Tempo and beat analysis of acoustic musical signals
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A method is presented for using a small number of bandpass filters and banks of parallel comb filters
to analyze the tempo of, and extract the beat from, musical signals of arbitrary polyphonic
complexity and containing arbitrary timbres. This analysis is performed causally, and can be used
predictively to guess when beats will occur in the future. Results in a short validation experiment
demonstrate that the performance of the algorithm is similar to the performance of human listeners
in a variety of musical situations. Aspects of the algorithm are discussed in relation to previous
high-level cognitive models of beat tracking. €998 Acoustical Society of America.
[S0001-49668)02801-X

PACS numbers: 43.75.Yy, 43.75.8/J5

INTRODUCTION music, the rhythmic response of listeners is simple, immedi-
ate, and unambiguous, and every listener will agree on the

Automatic extraction of rhythmic pulse from musical . . A
. . . rhythmic content. Rhythmically complex music is discussed
excerpts has been a topic of active research in recent years

Also called beat-trackingand foot-tapping the goal is to toward the end of the paper.
construct a computational algorithm capable of extracting a
symbolic representation which corresponds to the phenonRrevious approaches

enaI“experierlce of “beat” or “pulse” in @ human listener. There is a large body of work originating in the music-
Rhythm” as a mu_S|_caI concept is intuitive tc_> ungler- psychology community which attempts to group musima
stand, but somewhat difficult to define. Handel writes Thesetstogether into a rhythmic context; that is to say, to con-

experience of rhythm involves movement, r,egularity, 9"0UPstryct a model which subsumes multiple onsets separated in
ing, and yet accentuation and differentiatiofftandel, 1989,  iime into a thythmic clock, “hierarchy,” grouping, or oscil-
p. 3849 and also stresses the importance of the phenomenali[%&ory model.

point of view—there is no “ground truth” for rhythm to be Povel and Essens presented reseéRdvel and Essens,
found in simple measurements of an acoustic signal. Theggg on the association of “internal clocks” with temporal
only ground truth is what human listeners agree to be th@yhset signals. They described an algorithm which could,
rhythmic aspects of the musical content of that signal. given a set of inter-onset intervals as input, identify the clock
As contrasted with “rhythm” in general, “beat” and \hich a listener would associate with such a sequence of
“pulse” correspond only to “the sense of equally spacedinieryals, Their research was particularly interested in the
temporal units” (Handel, 1989 Where “meter” and oy that perceived accents lead to the internal clock. Al-
“rhythm” associate with qualities of grouping, hierarchy, ,q,gh obviously related to music, their research purports to
and a strong/weak dichotomy, “pulses™ in a piece of mUSiCeyamine time intervals in general rather than being restricted
are only periodic at a simple level. For our purposespi@ mysical stimuli. Parncutt's recent wofRarncutt, 1994
of a piece of music is the sequence of equally spaced phestends this type of model to include a great deal of struc-
nomenal impulses which define a tempo for the music. Thi 4| information about duration and phenomenal accent.
paper is only concerned with beat and tempo. The grouping  pesain and Honing have contributed many results to the
and strong/weak r_elationships which define rhythm a”dcomputational modeling of beat-tracking. Their mod@e-
meter are not considered. _ _ __ sain and Honing, 1992; Desain, 199%pically also begin
Itis important to note that there is no simple relationshipyi, inter-onset intervals and associate a rhythmic pulse with
between polyphonic complexity—the number and timbres Ot jnterval stream. However, unlike the Povel/Essens and
notes played ata single time—in a piece of music, a_nd iParncutt models, these models gEcess modelsthey
rhythmic complexity or pulse complexity. There are piecesyocess the input sequentially rather than all-at-once—a nec-
and styles of music which are texturally and timbrally COM-essary aspect of a model of human rhythmic perception. De-

plex, but have straightforward, perceptually simple rhythmsi+o “(decomposable” model calculates rhythmic expec-

and there also exist musics which deal in less complex ©Xgations due to each of the possible inter-onset times in a
tures but are more difficult to rhythmically understand a”drhythmic stream, and sums them to create an overall rhyth-

describe. _ _ _mic expectation.

The former sorts of musical pieces, as contrasted with Large and Kolen have described a beat-tracking model
the latter sorts, have a “strong beat,” and it is with them that Large and Kolen, 199based on nonlinear oscillators. The
this paper is predominantly concerned. For these kinds 0fyqqe| takes a stream of onsets as input, and uses a gradient-
descent method to continually update the period and phase of
dElectronic mail; eds@media.mit.edu an oscillator. In this manner, the oscillator is matched with

588  J. Acoust. Soc. Am. 103 (1), January 1998 0001-4966/98/103(1)/588/14/$10.00 © 1998 Acoustical Society of America 588



the input stream, and the resulting oscillation process seems

: Mo o

to be a good match for the human perception of beat. Soﬁ?::?e 503‘5;
Longuet-Higgens and Lee have written many pajfens Y Y

example, Longuet-Higgens and Lee, 198 the induction [Fiuerbankj [ Filterbank ]

of rhythmic hierarchies from monophonic time sequences.

They are more interested in the development of theories ARAI

which describe the relationship of rhythm, meter, and phras- Envelope

. . . Extraction

ing than on the boot-strapping process which creates a tempc = ®

and beat percept. Tempo perception may be viewed as “un- [ & \}_\

derlying” their models. & - Output
These approaches, and others such as Rose(ii$@8 /

and Brown (1993, require that robust onset detection pre- ¥

cede beat analysis, which entails an important restriction to

their applicability. The models do not operate on acoustic
signals, but on symbolic data such as event lists or MIDI. As
the extraction of onsets from multitimbral, polyphonic musiCFIG. 1. Creating a “modulated noise” signal from a music signal. The
is itself a difficult problem, this is a serious restriction of any output signal, for many sorts of frequency filterbanks, will have the same
model which claims to treat human rhythm perception. Therdythmic percept as the input music signal, indicating that the amplitude
has been little attempt to merge these sorts of models Witﬁnvelopes of the bands are a sufficient representation for rhythmic analysis.
real-time acoustic pattern recognition to allow them to work
with acoustic data.

