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Abstract

In this paper, we propose a fast parallel algorifomdata classification, and its application for
Magnetic Resonance Images (MRI) segmentation. Tésepted classification method is based on
a parallel fine grained fuzzy C-means algorithmisltimplemented on a polymorphic SIMD
machine to sort out the different components ofanbimage. The use of the massively parallel
architecture in the classification domain and patérly for the fuzzy classification is introduced
to improve the complexities of the correspondingpathms. The proposed algorithm is assigned
to be implemented on a massively parallel machitech is the Reconfigurablglesh Computer
(RMC). The brain image of size (m x n) to be preegsmust be stored on the RMC of the same
size, one pixel per Processing Element (PE). Soreresting results are obtained in terms of
accuracy and efficiency analysis of the proposethatk thanks to the reconfiguration ability of
the used computational model.

Keywords: Parallel Programming, Image Segmentation, Brain Mfige, Parallel Classification,
Fuzzy C-means, Massively Parallel Algorithm.

1. Introduction

Magnetic Resonance (MR) imaging has been wideld irsdrain exploration, due to its excellent
soft tissue contrast, non-invasive behavior, higatial resolution and easy slice selection at any
orientation. However, accurate and fast tools ferebral MR images processing are of great
interest for many brain manipulations such as a&mlyinterpretation, diagnostics, and
examination of the progression of brain disordeishsas Alzheimer’s disease, multiple sclerosis
or schizophrenia, and neurosurgical operation @hanfi].

MRI segmentation can be considered as an Imagegsiung problem or a pattern recognition one.

In both cases, the problem is to classify a setlements into a set of classes according to the
shared characteristics inside the clusters. InMR# segmentation domain, the vector pattern X

that will be considered in the FCM algorithm copesds to the gray level of the studied pixel in

each MRI slice.

In the medical imaging field clustering is usuallged for pattern recognition (Brain retrieval,

Tumor segmentation etc...). The corresponding climjealgorithms require often a huge volume

of data computation. To achieve clustering resapidly, several computational models have been
proposed as the high performance tools to impra@mfopmance and efficiency of the proposed

method.

Actually, the massively parallel architectures knewn as the high performance computational
models. They have demonstrated their effectivefedgrms of supporting the most complex
parallel algorithms such as Fuzzy C-Mean algoritfiths

In [2], the authors have discussed the need ofllphraethods to speed up clustering algorithms.
They have implemented their parallel FCM on a pelrarchitecture named “Red hat based
cluster”. This parallel system, possesses eightesosupervised by a blade node using ¢
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programming language an message passing instru@éh) model to implement the parallel
proposed algorithm. They have notified an intergsspeed up result when the number of nodes
increases.

In [3], authors have proposed a parallel Fuzzy GxMelustering for large data set (PFCM). This
later is assigned o be implemented on a paralleipeder of Single Program Multiple Data
(SPMD) model using MPI tool. They compare the aiediscalability and parallel capability to an
existing parallel C-Mean algorithm.

Due to the huge amount of data to be processetencltassification domain, several parallel
implementations have appeared, both in distribatetishared memory hardware as well as in grid
environment [4]. All the proposed algorithms haweib investigated as : Decision tree induction
[5] , Fuzzy rule based classifiers [6] [7] , neunatworks [8] [9] , association rules mining [10]
[11] and clustering [2] [12].

Since the number of proposed computational modedsnaethods is large, we notify that several
associated algorithms have been proposed such-ragans [14], fuzzy cmeans (FCM) [15],
adaptive c-means [16], modified fuzzy cmeans [ISihg illumination patterns and fuzzy c-means
combined with neutrosophic set [18].

Image segmentation is a splitting process of imagesa set of regions, classes or homogeneous
sub-sets according to some criteria. Usually, Geagls, texture or shapes constitute the well used
segmenting criteria. Frequently the criterion ckaik based on the kind of images and the target
goals after processing. Image segmentation caom&dered as an Image processing problem or a
pattern recognition one. In the case of Image @msing, we distinguish two essential approaches
that are: region approach and contour approacthdrirst approach, one looks for homogeneous
regions using some basic techniques such as thHdéstno region growing, morphological
mathematics and others [19]. Thresholding technidjseriminates pixels using their gray levels.
It supposes implicitly that intensity structureg awufficiently discriminative, and guarantee good
separation [20]. In [21] authors, propose a mulbdal histogram thresholding method for gray-
level images. As mentioned above, segmentatioresepts a very large problem in the image
processing domain; it requires several algorithre@hniques and different computational models,
which can be sequential or parallel using procgsslaments, cellular automata, neural networks
or other advanced tools.

