*y=b')

4 Plots and Graphs in MATLAB

4.1 Simple x�y Plots

I really like the way MATLAB's graphics work. They're convenient, they're clear, and they're fast. Let's

take a look. Have you ever heard the old saying, �To a guy with a hammer, everything's a nail.� ? Well,

as you might imagine from its name, for MATLAB everything's a matrix. Once you get used to it, this is

pretty nice. Suppose, for example, that you know some values for y and you know some values for x and you

want to make a plot of y versus x. The following commands (accompanied by MATLAB's output) su�ce:

>>x=[1 2 3]

x =

12

1 2 3

>>y=[4, 5, 6]

y =

4 5 6

>>plot(x,y)

Observe that the elements in x are separated by spaces, while the elements in y are separated by commas.

MATLAB will take either to mean the same thing. (Though remember from Section 3.1.1 that semicolons

are a di�erent matter entirely.) The output we obtain is the plot given as Figure 1.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Figure 1: A very simple linear plot.

In MATLAB it's particularly easy to decorate a plot. For example, minimize your plot by clicking on the

left button on the upper right corner of your window, then add the following lines in the Command Window:

>>xlabel('Here is a label for the x-axis')

>>ylabel('Here is a label for the y-axis')

>>title('Useless Plot')

>>axis([0 4 2 10])

The only command here that needs explanation is the last. It simply tells MATLAB to plot the x-axis from
0 to 4, and the y-axis from 2 to 10. If you now click on the plot's button at the bottom of the screen, you

will get the labeled �gure, Figure 2.

I added the legend after the graph was printed, using the menu options. Notice that all this labeling can

be carried out and edited from these menu options. After experimenting a little, your plots will be looking

great (or at least better than the default-setting �gures displayed here). Not only can you label and detail

your plots, you can write and draw on them directly from the MATLAB window. One warning: If you

retype plot(x,y) after labeling, MATLAB will think you want to start over and will give you a clear �gure

with nothing except the line. To get your labeling back, use the up arrow key to scroll back through your

commands and re-issue them at the command prompt. (Unless you labeled your plots using menu options,

in which case you're out of luck, though this might be a good time to consult Section 4.6 on saving plots.)

De�ning vectors as in the example above can be tedious if the vector has many components, so MATLAB

has a number of ways to shorten your work. For example, you might try:

>>X=1:9

X =

13

0 0.5 1 1.5 2 2.5 3 3.5 4
2

3

4

5

6

7

8

9

10

Here is a label for the x−axis

H
e

re
 i
s
 a

 l
a

b
e

l
fo

r
th

e
 y

−
a

x
is

Useless Plot

Useless line

Figure 2: A still pretty much ridiculously simple linear plot.

1 2 3 4 5 6 7 8 9

>>X=0:2:10

X =

0 2 4 6 8 10

4.2 Plotting Functions

Plotting functions in MATLAB is almost as easy as plotting sets of points.

4.2.1 Ezplot

By far the easiest way to make simple plots in MATLAB is with the command ezplot. It's so easy to use, in
fact, that I'm not going to say much about it. To get the idea, try the following commands:

>>ezplot('x^2-x')

>>ezplot('x^2 + 1',[-2 2])

>>ezplot('cos(t)','sin(t)',[0 2*pi])

(This last command plots cos(t) along the x-axis and sin(t) along the y-axis.) The function ezplot also works
with function M-�les. Suppose we have the following M-�le, storing a function of the variable o (which you

might �nd interesting for the ballistics project):

function d = dist(o);

%DIST: Computes distance as a function

%of angle for no air resistance.

v = 10.26;

H = .18;

g = 9.81;

d = (v*cos(o)/g).*(v*sin(o) + sqrt(v^2*sin(o).^2 + 2*g*H));

Notice, in particular, that I have vectorized it with .* and .^ where appropriate. We can now plot this

function with the command

>>ezplot('dist',[0 pi/2])

I should stress, however, that for most of the �gures you will want to create, the more general command

plot() will be more useful. Speaking of which...

