A Cryptographic Evaluation of IPsec

Niels Ferguson* and Bruce Schneier**

Counterpane Internet Security, Inc.,
3031 Tisch Way, Suite 100PE, San Jose, CA 95128

http://www.counterpane.com

1 Introduction

In February 1999, we performed an evaluation of IPsec based on the November
1998 RFCs for IPsec [KA98c, KA98a, MG98a, MGI8b, MDI8, KA98h, Pip9s,
MSST98, HC98, GK98, TDGI8, PA9S|. Our evaluation focused primarily on
the cryptographic properties of IPsec. We concentrated less on the integration
aspects of IPsec, as neither of us is intimately familiar with typical IP imple-
mentations,

IPsec was a great disappointment to us. Given the quality of the people
that worked on it and the time that was spent on it, we expected a much better
result. We are not alone in this opinion; from various discussions with the people
involved, we learned that virtually nobody is satisfied with the process or the
result. The development of IPsec seems to have been burdened by the committee
process that it was forced to use, and it shows in the results.

Even with all the serious critisisms that we have on IPsec, it is probably
the best IP security protocol available at the moment. We have looked at other,
functionally similar, protocols in the past (including PPTP [SM98, SM99]) in
much the same manner as we have looked at IPsec. None of these protocols
come anywhere near their target, but the others manage to miss the mark by a
wider margin than IPsec. This difference is less significant from a security point
of view; there are no points for getting security nearly right. From a marketing
point of view, this is important. IPsec is the current “best practice,” no matter
how badly that reflects on our ability to create a good security standard.

Our main criticism of IPsec is its complexity. IPsec contains too many options
and too much flexibility; there are often several ways of doing the same or similar
things. This is a typical committee effect. Committees are notorious for adding
features, options, and additional flexibility to satisfy various factions within the
committee. As we all know, this additional complexity and bloat is seriously
detrimental to a normal (functional) standard. However, it has a devastating
effect on a security standard.

It is instructive to compare this to the approach taken by NIST for the devel-
opment of AES [NIST97a, NIST97b]. Instead of a committee, NIST organized a
contest. Several small groups each created their own proposal, and the process is

* niels@counterpane.com
** schneier@counterpane.com

limited to picking one of them. At the time of writing there has been one stage
of elimination, and any one of the five remaining candidates will make a much
better standard than any committee could ever have made.t

Lesson 1 Cryptographic protocols should not be developed by a committee.

We stress that our analysis is in no way a full security review. We have only
looked at the most obvious aspects of the system. There are many areas that
have hardly been reviewed at all, and we have not included all of our comments
in this review. Fixing the problems that we list will improve IPsec, but will not
result in a secure system.

2 General Comments

Before we go into the details of IPsec we give some general comments on the
entire system.

2.1 Complexity

We start by introducing a new rule of thumb, which we call the “Complexity
Trap”:

The Complexity Trap: Security’s worst enemy is complexity.

This might seem an odd statement, especially in the light of the many simple
systems that exhibit critical security failures. It is true nonetheless. Simple fail-
ures are simple to avoid, and often simple to fix. The problem in these cases
is not a lack of knowledge of how to do it right, but a refusal (or inability) to
apply this knowledge. Complexity, however, is a different beast; we do not really
know how to handle it. Complex systems exhibit more failures as well as more
complex failures. These failures are harder to fix because the systems are more
complex, and before you know it the system has become unmanageable.
Designing any software system is always a matter of weighing and reconciling
different requirements: functionality, efficiency, political acceptability, security,
backward compatibility, deadlines, flexibility, ease of use, and many more. The
unspoken requirement is often simplicity. If the system gets too complex, it be-
comes too difficult and too expensive to make and maintain. Because fulfilling

! Imagine the AES process in committee form. RC6 is the most elegant cipher, so we
start with that. It already uses multiplications and data-dependent rotations. We
add four decorrelation modules from DFC to get provable security, add an outer
mixing layer (like MARS) made from Rijndael-like rounds, add key-dependent S-
boxes (Twofish), increase the number of rounds to 32 (Serpent), and include one
of the CAST-256 S-boxes somewhere. We then make a large number of arbitrary
changes until everybody is equally unhappy. The end result is a hideous cipher that
combines clever ideas from many of the original proposals and which most likely
contains serious weaknesses because nobody has taken the trouble to really analyze
the final result.

more of the other requirements usually involves a more complex design, many
systems end up with a design that is as complex as the designers and imple-
menters can reasonably handle. (Other systems end up with a design that is too
complex to handle, and the project fails accordingly.)

Virtually all software is developed using a try-and-fix methodology. Small
pieces are implemented, tested, fixed, and tested again. Several of these small
pieces are combined into a larger module, and this module is tested, fixed, and
tested again. The end result is software that more or less functions as expected,
although we are all familiar with the high frequency of functional failures of
software systems.

This process of making fairly complex systems and implementing them with a
try-and-fix methodology has a devastating effect on security. The central reason
is that you cannot easily test for security; security is not a functional aspect of
the system. Therefore, security bugs are not detected and fixed during the devel-
opment process in the same way that functional bugs are. Suppose a reasonable-
sized program is developed without any testing at all during development and
quality control. We feel confident in stating that the result will be a completely
useless program; most likely it will not perform any of the desired functions cor-
rectly. Yet this is exactly what we get from the try-and-fix methodology with
respect to security .

The only reasonable way to “test” the security of a system is to perform
security reviews on it. A security review is a manual process; it is very expensive
in terms of time and effort. And just as functional testing cannot prove the
absence of bugs, a security review cannot show that the product is in fact secure.
The more complex the system is, the harder a security evaluation becomes. A
more complex system will have more security-related errors in the specification,
design, and implementation. We claim that the number of errors and difficulty of
the evaluation are not linear functions of the complexity, but in fact grow much
faster.

For the sake of simplicity, let us assume the system has n different options,
each with two possible choices. (We use n as the measure of the complexity; this
seems reasonable, as the length of the system specification and the implementa-
tion are proportional to n.) Then there are n(n—1)/2 = O(n?) different pairs of
options that could interact in unexpected ways, and 2" different configurations
altogether. Each possible interaction can lead to a security weakness, and the
number of possible complex interactions that involve several options is huge.
We therefore expect that the number of actual security weaknesses grows very
rapidly with increasing complexity.

The increased number of possible interactions creates more work during the
security evaluation. For a system with a moderate number of options, checking
all the two-option interactions becomes a huge amount of work. Checking every
possible configuration is effectively impossible. Thus the difficulty of performing
security evaluations also grows very rapidly with increasing complexity. The
combination of additional (potential) weaknesses and a more difficult security
analysis unavoidably results in insecure systems.

In actual systems, the situation is not quite so bad; there are often options
that are “orthogonal” in that they have no relation or interaction with each
other. This occurs, for example, if the options are on different layers in the
communication system, and the layers are separated by a well-defined interface
that does not “show” the options on either side. For this very reason, such a
separation of a system into relatively independent modules with clearly defined
interfaces is a hallmark of good design. Good modularization can dramatically
reduce the effective complexity of a system without the need to eliminate impor-
tant features. Options within a single module can of course still have interactions
that need to be analyzed, so the number of options per module should be mini-
mized. Modularization works well when used properly, but most actual systems
still include cross-dependencies where options in different modules do affect each
other.

A more complex system loses on all fronts. It contains more weaknesses to
start with, it is much harder to analyze, and it is much harder to implement
without introducing security-critical errors in the implementation.

This increase in the number of security weaknesses interacts destructively
with the weakest-link property of security: the security of the overall system is
limited by the security of its weakest link. Any single weakness can destroy the
security of the entire system.

Complexity not only makes it virtually impossible to create a secure system,
it also makes the system extremely hard to manage. The people running the
actual system typically do not have a thorough understanding of the system and
the security issues involved. Configuration options should therefore be kept to a
minimum, and the options should provide a very simple model to the user. Com-
plex combinations of options are very likely to be configured erroneously, which
results in a loss of security. The stories in [Kah67, Wri87, And93b] illustrate how
management of complex systems is often the weakest link.