In this paper, we propose a massively parallelrélym for fuzzy classification (fuzzy c-means)

and its application to the MRI cerebral images. Tgreposed algorithm is assigned to be
implemented on a SIMD structure which is an (n xmgssively parallel Reconfigurable Mesh
Computer (RMC). It is a fine grained version inste# the most proposed algorithms in the
literature. These later are based on the “Messagsiiy Interface” (MPI) tool in the coarse

grained parallel structure having a reduced nunafarodes (e.g. at most 16 nodes). Our fine
grained parallel algorithm requires computationaldei of the same size (n x n) as the image,
where each pixel (i, j) is associated to it coroeapng processing element PE(i, j). In this context
the proposed PFCM algorithm is assigned to an uppend theoretic machine to see at first how
to reach the real time of the fuzzy clustering athon and secondly how to implement this
algorithm in a real machine in order to discuss tlypamic evolution of the class centers
according to the data input image and to apprei®tesefulness in the medical imaging domain.

To validate the proposed method, we use an emalataform of the RMC architecture [23], [24]
where the developed parallel program is perfornidate that with this platform we can create
several massively parallel virtual machines of tapology by associating the performances of all
the available hardware resources (Desktop, GPUersamputer, Cellular automata etc.). The
polymorphic aspect of this platform allows researshto build their own virtual parallel
architectures for their specific problems evenhiéses architectures are not available. By this
concept, we show the power and the high performafi@air vision for the future to not restrict
researchers only to the available technologies.
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This paper is organized as follows: Section 2 pressa summary the computational model used to
implement our parallel algorithm. The parallel segtation fuzzy c-means algorithm and its

implementation program code are described in matild in section 3, and the obtained

segmentation results are presented in section d.cbmplexity analysis of the parallel fuzzy c-

means program and its improvement are discussétkimext section 5. Finally, the last section

gives some concluding remarks on this work.

2. Parallel Computational M odel
2.1. Presentation

The computational model that will support the pregb Parallel FCM is the Reconfigurable Mesh
Computer (RMC) of same size n x n as the input MRige. It is a massively parallel machine
having rf Processing elements (PEs) arranged on a 2-D natréhown in figure 1. It is a Single
Instruction Multiple Data (SIMD) structure, in whi@ach PE(, j) is localized in row i and column

j and has an identifier defined by ID=n x i + jadh PE of the mesh is connected to its four
neighbors (if they exist) by communication channéishas a finite humber of registers of size
(log, n) bits. The PEs can carry out arithmetic anddalgboperations. They can also carry out
reconfiguration operations to exchange data ovemtkesh. Also the PEs can use another way to
exchange data using a shared memory. All the REmanaged by a host manager that is designed
to load parallel program and global data to distebthem over the matrix of PEs for any
execution stage of the algorithm.

[| PEOO [}q| PEOL [}{| PEO2 |
T = =
[|PE10 [}{|PE11 [}{|PE12 | Host
[|PE20 [H] PE2: | PE22 .
T T T |
Shared Memory

Figure 1. A Reconfigurable Mesh Computer of size33

2.1.1. Processing Element (PE) Model.

Like any processor, each processing element (PEH)eoRMC can execute a set of instructions
relating to the arithmetic and logical operatiofise concerned operands can be the local data of a
PE or the data arising on its communication chanaéler data exchange operation between the
PEs. Figure 2 shows a simplified model of the psso® element used in the considered
bidirectional RMC (2D RMC).

The PE can also carry out the bridge configuratiararder to establish connections between two
or more communication channels. When the PE oRRKC is in a Simple Bridge (SB) state, it
establishes connections between two of its comnatinic channels. This PE can connect itself to
each bit of its channels, either in transmittingdeoor in receiving mode, as it can be isolated
from some of its bits (i.e. neither transmitter,r neeceiver). Various SB configurations
are described by the following formats:
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{E, W,SN}{E-S, W, N}, {N-W, S, E}, {E-N, S, W} and{W-S, E, N} where E, W, N and S
indicate the East, West, North and South Portsgiv@n PE respectively.

For example, the formafW-S, E, N} is a simple bridge configuration where the west smath
ports are linked by communication channel. The Badtnorth ports remain free.

A PE is in a Double Bridge (DB) state when it oasriout a configuration to create two
independent buses. Thus, the possible configusatidrihe DB state ard EW, NS, {ES, NW}
and{EN, SW}.

A PE is in CB State when it connects all its actte@anmunication channels in only one; each bit
with its correspondent. This operation is generakgd when we want to transmit information
over the mesh to a set of PEs at the same time& CBhistate is defined by the configuration:

{NESW}
BUS
PORT Data
Registers
idReg Regin] | A g
iReg :
Pl | iReg : P
0 reoi2 | | O
BUS | R - r| BUS
T bridge Reg[1] T
0123..... 15| Reg[0] )
PORT
Flag Register BUS

Figure 2. Different components of a processing elemodel of the 2D RMC model.

Notice that in the proposed PE model, the listntéérinal elements is not exhaustive. During the
programming phase, we will try to deploy a minimalmber of components resources (registers,
flags, ports, etc.) to optimize the used RMC andadoomplish efficiently the FCM algorithm
execution.