More recently, there has been some research attemptirf_ﬁ
to extract rhythm and/or pulse information directly from

tic signals. Goto has d trated t hi . . . .
acoustic signa's. 150to has demonstiatec a system whi In the body of this paper, the following topics are dis-

combines both low-level “bottom-up” signal processing and i : ) )
high-level pattern matching and “agent-based” representag:ussed. psychoacoustic demonstrations which lead to pro-

tions to beat-track and do simple rhythmic grouping for C€SSINg simplifications for beat-tracking, the construction of

popular music(Goto, in press His method extracts drum the algorithms themselves, example results from test signals

. ; nd ecological signals, a validation experiment which com-
patterns from a signal and uses a template-matching model t0 . . :
. : . pares the behavior of the algorithm to that of human subjects,
determine the beat from the drum track. This system runs i : . . .
: . the relationship of this model to previous models of rhythm
real time on a parallel-processing computer and has been

used to control interactive-graphics displays from ecoIogicaPerceptlon’ and finally, conclusions about beat-tracking and

music signals. His description does not directly address th(rahythmIC grouping and a description of future work to be

equivalent processing of signals without drums, but it Seemgursued in these directions.
that the required musical knowledge base would be much
more difficult to acquire. I. PSYCHOACOUSTIC SIMPLIFICATION

N. P. Todd's work(Todd, 1994 has described algo- One of the key difficulties with the transcriptive models
rithms which detect onsets in monophonic music under ceref rhythmic perception described above is the complexity of
tain timbral constraints, and then group these onsets in grouping harmonic partials together to form notes, and de-
rhythmic framework using a multi-scale smoothing model.termining the onset times of those notes. Even if simplifying
The onset model used is a simple one based on leaky intaassumptions about the pitch and timbral content are made,
gration. The resulting “rhythmogram” representation con-identifying attack and release times is no easy t&siheirer,
ceives of pulse, and in some cases, meter and phrase, pét-press.
ception as a very low-level process arising directly from the ~ However, it seems from a psychoacoustic demonstration
time- and loudness-integration properties of the auditory peen beat perception that certain kinds of signal manipulations
riphery. The model as presented can be implemented in aand simplifications can be performed without affecting the
incremental manner, but was only tested using toy examplegserceived pulse content of a musical signal. Consider the
(although, interestingly, a speech example was included signal flow network shown in Fig. 1.

All of the abovementioned research uses what has been An “amplitude-modulated noise” is constructed by sig-
described as &ranscriptivemetaphor for analysiéScheirer, nal by vocoding a white noise signal with the subband enve-
1996. That is, the music is first segmented, or assumed téopes of a musical signal. This is accomplished by perform-
already be segmented, into notes, onsets, timbres, and stg a frequency analysis of the mugprocessing through a
forth. Post-processing algorithms are then used to groufilterbank of bandpass filters, perhaps, or grouping output
rhythms and track beats. As high-quality polyphonic musicfrom FFT bins together and also of a white-noise signal
transcription algorithms are still years in the future—thefrom a pseudo-random generator. The amplitude of each
state-of-the-art systems cannot transcribe pieces more corbhand of the noise signal is modulated with the amplitude
plex than four-voice piano musi@artin, 1996—it seems envelope of the corresponding band of the musical filterbank
logical for practical reasons to attempt to construct systemsutput, and the resulting noise signals are summed together
which can arrive at a musical understanding of a piece ofo form an output signal.

music without going through a transcription step. Further, as
e validity of the transcriptive metaphor as a framework for
usic perception has been challeng8dheirer, 1995 it is
C§1(:ien'[ifically appropriate as well.
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. erties of filterbank-and-envelope manipulations which do not
Music Noise disturb rhythm perception is underway; in the meantime, it
Source Source seems important that a rhythmic processing algorithm should
+ treat frequency bands separately, combining results at the
Filterbank end, rather than attempting to perform beat-tracking on the
sum of filterbank outputs.
Y l vy l Il. DESCRIPTION OF ALGORITHM
g:‘t‘r':iz*;i The beat-tracking algorithm to be presented here bears
most resemblance to the method of Large and Kélege
L\Ll)‘l and Kolen, 199%in that it uses a network of resonators to
RN phase-lock with the beat of the signal and determine the fre-

Y
On)

Output guency of the pulse. However, the particular method used
here is somewhat different; the resonators are analytically
much simpler than theirs, a bank of resonators is used rather

FIG. 2. A noise signal which does not have the same rhythmic characterithan gradient descent, and more pre- and post-processing of

tics as the musical input, indicating that the sum of the amplitude envelopeghe signal is necessary in order to accurately extract the de-

i ici i m analysis. Certain f non-.. . . .
is not a sufficient representation for rhythm analysis. Certain types of no §|red information, as the present model operates on acoustic

linear combination by frequency channel are evidently present in the beal
perception facility. data rather than an event stream.
A rhythmic pulse is described in terms of a frequency
and phase component, just as for a periodic sound waveform;

For many kinds of frequency filterbanks, the resultingthe frequency of the pulse in a rhythmic musical signal is the
noise signal has a rhythmic percept which is significantly theempo or rate of the rhythm, and the phase of the pulse
same as that of the original music signal. Even if there aréndicates where the “downbeat” of the rhythm occurs. That
very few, very broad banddor example, four three-octave is, the times at which a pulse occurs can be defined to have
bands covering the audible spectiyrthe pulse and meter zero phase, and thus the points in time exactly in-between
characteristics of the original signal are instantly recognizpulses have phase of radians, etc. It is important to note
able (sound example #1gAudio examples for this paper that while human pitch recognition is only sensitive to signal
can be found on the author's WWW site at http:// phase under certain unusual conditions, rhythmic response is
sound.media.mit.edu/eds/bdat/ crucially a phased phenomenon—tapping on the beat is not

Since the only thing preserved in this transformation isat all the same as tapping against the beat, or slightly ahead
the amplitude envelopes of the filterbank outputs, it stands tef or behind the beat, even if the frequency of tapping is
reason that only this much information is necessary to extraciccurate.
pulse and meter from a musical signal; that is, algorithms for ~ Figure 3 shows an overall view of the tempo-analysis
pulse extraction can be created which operate only on thialgorithm as a signal flow network. The functionality will be
much input data, and “notes” are not a necessary compobriefly described, and then more details given piece-by-piece
nent for hearing rhythm. This is a vast reduction of inputin the following sections. The algorithms here were devel-
data size from the original signal. Shannon has reported aped empirically; however, in Sec. V their relationship to
similar effect for the perception of speetBhannon, 1995  existing models of rhythm perception is discussed.

Certain other kinds of simplifications are not possible. As the signal comes in, a filterbank is used to divide it
For example, if only one band is used, or equivalently, theinto six bands. For each of these subbands, the amplitude
subband envelopes are linearly combined before modulatingnvelope is calculated and the derivative taken. Each of the
the noise(Fig. 2) (Vercoe, 1994 a listener can no longer envelope derivatives is passed on to another filterbank of
perceive the rhythmic content of many signé®und ex- tuned resonatorsin each resonator filterbank, one of the
ample #1b. Thus it seems that separating the signal intoresonators will phase-lock, the one for which the resonant
subbands and maintaining the subband envelopes separatélgquency matches the rate of periodic modulation of the
is necessary to do accurate rhythmic processing. envelope derivative.

