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Porous electrodes composed of multiphase active materials are widely used in Li-ion batteries,
but their dynamics are poorly understood. Two-phase models are largely empirical, and no models
exist for three or more phases. Using a modified porous electrode theory based on non-equilibrium
thermodynamics, we show that experimental phase behavior can be accurately predicted from free
energy models, without artificially placing phase boundaries or fitting the open circuit voltage. First,
we simulate lithium intercalation in porous iron phosphate, a popular two-phase cathode, and show
that the zero-current voltage gap, sloping voltage plateau and under-estimated exchange currents
all result from size-dependent nucleation and mosaic instability. Next, we simulate porous graphite,
the standard anode with three stable phases, and reproduce experimentally observed fronts of color-
changing phase transformations. These results provide a framework for physics-based design and
control for electrochemical systems with complex thermodynamics.

I. INTRODUCTION

In order to develop safer, longer-lasting, and more
energy-dense batteries, it is crucial to understand their
thermodynamic behavior out of equilibrium. Many bat-
tery materials exhibit multiple phases with varying com-
position, voltage, and temperature [1–4], driven by elec-
trochemical reactions [5]. In Li-ion batteries, complex
phase transformations are triggered by lithium interca-
lation reactions. The standard anode material, graphite,
passes through three or more phases [6] with observ-
able color changes [7], while popular cathode materials,
such as olivine phosphates [8–11] and transition metal
oxides [12, 13], exhibit two-phase separation across sin-
gle particles [14, 15] and porous electrodes [16]. Conver-
sion reactions can also lead to complex phase behavior in
lithium-sulfur batteries [17–19] and lithium-oxygen bat-
teries [20, 21].

Phase transformations pose a major challenge for
mathematical models used to design, characterize, and
control Li-ion batteries [22]. Systems-level models ne-
glect phase transformations altogether and rely on em-
pirical constructs, such as current-dependent particle
sizes [23, 24]. Classical porous electrode theory (PET)
captures the microscopic physics of diffusion and reac-
tions [25–27], but does not consistently describe mul-
tiphase thermodynamics [5, 28–30]. In all cases, the
voltage plateau for two coexisting phases is fitted to a
unique (single-phase) function of the state of charge. For
two-phase materials, such as LiXFePO4 (LFP, X ≈ 0,
1) [8], spherical “shrinking core” [25, 31] or planar [32–
34] phase boundaries are imposed in the active particles,
but no such models are available for materials, such as
graphite, with three or more phases.

Recent work on LFP has shown that the voltage
plateau is an emergent property of the active particles
[11, 35–41] and the porous electrode [30, 42–45] for any
material with multiple stable phases at different com-
positions. In single particles, phase separation occurs
within the miscibility gap (range of unstable homoge-

neous compositions), which depends on temperature and
particle size [11, 37], overpotential [11, 46–48], and cur-
rent density [36, 37]. In porous electrodes, a collection
of particles entering the spinodal gap (linearly unsta-
ble compositions) can also undergo discrete transforma-
tions [16, 42, 43, 49], but the roles of nucleation [44, 48],
ion transport [30, 50], and heterogeneity [16, 44] are just
beginning to be understood.

In this work, we present a predictive theory of phase
transformations in Li-ion batteries. The mathemati-
cal framework, combining classical porous electrode the-
ory [27] with non-equilibrium thermodynamics [5], is
described in a companion paper [30]. This new ap-
proach effectively homogenizes microstructural simula-
tions [51, 52], even with phase separation [53], at a tiny
fraction of the computational cost. Here, we introduce
simple free energy models for LFP (two phases with co-
herent nucleation) and graphite (three phases, neglect-
ing nucleation) and use our modified porous electrode
theory (MPET) to predict representative experimental
data [7, 42].