3. Parallel Fuzzy Segmentation Algorithm
3.1. Sandard fuzzy c-means algorithm

The fuzzy c-means (FCM) clustering algorithm was first introdd by [22] and later was
extended by [15]. Fuzzy C-means (FCM) is a clustetechnique that employs fuzzy partitioning
such that a data point can belong to all class#sdifferent membership grades between 0 and 1.

The aim of FCM is to find the final values of thecllister centers (centroids) in the data set
X={Xq, X2, ..., Xn} that minimize the following dissimilarity function
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JU,V,,V,,..0 V) = Z J = Z ' u; "d % x,) 6y

With the constraints:

u; 0[od], 0, j (22)
C
du;=10j=1..,N (2b)
i=1

N
0<> u; <N,0i=1..C (2¢)

j=1
Where:

u;j: Membership of data xj in the clusté
V; : Centroid of cluster i;
dwix : Euclidian distance betweeh dentroid ;) and | data point ¥
m e [1,00] : fuzzy weighting exponent (generally equals 2).
N: Number of data.
C: Number of clusters2 C< N.
To reach a minimum of dissimilarity function thenee two conditions.
N
V. = L’mx] (3)
N m

= 4

u; zc dij 2/(m-1)
k=1 dkj

In order to implement the FCM algorithm even oniagdeor parallel computational model, it is
necessary to build it around the following stages:

Sage 1. - Randomly initialize the membership matrix (U) aating to the constraints of
Equations 2a, 2b and 2c.

- initialize the fuzzification parameten (1< m< o),
- Choose the number of clusters C,
- Initialize the initial values of cluster centév$(0) (i=1to ¢) and threshol&,>0.

For each iteratiok:

Sage 2: Calculate centroidk/i(k) using Equation (3).
Sage 3: Compute the objective function J by equation (1).
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Sage 4. compare the obtained objective functiqrtal J.; and exit the loop (i.e. go to stage 6) if
the absolute value of the difference between tloeessive objectives functions is lower
thanS;.

Sage 5: Compute a new membership matrix U using Equgddrand Go to Stage 2.
Stage 6: Stop.

3.2. Parallel fuzzy c-means algorithm

The parallel algorithm, described in this sectisrimplemented in an RMC emulating framework
[23] [24] using its XML based parallel programming languabiee program code presented, in
each stage of this parallel algorithm, is perforrmadhe MRI cerebral image as input data. Before
its execution, we define in the initialization phake number of classes by ¢ = 3. This means that
the classes looked for in the image are the whisdtan the gray matter and the cerebrospinal
fluid. The background of the image is not considdrg the algorithm.

3.2.1. Initialization procedure

— Loading data image input and initialization phasach PE(i,j) of the mesh will upload in
its register 0 a pixel gray level of the image.

<l oadl mage fil e="brain.jpg" reg="0" codage="8" />
— Loading initial parameters in the host registers :
<host >
<l oadVal ues regs="0,1,2,3,4,5" val ue="140,149,150,0,0,0.1" />
<!-- this instruction means that :
reg[O]contains the initial value of C 1 class center
reg[1]contains the initial value of C » class center
reg[2]contains the initial value of C 3 class center
reg[3]contains the initial value of J n1
reg[4]contains the initial value of J n1
reg[5]contains the initial value of S th
>
</ host >

3.2.2. Class determination procedure
This procedure consists of six essential stageshndnie:
1- Data Broadcasting
2- Distance computation
3- Local objective function computation and new clesster determination
4- Class centers and global objective function contpna
5- Loop stop test
6- Membership decision.
These various stages are included in a loop aswell
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<Beginning of iteration (k) >

3.2.2.1. Data broadcasting
For (c=1toC)

{
= All the PEs of the RMC configure themselves in GeasBridge (CB) state.
= The representative PE of the class \broadcasts its value;Y through the
mesh.
= All the PEs of the RMC store in their Rxthe value Y, , received through the
mesh.
= All the PEs of the RMC stores the fuzzyficationgraetem .
}

It should be noted that the representative PE @éss is the PE having the smallest identifier 1D
in its class. The search for this smallest idestifialls a procedure of the Min-search in a grdup o
PEs asin [13].

The corresponding parallel code of the data brasithg procedure is :

<doWi | e test="reg[30]>reg[5]" t ar get ="host" >
<!l-- All PES except PEs representing background c olor -->
<f or - eachPE t est ="reg[0]!=0" >
<mark type="true" />
<l-- All the PE’s load the three class centers fr om the host -->

<l oadVal ue regs="8,9,10" val ue="host.reg[0], host.reg[1],
host.reg[2]" />

<l-- Loading the fuzzyfication parameter into reg [40] -->
<l oadVal ue reg="40" val ue="2"/>