We therefore repeat: security’s worst enemy is complexity. Security systems
should be cut to the bone and made as simple as possible. There is no substitute
for simplicity.

Complexity of IPsec In our opinion, IPsec is too complex to be secure. The
design obviously tries to support many different situations with different op-
tions. We feel very strongly that the resulting system is well beyond the level of
complexity that can be analysed or properly implemented with current method-
ologies. Thus, no IPsec system will achieve the goal of providing a high level of
security.

2.2 The IPsec Documentation

The first thing one notices when looking at IPsec is that the documentation
is very hard to understand. There is no overview or introduction, the reader
has to assemble all the pieces and build an overview himself. This is a highly
unsatisfactorily state of affairs; after all, the documentation is meant to convey

information to the readers. We do not believe it is reasonable to expect anyone
to learn IPsec from the IPsec documentation.

Various parts of the IPsec documentation are very hard to read. For ex-
ample, the ISAKMP specifications [MSST98] contain numerous errors, essential
explanations are missing, and the document contradicts itself in various places.

Stated Goal The documentation does not specify what IPsec is supposed to
achieve. Without stated goals there is no standard to analyze against. Although
some of the goals are more or less obvious, we were often left to deduce the
goals of the designers from the design itself, and then check whether the design
fulfilled these goals. This is of course highly undesirable, and any discussion of
the results is likely to deteriorate into a discussion of what [Psec is supposed to
achieve.

This lack of specification also makes it very difficult to use IPsec. A designer
who wishes to use IPsec as part of a system has no way of determining what
functionality the IPsec system provides. Saying that IPsec provides packet-level
security is like saying that a car will transport you from A to B. Both are true
given the right circumstances, but in both situations there are a large number
of additional prerequisites and restrictions. A designer that tries to use IPsec
without knowing all the prerequisites and the resulting functionality is virtually
certain to create a system that does not achieve its security goals.

This problem is already evident. IPsec provides IP-level security, and is
thus essentially a VPN protocol. Yet we hear about people trying to use it for
application-level security, such as authenticating the user when she tries to get
her email. IPsec authenticates packets as originating from someone who knows
a particular key, yet many seem to think it authenticates the originating IP ad-
dress as that is what they can filter on in their firewall. Such misuses of IPsec
can only lead to problems.

Rationale None of the IPsec documentation provides any rationale for any
of the choices that were made. Although this is somewhat less important than
a clear statement of the goals, we nevertheless consider it crucial information.
If a reviewer is to comment on the design (and RFCs are, after all, Requests
For Comments), he should be told what each option was intended to achieve.
Without any rationale, the reviewer is left to guess at it, and then review the
design based on the guessed-at rationale.

Lesson 2 The documentation of a system should include introductory material,
an overview for first-time readers, stated goals, rationale, etc.

If the reason for not including such extra material is the desire to ensure that
there are no contradictions, then the usual standardization practice of marking
some part of the documentation as normative and other parts as informative can
be used.

3 Bulk Data Handling

We will now discuss the various parts of IPsec in more detail. For this, we assume
that the reader is familiar with the details of IPsec.

The core of IPsec consists of the functions that provide authentication and
confidentiality services to IP packets [KA98c, KA98a, MG98a, MG98b, MDOIS,
KA98b, PA98, GK98, TDGI8]. These can, for example, be used to create a VPN
over an untrusted network, or to secure packets between any pair of computers
on a local network.

3.1 Complexity

IPsec has two modes of operation: transport mode and tunnel mode. There
are two protocols: AH and ESP. AH provides authentication, ESP provides au-
thentication, encryption, or both. This creates a lot of extra complexity: two
machines that wish to authenticate a packet can use a total of four different
modes: transport/AH, tunnel/AH, transport/ESP with NULL encryption, and
tunnel /ESP with NULL encryption. The differences between these options, both
in functionality and performance, are minor. The documentation also makes it
clear that under some circumstances it is envisioned to use two protocols: AH
for the authentication and ESP for the encryption.

Modes As far as we can determine, the functionality of tunnel mode is a super-
set of the functionality of transport mode. (From a network point of view, one
can view tunnel mode as a special case of transport mode, but from a security
point of view this is not the case.) The only advantage that we can see to trans-
port mode is that it results in a somewhat smaller bandwidth overhead. However,
the tunnel mode could be extended in a straightforward way with a specialized
header-compression scheme that we will explain shortly. This would achieve vir-
tually the same performance as transport mode without introducing an entirely
new mode. We therefore recommend that transport mode be eliminated.

Recommendation 1 FEliminate transport mode.

Without any documented rationale, we do not know why IPsec has two
modes. In our opinion it would require a very compelling argument to intro-
duce a second major mode of operation. The extra cost of a second mode (in
terms of added complexity and resulting loss of security) is huge, and it certainly
should not be introduced without clearly documented reasons.

Eliminating transport mode also eliminates the need to separate the machines
on the network into the two categories of hosts and security gateways. The main
distinction seems to be that security gateways may not use transport mode;
without transport mode the distinction is no longer necessary.

Protocols The functionality provided by the two protocols overlaps somewhat.
AH provides authentication of the payload and the packet header, while ESP
provides authentication and confidentiality of the payload.

In transport mode, AH provides a stronger authentication than ESP can pro-
vide, as it also authenticates the IP header fields. One of the standard modes of
operation would seem to be to use both AH and ESP in transport mode. In tun-
nel mode, ESP provides the same level of authentication (as the payload includes
the original TP header), and AH is typically not combined with ESP [KA98c,
section 4.5]. (Implementations are not required to support nested tunnels that
would allow ESP and AH to both be used in tunnel mode.)

One can question why the IP header fields are being authenticated at all. The
authentication of the payload proves that it came from someone who knows the
proper authentication key. That by itself should provide adequate information.
The IP header fields are only used to get the data to the recipient, and should
not affect the interpretation of the packet. There might be a very good reason
why the IP header fields need to be authenticated, but until somebody provides
that reason the rationale remains unclear to us.

The AH protocol [KA98a| authenticates the IP headers of the lower layers.
This is a clear violation of the modularization of the protocol stack. It creates
all kind of problems, as some header fields change in transit. As a result, the
AH protocol needs to be aware of all data formats used at lower layers so that
these mutable fields can be avoided. This is a very ugly construction, and one
that will create more problems when future extensions to the IP protocol are
made that create new fields that the AH protocol is not aware of. Also, as some
header fields are not authenticated, the receiving application still cannot rely on
the entire packet. To fully understand the authentication provided by AH, an
application needs to take into account the same complex IP header parsing rules
that AH uses. The complex definition of the functionality that AH provides can
easily lead to security-relevant errors.

The tunnel/ESP authentication avoids this problem, but uses more band-
width. The extra bandwidth requirement can be reduced by a simple specialized
compression scheme: for some suitably chosen set of IP header fields X, a single
bit in the ESP header indicates whether the X fields in the inner IP header are
identical to the corresponding fields in the outer header.? The fields in ques-
tion are then removed to reduce the payload size. This compression should be
applied after computing the authentication but before any encryption. The au-
thentication is thus still computed on the entire original packet. The receiver
reconstitutes the original packet using the outer header fields, and verifies the
authentication. A suitable choice of the set of header fields X allows tunnel/ESP
to achieve virtually the same low message expansion as transport/AH.

We conclude that eliminating transport mode allows the elimination of the
AH protocol as well, without loss of functionality. We therefore recommend that
the AH protocol be eliminated.

2 A trivial generalization is to have several flag bits, each controlling a set of IP header
fields.

Recommendation 2 Eliminate the AH protocol.

ESP The ESP protocol allows the payload to be encrypted without being au-
thenticated. In virtually all cases, encryption without authentication is not use-
ful. The only situation in which it makes sense not to use authentication in the
ESP protocol is when the authentication is provided by a subsequent application
of the AH protocol (as is done in transport mode because ESP authentication
in transport mode is not strong enough). Without the transport mode or AH
protocol to worry about, ESP should always provide its own authentication. We
recommend that ESP authentication always be used, and only encryption be
made optional.