14

4.2.2 More General Methods of Plotting

Typically, you will want quite a bit more control over your plots than ezplot allows. Suppose, for example,
we want to plot the function f(x) = x2, say, for x in the domain [0,1]. First, we will partition the interval

[0,1] into twenty evenly spaced points with the command, linspace(0, 1, 20). (The command linspace(a,b,n)
de�nes a vector with n evenly spaced points, beginning with right endpoint a and terminating with left

endpoint b.) Then at each point, we will de�ne f to be x2. We have

>>x=linspace(0,1,20)

x =

Columns 1 through 8

0 0.0526 0.1053 0.1579 0.2105 0.2632 0.3158 0.3684

Columns 9 through 16

0.4211 0.4737 0.5263 0.5789 0.6316 0.6842 0.7368 0.7895

Columns 17 through 20

0.8421 0.8947 0.9474 1.0000

>>f=x.^2

f =

Columns 1 through 8

0 0.0028 0.0111 0.0249 0.0443 0.0693 0.0997 0.1357

Columns 9 through 16

0.1773 0.2244 0.2770 0.3352 0.3989 0.4681 0.5429 0.6233

Columns 17 through 20

0.7091 0.8006 0.8975 1.0000

>>plot(x,f)

Only three commands have been typed; MATLAB has done the rest. One thing you should pay close

attention to is the line f=x.^2, where I've used one of the array operations from Section 3.1.1. This odd

operation .^ is so critical to understand that I'm going to go through it one more time. It signi�es that the

vector x is not to be squared (a dot product, yielding a scalar), but rather that each component of x is to

be squared and the result is to be de�ned as a component of f , another vector. Similar commands are .*

and ./. These are referred to as array operations, and you will need to become comfortable with their use.

(Or I'll just keep on nagging you.)

Suppose you have two functions of time x(t) and y(t) and you want to suppress t and plot y versus x
(in calculus, you called this parametrizing your equations). For this example, we will take x(t) = t2 + 1 and

y(t) = et. One way to accomplish this is through solving for t in terms of x and substituing your result into

y(t) to get y as a function of x. Here, rather, we will simply get values of x and y at the same values of t.
Using semicolons to suppress MATLAB's output, we have,

15

>>t=linspace(-1,1,40);

>>x=t.^2 + 1;

>>y=exp(t);

>>plot(x,y)

It is critical to notice that in the examples above, f, x, and y are expressions rather than functions. Here's
a good way to see the di�erence: Try

>>y(1)

If y were a function of t, you would expect MATLAB to report that ans = 2.7183, the correct value of e
to �ve digits. Instead, you get ans = 0.3679, which is the �rst entry in the vector y. In order to de�ne the

exponential as a function, type

>>f=inline('exp(x)','x')

>>f(1)

You can similarly de�ne functions of multiple variables

>>g=inline('u^2 + v^2','u','v')

g =

Inline function:

g(u,v) = u^2 + v^2

>>g(1,2)

ans =

5

or functions of vectors

>>f1=inline(vectorize('x^2'),'x')

f1 =

Inline function:

f1(x) = x.^2

>>x=[1 2]

x =

1 2

>>f1(x)

ans =

1 4

16

4.3 Juxtaposing One Plot On Top of Another

Suppose in the example above, you wanted to plot x(t) and y(t) on the same �gure, both versus t. You need

only type

>>plot(t,x,t,y);

Another way to accomplish this same thing is through the hold on command. After typing hold on, further
plots will be typed one over the other until the command hold o� is typed. For example, try

>>plot(t,x)5

>>hold on

>>plot (t,y)

>>title('One plot over the other')

>>u=[-1 0 1];

>>v=[1 0 -1]

>>plot(u,v)

Click on the �gure's button to bring it up. Now, try

>>hold o�

>>plot(x,y)

4.4 Multiple Plots

Often, you will want MATLAB to draw two or more plots at the same time so that you can compare the

behavior of various functions. For example, we might want to plot, f(x) = x, g(x) = x2, and h(x) = x3.

The following sequence of commands produces the plot given in Figure 3.

>>x = linspace(0,1,20);

>>f = x;

>>g = x.^2;

>>h = x.^3;

>>subplot(3,1,1);

>>plot(x,f);

>>subplot(3,1,2);

>>plot(x,g);

>>subplot(3,1,3);

>>plot(x,h);

The only new command here is subplot(m,n,p). This command creates m rows and n columns of graphs and

places the current �gure in position p (counted left to right, top to bottom).

4.5 Plotting Functions of Multiple Variables

MATLAB has many, many ways in which you can plot functions with multiple variables, of which I'll only

mention one at this point.

4.5.1 Contour Plots

Contour plots are obtained when a sketch is made of the various regions in domain space along which some

function is constant. Here, we will consider the function f(x, y) = x2 + y2. We observe that the region in

domain space for which f(x, y) ≡ 1 corresponds with the circle x2 + y2 = 1. We type

>>[x y]=meshgrid(-3:0.1:3,-3:0.1:3);

>>contour(x,y,x.^2+y.^2)

>>axis square %same scale on both axes

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Figure 3: Algebraic functions on parade.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 4: A very simple contour plot.