Stated another way, the algorithm in Fig. 2 is a method  The outputs of the resonators are examined to see which
for generating new signals whose representation under @nes are exhibiting phase-locked behavior, and this informa-
filterbank-envelope-and-sum process is the same as a giveion is tabulated for each of the bandpass channels. These
piece of music. However, since these new signals often deabulations are summed across the frequency filterbank to
not bear a perceptual equivalency with the originals, thearrive at the frequencytempg estimate for the signal, and
filter-envelope-sum framework must adequateto repre-  reference back to the peak phase points in the phase-locked
sent data in the musical signal which is important for rhyth-resonators determines the phase of the signal.
mic understanding. This fact immediately leads to a psychoa-
coustic hypothesis regarding rhythmic perception: some sof%‘
of cross-band rhythmic integration, not simply summation  As discussed in Sec. |, envelopes extracted from a small
across frequency bands, is performed by the auditory systemumber of broad frequency channels are sufficient informa-

A psychoacoustic experiment to examine the exact proption to rhythmically analyze a musical signal, at least for

Frequency analysis and envelope extraction
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FIG. 4. Magnitude response of the frequency filterbank used in the system,
plotted in two pieces for clarity. The upper plot shows the first, third, and
fifth bands; the lower, the second, fourth, and sixth. Each filter is a sixth-
order elliptic filter, with 3 dB of passband ripple and 40 dB of stopband
rejection.
human listeners. Further, empirical studies of the use of vari-
ous filterbanks with this algorithm have demonstrated thad Hz is delayed about 59 ms and 7 Hz advanced about 14
the algorithm is not particularly sensitive to the particularms. Thus there is a maximum blur of about 73 ms between
bands or implementations used; it is expected that psychodhese envelope frequencies.
coustic investigation into rhythmic perception of amplitude- This window performs energy integration in a way simi-
modulated noise signals created with the various vocoddar to that in the auditory system, emphasizing the most re-
filterbanks would confirm that the same is true of humancent inputs but masking rapid modulation; Tod®92 ex-
rhythmic perception. amines the use of temporal integration filters which are
The filterbank implementation in the algorithm has six directly constructed from known psychoacoustic properties.
bands; each band has sharp cutoffs and covers roughly Aster this smoothing, the envelope can be decimated for fur-
one-octave range. The lowest band is a low-pass filter witlther analysis; the next stages of processing operate on the
cutoff at 200 Hz; the next four bands are bandpass, witldecimated band envelopes sampled at 200 Hz. There is little
cutoffs at 200 and 400 Hz, 400 and 800 Hz, 800 and 160@nergy left in the envelope spectra at this frequency, but it
Hz, and 1600 and 3200 Hz. The highest band is high passids the phase-estimation procésse below to maintain a
with cutoff frequency at 3200 Hz. Each filter is implemented certain precision of oversampled envelope resolution.
using a sixth-order elliptic filter, with 3 dB of ripple in the After calculating the envelope, the first-order difference
passband and 40 dB of rejection in the stopband. Figure function is calculated and half-wave rectified; this rectified
shows the magnitude responses of these filters. difference signal will be examined for periodic modulation.
The envelope is extracted from each band of the filtered he derivative-of-envelope function performs a type of onset
signal through a rectify-and-smooth method. The rectifiediltering process (see, for example, Smith’s work on
filterbank outputs are convolved with a 200-ms half-Hanningdifference-of-Gaussian functions for onset segmentations
(raised cosinewindow. This window has a discontinuity at Smith, 1994 but the explicit segmentation, thresholding, or
time t=0, then slopes smoothly away to 0 at 200 ms. It hagpeak-peaking of the differenced envelope is not attempted.
a low-pass characteristic, with a cutoff frequency at about 10’he subsequent modulation detectors in the algorithm are
Hz (“frequency” in this case referring to envelope spectra, sensitive, similar to the sensitivity of autocorrelation, to
not waveform spectjawhere it has a- 15 dB response, and “imperfections” in an onset track. The half-wave rectified
6-dB/octave smooth rolloff thereafter. envelope difference avoids this pitfall by having broa@er
The window’s discontinuity in time means that it has time) response to perceptual attacks in the input signal. This
nonlinear phase response; it passes slow envelope frequgprocess might be considered similar to detecting onset points
cies with much more delay than rapid ones. High frequenin the signal bands, and then broadening them via low-pass
cies, above 20 Hz, are passed with approximately zero delayiltering.

FIG. 3. Schematic view of the processing algorithm. See text for details.

591  J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998 Eric Scheirer: Beat-tracking acoustic signals 591



Click track (lowest band) Polyphonic music (second-highest ban

0.015 : : 0.05 :
® 001 D Vo °
E E
;‘_‘3 0005 .............................. E
g g
< 0 < 0
g _0.005 ........................... g
&0 [e1s]
0 h
_001 .......... Foo e
-0.015 : . -0.05
0 0.5 1 15 0
x 107
2 0.01

0.008

1.5 ..........
<7 <7
> £-0.006
T 1 °
g Z 0.004
s3] m

05 0.002

] 0 : .

0 0.5 1 1.5
x107 x 107

[e

o
g
N

I
"

N
@
[N

Rectified Envelope Difference

Rectified Envelope Difference
S

(=]

(=]

0.5 1 1.5 0 0.5 1
Time (s) Time (s)

[=)

FIG. 5. Envelope extraction process, for a 2-Hz click tréleift) and a polyphonic music examplgght). The top panels show the audio waveforms; the
middle panels, the envelopes; and the bottom, the half-wave rectified difference of envelopes. The lowest filterbank band is shown for the click track, the
second-highest for the music. See text for details on algorithms.

Figure 5 shows the envelope extraction process for ongeriod «, we get reinforcemenfresonanceif T= k. Let x;
frequency band in each of two signals, a 2-Hz click track andandy; be the input and output signals at timethe equation
a polyphonic music example. The lowest band is shown foof the filter is theny;= ay;_t+(1—a)x;, and
the click track, and the second highest for the music track. Vo= (1— a)A

B. Resonators and tempo analysis Y= a(l=a)A+(1-a)A=(1-a)A(l+a)
After the envelope has been extracted and processed for Y2«= (1-a)A(a®+a+1)
each channel, a filterbank of comb filter resonators is used to
determine the tempo of the signal. While comb filters are
often used in reverberators and other sorts of audio signal no
processing, they also have properties which make them suit-  Yn«=(1—a)A 2 a')-
able for acting as resonators in the phase-locking pulse ex- =0
traction process. And so lim,_ . Vn.=[(1—a)A]/(1— a)=A.
In particular, if we stimulate a comb filter with deldy On the other hand, ifT# «, the convergence is to a
and gaina with a right-sided pulse train of heigit and smaller value. Lek be the least common multipleommon
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period of T and «; there is only reinforcement evef/\ 2
periods, and by a similar logic as the above,

(1-a)A

lim =,
n_mcyn)\ 1— aT

and sincg a|<1 if the filter is to be stable, an@i/A=1,

Tempo Energy

1-a"=1-a.