II. IRON PHOSPHATE: TWO PHASES

The understanding of binary phase separation in single
particles is rapidly advancing [5, 11]. Phase-field models
of LFP have been developed for isotropic spherical par-
ticles [11, 40, 41, 47, 54], which may be relevant for large
particles or agglomerates, while new modes of interca-
lation have been identified [5, 39] for anisotropic single-
crystal nanoparticles [10, 55]. At low currents, intercala-
tion waves sweep across the active (010) surface [36, 56–
58] and relax to striped patterns along {100} [14] or
{101} [15] planes due to coherency strain [37]. Once the
local current density exceeds the exchange rate, phase
separation is suppressed [36, 37]. A “single-phase tran-
sition path” has also been suggested based on the large
barrier for bulk nucleation [59], but there is new evidence
(strengthened below) that two-phase nucleation does oc-
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FIG. 1. Simulations with modified porous electrode theory for two-phase LixFePO4, compared to the experimental data
of Dreyer et al. [42]. (a) Charge-discharge cycles at C/1000, C/200, and C/131. (b) Predicted effect of the particle-size
standard deviation σ (in a log-normal distribution) on the discharge curve at C/200 for the same mean size µ = 28nm. The
simulation results are smoothed; the raw data appears in Fig. 4. (c) Charge-discharge voltage gap, with additional C/10 and
C/50 experimental data. Theoretical curves are shown for a single particle size (σ = 0) and for the fitted size distribution in
the inset. (d) Simulated lithium profiles across the porous cathode at 50% filling for the cases in (b), showing the transition
from a sharp reaction front at σ = 0 to homogeneous filling in order of increasing particle size with increasing σ. Supporting
Information contains the simulation movies.

cur, via the instability of surface layers [48]. The nu-
cleation barrier is size-dependent and vanishes below a
critical particle size around 22nm [48], consistent with
experiments [60].

Much less is known about binary porous electrodes.
The seminal work of Dreyer et al. demonstrated a zero-
current gap between voltage plateaus for charging and
discharging [42], which they attributed to discrete spin-
odal decompositions among bi-stable homogeneous par-
ticles, analogous to filing a balloon array [43]. Indepen-
dently, Burch [49] observed the “mosaic instability” in
simulations of a collection of phase-separating particles
described by the Cahn-Hilliard-reaction model [5, 40, 41,
61], which exchange ions through an electrolyte reser-
voir at constant total current. (See Ch. 9 of Ref. [49].)
Recently, Bai and Tian (BT) interpreted current tran-
sients in terms of population dynamics for nucleation
and growth in a set of discrete particles [44] in place of
the Kolmogorov-Johnnson-Mehl-Avrami statistical the-
ory for a continuous electrode [62]. The BT theory has
already led to accurate measurements of mechanical de-

formation [45] and charge-transfer kinetics [63], and the
mosaic picture is directly supported by the first porous-
electrode imaging experiments of Chueh et al. [16]. The
data reveal mostly single-phase particles (x ≈ 0, 1) and
some two-phase particles with planar (not core-shell)
phase boundaries, consistent with theory [36, 37, 48, 56].
Macroscopic phase gradients are also observed [16], but
have never been modeled.

Here, we use MPET [5, 30, 50] to re-interpret the data
of Dreyer et al. [42] at very low C-rates, C/n, discharg-
ing the capacity in n = 50-1000 hours. The porous cath-
ode is partitioned into finite volumes, each containing a
representative LFP particle of random size (log-normally
distributed) and a realistic shape (C3) [14, 48, 64]. The
separator and lithium anode (at constant potential) are
also modeled. The homogeneous free energy

g(x) = kBT [x lnx+ (1− x) ln(1− x)] + Ωx(1− x) (1)

and diffusional chemical potential

µ =
dg

dx
= kBT ln

(
x

1− x

)
+ Ω(1− 2x) (2)
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(per site) describe a regular solution of particles and va-
cancies with mean interaction energy Ω, previously fit-
ted to Li-solubility data versus temperature and particle
size [37].

Based on porous electrode imaging [16] and short dif-
fusion times (∼ ms) in nanoparticles [65], we assume fast
single-particle transformations compared to the C-rate
and do not resolve the internal dynamics of each par-
ticle. Instead, we replace each particle with an effec-
tive homogeneous solid solution (the “pseudo capacitor
approximation” [30]), whose electrochemical response is
tuned to the results of a realistic phase-field model [48].
In particular, the regular solution parameter Ω is varied
with particle size to match the spinodal to the coher-
ent nucleation voltage for discharging (Li insertion) [48],
predicted from ab initio surface energies [66] and elastic
constants [67]. (See Appendix A.) As a first approxima-
tion, the same size-dependent nucleation voltage is also
used for charging. The local Nernst equilibrium volt-
age (relative to the lithium metal anode) is defined by
the chemical potential, Veq = V Θ − µ/e, relative to a
formal reference voltage V Θ at x = 1/2 in the mid-
dle of the plateau [5, 30, 36]. The local overpotential
η = V − Veq determines the reaction rate via generalized
Butler-Volmer kinetics from the local interfacial voltage
∆φ [5]. Ion transport is governed by a standard Nernst-
Planck electrolyte model [27, 30]. The simulations follow
the experimental charge/discharge protocol.