3.2.2.2. Distance computation
At each iteration k, each PE computes the distad(i¥g, Vi) between its gray level Ng and the

values of the C class centers. These values aedsioits C registers (M, Vak,..., Vck)-
<l—- Each PE computes the three distances separati ng it from the
three class centers. d1, d2 and d3 are stored in re o[11], reg[12]
and reg[13] respectively
-—>
<doOper ation expressi on="reg[11]=Math.abs(reg[0]-reg[8])" />
<doOper ation expressi on="reg[12]=Math.abs(reg[0]-reg[9])" />
<doQOper ati on expressi on="reg[13]=Math.abs(reg[0]-reg[10])" />

8 office@multidisciplinarywulfenia.org



WULFLENIA

hl(\().lx.ll.a{.\\.s}.g\ O I 155151552 Vol 22, No. 1;Jan 2015

3.2.2.3. Local objective function computation:
a) Computing membership of data Xj to the cluster V;

<l—

Each PE computes its membership degrees U1, U2 and U3 to the clus-
ters centred at C1, C2 and C3. The values of C1,C2 and C3 are re-
spectively stored in the registers reg[41], reg[42] and reg[43].
>

<i f test="(reg[11]'=0)and(reg[12]'=0)and(reg[13]!=0)" >

<l—- compute U1l -->

<doQOper ati on expression= "reg[4l]=
1/(Math.pow(reg[11]/reg[11],2/(reg[40]-1))
+Math.pow(reg[11]/reg[12],2/(reg[40]-1))
+Math.pow(reg[11]/reg[13],2/(reg[40]-1)))" />

<l—- compute U2 -->

<doQOper ation expression= "reg[42]=
1/(Math.pow(reg[12]/reg[11],2/(reg[40]-1))
+Math.pow(reg[12]/reg[12],2/(reg[40]-1))
+Math.pow(reg[12]/reg[13],2/(reg[40]-1)))" />

<l—- compute U3 -->

<doQOper ation expression= "reg[43]=
1/(Math.pow(reg[13]/reg[11],2/(reg[40]-
1))+Math.pow(reg[13]/reg[12],2/(reg[40]-
1))+Math.pow(reg[13]/reg[13],2/(reg[40]-1)))" />

</[if>
<l-- If d1==0, U1=1, U2=0 et U3=0 -->
<if test="reg[11]==0" >
<l oadVal ue reg="41,42,43" val ue="1,0,0" ></| oadVal ue>
<[if>
<l--if d2==0, U1=1, U2=0 et U3=0 -->

<i f test="reg[12]==0" >
<l oadVal ue reg="41,42,43" val ue="0,1,0" ></| oadVal ue>

</if>

<l--if d3==0, U1=1, U2=0 et U3=0 -->
<if test="reg[13]==0" >

<l oadVal ue reg="41,42,43" val ue="0,0,1" ></| oadVal ue>
<[if>
b) Local objective function computation and centroid determination

For (c=1to C)
{
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« Each PE computes terms :

T3(c)=U(c) "m * Distance(c)?

« Each PE computes its local objective function (J)

T1(EE) “m , T2(c)=U(c)

m * data,

« All PEs participate in the parallel hierarchicalrsuation to compute global
objective function JThis summation procedure was detailed in [27],a$ la
complexity of O(Log,(n)) iterations. The Host PE will retrieve and retain the

result of the summation (J).

}

<!I-- computing reg[47]= Ul m -->

<doOper ati on expressi on="reg[47]=Math.pow(reg[41],reg[40])"

<!I-- computing reg[48]= U2 m -->

<doOper ati on expressi on="reg[48]=Math.pow(reg[42],reg[40])"

<!I-- computing reg[49]= U3 m -->

<doQOper ati on expressi on="reg[49]=Math.pow(reg[43],reg[40])"

<!I-- computing reg[44]=U1 Am * data -->

<doQOper ati on expressi on="reg[44]=reg[47]*reg[0]"

<!I-- computing reg[45]=U2 Am * data -->

<doOper ati on expressi on="reg[45]=reg[48]*reg[0]"

<!I-- computing reg[46]=U3 Am * data -->

<doOper ati on expressi on="reg[46]=reg[49]*reg[0]"

<!I-- computing reg[50]=U1 Am *dl2 -->

/>

/>

/>

<doOperati on expressi on="reg[50]=reg[47]*reg[11]*reg[11]"

<!I-- computing reg[51]=U2 Am * d22 -->

<doOperati on expressi on="reg[51]=reg[48]*reg[12]*reg[12]"
<!I-- computing reg[52]=U3 Am * d32 -->

<doOperati on expressi on="reg[52]=reg[49]*reg[13]*reg[13]"

<l--

All the marked PEs will participate to the hierarch

result of this sum is stored in the host.
Hregs[41] contains the cardinality of C
Hregs[42] contains the cardinality of C
Hregs[43] contains the cardinality of C

Hregs[44] contains the sum of each PE term :
Hregs[45] contains the sum of each PE term :
Hregs[46] contains the sum of each PE term :

Hregs[47] contains the sum of each PE term :
Hregs[48] contains the sum of each PE term :

(U1
(U2
(U3

(U1
(U2

, class.
, class.