Recommendation 3 Modify ESP to always provide authentication; only en-
cryption should be optional.

This also avoids misconfigurations by system administrators. There will be
many administrators who know that they need “encryption” to make their net-
work secure, but will not know exactly what cryptographic services they require.
They will be quite likely to configure ESP for only encryption, believing that it
provides security.

Fragmentation IPsec exhibits some unfortunate interactions with the frag-
mentation system of the IP protocol [KA98c, appendix B]. This is a complex
area, but a typical IPsec implementation has to perform specialized processing
to facilitate the proper behavior of higher-level protocols in relation to frag-
mentation. Strictly speaking, fragmentation is part of the communication layer
below the IPsec layer, and in an ideal world it would be transparent to IPsec.
Compatibility requirements with existing protocols (such as TCP) force IPsec
to explicitly handle fragmentation issues, which adds significantly to the overall
complexity.® As far as we can see, there does not seem to be an elegant solution
to this problem.

Conclusion The bulk data handling is overly complex. The number of major
modes of operation can be drastically reduced without significant loss of func-
tionality. We recommend that only ESP/tunnel mode be retained, and that the
ESP protocol be modified to always provide authentication.

3.2 Order of Operations

When both encryption and authentication are provided, IPsec performs the en-
cryption first, and authenticates the ciphertext. In our opinion, this is the wrong

3 The real problem is of course that TCP interacts directly with the fragmentation
which is on a different layer, but it is a bit late to change that.

order. Going by the “Horton principle” [WS96], the protocol should authenti-
cate what was meant, not what was said. The “meaning” of the ciphertext still
depends on the decryption key used. Authentication should thus be applied to
the plaintext (as it is in SSL [FKK96]), and not to the ciphertext.

Encrypting first and authenticating second does not always lead to a di-
rect security problem. In the case of the ESP protocol, the encryption key and
authentication key are part of a single ESP key in the SA. A successful authenti-
cation shows that the packet was sent by someone who knew the authentication
key. The recipient trusts the sender to encrypt that packet with the other half
of the ESP key, so that the decrypted data is in fact the same as the original
data that was sent. The exact argument why this is secure gets to be very com-
plicated, and requires special assumptions about the key agreement protocol.
For example, suppose an attacker can manipulate the key agreement protocol
used to set up the SA in such a way that the two parties get an agreement on
the authentication key but a disagreement on the encryption key. When this
is done, the data transmitted will be authenticated successfully, but decryption
takes place with a different key than encryption, and all the plaintext data is
still garbled. All in all it is much simpler and more robust to authenticate the
plaintext.

An Attack on IPsec Suppose two hosts have a manually keyed transport-mode
AH-protocol Security Association (SA), which we will call SApy. Due to the
manual keying, the AH protocol does not provide any replay protection. These
two hosts now negotiate a transport-mode encryption-only ESP SA (which we
will call SAgp1) and use this to send information using both SApgp1 and SAag.
The application can expect to get confidentiality and authentication on this
channel, but no replay protection. When the immediate interaction is finished,
SApgp is deleted. A few hours later, the two hosts again negotiate a transport-
mode encryption-only ESP SA (SApgpo), and the receiver chooses the same
SPI value for SApgpo as was used for SApgp1. Again, data is transmitted using
both SApgpo and SAay. The attacker now introduces one of the packets from
the first exchange. This packet was encrypted using SApgp1 and authenticated
using SAag. The receiver checks the authentication and finds it valid. (As replay
protection is not enabled, the sequence number field is ignored.) The receiver
then proceeds to decrypt the packet using SApgpo, which presumably has a
different decryption key than SApqp1. The end result is that the receiver accepts
the packet as valid, decrypts it with the wrong key, and presents the garbled data
to the application. Clearly, the authentication property has been violated.

This may seem like a somewhat contrived example, but it points to a seri-
ous flaw in the concept of authentication. The above-mentioned problem can be
solved easily (our recommendations remove the transport mode and the AH pro-
tocol and thereby the entire scenario). However, this does not fix the underlying
problem. Authenticating the ciphertext, or even the plaintext, is not enough; to
authenticate the meaning of the packet, the authentication has to cover every

bit of data that is used in the interpretation of the packet. See [WS96] for a more
detailed discussion of this principle.

Lesson 3 Authenticate not just the message, but everything that is used to de-
termine the meaning of the message.

Fast Discarding of Fake Packets Authenticating the ciphertext allows the
recipient to discard packets with erroneous authentication more quickly, without
the overhead of the decryption. This helps the computer cope with denial-of-
service attacks in which a large number of fake packets eat up a lot of CPU
time. We question whether this would be the preferred mode of attack against
a TCP/IP-enabled computer.

If this is an important consideration then the authentication of the ciphertext
can be retained, but only if the decryption key (and any other data relevant to
the interpretation) is also included in the authentication. This would be possible
to do within the ESP protocol, but it becomes very ugly if the AH protocol has
to dig into the ESP protocol data structures to authenticate the decryption key
too.

Recommendation 4 Modify the ESP protocol to ensure that it authenticates
all data used in the deciphering of the payload.

From a modularization point of view it is not a good idea to rely on the
key negotiation protocols to provide a strong linkage between the authentication
key and the encryption key. Thus the ESP protocol should take care of its own
security considerations.

Conclusion The ordering of encryption and authentication in IPsec is danger-
ous. Authentication must be applied to all data that is used to determine the
meaning of a packet. Authenticating the ciphertext without also authenticating
the decryption key to be used is wrong.

3.3 Security Associations

A Security Association (SA) is a simplex “connection’ that affords security ser-
vices to the traffic carried by it [KA98c, section 4]. The two computers on either
side of the SA store the mode, protocol, algorithms, and keys used in the SA.
Each SA is used only in one direction; for bi-directional communications two SAs
are required. Each SA implements a single mode and protocol; if two protocols
(such as AH and ESP) are to be applied to a single packet, two SAs are required.

Most of our aforementioned comments also affect the SA system; the use of
two modes and two protocols make the SA system more complex than necessary.

There are very few (if any) situations in which a computer sends an IP packet
to a host, but no reply is ever sent. There are also very few situations in which the
traffic in one direction needs to be secured, but the traffic in the other direction

does not need to be secured. It therefore seems that in virtually all practical
situations, SAs occur in pairs to allow bi-directional secured communications. In
fact, the IKE protocol negotiates SAs in pairs.

This would suggest that it is more logical to make an SA a bi-directional
“connection” between two machines. This would halve the number of SAs in the
overall system. It would also avoid asymmetric security configurations, which,
although somewhat useful in real-time traffic scenarios, we think are undesirable.

3.4 Security Policies

The security policies are stored in the SPD (Security Policy Database). For every
packet that is to be sent out, the SPD is checked to find how the packet is to be
processed. The SPD can specify three actions: discard the packet, let the packet
bypass IPsec processing, or apply IPsec processing. In the last case, the SPD
also specifies which SAs should be used (if suitable SAs have already been set
up) or specifies with what parameters new SAs should be set up to be used.

The SPD seems to be a very flexible control mechanism that allows a very
fine-grained control over the security processing of each packet. Packets are clas-
sified according to a large number of selectors, and the SPD can match some or
all selectors to determine the appropriate action. Depending on the SPD, this can
result in either all traffic between two computers being carried on a single SA,
or a separate SA being used for each application, or even each TCP connection.
Such a very fine granularity has disadvantages. There is a significantly increased
overhead in setting up the required SAs, and more traffic analysis information is
made available to the attacker. We do not see any need for such a fine-grained
control. The SPD should specify whether a packet should be discarded, bypass
IPsec processing, be authenticated, or be authenticated and encrypted. Whether
several packets are combined on the same SA is not important. The same holds
for the exact choice of cryptographic algorithm: any good algorithm will do.