Our MPET has only three fitting parameters: the
mean (µ = 28nm) and standard deviation (σ = 3.5nm)
in a log-normal distribution of the cycled particle size
(defined by the short axis of the C3 shape in the [100]
direction, which is roughly half of the long axis length)
and a series resistance (Rs = 3.9Ω·g). Unlike traditional
models, the voltage plateau is not fitted, but predicted,
and phase transformations occur spontaneously. Mate-
rial properties of LFP were previously determined by ab
initio calculations and experiments [37, 48], except for
the exchange current (see below). All porous electrode
properties are known or estimated (electrolyte diffusivity,
active material loading, porosity, thickness, tortuosity),
but do not significantly affect the results at low rates.

With so few adjustable parameters, the agreement be-
tween the theory and experiment in Fig. 1(a) is remark-
able. The discharge plateaus are reproduced with mil-
livolt accuracy, including a slight tilt that had escaped
notice. The charging plateaus are also well described,
considering that a separate model was not developed for
charging nucleation. (The charging data also strangely
overlaps for C/200 and C/131, separate from C/1000.)

An unexpected finding is the effect of particle-size vari-
ance on the battery voltage. For a single particle size,
the voltage remains constant during phase transforma-
tion at zero current. In a realistic heterogeneous com-
posite, the voltage plateau tilts as particles fill in order
of increasing nucleation overpotential [48], from smallest
to largest. Consequently, the zero-current voltage profile
can be used to infer the particle size distribution, either

by simulations (Fig. 1) or from a simple analytical for-
mula derived in Appendix C. As shown in Fig. 1(b), the
theory predicts that only the smallest of the active par-
ticles were cycled in these experiments, having µ = 28
nm and σ = 3.5 nm. The reported range of 50 to 1000
nm [42] may have reflected agglomerates or imaging reso-
lution, since the smaller values also lead to accurate pre-
dictions of the voltage gap between charge and discharge
versus current, as shown in Fig. 1(c). Besides collaps-
ing literature data for current transients [48], the theory
of size-dependent coherent nucleation here explains why
the observed zero-current gap of 20 mV is much smaller
than the bulk spinodal gap of 74 mV inferred from ther-
modynamic data [37].

Another unexpected finding is the effect of particle-
size variance on the spatial profile of the phase trans-
formation, shown in Fig. 1(d). With identical particles
(σ = 0), the mosaic instability is localized in a thin reac-
tion front propagating from the separator, whose width
is proportional to the current, and voltage fluctuations
are enhanced by blocks of transforming particles [5, 30].
With non-identical particles, a small standard deviation
(as small as σ = 1 nm, not shown) suffices to spread
the phase transformation over the entire electrode and
smooth the voltage profile. The particles fill in spa-
tially extended groups according to size, starting with
the smallest, with a gentle gradient in concentration away
from the separator. This theoretical picture is consistent
with the imaging experiments of Chueh et al. [16].

These findings can drastically alter the interpretation
of electrochemical data for multiphase porous electrodes.
Classical methods [68], such as intermittent titration
or impedance spectroscopy [69], are based on reaction-
diffusion models that predict spatially uniform reactions
at low current. For solid-solution materials, such as sil-
icon nanowires, this assumption is justified and leads to
very accurate impedance analysis [70], but for phase-
separating materials, mosaic instability implies that low
currents may only probe small fractions of the total ac-
tive area and particle-size distribution. The reaction rate
can be grossly under-estimated if the full internal sur-
face area is assumed to be active. Indeed, classical PET
yields very small exchange current densities (3×10−6 [25]
and 5.4×10−5 [31] A/m2), while our MPET uses 7×10−3

A/m2, which seems more reasonable for a high-rate cath-
ode. Much larger values > 10 A/m2 have also been re-
ported [32, 33] that are > 107 times the PET values, so
it is clearly important to account for the mosaic insta-
bility using MPET. Since the particle-size variance pro-
motes uniform electrode intercalation, our results show
that the simple BT population-dynamics model [44] can
also be a good approximation at low rates and/or early
times (without electrolyte depletion), e.g. to replace the
Cottrell equation [68] in chronoamperometry to more ac-
curately determine the exchange current [63].