So a filter with delay matchingor evenly dividing the pe-

riod of a pulse train will have larggmore energeticoutput o i ; ; i

than a filter with mismatched delay. 180 144 “"Tempo (MM)"’O 7 &0
We can see that this is true for any periodic signal by

doing the analysis in the frequency domain. The comb filter

with delay T and gaina has magnitude response

1-«a
1—ae ot

IH(e"‘”)|=’

which has local maxima wherevere 1T gets close to 1,
i.e., at theTth roots of unity, which can be expressed as

Tempo Energy

e 12mT  0<n<T.

05b e ST USRS ST L ]
Using Fourier's theorem we know that these frequency- : : : :

domain points are exactly those at which a periodic signal of : : : :
period T has energy. Thus the comb filter with defawill % ™ ™ o P o
respond more strongly to a signal with periddthan any Tempo (MM)
other, since the response peaks in the filter line up with the
frequency distribution of energy in the signal. FIG. 6. Tempo estimates, after traclib s of a2-Hz click track(top) and
For each envelope channel of the frequency filterbank, af a polyphonic music exampléottom). Thex-axes are labeled in beats per
filterbank of comb filters is implemented, in which the delaysMnute, that is, 120 M2 Hz. The polyphonic music shows more overall
. energy, but the tempo is still seen clearly as peaks in the curve.
vary by channel and cover the range of possible pulse fre-
guencies to track. The output of these resonator filterbanks is
summed across frequency subbands. By examining the en-
ergy output from each resonance channel of the summe
resonator filterbanks, the strongest periodic component of the It is relatively simple to extract the phase of the signal
signal may be determined. The frequency of the resonatasnce its tempo is known, by examining the output of the
with the maximum energy output is selected as the tempo afesonators directly, or even better, by examining the internal
the signal. state of the delays of these filters. The implementations of
The « parameter for each comb filter is set differently, the comb filters for the resonator filterbank have lattices of
so that each filter has equivalent half-energy time. That is, aelay-and-hold stages. The vecterof delays can be inter-
comb filter of periodT has an exponential curve shaping its preted at a particular point in time as the “predicted output”
impulse response. This curve reaches half-energy output af that resonator; that is, the nert samples of envelope
the timet whena™'=0.5. Thusa is set separately for each output which the filter would generate in response to zero
resonator, atr=0.5'T. A half-energy time of 1500—2000 ms input.
seems to give results most like human perception. The sum of the delay vectors over the frequency chan-
Figure 6 shows the summed filterbank output for a 2-Hznels for the resonators corresponding to the tempo deter-
pulse train and for a polyphonic music example. The hori-mined in the frequency extraction process are examined. The
zontal axis is labeled with “metronome marking” in beats peak of this prediction vector is the estimate of when the
per minute; this is a direct mapping of the delay of the cor-next beat will arrive in the input, and the ratio=2(t,
responding comb filter. That is, for the 2-Hz power envelope—t)/T, wheret, is the time of the next predicted beathe
signal, a feedback delay of 100 samples corresponds to @urrent time, and the period of the resonator, is the phase
500-ms resonance period, or a tempo of 120 bpm. of the tempo being tracked. The phase and period may thus
In the pulse train plot in Fig. 6, a clear, large peak occursbe used to estimate beat times as far into the future as de-
at 120 bpm, and additional smaller peaks at tempi which beasired.
a simple harmonic relationshif3::2 or 4::5, for exampleto The implementation of the model performs the phase
the main peak. In the music plot, there are two peaks, whicknalysis every 25 ms and integrates evidence between frames
correspond to the tempi of the quarter note and half note in order to predict beats. Since re-estimation occurs multiple
this piece. If the width of the upper plot were extended, atimes between beats, the results from each phase analysis can
similar peak at 60 bpm would be visible. be used to confirm the current prediction and adjust it as

. Phase determination
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0.012 R . e —— —_— rational relationshipg3/27,3/47, etg. The autocorrelation
S o only has this shared response for fractional tempi, not mul-

R R R R SR tiples or rationally related tempi. An autocorrelation model

E0008k el S S S SRR asserts that a click track at 60 bpm gives no sense of tempo

S : S at 120 bpm, which seems intuitively wrong. The comb filter

L e | model asserts instead, that there is such a sense, but a re-

Toooah i L] duced one when compared to a click track to 120 bpm.

& Do S These responses can be understood if we imagine build-
0002 I ing an autocorrelation filter at some lag, versus a comb filter

k — at that same delay, in an FIR mann(érat is, to unroll the

0 005 01 015 02 025 03 035 04 045 05

Time after current (s) usual IIR expression of the comb filter into an infinitely long

“FIR" filter ). The autocorrelation requires only a single tap
on a delay line, since it only compares “one cycle back” in
time. The comb filter requires an infinite number of taps,
since it comparesgwith less and less weighinfinitely far
back in time.

Autocorrelation methods are zero phase, which means
that some other method of determining signal phase must be
used. The comb filtering method shown here is phase pre-
serving, and so provides a way of simultaneously extracting
tempo and phase, as discussed in the previous section. The
fact that the tempo and phase representations arise together
gives us additional advantages in constructing higher-level
processing algorithms treating the output of the beat-tracker.