18

Observe that while Figure 4 is in black and white, MATLAB's di�erent colors indicate di�erent constants

C for which f(x, y) = C.

4.6 Saving Plots as Encapsulated Postscript Files

Plots and graphs will constitute a large portion of your reports for M442. Fortunately, combining MATLAB

and LYX, you will �nd that they are quite easy to incorporate. Once you have your plot su�ciently labeled,

choose File, Export from the plot menu and save the plot as an encapsulated postscript �le, with a .eps

extension. Our course notes on LYX will explain how to draft .eps �les into your reports.

Once saved as an encapsulated postscript �le, you won't be able to edit your graph, so it's also a good

idea to save it as a MATLAB �gure, by choosing File, Save As, and saving it as a .�g �le.

5 Matrices

We can't have a tutorial about a MATrix LABoratory without making at least a few comments about

matrices. We have already seen how to de�ne two matrices, the scalar, or 1× 1 matrix, and the row or 1×n
matrix (a row vector, as in Section 4.1). A column vector or matrix can be de�ned similarly by

>>x=[1; 2; 3]

This use of semicolons to end lines in matrices is standard, as we see from the following MATLAB input and

output.

>>A=[1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>>A(2,2)

ans =

5

>>det(A)

ans =

0

>>B=[1 2 2; 1 1 2; 0 3 3]

B =

1 2 2

1 1 2

0 3 3

>>det(B)

5If a plot window pops up here, minimize it and bring it back up at the end.

19

ans =

-3

>>B^(-1)

ans =

1.0000 -0.0000 -0.6667

1.0000 -1.0000 0

-1.0000 1.0000 0.3333

>>A*B

ans =

3 13 15

9 31 36

15 49 57

>>A.*B

ans =

1 4 6

4 5 12

0 24 27

Note in particular the di�erence between A ∗ B and A. ∗ B.

A convention that we will �nd useful while solving ordinary di�erential equations numerically is the

manner in which MATLAB refers to the column or row of a matrix. With A still de�ned as above, A(m, n)
represents the element of A in the mth row and nth column. If we want to refer to the �rst row of A as a

row vector, we use A(1, :), where the colon represents that all columns are used. Similarly, we would refer

to the second column of A as A(:, 2). Some examples follow.

>>A(1,2)

ans =

2

>>A(2,1)

ans =

4

>>A(1,:)

ans =

1 2 3

>>A(:,2)

ans =

2

5

8

Finally, adding a prime (') to any vector or matrix de�nition transposes it (switches its rows and columns).

>>A'

ans =

1 4 7

20

2 5 8

3 6 9

>>X=[1 2 3]

X =

1 2 3

>>Y=X'

Y =

1

2

3

6 Miscellaneous Useful Commands

In this section I will give a list of some of the more obscure MATLAB commands that I �nd particularly

useful. As always, you can get more information on each of these commands by using MATLAB's help
command.

• strcmp(str1,str2) (string compare) Compares the strings str1 and str2 and returns logical true (1) if

the two are identical and logical false (0) otherwise.

• char(input) Converts just about any type of variable input into a string (character array).

• num2str(num) Converts the numeric variable num into a string.

• str2num(str) Converts the string str into a numeric variable. (See also str2double().)

• strcat(str1,str2,...) Horizontally concatenates the strings str1, str2, etc.

7 Graphical User Interface

Ever since 1984 when Apple's Macintosh computer popularized Douglas Engelbart's mouse-driven graphi-

cal computer interface, users have wanted something fancier than a simple command line. Unfortunately,

actually coding this kind of thing yourself is a full-time job. This is where MATLAB's add-on GUIDE

comes in. Much like Visual C, GUIDE is a package for helping you develop things like pop-up windows and

menu-controlled �les. To get started with GUIDE, simply choose File, New, GUI from MATLAB's main

menu.

8 SIMULINK

SIMULINK is a MATLAB add-on taylored for visually modeling dynamical systems. To get started with

SIMULINK, choose File, New, Model.

9 M-book

M-book is a MATLAB interface that passes through Microsoft Word, apparently allowing for nice presen-

tations. Unfortunately, my boycott of anything Microsoft precludes the possibility of my knowing anything

about it.