It is important to stress that our successful fitting of
MPET is for low-rate experiments, probing the slow dy-
namics of electrode phase transformations. At high rates,
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the original MPET formulation with Butler-Volmer ki-
netics and no statistical hetereogeneities [30] can have dif-
ficulty fitting experimental data [50]. The framework of
MPET is very general, however, and it is likely that some
more effects must be added to describe the full range of
operating conditions. This work shows that a distribu-
tion of particle sizes should be considered, while other
studies show the importance of electron transport lim-
itation [71] and higher-resistance Marcus-Hush-Chidsey
kinetics of electron transfer from the carbon coating of
LFP nanoparticles [63].

III. GRAPHITE: THREE PHASES

Traditional battery models cannot describe active ma-
terials with three or more phases, and yet many insertion
compounds have this property. Empirical approaches,
such as “shrinking annuli” [72] that generalize the two-
phase “shrinking core”, are difficult to justify theoreti-
cally and require inconsistently fitting the open circuit
voltage “staircase” (set of plateaus for multiple phase
transformations) as a unique function of the mean con-
centration. On the other hand, our MPET has no such
limitations and simply requires fitting a homogeneous
free energy model with three or more local minima to
the phase diagram; the voltage staircase is then an emer-
gent, rate-dependent property of the material.

To illustrate this new approach, we apply MPET to
the important case of graphite, a complex intercalation
compound [73] that has at least five distinct phases dur-
ing lithium insertion, LixC6, as x varies from 0 to 1
[6]. The open circuit voltage (Fig. 2(a)) exhibits two
wide plateaus from x ≈ 1/4 to x ≈ 1/2 (stage II) to
x ≈ 1 (stage I), corresponding to the stable states with
every third, second, and single layer between graphene
planes filled with lithium, respectively. Higher stages
with 0 < x < 1/4 involve correlated interlayer do-
mains [74] that are harder to discern experimentally and
less important for intercalation dynamics. As first ap-
proximation, therefore, we consider only the three phases
at x ≈ 0, x ≈ 1/2 and x ≈ 1, using a simple free-energy
model proposed by Bazant [75].

In order to capture two voltage plateaus between
these states, the model introduces two order parameters,
(x1, x2), that represent the lithium fractions in a pair of
periodically repeated layers, where x = (x1 +x2)/2. The
inset of Fig. 2(a) illustrates this physical picture of the
three phases at the endpoints of the voltage plateaus.
The free energy per site in the layer pair,

g(x1, x2) = g(x1) + g(x2) + gint(x1, x2), (3)

has local minima near (1, 1) for stage I (x ≈ 1) and (0, 0)
for the low density phase (x ≈ 0), as well as equivalent
minima near (1, 0) and (0, 1) for stage II (x ≈ 1/2), as
shown in Fig. 2(b). Each layer i = 1, 2 has a double-
welled homogeneous free energy, g(xi), with minima near
xi = 0, 1 favoring full or empty states. Stage II with every

other layer full is stabilized by a repulsive interaction,
gint(x1, x2), between adjacent layers.

Building on the LFP model above, each layer is treated
as a regular solution,

g(xi) = kBT [xi lnxi + (1− xi) ln(1− xi)] + Ωaxi(1−xi)
(4)

where Ωa > 0 controls the width of the each voltage
plateau. The interaction energy has a similar polynomial
form

gint(x1, x2) = Ωbx1x2 + Ωcx1(1− x1)x2(1− x2) (5)

where Ωb > 0 is a repulsion energy between two parti-
cles at the same site in adjacent layers, which sets the
different between the two voltage plateaus. The second
term with Ωc > 0 (not in the original model [75]) is an
additional repulsion between adjacent particle-vacancy
dipoles, which penalizes partially filled layers and further
stabilizes stage II with x1 6= x2. Intercalation reactions
are allowed to proceed into each layer independently, as
if it were a separate reactant. Each layer thus has its
own local overpotential, ηi = V − Veq,i, and Nernst volt-
age, Veq,i = V Θ−µi/e, defined by its diffusional chemical
potential,

µi =
∂g

∂xi
= µi+Ωbxj+Ωcxj(1−xj)(1−2xi) (i 6= j) (6)

where

µi =
dg

dxi
= kBT ln

(
xi

1− xi

)
+ Ωa(1− 2xi). (7)

The free-energy model has four parameters, Ωa, Ωb, Ωc

and V Θ, that are fitted to reproduce the open circuit
voltage at a given temperature (Fig. 2(a)).