0

o NN

Predicted energy

w

N

i,

1 i i i i n H
o 005 er 015 02 025 03 035 04 One advantage of autocorrelation schemes is that they

Time after current (s) are more efficient in memory usage than banks of comb fil-

FIG. 7. Phase estimates, after trackis of a2-Hz click track(top) and a ter?' as. the various lags can a”. acc_ess the same delay line—
polyphonic music examplgottom. Thex-axis in each case covers the next WHICh is why the autocorrelation is zero phase—whereas
full period of the resonator tracking the tempo, and the peak of the curve2ach comb filter must maintain a delay line of its own. In
shows where the next beat is predicted to occur: about 210 ms in the futureeturn for the extra memory usage, the comb filters provide
for the upper case, and 290 ms for the lower. estimates of output energy at each phase angle of each lag,
where the autocorrelation accumulates it and only presents
needed. Currently, this prediction/adjustment is done in aithe summary.
ad hocmanner, requiring only that several successive frames  Ultimately, it is representationally satisfying to have the
make the same beat prediction within a certain tolerance, aniiequency and phase of the signal explicitly encoded in the
average all of these estimates to arrive at the final predictiorprocessing units of the algorithm. In an autocorrelation meth-
This stage is the appropriate one for the inclusion of high-odology, the rhythmic oscillations of the signal are only rep-
level information, nondeterministic elements, or more sodesented as post-processed summary results; whereas in the
phisticated rhythmic modeling; see Sec. VI. comb filtering method, the filter states themselves explicitly
Figure 7 shows the phase peaks for a 2-Hz pulse traimepresent the rhythmic content—that is, there is an element
and for a polyphonic music example. In the upper plot, as th@f the processing network which phase-locks to and oscil-
tempo is 120 bpm, thg-axis covers the next half-second of lates in synchrony with the signal.
time; and for the lower plot, the estimated tempo is 149 bpm
(see Fig. 6, so one period is approximately 400 ms. lll. IMPLEMENTATION AND COMPLEXITY

The algorithms described above have been implemented
in C+ + code; the resulting program causally processes au-
dio files captured from compact disks or other audio record-

There is a certain analytical similarity between thisings, or coming in via a live microphone input. In this sec-
bank-of-comb-filters approach and previous autocorrelatiofion, the parameters available for controlling the speed and
methods for finding tempo. Insofar as both are ways of deaccuracy of the program are described.
tecting periodic energy modulations in a signal, they are per-A P
forming similar calculations. However, there are several ad-" rogram parameters
vantages to expressing these operations as multiple comb The current implementation of the system has a number
filters over expressing them as autocorrelation. of parameters which can be used to control the accuracy/

Predominantly, comb filtering implicitly encodes aspectsspeed relationship of the algorithms. The program will run in
of rhythmic hierarchy, where autocorrelation does not. Thateal time on a very fast desktop workstation such as a DEC
is, a comb filter tuned to a certain tempdas peak response Alpha, depending on the settings of these parameters and the
to stimuli at tempor, but also lesser response to stimuli with sampling rate of the incoming audio stream. It is also clear,
tempi at multiples(27,37), fractions (/2,7/3), and simple due to the highly parallel structure of Fig. 3, that the algo-

D. Comparison with autocorrelation methods
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rithm could efficiently make use of a multiple-processor ar-4. Analysis frame rate
chitecture. This has not yet been accomplished, however. n thi icular imol . hiaher-level
There are four major areas where the performance and n this particular implementation, a higher-level averag-

accuracy of the system can be tuned, and control over thr 89 scheme i_s used. to decide vyhéaﬁawhat time$tq deduce
of them has been implemented. The algorithm has bee eats in the input signal. That is, for each analysis frame, the

tested for audio at sampling rates from 8 KHz to 44.1 KHthases of the resonators are examined; the evidence here

and gives roughly equivalent qualitative performance in alSuggests future' beat Iocat'lons. These suggestions are com-
of these. bined over multiple analysis frames; when several frames in

a row point to the same future beat location, evidence accu-
mulates for that time, and a beat is actually assigned there.
Thus the frequency with which the procedure of exam-
1. Frequency filterbank ining and summing the outputs and internal states of the

As discussed in Sec. II, there is a fair amount of latituderesonators is executed has a strong effect upon the perfor-
in choosing a frequency filterbank for decomposing the in‘nance and speed of the program. Good results can be ob-
coming audio stream without affecting human rhythmic per-tained if the analysis frame rate is at least 15 Hz.
ception, and the speed of the system will vary a great deal ~Real-time performance cannot be obtained with the pa-
with the complexity of these filtertsince there is a fair CPU fameter values shown above; on an Alpha 3000 using highly
load for implementing high-order filters in real time on high- optimized filtering and analysis code, with the envelope rate
bandwidth audih and their numbe(since for each of the Setto 75 Hz, 50 resonators per subband, and frames of beat
frequency channels, a full resonator filterbank structure ifredictions analyzed every 10 Hz, the required performance
implemented for real-time operation on 22-KHz input is reached. This

The performance of the beat-tracking program using fil-real-time performance includes reading the sound file from
terbanks other than the six-channel sixth-order IIR filterbanidisk and playing it back with short noise bursts added to

described above has not been tested. highlight the beats. At this level of accuracy, the algorithm
still performs acceptably well on some, but not all, musical
examples.

2. Envelope sampling rate

. . B. Behavior tunin
The decimation rate of the channel envelopes affects the 9

speed and performance of the system. There are two major In addition to controlling the tradeoff between program
implications for using a slow envelope sampling ratey ~ speed and accuracy, the behavior of the algorithm can be
there are many resonator frequencies which cannot be reprtisned with thea parameters in the comb filters. These pa-
sented accurately with integer delays in the comb filters; andameters can be viewed as controlling whether to value old
(2) the phase extraction can only be performed with accuracinformation (the beat signal extracted so far new infor-
equal to the envelope sampling rate, since the vector of denation (the incoming envelopgsnore highly. Thus ifa is

lays has the same sampling rate. large (close to unity, the algorithm tends to “lock on” to a

In tradeoff to this, using a fast sampling rate for the beat, and follow that tempo regardless of the new envelope
envelopes entails a lot of work in the comb filtering, sinceinformation. On the other hand, i is small, the beat-track
the number of multiplies in each comb filter varies propor-can be easily perturbed by changes in the periodicity of the
tionately to this rate. Empirical testing over a variety of mu-incoming signal. Manipulating these parameters for the
sical examples suggests that the envelopes should ®mb filter structure is computationally similar to manipulat-
sampled at least 100 Hz or so for best performance. ing the windowing function of a narrowed autocorrelation.

Higher-level or domain-specific knowledge could be
used to set this parameter based on previous information. For
example, in rock or pop music, the beat is usually quite

The amount of computing incorporated in tracking andsteady, so a high value ferwould be appropriate; while for
analysis of the comb filter resonators varies directly withclassical music, particularly styles including many tempo
their number. If too few resonators are used, however, ghanges, a smaller value would be more optimal.
problem develops with sampling the tempo spectrum too
sparsely. That is, since each resonator is attempting to phase-
lock to one particular frequendynot to a range of frequen-
cies, if there is no resonator tuned close to the tempo of gyv. VALIDATION
particular signal, that signal cannot be accurately tracked.

