
© DZONE, INC. | DZONE.COM

C
O

N
T

E
N

T
S

WHAT IS NODE?
First, a quick note: The terms “Node.js” and “Node” are used
interchangeably. The official description according to the nodejs.
org website is:

“Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine”

Translation: Node runs on Google’s open source JavaScript engine
called V8, which is written in C++ and is used in Google’s Chrome
browser. It’s fast!

“Node.js uses an event-driven, non-blocking I/O model that makes it

lightweight and efficient.”

Translation: Node.js pairs JavaScript’s naturally event-driven,
asynchronous coding style with non-blocking I/O libraries for
performing server tasks such as working with file systems and
databases. This pairing makes it easy to write fast, efficient, and
non-blocking applications that would be difficult and complex to
author in traditionally synchronous languages.

“Node.js' package ecosystem, npm, is the largest ecosystem of open source

libraries in the world.”

Translation: npm (name always lower-case) is the tool used to
install and manage dependencies in the Node world as well as the
main repository where public Node.js packages are registered. In
addition to Node.js libraries, npm also lists more and more front-
end packages, but that’s a different topic!

NODE IS JAVASCRIPT ON THE SERVER
Node enables developers to write server-side applications in
JavaScript. Server-side applications perform tasks that aren’t
suitably performed on the client, like processing and persisting
data or files, plus tasks like connecting to other networked
servers, serving web pages, and pushing notifications. Seeing that
JavaScript is an incredibly popular language with web and mobile
front-end developers, the ability to use this same skill to program
server-side tasks can increase a developer’s productivity. In some
cases, client and server can even share the same code.

HOW DOES NODE WORK?
SYNCHRONOUS VS. ASYNCHRONOUS
PROGRAMMING

C and Java traditionally use synchronous I/O, which means that
when a program starts an I/O operation, the rest of the program
stops until that operation is completed. You can get around this
by writing multi-threaded programs, but for some developers,
writing these types of applications in a distributed networking
environment can be daunting. Of course there is also the issue
of the number of threads a system can actually spawn, and
writing “thread-safe” code adds significant complexity to any
codebase. Node, by contrast, is single-threaded, but provides for
asynchronous and non-blocking code by default.

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 D

Z
o

ne
.c

o
m

/R
ef

ca
rd

z
141

N
O

D
E

.J
S

SYNCHRONOUS VS ASYNCHRONOUS: BY ANALOGY
To understand non-blocking I/O, picture a common scenario:
ordering food at a restaurant. A typical experience might be:

• You sit at a table and the server takes your drink order.

• The server goes back to the bar and passes your order to a
bartender.

• While the bartender is working on your drink, the server
moves on to take another table’s drink order.

• The server goes back to the bar and passes along the other
table’s order.

• Before the server brings back your drinks, you order some food.

• The server passes your food order to the kitchen.

• Your drinks are ready now, so the server picks them up and
brings them back to your table.

• The other table’s drinks are ready, so the server picks them
up and takes them to the other table.

• Finally your food is ready, so server picks it up and brings it
back to your table.

Basically every interaction with the server follows the
same pattern.

1. You order something from the server.

2. The server hands your order off to the bar or kitchen,
freeing him up to take new orders or to deliver orders
that are completed.

3. When your order is completed, the kitchen or bar alerts
the server, and he delivers it to you.

Notice that at no point in time is the server doing more than one
thing. He can only process one request at a time, but he does not
wait around for the orders to be filled. This is how non-blocking
Node.js applications work. In Node, your application code is like

Node.js
Server-Side JavaScript for Backends, API Servers, and Web Apps

UPDATED BY DAVE WHITELEY

» What Is Node?

» How Does Node Work?

» Architecture

» Installation

» Performance... and more!

BROUGHT TO YOU IN PARTNERSHIP WITH

The Node.js API framework

An IBM Company

Getting started is as easy as
$ npm install –g strongloop

ibm.biz/LoopBack_Framework

• Built on top of the
Express web framework

• Supports the OpenAPI
Spec (Swagger 2.0)

®

• Composes scalable
APIs quickly

• Highly extensible and
open source

http://www.dzone.com?refcardz
http://nodejs.org/
http://nodejs.org/
http://www.refcardz.com
https://DZone.com/Refcardz
http://www.ibm.biz/LoopBack_Framework

Connect devices to data
with APIs developed in Node

LoopBack is an open source
API Server powered by Node

Manage Node and
APIs in production

Use StrongLoop Process Manager to
monitor, optimize and scale Node apps

For more information visit: strongloop.com

Node.js Software
and Expertise

from the Largest
Corporate Contributors

An IBM Company

• Model-driven development with auto-generate
REST APIs

• Run LoopBack APIs on-premises or on cloud
services like Bluemix

• Easily model business data and behavior along
side auto-generated CRUD actions

• Built-in API security and management with
token authentications

• iOS, Android, AngularJS and Xamarin SDKs to
develop hybrid or native apps

• Prebuilt mobile services like push, geolocation
and offline sync

• Open source and extensible by design

• Create, manage and scale Node clusters
across multiple machines

• CPU, memory and heap profiling

• Memory leak detection

• Root cause analysis with deep
transaction tracing

• Event loop and response time monitoring

• Resource utilization

• Bottleneck identification

• Debugging

• Build and remote deploy

http://www.strongloop.com?DZone.com

© DZONE, INC. | DZONE.COM

3 NODE.JS

a restaurant server processing orders, and the bar/kitchen is the
operating system handling your I/O calls.