Graphite is an electrochromic material that changes
color upon lithiation [76–78], making it possible to visu-
alize its phase transformations. The low density state is
black and switches to blue from a small value of x < 0.05
up to x ≈ 1/4. Stage II is red and extends just past
x ≈ 1/2, while stage I is gold and covers the widest volt-
age plateau up to x = 1. These colors are indicated by
circles around the corresponding minima of the model
free energy in Fig.2(b). Slow lithium insertion follows
the path of lowest free energy of the convex hull, includ-
ing common tangent planes between the local minima
that represent two-phase co-existence. Lithiation starts
near the blue circle (homogeneous empty state) and pro-
gresses towards one of the minima inside the red circles
(replacing the empty state with stage II) then towards
the minimum inside the gold circle (replacing stage II
with stage I). The contour plot also shows the tilt of the
free energy along the (1,1) direction, which is controlled
by Ωb and leads to the different voltage plateau values.

The experiments of Harris et al. [7] visualizing col-
oration during lithium intercalation in an “unrolled”
porous graphite electrode provide a unique opportunity
to test our MPET model for a material with more than
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FIG. 2. Graphite MPET simulations vs. experiment. (a) Open circuit voltage “staircase” for lithium insertion in graphite
(vs. Li metal) [6], reproduced by the MPET model (solid curve), whose homogeneous free energy is the dashed curve. (b)
Contour plot of the free energy model versus the filling fractions of two adjacent, periodically repeating layers with repulsive
interactions across layers. The model has local minima near (0,0) for the empty phase (blue), (1,1) for stage I (gold) and (1,0)
or (0,1) for stage II (red). These minima are connected by common tangent constructions for two-phase coexistence, which
force the system from empty to stage II to stage I during filling. (c) Simulated red/gold interface versus time (solid curve) in
the experiments of Harris et al. [7], compared to the experimental data. (d) Experimental image (above) and simulated color
profile (below) at the same moment in time, capturing the blue/red and red/gold interface positions and noise. A movie of the
simulation synchronized with the experiment as in (d) is in the supporting information.

two phases, for the first time. Beautiful experimental
movies (posted at http://lithiumbatteryresearch.com)
show the nucleation of a sequence of thin reaction
fronts propagating diffusively from the separator into the
porous electrode during lithium insertion, switching the
color of the graphite particles from black to blue to red
to gold in discrete, stochastic transformations (Fig.2)(d).
The battery is discharged at a constant potential of 2 mV,
very close to short circuit, which leads to a large initial
flux of lithium into the particles.

Since the characteristic time for diffusion across this
long electrode (≈ 1 mm) is on the order of hours, the
electrolyte quickly becomes depleted of salt. The propa-
gation of the reaction front is thus limited by the lithium
diffusion that feeds it (from both sides), leading to the
same square root of time scaling of the front position
and diffusion layer width [7], as in diffusion-limited corro-
sion of porous electrodes [79, 80]. Relative to electrolyte

diffusion, reactions and solid diffusion are very fast, so
the pseudo-capacitor approximation can be safely made
in our MPET [30], as in the case of LFP nanoparticles
above. Ohmic losses for electrons can also be neglected
since the porous graphite layer is very thin and sits on
the current collector.

The MPET simulations also include the separator and
lithium metal anode and apply the same constant poten-
tial (2mV) as in the experiments. In order to compare
with the experimental images, the solid lithium concen-
tration is converted to three colors, consistent with the
free energy model and experimental observations: blue
0 ≤ x < 0.3, red 0.3 ≤ x < 0.6, and gold 0.6 ≤ x < 1.
See Appendix B for further details.