Asking users and administrators to determine which packets are to be secured
and which are to bypass IPsec processing is probably already asking too much. A
significant fraction of all installations will have settings that create security holes.
Asking them to specify the details of the cryptographic algorithms to be used and
the parameters that these algorithms take almost guarantees that the average
installation will contain configuration weaknesses. We feel that the very most we
can ask of the users and administrators is to determine which packets require
what type of processing. Ideally a user should specify, for example, that a packet
requires authentication and encryption, and leave it at that. The implementation
should ensure that all algorithms that it uses provide adequate security for all
situations. Good cryptographic algorithms are available and cheap; there is no
reason to use weak or bad algorithms.*

4 One could argue that the configuration should allow for two levels of encryption:
“export-quality” and “full-quality” encryption. This will not work in practice. The
quality level of encryption required for the SMTP port depends on the actual contents
of the e-mail, and cannot be determined by the data available to the policy matcher.

It would be nice if the same high-level approach could be done in relation to
the choice of SA end-points. As there currently does not seem to be a reliable
automatic method of detecting IPsec-enabled security gateways, we do not see a
practical alternative to manual configuration of these parameters. It is question-
able whether automatic detection of IPsec-enabled gateways is possible at all.
Without some initial knowledge of the other side, any detection and negotiation
algorithm can be subverted by an active attacker.

3.5 Other Comments

This section contains some of our minor comments on the bulk data handling of
IPsec.

1. [KA98c, section 5.2.1, point 3] suggests that an implementation can find the
matching SPD entry for a packet using back-pointers from the SAD entries.
In general this will not work correctly. Suppose the SPD contains two rules:
the first one outlaws all packets to port X, and the second one allows all
incoming packets that have been authenticated. An SA is set up for this
second rule. The sender now sends a packet on this SA addressed to port X.
This packet should be refused as it matches the first SPD rule. However, the
backpointer from the SA points to the second rule in the SPD, which allows
the packet. This shows that back-pointers from the SA do not always point
to the appropriate rule, and that this is not a proper method of finding the
relevant SPD entry.

2. The handling of ICMP messages as described in [KA98c, section6] is unclear
to us. It states that an ICMP message generated by a router must not be
forwarded over a transport-mode SA, but transport-mode SAs can only occur
in hosts. By definition, hosts do not forward packets, and a router never has
access to a transport-mode SA.

The text further suggests that unauthenticated ICMP messages should be
disregarded. This creates problems. Let us envision two machines that are
geographically far apart and have a tunnel-mode SA set up. There are prob-
ably a dozen routers between these two machines that forward the packets.
None of these routers knows about the existence of the SA. Any ICMP
messages relating to the packets that are sent will be unauthenticated and
unencrypted. Simply discarding these ICMP messages results in a loss of IP
functionality. This problem is mentioned, but the text claims this is due to
the routers not implementing IPsec. Even if the routers implement IPsec,
they still cannot send authenticated ICMP messages concerning the tun-
nel unless they themselves set up an SA with the tunnel end-point for the
purpose of sending the ICMP packet. The tunnel end-point in turn wants
to be sure the source is a real router. This requires a generic public-key
infrastructure, which does not exist.

As far as we understand this problem, this is a fundamental compatibility
problem with the existing IP protocol that does not have a good solution.

3. Various algorithm specifications require the implementation to reject known

weak keys. For example, the DES-CBC encryption algorithm specifications
[MDO8] requires that DES weak keys be rejected. It is questionable whether
this actually increases security. It might very well be that the extra code that
this requires creates more security problems due to bugs than are solved by
rejecting weak keys.
Weak keys are not really a problem in most situations. For DES, the easiest
way for the attacker to detect the weak keys is to try them all. This is
equivalent to a partial keyspace search, and can be done on any small set of
keys. Weak-key rejection is only required for algorithms where detecting the
weak key class by the weak cipher properties is significantly less work than
trying all the weak keys in question (e.g. [WFS99)]).

Recommendation 5 Remove the weak-key elimination requirement. En-
cryption algorithms that have large classes of weak keys that introduce secu-
rity weaknesses should simply not be used.

4. The only mandatory encryption algorithm in ESP is DES-CBC. Due to the
very limited key length of DES [BDR+96], this cannot be considered to be
very secure. We strongly urge that this algorithm not be standardized but
be replaced by a stronger alternative. The most obvious candidate is triple-
DES. Blowfish [Sch94] could be used as an interim high-speed solution in
software. The upcoming AES standard [NIST97a, NIST97b] will presumably
gain quick acceptance and probably become the default encryption method
for most systems.

5. The insistence on randomly selected IV values in [MD98] seems to be overkill.
It is true that a counter would provide known low Hamming-weight input
differentials to the block cipher, but all reasonable block ciphers are secure
enough against this type of attack. Furthermore, chosen-plaintext attacks
also allow low-weight input differentials, and are quite likely in an IPsec
system. The use of a random generator results in an increased risk of an
implementation error that will lead to low-entropy or constant IV values;
such an error does reduce security and would typically not be found during
testing.

6. Use of a block cipher with a 64-bit block size should in general be limited
to at most 232 block encryptions per key. This is due to the birthday para-
dox. After 232 blocks we can expect one collision.? In CBC mode, two equal
ciphertexts give the attacker the XOR of two blocks of the plaintext. The
specifications for the DES-CBC encryption algorithm [MD98] should men-
tion this, and require that any SA using such an algorithm limit the total
amount of data encrypted by a single key to a suitable value.

7. The preferred mode for using a block cipher in ESP seems to be CBC
mode [PA98|. This is probably the most widely used cipher mode, but it
has some disadvantages. As mentioned earlier, a collision gives direct infor-
mation about the relation of two plaintext blocks. Furthermore, in hardware

5 To get a 10~° probability of a collision, it should be limited to about 222 blocks.

10.

implementations, each of the encryptions has to be done in turn. This gives
a limited parallelism, which hinders high-speed hardware implementations.
Although not used very often, the counter mode seems to be preferable. The
ciphertext of block ¢ is formed as C; = P; ® Ek(i), where i is the block
number that needs to be sent at the start of the packet.® After more than
232 blocks, counter mode also reveals some information about the plaintext,
but this is less than what occurs in CBC. The big advantage of counter mode
is that hardware implementations can parallelize the encryption and decryp-
tion process, thus achieving a much higher throughput and lower latency.
[PA98, section 2.3] states that Blowfish has weak keys, but that the likelihood
of generating one is very small. We disagree with these statements. The
likelihood of getting two equal 32-bit values in any one 256-entry S-box
is about (226) -2732 2 2717 This is an event that will certainly occur in
practice. However, the Blowfish weak keys only lead to detectable weaknesses
in reduced-round versions of the cipher. There are no known weak keys for
the full Blowfish cipher.

In [PA9S, section 2.5], it is suggested to negotiate the number of rounds of
a cipher. We consider this to be a very bad idea. The number of rounds
is integral to the cipher specifications and should not be changed at will.
Even for ciphers that are specified with a variable number of rounds, the
determination of the number of rounds should not be left up to the individual
system administrators. The IPsec standard should specify the number of
rounds for those ciphers.

Negotiating the number of rounds opens up other avenues of attack. Suppose
the negotiation protocol can be subverted so that one side used r rounds and
the other side r+1 rounds. An attacker can now try to get one side to encrypt
a message, and the other side to decrypt a message. If the resulting plaintext
is returned, the attacker now has a block after 1 round of processing, which
for many ciphers is easy to attack.

[PA9S8, section 2.5] proposes the use of RC5 [Riv95]. We urge caution in
the use of this cipher. It uses some new ideas that have not been fully ana-
lyzed or understood by the cryptographic community. The original RC5 as
proposed (with 12 rounds) was broken [BK98], and in response to that the
recommended number of rounds was increased to 16. We feel that further
research into the use of data-dependent rotations is required before RC5 is
used in fielded systems.

3.6 Conclusion

The IPsec bulk data handling can, and should, be simplified significantly. We
have identified various other problems and weaknesses that should be addressed.

5 If replay protection is always in use, then the starting i-value could be formed as
times the sequence number. This saves eight bytes per packet.

232

4 ISAKMP

ISAKMP [MSST98] defines the overall structure of the protocols used to es-
tablish SAs and to perform other key management functions. ISAKMP sup-
ports several Domains Of Interpretation (DOI), of which the IPsec-DOI is one.
ISAKMP does not specify the whole protocol, but provides building blocks for
the various DOIs and key-exchange protocols.