Also affecting this sparsity consideration is the range of It is somewhat of a difficult proposition to evaluate the
resonator frequencies to be tracked. The wider the range @onstruction of an ecological beat-tracking model, for there
tempi to track, the sparser a fixed number of resonators willre few results in the literature dealing with listeners’ tempo
spread over that range. responses to actual musical excerpts. Most psychophysical

Good results have been generated using a bank of 15@search has dealt primarily with special cases consisting of
resonators for each channel, covering a logarithmicallysimple tones in unusual temporal relationships, which will
spaced range of frequencies from 60 bffirHz) to 240 bpm  typically be more difficult to track than “real music” for a
(3 H2). listener. Conversely, most beat-tracking systems have been

3. Number of resonators per frequency channel
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TABLE |. Performance of the beat-tracking algorithm, summarized by mu-eight examples not tracked accurately are said by human
sical genre. Results were auditioned and classified into groups by qualitativr?steners to have no “beat” to begin with. It is premature to

success level. “Urban” styles include rap, funk,daR & B music; “Quiet” interoret these results as indicative of consistent genre-to
includes muzak and an “easy-listening” example. All sounds are available p u indicativ : 9

via the WWW. genre differences in accuracy; there are too few examples
and the within-genre differences in accuracy too great.
Genre No. of cases  Correct  Partial  Wrong For the cases which track correctly, there is a startup
Rock 17 13 3 1 period between 2 ah8 s long during which the resonant

filters have not yet built up an accurate picture of the signal.

Country 3 3 0 0 After this period, for most signals, the algorithm has settled
Urban 9 7 1 1 down and begun to track the signal accurately, placing the
. clicks in the same locations a human listener would. Exam-
Latin 5 3 2 0 . . ..
ining some of the other, incorrectly tracked examples, is in-
Classical 9 4 4 1 structive and highlights some of the deficiencies of this
Jazz 8 3 1 4 method. . .
Examples #1, #2, and #57 are all up-tempo jazz cases in
Quiet 3 2 1

0 which human listeners do perceive a strong beat, but no beat
Reggae 2 2 0 0 is ever extracted by the system. In these three cases, the beat
is described by syncopated instrumental lines and complex
0 : .
drum patterns. That is, there is not actually very much en-
Total 60 41 11 8 ergy modulating at the frequency which is the perceptual
beat tempo for humans. Human listeners have a great ability
to induce “apparent” frequencies from complicated modu-

evaluated intuitively, by using a small number of test caseéat'on sequences. For these examples, the algorithm is not

(whether acoustic or MIDI-bas¢@nd checking that the al- able to find a pulse frequency, and so the beat output is
. . o more-or-less random.
gorithm “works right. . : L
: . : . The same is apparent in example #37, which is a pop
In this section, the performance of the algorithm is A » Y )
. o - tune that has a “mixed” or “clave” beat—the beat is not
evaluated in both qualitative and quantitative manners. Re-

sults are provided on the qualitative performance for 60 ecos o but subdivided into oddly spaced groups. Each two

logical music excerpts, with sound examples publicly avail- ¢ asUres: containing 16 eighth notes between them, are di-
g Pts, pies p y vided into a 3-3-3-3-2-2 pattern. A human listener has no

ablg fgr Ilst.enmg. Rgsults are also provided from a Shontrouble understanding the relationship between this pattern
validation pilot experiment which was conducted to conflrmand a more common 4-4-4-4 pattern, but the algorithm seems
that the performance of the algorithm is like the performancg:o assume that the groups of three a;e the basic beat, and then
of human listeners. get confused when the pattern doesn’t come out right.

A. Qualitative performance Among the examples judged as being tracked with some

accuracy, but not entirely correctly, the most common prob-

Examples of many different types of music have bee ) s : .
tested with the implemented algorithm, using a short applﬂem is phase shifting. For example, in example #16, a jazz

cation which reads a sound sample off of disk, causally bealpia_no trio, the beat estimate is correct on the frequency, but
tracks it, and writes a new sound file with clickshort noise switches back and forth between assigning beats to the “up-
' j_)eat” or the “downbeat.” Although this behavior is not un-

Non-Western 4 4

burstg added to the signal where beats are predicted to oc: . . .
3 g P ike some human jazz listeners, a human would likely be

cur. A selection of these sound files is available for listenin ) ) - ;
more consistent in deciding where to place the beat. This

via the World Wide Wekl(“results” page, and the results ) . .
are summarized below. The wide set of input data containgeha\/I0r could be easily corrected by adding a small amount
of high-level knowledge to the beat-tracking system.

60 examples, each 15 s long, of a humber of different musi Similar to this. i lo #7 hvih d bl ¢
cal genres. Rock, jazz, funk, reggae, classical, “easy- imilar to this, in example #7, a rhythm and blues tune,

listening,” dance, and various non-Western music are repret-he algorithm is uncertain about assigning the beat to the

sented in the data set and can be tracked properly. Some gparter-note pulse or to the eighth-note pulse, and so

the examples have drums, some do not; some have vocaEWitCheS back and forth between them. A human listener

some do not. Five of the examples would be judged by humlght also suffer from similar confusion, but would likely

man listeners to have no “beat.” Table | summarizes themake an arbitrary decision and then stay with it unless the

results by musical genre, and some qualitative descriptiong]USIC changed radically. , ,
of typical results are provided below. Other than these two sorts of confusions for certain

Forty-one of 60 sample8% have been qualitatively rhythmically complex musics, the algorithm seems to per-

classified as being tracked accurately, and anothef8%) form quite successfully at tracking the musical beats.

as being tracked somewhat accurately. This accuracy per- )

centage is not directly comparable to that reported for otherl' Tempo modulation

systems, because the data set used here is more difficult. All As Todd correctly points outTodd, 1994, to be an
of the “easy” cases of rock-and-roll with drums keeping a accurate model of human rhythm perceptiand, of course,
straightforward beat were tracked correctly; and five of theo be maximally useful as a music analysis jp@ beat-
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Jarrett performance 3. Materials

Seven musical excerpts from the above set were used.

g Each was digitally sampled from an FM radio tuner to pro-
< duce a monophonic 22-KHz sound file, 15 s long. A com-
% puter interface was created on a DEC Alpha workstation
= _ : with which the musical excerpts were presented to subjects
60 : : i : at a comfortable listening level over AKG-K240M head-