With essentially no adjustable parameters, the agree-
ment between theory and experiment in Fig. 2(c)-(d) is
remarkable. Once the free energy model is determined
by the open circuit voltage, the only fitting parameter

http://lithiumbatteryresearch.com


6

is the effective diffusivity Deff of the electrolyte (since
both reactions and solid diffusion are fast), but its value
must remain close to theoretical estimates. Assuming the

Bruggeman relation, Deff = ε
3/2
p D, with an ambipolar

diffusivity D = 4.6×10−10 m2/s (consistent with experi-
mental values for ethylene carbonate / dimethyl carbon-
ate solution [81]), an excellent fit of the position of the
red/gold interface versus time (Fig. 2(c)) is obtained with
a reasonable porosity, εp = 0.4. This value is somewhat
large for a bulk porous electrode, but the experiments in-
volve roughly a monolayer of graphite particles between
flat plates, which would have higher porosity.

Fitting the diffusive motion of a single interface may
not seem so surprising (and can also be done by an ad hoc
diffusion equation for coloration [7]), but our MPET ac-
curately predicts the nucleation and propagation of two
stochastic reaction fronts, the red/gold and blue/red in-
terfaces, over the entire recorded time without fitting any
additional parameters. (See the supporting movie and
Fig. 2(d).) Moreover, a close examination of the reaction
fronts shows that the mosaic instability, i.e. stochastic
filling of discrete particles [30, 42, 44, 49], is quite similar
in both movies, from experiment and simulation.

IV. CONCLUSION

In this paper, we show that MPET [30] based on
electrochemical non-equilibrium thermodynamics [5] is
able to accurately simulate two fundamental experiments
with multiphase porous electrodes [7, 43] that traditional
porous electrode theories could not describe. The advan-
tage of MPET is that it couples the thermodynamics of

the active material to electrochemical transport and re-
action kinetics. Complex dynamical phenomena, such as
nucleation, phase growth, mosaic instability, and voltage
hysteresis, are then predicted by the model, rather than
artificially imposed on the system.

The fundamental input to MPET is a free energy
model for the active material, inferred from the phase
diagram and open circuit voltage. The cell voltage is
predicted as an emergent property of the porous elec-
trode, rather than fitted to experimental data as an ef-
fective property of the active material, as if it remained
homogeneous and never phase separated. By properly
accounting for non-equilibrium thermodynamics, MPET
provides a promising framework for battery modeling to
optimize the cell design, predict and control performance,
monitor the internal state, and improve safety under di-
verse operating conditions.
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APPENDIX A: IRON PHOSPHATE
SIMULATIONS

The general simulation framework of MPET is described
in a companion paper [30] and is beginning to be used by
other researchers [50]. In this Appendix, we give some of the
parameters and simulation details not covered in the main
text.

Cogswell demonstrated that single particle voltage profiles
are always tilted due to coherency strain and that the over-
shoot from the standard potential on discharge varies with
particle size. This overshoot, which can be thought of as the
half gap (i.e. the overpotential required to drive lithiation),
depends on particle size since the surface wetting represents
a larger percentage of the total volume for smaller particles.

As noted in the main text, the particles are modeled
as effectively homogeneous (“pseudo capacitor approxima-
tion” [30]), but with an equilibrium voltage profile that
approximates coherency phase separation within the parti-
cle [37]. We simply adjust the regular solution parameter Ω
with particle size to place the unstable spinodal points (ex-
trema of the chemical potential) at the size-dependent nucle-
ation voltage predicted by Cogswell and Bazant [48] (Eq. 9
below), as shown in Fig. 3. The value of Ω can be determined
from an exact expression for the voltage gap between spinodal
points in the regular solution model,

∆Vgap =
2kBT

e

[√
Ω̃2 − 2Ω̃− 2 tanh−1

(√
1− 2

Ω̃

)]
. (8)

In this approach, we neglect asymmetry between charge and
discharge in the single-particle properties.

For purposes of calculating size-dependent nucleation bar-
riers [48], the size of each representative particle in a finite
volume of the porous electrode is sampled from a log-normal
distribution. The particle shapes are all assumed to be the C3
shape [48, 64]. The particles are plate-like and all assumed to
be 20 nm thick in the [010] direction [64, 82] . The wetted sur-
face area to volume ratio is calculated via A/V = 3.6338/L,
where L is the size of the particle in the [100] direction. [48]
.