4.1 Comments on the Documentation

The description of ISAKMP is not very clear. We had great difficulty under-
standing the intentions of the much of the description. We list a few of our
comments on the documentation.

1. The document often contains repeated instances of the same text, or very
similar texts. This makes the text unnecessarily long, and hard to read. For
example, in section 5.2 the list of checking actions and possible logging and
notifications could be described much more succinctly.

2. [MSST98, section 3.11] defines the Hash Payload, which is used to verify the
integrity and authentication of the data in the ISAKMP message. The data
is described as being the result of a hash function applied to the message; this
provides no integrity or authentication. Presumably this payload contains a
MAC, in which case the name “Hash Payload” (as well as the “Hash Data”
field name) is a misnomer. In general, IPsec documentation seems to confuse
hashes and MACs.

3. [MSST98, section 5.1] specifies the generic processing of sending an ISAKMP
message. The description method used to specify the algorithm is ambigu-
ous, and probably even wrong. It is not clear when exactly step 4 is entered.
Strictly speaking, in step 2 the message is resent and the counter is decre-
mented. Let us suppose it reaches 0. Step 3 is now executed immediately,
which logs the RETRY LIMIT REACHED event in the log before the other
side has had a chance to respond to the last resend. Assuming step 4 is ex-
ecuted immediately after step 3, the last resend of the packet will never be
answered, and is in vain. This is clearly not the intention of the designers.
The description of the resend mechanism should be clarified.

Presumably the resend mechanism is to be disabled as soon as a valid reply
is received.

4. Data attributes are only present in a Transform payload. The IPsec DOI de-
fines several data attributes that apply to the various levels. Some attributes
apply to the entire SA. An SA can contain several proposals, and a proposal
can contain several transforms. Should the SA-wide attributes be in the first
transform, in each of the transforms, or elsewhere? How should the various
placings of attributes be interpreted?

5. Tt is interesting to note that [MSST98, section 1] claims that splitting the
functionality into the ISAKMP, DOI, and key exchange protocol makes the

security analysis more complex. We feel that a modularization along well-
chosen boundaries could simplify the analysis significantly. Unfortunately,
the ISAKMP, DOI and key exchange protocol documents still contain nu-
merous cross-dependencies, which indeed do make the security analysis more
complex.

4.2 Header Types

The definition of the ISAKMP headers gives rise to various questions. The stan-
dard header for each payload contains the type of the next payload in the message
[MSST98, section 3.2]. This construction seems to complicate both the gener-
ation and parsing of messages. As the ISAKMP header already contains the
overall length, the parser already knows whether there is another payload in the
message. It would seem simpler to have each payload contain its own type in the
standardized payload-header, instead of the type of the next payload.

[MSST98, section 3.4] does not make it clear that the Security Association
Payload uses a system of sub-payloads, which confused us for a while. Another
oddity is the fact that there is no field in the SA header to indicate the type of the
first sub-payload. Each sub-payload specifies the type of the next sub-payload,
but there is no corresponding field for the very first sub-payload. Presumably the
receiver has to know that an SA payload will always have a proposal payload as
the first sub-payload. This gives rise to the question why the proposal payload
has a “next header” field at all. Using the same type of information (allowed sub-
payload structures), the receiver can already deduce what the value of this field
should be. There are also other inconsistencies. The SA header does not specify
how many proposals are included as sub-payloads, but the proposal header does
specify how many transform payloads are included as sub-payloads.

The system of sub-payloads should be documented more clearly. We would
suggest that the “next header” field be changed into a “this header” field. That
would certainly make a lot of things simpler.

The confusion over the sub-payloads also leads to a second confusion. A Cer-
tificate Request payload may not be inserted between two Proposal payloads—
proposal payloads are just subpayloads inside an SA header—although this is
not made explicit. If a Certificate Request payload was inserted before the first
proposal, the recipient would have no way of identifying that payload as a Cer-
tificate Request payload, and would interpret it as a Proposal. The fact that the
Certificate Request Payload section specifies that it must be accepted at any
point during the exchange only adds to the confusion.

4.3 Security Comments

We found several cases in which the security of the constructions is questionable.
As the ISAKMP is a very general structure document, it is often unclear whether
this will result in weaknesses in actual specific cases in which ISAKMP is used.
Again we stress that we did not perform a full analysis of all the ISAKMP
protocols; we expect that there are further undiscovered weaknesses.

1. ISAKMP allows great latitude to the participants in the exact messages that
are sent and the exact processing that is done. This makes it extremely hard
to give any reasonable statement about the security properties achieved by
the protocols. The authors do not feel they have a good overview of all the
different variations that are allowed by ISAKMP. This makes a good security
analysis extremely hard to do.

2. [MSST98, section 5.1] specifies the resend functionality. What is not clear is
how the receiver responds to multiple copies of the same message. Ideally,
the implementation should verify that all copies it receives are identical, and
resend identical copies of the first reply that it sent.

A less careful implementation might re-process the incoming message. This
opens up various modes of attack. For example, in the identity protection
exchange an attacker could resend the fourth message to the initiator, and
collect authentications on many chosen messages by varying the nonce. (We
are ignoring the encryption for the moment; note that the encryption might
be weak or nonexistent.) Even more threatening, by changing the KE payload
the attacker might be able to use subtle interactions to find information
about the key.

An attack along the following lines might be possible. An attacker eavesdrops
on an identity protection exchange, and then resends the fourth message with
modified KE payloads. Let us assume that a DH key agreement protocol
modulo p is used with a subgroup of size ¢|(p — 1), and that p — 1 has several
other small divisors. (Even though this specific choice of DH group might
seem unfortunate, it could be used in a practical and secure key exchange
algorithm.) The attacker can now recover the DH secret of the initiator
by repeatedly sending KE payloads that contain elements of a low order
and checking which of the limited set of possible keys is being used in the
encryption. This reveals the initiator’s DH secret modulo the order of the
element sent in the KE payload. Combining several of these tries reveals
the entire DH secret. Once the DH secret of the initiator is known, the
attacker resends the original fourth message. This returns both parties to the
same state they had before the attacker interfered. Any subsequent exchange
continues as normal, but the attacker has the key, which clearly violates the
intention of the protocol.

This shows that it is important to specify how each party should react to a
repeat of a message in an exchange. We have not analyzed other protocols
for similar weaknesses, but it seems clear that any solution that reprocesses
a protocol step can introduce additional weaknesses. Therefore, the retrans-
mission system and handling of duplicate messages should avoid reprocessing
messages.

Rejecting copies of a message that are not identical to the first copy received
does not allow for recovery from a bogus first message. There is little security
risk in not providing for this recovery. The exchange will have to be aban-
doned and a new one started. In general, there is no method of ensuring the
completion of an exchange in the presence of an active attacker. It is always

possible for the attacker to flip some bits in each message, in which case any
exchange will fail.

3. [MSST98, section 4.6] defines the authentication-only exchange that provides
authentication of the other party but does not exchange keys. There is no
direct use for this protocol. At the end of the exchange both parties know who
they were talking to, but by itself that does not provide much information.
We assume this protocol is meant to be used to authenticate the other party
when a secure channel has already been established without authentication.
This does not work, as the other side can perform a man-in-the-middle attack
against the authentication-only protocol. This is in fact a general property
of the four exchanges defined in ISAKMP. All of them can be completed by
a man in the middle. However, the man in the middle does not learn the
key that is established by the exchange. As the authentication-only protocol
does not establish a key, and does not link the authentication to an existing
key, none of the participants in the protocol is much wiser at the end.
What makes this protocol dangerous is that some implementers might think
it actually provides some kind of security service. Any attempted use of the
authentication-only exchange will most likely result in a security weakness
of some sort.