3 class.

/>

/>

/>

/>

/>

/>

ical sum. The

Am * data).
Am * data).
Am * data).

Am).
Am).
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Hregs[49] contains the sum of each PE term : (U3 Am).
Hregs[50] contains the sum of each PE term : (Ul Am * d12).
Hregs[51] contains the sum of each PE term : (U2 Am * d22).
Hregs[52] contains the sum of each PE term : (U3 Am * d32).
-->

<doHSum PEr egs="41,42,43,44,45,46,47,48,49,50,51,52"
Hr egs="41,42,43,44,45,46,47,48,49,50,51,52" />

</ f or - eachPE>

3.2.2.4. Classcenter computation and global objective function

<l--

The host computes the global cost function J, the three new
class centers and sets up the iteration counter.

reg[0] contains the new value of C1 class.
reg[1]the new value of C2 class.
reg[2]the new value of C3 class.

reg[3]Jcontains the value of J n1
reg[4]contains the value of Jn

-->
<host >
m
<!-- reg[i] contains the new value of Ci class = V, = ':Juij :j -->
= i
<doQOper ati on expressi on="reg[0]=reg[44]/reg[47]" />
<doOper ati on expressi on="reg[1]=reg[45]/reg[48]" />
<doQOper ati on expressi on="reg[2]=reg[46]/reg[49]" />
<!-- storing in reg[3] the last value of objective functiond  ,1-->
<doQper ati on expressi on="reg[3]=reg[4]" />
<!I-- computing the new value of objective function Jn >
<doOper ation expressi on="reg[4]=reg[50]+reg[51]+reg[52]" />
<!-- storing the new value of threshold reg[30]=J nd gy >
<doQOper ati on expressi on="reg[30]=Math.abs(reg[4]-reg[3])" />
<!l-- incrementing the counter -->
<doQOper ation expressi on="reg[31]=reg[31]+1" />
</ host >
</ dowhi | e>
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3.2.25. Loop stopping test
The host calculates the absolute val|u]$] - Jn_1| and compares it with an arbitrary threshold

S

. If |Jn - Jn_1|< Sn then go to the end of procedure.

e Else, return back to the procedure of new classers computation.
<doWi | e test ="reg[30]>reg[5]" target ="host" >

3.2.2.6. Membership decision

<l--

Labelling the different image components: assigni ng to each PE
the index of the class to which it belongs.
The registers reg[1],reg[2] and reg[3] of the mesh contains the
images of the first, the second and the third class es
respectively.
-

<f or - eachPE t est ="reg[0]!=0" >
<I--if(minimum(d1,d2,d3)==d1) reg[1]= C1 class -->

<i f test="min(reg[8], reg[9], reg[10])==reg[8]" >
<l oadVal ue reg="1" val ue="host.reg[0]" />

</[if>

<I--if(minimum(d1,d2,d3)==d2) reg[1]= C2 class -->

<i f test="min(reg[8], reg[9], reg[10])==reg[9]" >
<l oadVal ue reg="2" val ue="host.reg[1]" />

</[if>

<!--if(minimum(d1,d2,d3)==d3) reg[1]= C2 class -->

<i f test="min(reg[8], reg[9], reg[10])==reg[10]" >
<l oadVal ue reg="3" val ue="host.reg[2]" />

</[if>

</ f or-eachPE>
<l--

End of the program
-->

</ prog>

4. Materials And Results
4.1. Materials:

After presenting the proposed PFCM and its cornegjmy program code, we have to evaluate the
memory space required by the used variables arahmers. As we have seen in section 3), our
program requires some physical components inside B& of the RMC matrix and others inside
the host PE.

12 office@multidisciplinarywulfenia.org



WULIFENIA
h]I (\t)I[\I llli{l\\;\\\!{[\\ 0 I 551561852

Vol 22, No. 1;Jan 2015

The host PE uses some registers where it storeetjuired data about the input image and the
instruction program that it sends to the PEs maitria SIMD manner. Also, each PE uses its own
registers to carry out the operations coming framhost. In the same way, these operations need
the internal registers inside each PE accordinghéoimage input and to the temporary local
variables to execute all the instructions of th€RIE-Thus the total memory size required for each
matrix PE equals 78 bytes, while, for the host RS, total memory size required equals 63 bytes.
The size and the contents of this required men®dgtailed in the following table.