. phones.
Schiff performance . .
15 : : : The musical excerpts were as follows: a Latin-pop song

at moderately fast temp@#10), a jazz piano trio at fast
tempo (#17), a “classic rock” song at moderately slow
tempo(#20), an excerpt from a Mozart symphony at moder-
ate tempo(#40), an “alternative rock” song at moderately
; ; ; slow tempo(#45, and a piano etude with varying tempo
%% 5 10 15 2 (#56)-
Time (5) A click track “step function” was also created for the
“ , , __experiment, in which 10-ms white noise bursts were pre-
FIG. 8. “Tempo curve” for two performances of the same piece of music. . .
Each tempo track has a short startup period during which the tempo estimé—ented at a tempo of 120 bmmteronset time of 500 msor
tion is unstable; after that there are clear differences in the two perfor6 S, then at a tempo of 144 bpfimteronset time of 417 ms
mances. The timescales are slightly different to make the performance scalg¢gr 4.6 s, then again at 120 bpm for 6 more s. This stimulus
align (the same musical excerpt is used in both cases is used to evaluate the response of human listeners and the
beat-tracking algorithm to sudden changes in tempo.
tracking system must be robust under expressive tempo A musical experithe authoy assigned exact beat times
modulation. The algorithm described here is able to followto each excerpt by listening repeatedly and placing “click”
many types of tempo modulations; this is effected in thesounds in the perceptually appropriate positions. This task
signal processing network by simply examining, over time,was different than the tapping task in which the subjects
the resonator producing the most energetic output. That iarticipated; the expert listened repeatedly to each stimulus,
when the tempo of a signal modulates, the response of thelacing beats, listening to results, and adjusting the beat po-
resonator corresponding to the old tempo will die away, andition if necessary. It is considered to be more accurate and
that of the resonator corresponding to the new tempo wilkobust than the real-time tapping task, although there is little
gain. literature on humans performing either of these sorts of judg-
Figure 8 shows “tempo curves(Desain and Honing, ments[see Drakeet al. (1997 and Parncut{1994 for two
1992 for two expressively modulated performances of aother “tapping tasks’]. The expert labeling was conducted
piece of music(Keith Jarrett and Andras Schiff perfor- separately from the tapping experiment, the expert did not
mances, of the beginning of the G-minor fugue from book lknow the results of the experiment or the algorithm execu-
of Bach’s Bach’'sWell-Tempered Claviefsound example tion, and the subjects were not presented with the expert
3]). The algorithm is quite sensitive to the variations indata. The resulting “ground truth” beat times are used for
tempo over time. the evaluation of results, below.

B. Validation experiment 4. Detailed procedure

A short validation experiment has been conducted to  Subjects were seated in front of the computer terminal
confirm the qualitative results given in the previous sectionand instructed in the task: they were to listen to short musical
This experiment was not intended to highlight important psy-examples and tap along with them using the space bar on the
choacoustic effects in beat perception, but only to teskeyboard. They were instructed to tap at whatever tempo felt
whether the beat-tracking algorithm performs generally likeappropriate to the musical excerpt, but to attempt to tap in

a human listener. equal intervalga pilot experiment revealed that some sub-
) jects like to “drum along” in rhythmic or even syncopated
1. Subjects patterns with the music if they are not instructed otherjise

Five adult listeners, all graduate students and staff memFhey listened to a 120-bpm click-track as a training sample
bers at the MIT Media Laboratory, participated in the experi-to indicate they understood the procedure, and then pro-
ment. All were experienced musicians with normal hearing.ceeded with each of the seven experimental trials.

All seven trials were run in the same sequence for each
listener, in a single block. The experiment was not counter-
balanced based on an assumption that there is little training

Subjects listened to seven musical examples, draweffect in this task. After each trial, the subject was instructed
from different musical genres, through headphones. They inby the interface to press a key different than the space bar to
dicated their understanding of the beat in the music by tapeontinue to the next trial. The entire experiment took ap-
ping along with the music on a computer keyboard. proximately 5 min per subject. The computer interface re-

2. Overview of procedure
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corded the time of each tap, accurate to approximately 10
ms, and saved the times to a disk file for analysis.

Finally, the beat-tracking algorithm was executed on
each of these seven stimuli to produce beat times as esti-
mated by the model described in the previous sections. These
beat times were saved to a disk file and analyzed for com-
parison with the human beat times. The algorithm parameters
were adjusted to give optimum performance for this set of
trials, but not changed from trial-to-trial.
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5. Dependent measures 0o 10 17 20 4 45 56
Musical Example

The human and algorithmic beat-tracks were analyzed in
two ways. First, the beat placements were compared to thIQG. 9. Scatter plot of huma¢subj. numberand model(O) beat position

ideal placements as judged by the expert listener; then, th@curacy for each of the seven experimental trials. Trial ‘0’ corresponds to

regularity of tapping was assessed by examining the variangge click-track step function. Each point measures how accurate that subject
of interonset times. was, relative to the expert, in placing beats in time. The expert judgments

T the beat bl t tchi . _are at zero variance for each column. For each trial, the algorithm beat
0 compare the beat placements, a matching Co_mpans%sition was at least comparable to the performance of the human subjects.
was conducted. Each beat placed by a human subject or yverall, the algorithm performance showed a highly significant positive
the beat-tracking model was matched with the clogast correlation with the human subject performanfe=0.814;p(df=5)
time) comparison beat in the expert beat-track. Initially, only <0-013.

the beats actually placed by the expert were used, but since

some subjects and the algorithm tapped twice as fast as thgnner. This indicates that whenever a beat position was cho-
expert on some examples, beats were allowed to be matchedy, py the algorithm, the position was very close to the ideal
to the midpoint between expert beats. The root-mean-squagg 4t position as determined by the expert judgment.
deviations of the subject’s taps from the expert’'s taps were  The regularity comparison is shown in Fig. 10. Results
collected for each subject and trial, averaging across tapgere indicate that the algorithm was as regular as a human
within a trial. listener for five of the seven trials, and less consistent for two
This rms deviation is a measure of how close the tappegs the trials. In one case, it and several of the human subjects
came to the “ideal” beat locations. If it is very Iovy, all of \yere more consistent than the expert. Mpost hocanalysis
the tapper’s placements were very close to expert judgmentss necessary to understand why the algorithm performance is
if high, the tapper's placements were randomly distributedyregylar in these trials; preliminary results suggest that these
compared to the expert judgments.. two stimuli have relatively slow onsets carrying the beat
This measure leaves open an important aspect of beafyiojins in one case, electronically gated drum sounds in the
tracking, which is regularity. As described in the qualitativeothe,)_
results, the algorithm sometimes demonstrates unusual be- These two results are consistent with the qualitative re-
havior by switching from one tempo to another, or from
off-the-beat to on-the-beat, in the middle of a trial. To evalu-
ate the regularity of tapping, the variance of interonset inter-

val was calculated for each trial-by-subject, each trial by the 1000l : ]

model, and each trial by the expert. Note that, as described f

above, the human subjects were explicitly encouraged to tag z '

regularly. F| \ 5
Again, the expert's behavior is taken as ideal; if the é 2 ® ; ) o i

variance is larger for some tapper than for the expert, it in- § 10 N o s ©

dicates that the tapping was irregular relative to the expert. If 3 2 . : 1

the variance is smaller, it indicates that the tapping was more 1} 5 i i 2 $

regular than the expefhot necessarily a positive aspect in ¥ * ¥ £

the case of changing tempirregularity generally arises in > T P

this data from leaving out beats, each occurrence of which
adds an inter-onset interval twice as large as the rest, increas
ing the variance.