4. The Identity Protection Exchange of [MSST98, section 4.5] is vulnerable to
an active attack. The Initiator sends its identity before having authenticated
the other party. An active attacker can pretend to be the responder, and
collect the Initiator’s identity before abandoning the protocol. The Initiator
has little choice but to try again to negotiate the SA. If the attacker does
not interfere this will complete, but the attacker has retrieved the IDii value.
Note that this type of weakness can be avoided by the use of public-key en-
cryption. The initiator can send his own identity encrypted with the public
key of the responder. For this to work, the initiator has to retrieve the re-
sponder’s public key in some way. A central public-key directory can provide
this service, without revealing more information to an attacker than that the
initiator is retrieving somebody’s key.

4.4 Functional Comments

As part of our analysis we also generated various comments on the functionality
of ISAKMP. Here is a choice selection:

1. The Certificate Request Payload is used to request a certificate from the
other party. It allows the requestor to specify a single CA that it will accept.
The responder must send “its certificate based on the value contained in the
payload.” In many practical systems, a single responder might have several
certificates from the same CA. It is unclear whether the responder should
send only one suitable certificate, or all suitable certificates.

One common case is not handled at all. There does not seem to be a way
for one of the parties to ask for a certificate issued by any one of a list of
CAs. This could be very useful. There are currently many competing CAs

for X.509v3 certificates. A specific machine might very well trust a subset of
them. In that case it would accept a certificate signed by any one of a list
of CAs. In ISAKMP, sending a list of CAs is interpreted as asking for all
certificates from these SAs (see [MSST98, section 3.10]).

. [MSST98, section 4.5] defines the Identity Protection Exchange. The nonces
in this protocol could also be sent in the first two messages, making this
protocol more like the base exchange. Furthermore, the exchange can be
shortened by two messages.

The order of the third and fourth message is not important. If the order of
these two messages is swapped, then each of them can be merged with an
adjacent message and sent in a single packet. This would save a full round-
trip time in the negotiations without loss of functionality.

. [MSST98, section 4.7] defines the aggressive exchange. It states that the
initial SA payload can only contain one proposal and one transform. This
does not seem to be a necessary restriction. First of all, two proposal payloads
with the same proposal number constitute a single proposal. If the concern
is that the Initiator must know the final transforms to be used while sending
the first message, then the requirement that only one proposal number be
used is enough.

As the KE payload is not dependent on the way in which the final keys
are actually being used, we do not see a reason why the single-proposal
restriction is in place.

The restriction to a single transform seems redundant. We see no problems
with a single proposal that contains multiple transforms.

. [MSST98, section 5.5] forces the SPI to be generated pseudorandomly. This
is a needless restriction on the sender, and should be removed. Some im-
plementations might wish to use the SPI directly as an index into a table,
in which case it cannot be generated pseudorandomly. [KA98¢, appendix A]
states that the SPI has only local significance, and that the recipient may
choose various ways to interpret the SPI. This would seem to imply that the
SPI does not have to be chosen randomly.

. Various features, such as the cookies, are included to prevent denial-of-service
attacks against the participants. In ISAKMP, they do not even do that.
As stated in [MSST98, section 1.7.1], denial-of-service attacks cannot be
prevented completely. We are not convinced that it is a good idea to increase
the complexity of the protocol to provide a partial solution to this problem.
This would require an analysis of the complexity of the various forms of IP-
related denial-of-service attacks against computers. Partial countermeasures
only make sense if they make attacks harder to perform. Protecting against
difficult attacks makes no sense if there is no protection against the easy
forms of attack. This remains an area for further study.

5 IKE

IKE is the default key-exchange protocol for ISAKMP and, at the moment,
the only one [HC98]. IKE is built on top of ISAKMP and performs the actual
establishment of both ISAKMP SAs and IPsec SAs.

5.1 Primitive Functions

IKE supports the negotiation of various primitive functions for use in the proto-
cols. Among these are the hash function and the pseudorandom function (PRF)
to be used. No requirements are given for the hash function and PRF. There
is no mention of the properties that IKE assumes the hash function and PRF
have.

Hash Function The most widely used definition of a hash function states that
it is collision-resistant. Thus, it should be impossible to find two messages m;
and mqy such that H(m) = H(mz) where H is the hash function. In [And93a],
Ross Anderson showed that this is often not enough, and that many protocols
break for certain collision-resistant hash functions. He gave one simple example.
Let m’ be the first n bits of the message m, and let m” be the rest. Define
H'(m/|m") .= m/|H(m") for any collision-resistant hash function H. It is clear
that H' is as collision-resistant as H is. However, many protocols silently assume
that the hash function is more or less a random mapping, and can fail when this
is not the case [And93a]. For example, the HMAC construction fails miserably
with H' as hash function, as it reveals the key in the output. This shows that
it is important to define which properties are required from the hash function.
Applying HMAC to just any (collision-resistant) hash function is dangerous and
should be avoided.

Pseudorandom Function Currently no special PRFs are defined; the default
mode of using the negotiated hash function in the HMAC construction is used
instead. Following the notational convention of [HC98], we will call the first
argument of the PRF the key and the second argument the message. There
are no requirements given for a new PRF; the description calls for a “keyed
pseudorandom function.”

We take this to mean the following: for a fixed key, the mapping of messages
to the output is a pseudorandom function. The PRF should be indistinguishable
from a function where the key uniformly selects a random element of the set of
all functions mapping messages into suitable output values.

Note that this definition does not preclude a PRF that is invertible for a
known key. We define a PRF called NPRF (for Nasty PRF) as follows: for a
short message the PRF is defined as

prf(k,m) = E(k,0|m)

while for long messages it is defined as
pri(k,m) = E(k, 1|H (m))

Here, H is a suitable hash function, E is a block cipher encryption taking a key
and a plaintext block as arguments, and a message is considered “long” if it is at
least as long as the block size of the block cipher. For short messages, this PRF
is invertible if the key is known. If the block cipher is good and the block size is
large enough (e.g., 1024 bits), this function is indistinguishable from a random
function, as detecting the fact that it is a permutation and not a random function
requires too much work.

IKE uses the PRF sometimes with known key input. It is clearly not the
designer’s intention to have an invertible function in this case. To avoid this
type of problems, IKE should specify what properties it expects from its PRF.

The default construction of the PRF is to use HMAC and the hash function.
As shown above, some hash functions result in very bad PRFs when used with the
HMAC construction. This can break any protocol using the PRF. For example,
the main mode exchange with public-key encryption fails when using HMAC
with H’ defined above as the HASH_I reveals SKEYID, allowing a fake responder
to impersonate the real responder.

Lesson 4 The properties required of each of the primitive functions used in the
system should be clearly documented.

This can be seen as specifying the interface between the two parts of the
definition. It allows each of the parts to be analyzed separately. Without such
clear specifications, it is much harder to analyze the security of the system.
Furthermore, there is a serious danger that some future extension will introduce
a new primitive which lacks one of the properties that was silently assumed by
the designers and evaluators of the original version.

5.2 Derivation of SKEYID Data

Observe the computation of SKEYID [HC98, page 10] in the three different
authentication cases. For signature authentication, the key input of the PRF is
public, and the message input is secret. This is clearly an abuse of the PRF.
(If the NPRF is used, revealing SKEYID also reveals ¢*¥.) Furthermore, the
concatenation of the two nonces can be up to 512 bytes long, while HMAC-
SHAT1 takes at most 64 bytes of key. The public-key encryption case on the next
line resolves this by inserting an extra hash function application.

The three formulas for computing SKEYID seem somewhat ad hoc. It is not
clear what properties are wanted, and which are achieved. We are unsure why
the cookies used in the public-key encryption case, and not in the pre-shared
key case.

One idea seems to be to use every value at most once as input. This principle
is not followed in the derivation of the SKEYID_d, SKEYID_a, and SKEYID _e,
where the same values are repeatedly used in the derivation. In the signature

authentication case, g*¥ affects both the key and the message field of the PRF
application used to compute SKEYID _d.

As far as we are able to see, these properties do not lead to a direct weakness,
as PRF's are very forgiving (in the ideal case). The signature authentication case
is saved by the fact that SKEYID itself is never revealed, but only used as key
input to other PRF applications.