Tablel

Required registers of the RMC during the PFCM paogexecution

Register name

Content

Target PE  Memory

reg[0], reg[1] and reg[2]
reg[3], reg[4] and reg[5]

reg[0]
reg[40]
reg[30]

reg[8], reg[9] and reg[10]
reg[11], reg[12] and reg[13]

reg[41], reg[42] and reg[43]
reg[44], reg[45] and reg[46]
reg[47], reg[48] and

reg[49]

reg[50], reg[51] and reg[52]
reg[41], reg[42], reg[43]
reg[44], reg[45], reg[46]

reg[47], reg[48], reg[49]
reg[50], reg[51], reg[52]

Values of;GC2 and C3 class center

Values of J Jyand &
Gray level of the pixel
Fuzzyfication parameter m
Absolute value of {I,.1)

Values of the 3 classtees

Distances d1, d2, @@ the PE to the

3 class centers
Membership degreedd21and U3
Data*U1Data*UZ2", Data*U3"
u1m, u2", us"

du1™, d2*u2™, dF*u3m
sum(U1),sum(U2) and sulU

sum(Data*J},sum(Data*U?) and
sum(Data*U3)

sum(U),sum(UZ") and sum(U3)

sum(@1™),sum(d2*U2™ and
sum(d3*u3™)

Matrix PE 4
Matrix PE 12
Matrix PE 12

Matrix PE 12
Matrix PE 12

Matrix PE 12

size
(byte)
Host PE 3
12
Matrix PE 1
Matrix PE 1
Matrix PE 12
Host PE 12
Host PE 12
Host PE 12
Host PE 12

4.2. Programresults:

The input MRI image is the one of figure 3a); thisage will be segmented to sort out its three
components. The execution of the presented paraitejram leads to the following results: The
image of figure 3a) corresponds to a human brdae,sit is the original input image of the

program. Figures 3b), 3c) and 3d) represent theethmatters of the brain. They are named
respectively the grey matter, cerebrospinal fluid avhite matter.
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Figure 3. PFCM segmentation of an MRI brain image

In order to evaluate the effectiveness featureth@fproposed program, we focused the study on
the dynamic convergence analysis of the methodddso, we present four cases of study. For
each case we use the same input MRI image, buinttial class centers are changed. The
obtained results are presented as follows:

In the first case, the initial class centers al@tiaarily chosen as: (¢, ) = (1, 30, 255). The
algorithm converges to the final class centers ¢g ;) = (27.96, 102.39, 147.53)fter 14

iterations, as in table 2.

Table 2. Different states of the parallel fuzzyssiéication algorithm starting from class centers

(c1, &, C3) = (1, 30, 255).

Value of each class centel Absolute value

lteration of the Error
cl c2 c3 |'Jn _‘]n—l|

1 1,0C 30,0C  255,0( 69909116,1

2 75,11 96,7¢  146,3¢ 65182804,5

3 53,9( 99,71 14663 1572217,0

4 39,58 102,06 147,0: 666804,1

5 32,87 102,7: 1474 134784,0

6 30,0¢ 102,7¢ 1475 22837,1!

7 28,87 102,66 147,6( 3962,8!
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8
9
1C
11
12
13
14

28,3
28,1¢
28,0t
28,01
27,9¢
27,9
27,9¢

102,5¢
102,5:
102,4¢
102,4:
102,4:
102,4(
102,3¢

147,5¢
147,51
147,5¢
147,5¢
147,5¢
147,5¢
147,5¢

790,0:
189,2
52,7¢
16,07
5,12
1,6¢€
0,1

In the second case, the initial class centers rigraxily chosen as: (c1, ¢2, c3) = (1, 2, 3)blEa
3, shows that the algorithm converges to the sana ¢lass centers as in the first case, (c1, c2,

c3) = (27.96, 102.39, 147.53), after 21 iterations.

Table 3. Different states of the parallel fuzzyssiéication algorithm starting from class centers

(€1 & ) =(1, 2, 3)

Value of each class center

Absolute value

Iteration of the Error
C G C |Jn - Jn_1|
1 1,0C 2,0C 3,0C 9614:309,8:
2 1033 118,3¢ 113,3¢ 86051891,6
3 97,67 129,0¢ 124,3¢ 1672751,6
4 89,0¢ 138,0( 127,8¢ 1348767,6
5 80,1« 145, 7( 124,0: 13629335
6 68,0¢ 1498C 119,1: 1250012,4
7 53,4: 150,1¢ 114,6: 1149554,4
8 42,0( 149,7¢ 110,6( 629238,1
9 35,37 149,1¢ 107,5¢ 233335,3
1C 31,9( 148,6: 105,5¢ 78947,6
11 30,1( 148,2. 104,2} 26683,0:
12 29,1« 147,9¢ 103,4¢ 9012,8:
13 28,6: 147,7¢ 103,0: 3024,5!
14 28,3¢ 147,6¢ 102,7¢ 1007,8:
15 28,17 147,6: 102,6( 334,0(
1€ 28,07 147 ,5¢ 102,5: 110,3(
17 28,0z 147 ,5¢ 102,4¢ 36,3¢
18 27,9¢ 1475t 102,4: 11,9¢
19 27,9 147 ,5¢ 102,4: 3,9t
2C 27,9 147 ,5¢ 102,4( 1,2¢
21 27,9¢ 147,5: 102,3¢ 0,1

In the third case, the initial class centers ahdtrarily chosen as: (cc,, G) = (140, 149, 150).
Table 4, shows that the algorithm converges testime final class centers as in the first case, (c
Co, G3) = (27.96, 102.39, 147.53), after 17 iterations.

office@multidisciplinarywulfenia.org



WULFLENIA

hl(\t)ll\lllli{l\\; \\\!{[\\ L | | ESHEGREN

Vol 22, No. 1;Jan 2015

16

Table 4.Different states of the parallel fuzzy classificatialgorithm starting from class centers
(C1, C, G3) = (140, 149, 150).