Musical Example

FIG. 10. Scatter plot of humafsubj. number, model (O), and expert*)
IOl variances for each of the seven experimental trials. Trial “0” corre-
6. Results and discussion sponds to the click-track step function. Each point shows the regularity of
tapping of a subject for one trial; large values represent less regular tapping.
The beat-placement comparison is shown in Fig. 9. ReFor trials #40 and #45, the algorithm was not as consistent in tapping as a
sults indicate that the performance of the algorithm in p|achuman listener. Overall, the algorithm performance showed a highly signifi-

. . . . ant positive correlation with the human subject performance, and both the
Ing beats "? IOglcaI locations was at I,eaSt compgrable to th Igorithm and the human subjects showed highly significant positive corre-
human subjects tested for all the musical cases; in four of thgtions with the expert judgement=0.889, r=0.863, r =0.995, respec-

seven cases, the model was the most or second-most accuraiely; p(df=5)<0.01 in each cade
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sults described above. When the algorithm chooses to placeScheirer(1997 and leads to the question of whether pitch
beat, it does so with great accuracy and musical relevancend tempo perception might be related auditory phenomena.
however, for certain musical excerpts, it is somewhat incon-  Studies such as that of Povel and Ess€i885 have
sistent in its tapping regularity. That is, for these examples, ilemonstrated convincingly that beat perception may be ex-
drops beats or shifts phase more often than a human listengilained with a model in which a perceptual clock is aligned
This is not a bad result, because it is exactly this inconsiswith the accent structure of the input. A clock model is fully
tency which could best be addressed by including high-levetompatible with the method proposed here; it seems natural
information in the mode(such as simply including instruc- and intuitive to posit such an internal clock. However, the
tions to “try to tap regularly’). Povel and Essens model of clock induction, and similarly the

Parncutt model, relies heavily on structural qualities of the

input, such as a sophisticated model of temporal accent, to
V. DISCUSSION function.

. . . . Todd has argued that such phenomena do not need to be
In previous sections, the construction of a beat—tracklngmo

- deled cognitively, but rather can be explained as natural

system has been approached from a largely empirical per- o i .
. e emergent qualities of known psychoacoustic properties of
spective. However, it is also valuable to compare the result-

) : . o masking and temporal integration. This model agrees here as
ing algorithm to previous work on pulse perception in hu- . L : .
mans well, for it has demonstrated empirically that musical signals

can be accurately beat-tracked without any such factors ex-
A. Processing level plicitly taken into account. However, a more thorough evalu-

Perhaps the most obvious difference between thgtion of this model would include testing it on the unusual
method presented here and much of the previous work oﬁnd difficul sequences t(_aste_d in the course .Of Qeveloping
beat-tracking is that this algorithm knows almost nothingaccent models, to determine if changes to weighting factors

about musical timbre, genres, or even notes or onsets Thfg integration constants need to be made in order to replicate

approach to tempo analysis might be called a “perceptua‘i ese psychophysical effects.

model” of tempo, to contrast it with cognitive structuralist
models. B. Prediction and retrospection

That is to say, in models such as Povel and Essens pesain's recent work on beat-tracking has included
(1989, Desain (1999, or Goto (in press, there are two yajyaple discussion of the role of prediction and retrospec-
stages of processing representé first is implicit in the 5 jn rhythmic understanding. Clearly, prediction is a cru-
Povel/Essen and Desain modelShe first stage processes cjg| factor in an accurate model of human rhythm perception,
fche acoustic stream, classifying the variqus pieces of soungg simply to synchronize motor motidiike foot-tapping
into onsets and time intervals, separating the streams Qfjth an auditory stream requires prediction. There is a pleas-
sound, and understanding the accent structure and timbre ﬂfg symmetry between Desain’s “complex expectancy”

various components. Then, the second stage places thegges and the phase-prediction vectors extracted here from
events in relationship to each other in order to determine the,e comp filter delay lineas in Fig. 7.
tempo and phase Of the signal. . Desain, citing Jones and Bol(x989, draws attention to

In contrast to this, the model presented here agrees Witthe ytility of considering prediction and retrospection to be
the viewpoint of Todd(1994, in which tempo and rhythm  gimilar aspects of a single process. “Retrospection” refers to
are low-level “perceptual judgments” about sound, With the manner in which new stimulus material affects the
little cognition or memory required for processing. ThiS memory of previous events. Although there is no retrospec-
viewpoint is intuitively appealing for at least one major rea-jon included in the model—remembrance would seem to be

son, which is that certain features of tempo and beat argy, jnherently cognitive process—the phase-prediction curves
processed in non-attended auditory streams. Music listenergq 14 be used as input for this process as well.

even nonmusicians, often have the experience of conducting \wnen evaluating this model, it is important to keep in

a conversation and suddenly realizing that they have beeming the complexity of introspection on musical phenomena.
tapping their foot to background music. If the foot-tapping pithough  after-the-fact, listeners have made a rhythmic
process requires cognitive structuring of the input data, iinodel of the very beginning of a musical phrase, it is clear
seems likely that other cognitive hearing tasks such agnat this model must have arisen via retrospection, for there
speech-understanding would interfere. _ is not enough information in the signal alone to form it pro-
The finding of Levitin and CooK1996 that there is @ gressively. Simply because a listener feels that he “under-
great ability for Ilst_eners to Iearn_ and_remember absolutg;iands” the rhythm of the beginning of a musical segment
musical tempo implies that tempo is a simple, low-level per-goes not mean that the beginning itself contains sufficient

ceptual quality. The body of initial work on rhythm percep- jnformation to allow such understanding.
tion in non-human animaldor example, Hulset al., 1984

would seem to imply similar conclusions. c
The resemblance between the algorithm as drawn in Fig:™
3 and modern models of pitch hearing is striking. Both mod-  The effects which are not explained with this model are
els contain frequency-decomposition front ends followed bythose related to grouping of stimuli into a rhythmic hierar-
temporal integration. This comparison is explored in depth irchy. There are many known effects in this area, ranging from

Tempo versus rhythm

599  J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998 Eric Scheirer: Beat-tracking acoustic signals 599
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