Recommendation 6 Fix the derivation formulas for SKEYID and associated
values.

5.3 The HASH Authentication Values

IKE uses so-called HASH values for the authentication of both parties. These
are in fact Message Authentication Code (MAC) values, and not hash values at
all. It would be much clearer if standard terminology were to be used.

A Reflection Attack The two formulas for computing HASH_ I and HASH_R
are symmetrical with regard to swapping the initiator and the responder. This
opens up the possibility of a reflection attack. In main mode with pre-shared
keys, a fraudulent responder can claim the same identity as the initiator and
still pass the authentication phase. The responder does this by choosing CKY-R
as CKY-I and g*~ as ¢g®¢, and using the initiator’s identity. In this case HASH_R
is equal to HASH I, so the responder can just send back the value that the
initiator sent.”

The related attack for a fraudulent initiator in aggressive mode does not
work, as the initiator has to commit to ¢g** before the responder chooses g~ in
a random manner.

The same attack seems to apply to the signature authenticated main mode
exchange. The responder can replay all the initiator’s values and the last message,
and pass the authentication.

A Proposal Attack The HASH computations do not include the SA reply
by the responder. This implies that an attacker can manipulate this payload
without adverse effects within the protocol. Suppose the initiator sends a list of
many proposals in order of preference. The least preferred proposal only provides
marginal security (e.g., 40 bits or so). The attacker can now modify the respon-
der’s SA to select this weak mode, and let the rest of the exchange complete
as usual. The initiator will now start using the newly negotiated SA, which is
considerably weaker than it should be.

Suppose this is done in an aggressive mode negotiation for phase 1. The
resulting ISAKMP SA is weak. As soon as the initiator starts to use the weak

7 Actually, the fraudulent responder cannot read the fifth message it gets from the
initiator, as it is encrypted. This does not matter, as the message that he wants to
send in reply has the same format, so the encrypted fifth message can be sent back
as the sixth message.

keys, the attacker can do a brute-force search for the keys. Once found, the
attacker has recovered the ISAKMP SA keys and can now negotiate full-strength
IPsec SAs with the initiator while pretending to be the responder. This is a clear
violation of the intention of the protocol.

Another subtlety is that changing the responder’s SA might change the mode
being used. An attacker can thus have the responder performing the protocol in
one mode, and the initiator the protocol in another mode. We have not investi-
gated the possible interactions, but this is clearly undesirable. The responder’s
SA should be included in the HASH computations.

Conclusion The definition of the HASH values is unacceptably weak.

Recommendation 7 Fiz the definition of the HASH value so that it provides
proper authentication.

5.4 Parsing a String of Bytes

The PRFs, signature functions, and hash functions are each applied to strings
of bytes. By themselves, these strings of bytes do not specify how they are
formatted. This opens up a lot of freedom for an attacker. Let us suppose that
there are two places in the protocol where a PRF function is applied with the
same key but with different message formats. If these formats could generate
strings of the same length, then it is in principle possible to confuse the two
PRF computations. An attacker can take the result of the first PRF computation
(which he might receive in the first part of the protocol) and use this value in
the second PRF computation. Whether or not this leads to an actual weakness
depends on too many factors, but it is clearly an undesirable property. Instead of
authenticating the intended message, the PRF is authenticating a string of bytes
whose interpretation is not fully defined. This violates the “Horton principle”
[WS96].

Even if the set and order of the fields is known, the parsing of some of the
messages depends on outside information. For example the HASH_I computation
has a message that consists of six concatenated fields. The length of each field has
to be derived from some context, which is open to manipulation by an attacker.

There are too many ways in which this type of attack can be attempted to
analyze them all. We strongly recommend that the input to every hash function,
PRF function, and signature be extended with a field that uniquely identifies the
function within the system. (e.g. protocol ID, message number, version number,
etc.) Furthermore, each message that is used as an input to a hash, PRF, or
signature algorithm should be parseable into its constituent fields without any
outside information. This can be achieved by using a Tag-Length-Value (TLV)
encoding scheme along the lines of ASN.1.8

8 We would not advocate using ASN.1 itself, as it is very complex.

Lesson 5 The protocol must ensure that each string that is authenticated by a
signature or a MAC is uniquely marked as to its function within the system, and
that each string can be parsed into its constituent fields without any contextual
information.

5.5 Efficiency

As we noted earlier, the ISAKMP identity protection exchange can be shortened
to four messages. The Main mode exchanges of IKE are implementations of
the identity protection exchange of ISAKMP. The main mode exchange with
signature authentication or pre-shared keys authentication can be shortened in
the same way.

The main modes that use public-key encryption for authentication cannot
be shortened in exactly the same way, as the responder would need to know the
identity of the initiator instead of the other way around. This would change the
properties of the protocol. However, it is possible to shorten the exchange to five
messages, by swapping the order of the last two and merging the two adjacent
messages that the responder sends into a single packet.

There might be a reason why IKE does not use the shorter versions of the
protocols. If that is the case, this reason should be documented.

5.6 Comments Relating to Security
We give a selection of our security-related comments on IKE.

1. [HC98, page 11] describes how the choice of signature algorithm affects the

choice of PRF algorithm used to compute the HASH values. This is an ugly
construction, and should be removed. It can even affect security. Suppose the
signature method uses a weird hash function like the one in section 5.1; this
is perfectly suitable for a signature system, as the hash function is collision-
resistant. IKE would use this hash function in HMAC mode, which is not
at all secure. The overall effect might very well be to reveal SKEYID to an
attacker.
This is not as far-fetched as it seems. The RSA system allows message bits
to be recovered from a signature. A system that wants to take advantage of
this property could very well use a definition similar to the one we gave in
section 5.1, as this produces exactly the type of value that is suitable for an
RSA signature with (partial) message recovery.

2. The method used to derive the key material for the newly negotiated SA in
the phase 2 quick mode contains a serious weakness. The KEYMAT value
depends on SKEYID_d, the protocol, the SPI, and both nonces. The SPI
values are only 32-bit, and might very well be chosen from a much smaller
set of index values. This implies that it is quite likely that both the initiator
and the responder will choose the same SPI value. In that case, the keying
material for the two SAs (one in each direction) will be the same, which in
turn may allows all kind of splicing attacks. This weakness exists whether
PFS was used or not.

Recommendation 8 Change the KEYMAT derivation in phase 2 to avoid
generating the same keys for the two negotiated SAs.

3. In [HCYS, section 5.6], the New Group Mode is specified. The two HASH
values used for authentication are computed in exactly the same manner. If
the SA in the first message contains only a single proposal, then the SA reply
will be identical, and HASH(2) will be identical to HASH(1). As a result,
HASH(2) does not really provide any authentication.

If authentication is needed, the definitions of the HASH values should be
changed. If authentication is not needed, the HASH values should be re-
moved.

4. We mentioned earlier that there is an active attack against the Identity Pro-
tection Exchange protocol of ISAKMP. In this attack the attacker pretends
to be the responder, and collects the initiator’s identity before abandoning
the protocol execution.

This attack works against the main mode exchanges with signature authen-
tication and with pre-shared key authentication. It does not work against
the public-key encryption authenticated versions.

5.7 General Comments

This section contains some of our other comments on IKE.

1. [HC98, section 5] defines encoding of group elements in the KE payload.
This is different from other group element encodings in other parts of the
protocol. Group element encodings should be consistent.

2. [HC98, section 5.3] shows a revised mode of using public-key encryption for
authentication. From the properties given, this mode is superior to the mode
of section 5.2. As there does not seem to be a reason to retain the modes of
section 5.2, those should be removed.

3. [HC98, appendix B] defines the methods used to stretch the output length
of the PRF, or to stretch other keying material. These methods are strong
enough (given a good enough PRF), but can be improved. Even with a
theoretically perfect PRF, the current definition does not generate uniformly
distributed outputs.

In the example given on page 37, if BLOCKI-8 is equal to BLOCK9-16,
then it must also be equal to BLOCK17-24. This implies that about 2754 of
all possible SKEYID values cannot be generated by this construction. The
same criticism applies to the stretching of encryption keys for ciphers that
need a longer key. This is shown on pages 15, 19, and 38. This construction
cannot generate all possible sequences of K1, K2, and K3.