Value of each class center Absolute value

of the Error

Iteration
cl c2 c3 |Jn - ‘]n—1|
1 140,0( 149,0¢  150,0( 15560879,9
2 111,2¢ 119,7C  140,7. 6732394,8
3 88,4t 109,0: 145,6¢ 2869304,4
4 67,6¢€ 104,6: 147,6¢ 1908707,5
5 48,7i 104,2¢ 147,8 1224690,5
6 37,5 104,2( 147,99 392855,0
7 32,31 103,7¢  147,8¢ 84405,7.
8 29,97 103,3( 147,8: 17836,7!
9 28,9t 10z,9¢  147,7: 4301,8t
1C 28,4« 102,7¢  147,6¢ 1196,1(
11 28,21 102,5¢ 147,6: 364,3¢
12 28,0¢ 102,5(  147,5¢ 116,0°
13  28,0: 102,48  147,5¢ 37,6¢
14 27,9¢ 102,4. 1475 12,3t
15 27,9¢ 102,4. 147,5: 4,04
1€ 27,97 102,4( 147,5: 1,3
17 27,9¢ 102,3¢ 1475 01

In the fourth case, the initial class centers &@sen, using the a preprocessing parallel histogram
computation procedure of [25, 26] that orients ¢tess centers towards the histogram modes of

the image. In this case, the initial values of tless centers are:;(c,,

Cy) = (23,102,150 ). For

this case, we notice that the algorithm convetgeke same final class centers as in the first,cas

(Cl! CQu

G) = (27.96, 102.39, 147.53), after only 8 iteratioBee Table 5.

Table 5. Different states of the parallel fuzzyssiéication algorithm starting from class centers

(Cl! CQu

G) = (23, 102, 150).

Value of each class center

Absolute value

Iteration of the Error
cl c2 c3 |'Jn _‘Jn—l|

1 23,0( 102,0( 150,0( 239910:,0€

2 25,9¢ 102,5: 148,0( 68294,8:

3 27,1¢ 102,4: 147,6: 5373,0(

4 27,6¢ 102,3¢ 147 ,5¢ 675,2(

5 27,8: 102,3: 147,5¢ 92,7¢

6 27,9( 102,3: 147,5: 13,6¢

7 27,9: 102,3¢ 147,5: 2,21

8 27,9¢ 102,3¢ 147,5: 0,0t
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To illustrate this analysis we use the followinguies 4, 5, 6 and 7, to show the curves of the dif-
ferent data, respectively, of Tables 2, 3, 4 anflieses curves represent the dynamic changes of
each class center.

Class ceptaf—*—LC2IFFCM) <= C2(PFLM] CAPFCM] Class center  —#=—C1{PFCM) —8—C3[PFC) C2(PFCM)
wihe value
18000 160,00
10,00 140,00 ".:-liﬂiﬂrmmn
130,00 ,l'"'»'m 120,00 sl e
100,00 —— BonmEonSSEE 100,00 i :
£0.00 80,00 |
0,00 60,00
40,00 :ggg | T
20,00 &
0,00 0,00
1234567 8 9011121314:5161718192021 piEased gl!?r:li?o%]nasnﬂrmlsm L7ag 182021
Iteraticn number

Figure 4. Case 1: Dynamic changes of the clagsgure 5. Case 2: Dynamic changes of the class
centres starting from values (c1,c2, c3) = (1, centres starting from values (c1,c2, c3) =(1,)2, 3

30, 255)
Class cent - ;
uassa.re:tw—«'—lcl-:p-:crm =W=(2(PFCM)  =&=CI(PFCM) i | TCHRON —a-caprom) CIFFCH)
Wl
160,00
16000 | i 140,00
140,00 o
30,00
120,00
100,00 L0000 - L L L L L L] L]
20,00 80,00
60,00 60,00
40,00 40,00
20,00 20m & o + + * + + +
% 0,00
12 3 45 6 7 & 9 10111213 14151617 1 3 3 4 5 & ] 4
Iteration number e ration nuMber

Figure 6. Case 3: Dynamic changes of the clagsgure 7. Case 4: Dynamic changes of the class
centres starting from values (c1,c2, c3) = centres starting from values (c1,c2, c3) = (23,
(140,149, 150) 102,150)

Through the obtained results of the above casssudfy, we can see that the algorithm converges
to the same class centers. Its complexity in tesfiteration number depends on the initial values
of the class centers.