10 Useful Unix Commands

In Linux, you can manipulate �les, create directories etc. using menu-driven software such as Konqueror (o�

the Internet sub-menu). Often, the fastest way to accomplish simple tasks is still from the Unix shell. To

open the Unix shell on your machine, simply click on the terminal/seashell icon along the bottom of your

21

screen (or from the System sub-menu choose Terminal). A window should pop up with a prompt that

looks something like: [username]$. Here, you can issue a number of useful commands, of which I'll discuss

the most useful (for our purposes). (Commands are listed in bold, �lenames and directory names in italics.)

• cat �lename Prints the contents of a �le �lename to the screen.

• cd dirname Changes directory to the directory dirname

• mkdir dirname Creates a directory called dirname

• cp �lename1 �lename2 Copies a �le named �lename1 into a �le name �lename2 (creating �lename2)

• ls Lists all �les in the current directory

• rm �lename Removes (deletes) the �le �lename

• quota Displays the number of blocks your currently using and your quota. Often, when your

account crashes, it's because your quota has been exceeded. Typically, the system will allow you to

long into a terminal screen to delete �les.

• du -s * Summarizes disk usage of all �les and subdirectories

• �nd . -name *.tag Finds all �les ending .tag, in all directories

• man ls Opens the unix on-line help manual information on the command ls. (Think of it as typing

help ls.) Of course, man works with any other command as well. (Use q to exit.)

• man -k jitterbug Searches the unix manual for commands involving the keyword jitterbug. (Oddly,

there are no matches, but try, for example, man copy.)

10.1 Creating Unix Commands

Sometimes you will want to write your own Unix commands, which (similar to MATLAB's M-�les) simply

run through a script of commands in order. For example, use the editor of your choice (even MATLAB's

will do) to create the following �le, named myhelp.

#Unix script �le with a list of useful commands

echo "Useful commands:"

echo

echo "cat: Prints the contents of a �le to the screen"

echo "cd: Changes the current directory"

echo

echo "You can also issue commands with a Unix script."

ls

Any line in a Unix script �le that begins with # is simply a comment and will be ignored. The command

echo is Unix's version of print. Finally, any command typed in will be carried out. Here, I've used the list

command. To run this command, type either simply myhelp if the Unix command path is set on your current

directory or ~/myhelp if the Unix command path is not set on your current directory.

10.2 More Help on Unix

Unix help manuals are among the fattest books on the face of the planet, and they're easy to �nd. Typically,

however, you will be able to �nd all the information you need either in the on-line manual or on the Internet.

One good site to get you started is http://www.mcsr/olemiss/edu/unixhelp.

22

References

[P] R. Pratap, Getting Started with MATLAB 5: A Quick Introduction for Scientists and Engineers,
Oxford University Press, 1999.

[HL] D. Hanselman and B. Little�eld, Mastering MATLAB 5: A Comprehensive Tutorial and Reference,
Prentice Hall, 1998.

[UNH] http://spicerack.sr.unh.edu/~mathadm/tutorial/software/matlab.

[HLR] B. R. Hunt, R. L. Lipsman, and J. M. Rosenberg (with K. R. Coombes, J. E. Osborn, and G. J.

Stuck), A Guide to MATLAB: for beginners and experienced users, Cambridge University Press 2001.

[MW] http://www.mathworks.com

23

Index

.*, 15

./, 15

;, 2

asin(), 3

axis, 13

char(), 21

character string, 3

clear, 4

Command History, 12

Command Window

clear, 12

command window, 12

comment, 10

continuing a line, 3

contour plots, 17

dblquad, 8

det(), 19

diary, 3

di�(), 6

di�erentiation, 6

eval(), 5

expand(), 4

exporting graphs as .eps �les, 19

ezplot(), 14

�oating point, 3

formatting output, 3

fzero(), 5

graphical user interface, 21

graphs, 12

saving, 19

help, 3

helpdesk, 3

hold on, 17

inline function, 3, 5, 16

integration, 7

Limits, 8

linspace, 15

M-book, 21

M-Files, 10

MATLAB Workspace, 12

Matrices, 19

matrix transpose, 20

num2str(), 21

partial derivatives, 6

plots, 12

multiple, 17

products, 9

quad, 8

quadl, 8

saving

M-�les, 11

plots as eps, 19

SIMULINK, 21

sin(), 3

solve(), 4

str2double(), 21

str2num(), 21

strcat, 21

strcmp(), 21

subs(), 10

sums, 9

symbolic, 3

algebra, 4

di�erentiation, 6

Integration, 7

sums, 9

syms, 4

symsum, 9

Taylor series, 10

type, 11

vectorize, 8

whos, 4

Workspace

save as, 12

24