These stretching methods can easily be fixed by including a counter in the
message input of the PRF. This has already been done in deriving the
SKEYID_d, SKEYID_a, and SKEYID_e from SKEYID. The overall system
would be simplified if a single stretching function were used for all situations.

4. The Quick mode negotiation protocol could be simplified significantly by
using the ESP transform from IPsec for both encryption and authentica-
tion. The current solution uses a separate CBC encryption mode, and ad
hoc message authentication based on specific HASH values. The protocols
would be much easier to analyze if the ISAKMP SA were used to set up a
confidential and authenticated tunnel (without replay protection), and the
quick mode were built on top of that. As every ISAKMP implementation
must also support IPsec, this would also simplify any implementation.

6 Conclusions

We are of two minds about IPsec. On the one hand, IPsec is far better than
any IP security protocol that has come before: Microsoft PPTP, L2TP, etc. On
the other hand, we do not believe that it will ever result in a secure operational
system. It is far too complex, and the complexity has lead to a large number
of ambiguities, contradictions, inefficiencies, and weaknesses. It has been very
hard work to perform any kind of security analysis; we do not feel that we fully
understand the system, let alone have fully analyzed it.

We have found serious security weaknesses in all major components of IPsec.
As always in security, there is no prize for getting 90% right; you have to get
everything right. IPsec falls well short of that target, and will require some major
changes before it can possibly provide a good level of security.

What worries us more than the weaknesses we have identified is the com-
plexity of the system. In our opinion, current evaluation methods cannot handle
systems of such a high complexity, and current implementation methods are not
capable of creating a secure implementation of a system as complex as this. We
feel that the only way to salvage IPsec is to rigorously reduce the complexity by
eliminating options and improving the modularization. This will require a major
overhaul.

Finally, it has become clear that most of the blame for this state of affairs lies
not with the people that worked on IPsec, but with the process used to develop it.
Committee designs are bad enough when all you try to do is to get something to
work. The IPsec experience has demonstrated that a committee design process is
wholly incapable of creating a useful design for a security system. In our opinion,
there is a fundamental conflict between the committee process and the property
of security systems being only as strong as their weakest link. Therefore, we think
that continuing the existing process and fixing IPsec based on various comments
is bound to fail. The NIST-run process for selecting the new AES might serve as
an example of an alternate process for developing and standardizing a security
system.

We strongly discourage the use of IPsec in its current form for protection of
any kind of valuable information, and hope that future iterations of the design
will be improved. However, we even more strongly discourage any current alter-
natives, and recommend IPsec when the alternative is an insecure network. Such
are the realities of the world.

References

[And93a] R. Anderson, “The Classification of Hash Functions,” Proceedings of the
Fourth IMA Conference on Cryptography and Coding, pp. 83-93, 1993. Avail-
able from http://www.cl.cam.ac.uk/ftp/users/rjal4/hash.ps.Z.

[And93b] R. Anderson, “Why Cryptosystems Fail,” Proceedings of the 1st ACM Con-
ference on Computer Communications Security ’93, ACM Press, Nov 1993,
pp. 215-227.

[BDR+96] M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson,
and M. Weiner, “Minimal Key Lengths for Symmetric Ciphers to Provide
Adequate Commercial Security,” Jan 1996.

[BK98] A. Biryukov and E. Kushilevitz, “Improved Cryptanalysis of RC5,” Advances
in Cryptology — EUROCRYPT °98 Proceedings, Springer-Verlag, 1998, pp.
85-99.

[FKK96] A. O. Freier, P. Karlton, and P. Kocher, “The SSL Protocol, Version 3.0,” In-
ternet draft, Transport Layer Security Working Group, November 18, 1996.
Available from http://home.netscape.com/eng/ssl3/.

[GK98] R. Glenn and S. Kent, “The NULL Encryption Algorithm and its Use with
IPsec,” RFC 2410, Nov 1998.

[HC98] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” RFC 2409,
Nov 1998.

[Kah67] David Kahn, The Codebreakers, The Story of Secret Writing, Macmillan
Publishing Co., New York, 1967.

[KA98a] S. Kent and R. Atkinson, “IP Authentication Header, RFC 2402, Nov 1998.

[KA98b] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP),” RFC
2406, Nov 1998.

[KA98c] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol,”
RFC 2401, Nov 1998.

[MD98] C. Madson and N. Doraswamy, “The ESP DES-CBC Cipher Algorithm with
Explicit IV,” RFC 2405, Nov 1998.

[MG98a] C. Madson and R. Glenn, “The Use of HMAC-MD5-96 Within ESP and
AH,” RFC 2403, Nov 1998.

[MG98b] C. Madson and R. Glenn, “The Use of HMAC-SHA-1-96 Within ESP and
AH,” RFC 2404, Nov 1998.

[MSST98] D. Maughan, M. Schertler, M. Schneider, and J. Turner, “Internet Security
Association and Key Management Protocol (ISAKMP),” RFC 2408, Nov
1998.

[NIST97a] National Institute of Standards and Technology, “Announcing Development
of a Federal Information Standard for Advanced Encryption Standard,” Fed-
eral Register, v. 62, n. 1, 2 Jan 1997, pp. 93-94.

[NIST97b] National Institute of Standards and Technology, “Announcing Request for
Candidate Algorithm Nominations for the Advanced Encryption Standard
(AES),” Federal Register, v. 62, n. 117, 12 Sep 1997, pp. 48051-48058.

[PA9S] R. Pereira and R. Adams, “The ESP CBC-mode Cipher Algorithms,” RFC
2452, Nov 1998.

[Pip98] D. Piper, “The Internet IP Security Domain of Interpretation for ISAKMP,”
RFC 2407, Nov 1998.

[Riv95] R.L. Rivest, “The RC5 Encryption Algorithm,” Fast Software Encryption,
2nd International Workshop Proceedings, Springer-Verlag, 1995, pp. 86-96.

[RRS+98] R. Rivest, M. Robshaw, R. Sidney, and Y.L. Yin, “The RC6 Block Cipher,”

[Sch94]

NIST AES Proposal, Jun 98.

B. Schneier, “Description of a New Variable-Length Key, 64-Bit Block Ci-
pher (Blowfish),” Fast Software Encryption, Cambridge Security Workshop
Proceedings, Springer-Verlag, 1994, pp. 191-204.

[SKW+98] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson,

“Twofish: A 128-Bit Block Cipher,” NIST AES Proposal, Jun 98.

[SKW+99a] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson,

[SMOS]

[SM99]

[TDGYS]

[WFS99]

[WS96]

[Wri87]

The Twofish Encryption Algorithm: A 128-bit Block Cipher, John Wiley &
Sons, 1999.

B. Schneier and Mudge, “Cryptanalysis of Microsofts Point-to-Point Tunnel-
ing Protocol (PPTP),” Proceedings of the 5th ACM Conference on Commu-
nications and Computer Security, ACM Press, 1998, pp. 132-141. Available
from http://www.counterpane.com/pptp.html.

B. Schneier and Mudge, “Cryptanalysis of Microsoft’s PPTP Authentication
Extensions (MS-CHAPv2),” CQRE Proceedings, Springer-Verlag, 1999, to
appear. Available from http://www.counterpane.com/pptp.html. ((check
URL))

R. Thayer, N. Doraswamy, and R. Glenn, “IP Security Document
Roadmap,” RFC 2411, Nov 1998.

D. Wagner, N Ferguson, and B. Schneier, “Cryptanalysis of FROG, ” Proc.
2nd AES Candidate Conference, National Institute of Standards and Tech-
nologies, 1999, pp. 175-181.

D. Wagner and B. Schneier, “Analysis of the SSL 3.0 Protocol, The Second
USENIX Workshop on Electronic Commerce Proceedings, USENIX Press,
1996, pages 29-40. USENIX Press, 1996. Revised version available from
http://www.counterpane.com.

P. Wright, Spycatcher, Viking Penguin Inc., 1987.