In order to evaluate the properties of the propadgdrithms, we have to compare the obtained
results to other former works proposed in [27]R&M algorithm.

In Figure 8, we start a comparison between theimddaresults of the proposed "Parallel Fuzzy C-
means" and parallel C-means of [27], For the sansge and the same initialization parameters.
We notice the following remarks:

=  With PFCM, final values of the cluster centers axactly the same regardless of the initial
values cluster centers. While in the case of PCM,natify some differences between final
cluster centers. This leads to conclude that thévi Palgorithm exits the classification
procedure even if it has not yet reached the reafecs. Thus, we can say that PFCM is more
accurate than PCM.

= For example, in the case of the first initializatid?CM leaves the classification in the fifth
iteration, but PFCM continues to seek more aceurdbrmation until the 14th iteration.
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—+—C1[PFCM} —E—C2(PFCM) —a—C3I[FFCM) —4#—C1[PFCh) —8=C3PFCM]  —d—C2{PFCM)
Class center = CI[PCM)  —=—CI(PCM)  —8—C3[PCM) Class center e C1IPCM — P
walue value
300,00 160,00
250,00 140,00 -
§ 120,00
200,00 2,00
150,00 £0,00
100,00 60,00
50,00 40,00
- 20,00
0,00 0,00
1 2 3 & 5 & T & 9 10 11 1 13 14 2 5 7 10 11 5 g3
Ireration number 1234567 Bllﬂe'sﬁl“h.nbsn 3rJ.-1 151617181920 21

a) PFCM and PCM Class centers ofcase 1  b) PFCM and PCM Class centers of case 2.

——C1{PFCM] —B—=C2{PFCN)  —a—C3{PFCM) —e—CL{PFEM] —m—C3PRCM) —a— C3(PFEM)
Class em=ntar . . . Class center . N )
value ——CIPCM)  —=—C2{PCME  ——C3PCM) value ——CUPIM] ——C2PCM] —8—C3(PCM)
160,00 ry
200,00 000
120,00
150,00 100,00 | &
100,00 80,00
60,00
50,00 40,00
- 20,00 e
0,00 0,00
5 [ ¥
1 2 3 4 5 6 .iltergu'or?nulrr?belr: 12 15 14 15 16 17 1 mr:llnnmmhr &

¢) PFCM and PCM Class centers of case 3. c¢) PFCM and PCM Class centers of case 4.

Figure 8. Dynamic changes for different initialisas of class centers for PFCM and PCM
algorithms.

5. Complexity Analysis

In order to evaluate the complexity of our PFCMoaithm, it is useful to report the complexities
of all its stages. They are summarized in the ¥alhgy table 6.

Table 6. The complexities of each stage of the @seg parallel algorithm

Stage Time Complexity
1- Data broadcastir 0O(1) + O(c)
2- Distance computatio O(c) + O(log, )
3- Membership decisio o)
4- Objective function computatic O(log, )+ O(c.log (N))
5- Loop stop te: Oo(1)

6- New dass center determinati
The complexity of the joposed algorithi

O(c) + O(c.log, (N))
O(c)+ O(log, )+ O(c.log, (N))

The global complexity of our PFCM isO(c+ log, ¢+ c.log,(N)) times

If we consider a number of M features for each gatat, the number M appears in some steps of
the algorithmHence, this algorithm can be extended easily fgr(dM>1) features. In this case the

complexity becomes:
O(Mc+log, c+c.log,(N))times =

O(Mc +clog, (N))times

While for the PCM algorithm the complexity i€D(Mc + c.Iogz('%))times.

In this paper, the input data set of the algoritera gray leveled image, where each point has M=1

feature (its gray level) as in [27].
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As shown in table 7, we can finally conclude theg proposed PFCM algorithm is more accurate
than the PCM one. But its complexity remains gretitan the one obtained in [27] and equal to
these in [28]

Table 7. Comparison of complexities for parallem@an and Fuzzy C-mean algorithms.

Reference Algo. Architecture Bus width (bRyocessors Time complexity
O.Bouattane [27] PCM RMESH  O(log; N) N O(k-M +10og, (k.(N/K)¥)
Jenq [28] PCM RMESH O(log, N) N O(kM + klog, N)
This paper PFCM RMESH  O(log, N) N O(k.M +klog, N)

6. CONCLUSION

In this paper, we have presented a method for lpératg the fuzzy c-means classification
algorithm and its implementation on a massivelyapar reconfigurable mesh computer. An
application of this algorithm to the MRI images semtation was considered. The elaborated
program was performed on the reconfigurable meshpater emulator. The obtained results
show that, in little number of iterations, the aijum converges to the same final class centers
what ever their starting values. This is to prasfaccuracy comparing to the well known C-mean
algorithms. Hence, the parallel computation methedproposed essentially to reduce the
complexity of the fuzzy clustering algorithms. Alsavas shown that to enhance the effectiveness
of this work, it is useful to improve the complexiof this algorithm by avoiding random
initializations of the class centers.
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