Given the very slow charge/discharge rates in the experi-
ments [42], the electrolyte properties are not very important
since the electrolyte does not deplete. For completeness, how-
ever, suitable numbers are chosen for transport properties.
An ambipolar diffusivity of 1.5x1010m2/s is used for the 1M
LiPF6 in EC/DEC electrolyte. [81]. A transference number
does not seem to be available for this electrolyte, so a value
of 0.35 is assumed, consistent with other typical battery elec-
trolytes. [1] The electrode is assumed to be 50 µm long with
a 25 µm separator. The volume fraction of the active material
is assumed to be 0.5, and the porosity is 0.4.

The simulation is run by starting with a fully charged elec-
trode, which is then discharged to a filling fraction of 0.2 at
a C/10 rate. The electrode is then relaxed by simulating a
zero current for a long period of time (roughly 3.5 hours).
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FIG. 3. Size-dependent regular solution model to approx-
imate coherent nucleation in nanoparticles. (a) Theoretical
prediction of the critical nucleation voltage in LFP (blue),
decreasing linearly with area to volume ratio [48], and the
effective size-dependent regular solution parameter Ωeff . (b)
Equilibrium voltage profiles for different particle sizes from
the size-dependent regular solution model fitted in (a).

The electrode is then discharged to a filling fraction of 0.7,
relaxed, then charged back to 0.2. When calculating the volt-
age gaps, the simulation results are smoothed to make the
value consistent, to account for averaging over a large num-
ber of particles of different sizes that cannot be captured in
our simulations with a relatively small set of discrete particle
sizes. The simulation results from Fig. 2(b) without smooth-
ing are shown in Fig. 4. A constant contact resistance of 3.9
Ω·g is inferred by fitting the data, as one of only three fitting
parameters, along with the mean and variance of the particle
size in a log-normal distribution.

APPENDIX B: GRAPHITE SIMULATIONS

The graphite free energy model of Bazant [75] described in
the main text is adjusted so that a slow C/1000 MPET simu-
lation (without transport limitation) fits open circuit voltage
staircase (Fig.2(a)), yielding the parameters Ωa = 3.4kBT,
Ωb = 1.4kBT, and V o = 0.1366 V. The fourth parame-
ter, Ωc = 30kBT, assigns an extra energy to the homoge-
neous state that serves to push the particle toward stage II
at intermediate filling fractions, but its precise value is rel-
atively unimportant here. Each representative layer is mod-
eled as having its own reaction rate, determined by general-
ized Butler-Volmer kinetics [5]. The slow discharge simulation
(which allows the transport effects to be neglected) is used to
fit the model parameters.
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FIG. 4. The raw data for the simulations of porous LFP low-
rate discharge with different particle size distributions with-
out any smoothing of the data. In order to convey the effect
of particle size and extract the voltage gaps between charge
and discharge, the same data is smoothed in Fig. 2(b).

Once the free energy parameters are obtained, a constant
potential discharge simulation at V = 2mV is run for a full cell
simulation with a lithium metal anode and a graphite cath-
ode to simulate the experiments of Harris et al. [7]. Transport
effects on the lithium metal electrode are assumed to be neg-
ligible, and the porosity on that side is treated as unity to
model the free electrolyte channel above the unrolled current
collector. The important transport effects are on the graphite
side, where there is sharp electrolyte depletion from the sep-
arator to the intercalation front. It is necessary to simulate
a full electrode in order to obtain a realistic diffusivity from
fitting. In a half cell neglecting the anode, large salt con-
centration gradients form across the separator and lead to
artificially small fitted diffusivities.

The separator thickness from images provided in the origi-
nal paper is estimated to be 1.23 mm. [7] The electrodes are
assumed to be on the order of 1.2 cm (or 10 times the sepa-
rator thickness). The total length is not important since the
coloration dynamics are observed in the first couple millime-
ters. The diffusive time across the separator is on the order of
one hour, which is rate limiting compared to the much faster
reactions. The exchange current densities for both graphite
and lithium metal are arbitarily set the inverse diffusion time
across the separator, which corresponds to approximately 1.4
A/m2 for 5 µm spherical particles. (Particle sizes of 5-20 µm
are observed). The volume fraction of graphite in the elec-
trode is assumed to be 0.8, and the Bruggeman relation is
used to model porous transport effects [30].

APPENDIX C: THEORY OF THE TILTED
VOLTAGE PLATEAU

Our MPET model reveals an unexpected effect of statistical
variations in the active particle size on the open circuit volt-
age of a battery, namely a slight tilt of the voltage plateau
between two stable phases. This feature is present in pub-
lished data for LFP at very low rates [42], but has apparently
gone undetected until this work (Fig. 1). In this section,
we provide a simple analytical theory of the voltage profile
versus mean filling, V (x), near open circuit conditions, based

on the particle size distribution and the recent theory of size-
dependent nucleation [48].

Let ∆φ = V Θ − V − IRs be the voltage drop relative to
the formal reference potential of two-phase coexistence V Θ,
accounting for a small Ohmic loss from the overall series resis-
tance Rs. For low rates, close to open circuit conditions, we
neglect any concentration polarization within the electrode.
Let n(L) be the probability density function for the linear
size L of an active particle.

Following Cogswell and Bazant [48], we assume that nucle-
ation occurs on certain surfaces wetted by the new phase, e.g.
the high density phase of LFP during battery discharge. The
critical voltage for nucleation, ∆φ∗, which corresponds to the
coherent miscibility limit, decreases linearly with the wetted
area to volume ratio, L/β,

∆φ∗ = ∆φ∗∞

(
1− Lc

βL

)
(9)

where β is a constant for a given particle shape (the volume
to wetted area ratio per linear size, assumed to be the same
for all particles), ∆φ∗∞ is the critical voltage in the large-size
limit (set by elastic strain energy), and Lc is the critical par-
ticle size below which the nucleation barrier vanishes (due to
the dominance of surface energy). Simple analytical formulae
are available to predict ∆φ∗∞ and Lc from the fundamen-
tal thermodynamic properties of the active material (elastic
constants, misfit strain, surface energies, interfacial tension,
miscibility limit, etc.), and in the case of LFP, the predicted
values ∆φ∗∞ = 37 mV and Lc = 22 nm lead to a remark-
able data collapse of reported nucleation voltages for different
mean particle sizes. For the C3 shape of LFP particles [48, 64],
the geometrical parameter is β = (3.6338)−1 = 0.2752, if L is
the particle length in the [100] direction.

At a given voltage drop in the two-phase region, 0 < V <
∆φ∗∞, near open circuit conditions, all particles with L <
L∗(∆φ) are filled, and the others empty, where

L∗(∆φ) =
βLc

1−∆φ/∆φ∗∞
(10)

is the size of the particles at the nucleation voltage, L = L∗,
undergoing filling transformations. The mean filling fraction
of the electrode is then given by

x =

∫ L∗(∆φ)

0
n(L)L3dL∫∞

0
n(L)L3dL

(11)

which is an implicit formula for the “tilted voltage plateau”
versus state of charge, V (x). The voltage profile is generally
nonlinear, but its slope at a given point (inverse of the pseudo-
capacitance) is given by

d∆φ

dx
= −vp (1−∆φ/∆φ∗∞)5 ∆φ∗∞

n(L∗(∆φ)) (βLc)
4 , (12)

where the third moment of the particle size distribution, vp =∫∞
0
n(L)L3dL, is an effective mean particle volume.

Figure 5 shows the effect of the shape of the particle size
distribution on the profile of the open circuit voltage versus
state of charge. A unimodal distribution, such as a Gaussian
or log-normal, leads to a tilted voltage plateau with a slightly
nonlinear profile, as shown in Fig. 2, but a bimodal distribu-
tion leads to a voltage staircase with two tilted plateaus close
to the mean voltages where the two different particle sizes
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FIG. 5. Theoretical dependence of the open circuit voltage during battery discharge on the particle size distribution of a
phase separating porous electrode, in two cases with the same mean particle size. The single lognormal distribution and a
bimodal lognormal distribution shown on the left lead to the voltage profiles on the right. The lognormal case is fitted to the
experimental data of Dreyer et al. [42] in Fig. 2 (red) with a minor adjustment of the standard potential.

transform (at the size-dependent coherent miscibility limit).
Interestingly, this statistical mechanism for a voltage stair-
case is distinct from that of the graphite discussed in the
main text, which has to do with transitions between three or

more stable phases. In principle, a very precise measurement
of the tilted voltage plateau can be used to infer the particle
size distribution, by solving an inverse problem given by Eq.
(11).
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