Your single-threaded JavaScript application is responsible for all the
processing up to the moment it requires I/O. Then, it hands off the
work to the operating system, which processes the I/O and calls
your application back when it’s finished. For contrast, imagine if our
restaurant were synchronous: every time the server took an order, he
would wait for the bar/kitchen to finish the order before taking the
next request. This would be very slow! This is how blocking I/O works.

EVENT LOOP CONCURRENCY MODEL
Node leverages a browser-style concurrency model on the server. As
we all know, JavaScript was originally designed for the browser where
code execution is triggered by events such as mouse clicks or the
completion of an Ajax request. Moved to the server, this same model
allows for the idea of an event loop for server events such as network
requests. In a nutshell, JavaScript waits for an event and whenever
that event happens, a callback function occurs.

For example, your browser is constantly looping waiting for events
like clicks or mouse-overs to occur, but this listening for events
doesn’t block the browser from performing other tasks. On the
server this means that instead of a program waiting for a response
from a database query, file access, or connection to an external API,
it immediately moves on to the next unit of work until the event
returns with a response. Instead of blocking the server waiting for
I/O to complete, the event loop enables applications to process other
requests while waiting for I/O results. In this way Node achieves
multitasking more efficiently than using threads.

EVENT LOOP ANALOGY: MAIL CARRIER
A mail carrier “loops” through the mailboxes on her route, checking
each for new letters (events). In your postbox she finds a letter
addressed to IBM; you are requesting a quote for their cloud backup
service. She takes the letter, and when her loop takes her past IBM
headquarters she drops it off. She does not wait for IBM’s response,
she continues on her loop, picking up & delivering other letters while
IBM processes your request (does an I/O operation).

The next three times she passes IBM there is no response ready,
so she continues on her loop delivering other letters. The fourth
time she passes IBM, they have a response ready. She picks it up &
delivers the quote to you. The response, addressed to the original
sender, is like the callback, routed to the original caller with the
response data (the quote).

EVENT LOOP CODE EXAMPLE
Let’s look at a simple example of asynchronously reading a file. This is
a two step process:

1. The filename is passed to the OS (via Node and libuv).

2. The readHandler callback function is executed with the
response (a Buffer).

var fs = require(‘fs’);
fs.readFile(‘my_file.txt’, function readHandler(
 err, data) {
 if (err) throw err;
 // convert the buffer to string and output it
 console.log(data.toString());
});

The request to read the file goes through Node bindings to libuv. Then
libuv gives the task of reading the file to a thread. When the thread

completes reading the file into the buffer, the results goes to V8 and
then through the Node bindings in the form of a callback function. In
the callback shown the data argument is a Buffer with the file data.

Example of an HTTP server using Node:

var http = require('http');

http.createServer(function (request, response) {
 response.writeHead(200, {
 'Content-Type': 'text/plain'});
 response.end('Hello World\n');
}).listen(8080);

console.log('Server running at http://localhost:8080/');

The “event >> callback” mechanism here is the same as in our read
file example, but in one case we initiated the operation (read file) that
results in an event being triggered, whereas in this example, the events
are triggered in response to external input (an incoming HTTP request).

ARCHITECTURE

There are four building blocks that constitute Node:

• Google’s V8 provides a run-time for JavaScript, as we've seen.

• libuv is a C library that handles asynchronous I/O and
abstracts underlying network and file system functionality so
Node can run on different operating system platforms.

• Node core is a JavaScript library that includes modules like
Assert, HTTP, Crypto, and so on, that provides Node's base
JavaScript API.

• Node bindings provide the glue connecting these technologies
to each other and to the operating system.

HOW DO I INSTALL NODE?
Installers exist for a variety of platforms including Windows, Mac
OS X, Linux, SunOS—and of course you can compile it yourself from
source. Official downloads are available from the nodejs.org website:
nodejs.org/en/download

WHAT ARE THE PERFORMANCE CHARACTERISTICS
OF NODE?

Everyone knows benchmarks are a specific measurement and
don’t account for all cases. Certainly, what and how you measure
matters a lot. But there’s one thing we can all agree on: at high levels
of concurrency (thousands of connections) your server needs to
become asynchronous and non-blocking. We could have finished that
sentence with IO, but the issue is that if any part of your server code

http://www.dzone.com?refcardz
https://developers.google.com/v8/
https://nodejs.org/dist/latest-v4.x/docs/api/
https://nodejs.org/en/download/

© DZONE, INC. | DZONE.COM

4

blocks, you’re going to need a thread. At these levels of concurrency,
you can’t go about creating threads for every connection. So, the whole
code path needs to be non-blocking and async, not just the IO layer.
This is where Node excels.

Some examples of Node performance benchmarks and related posts:

• Strongloop

• LinkedIn

• “Node.js Benchmarks”

• “Comparing Node.js vs PHP Performance”

• “The Computer Language Benchmarks Game”

WHAT IS NODE GOOD FOR?
WEB APPLICATIONS
Many modern web applications are SPAs (single page applications)
that put most rendering and UI concerns in the client code, calling the
server only to request or update data.

REASONS WHY:
• Single page applications most frequently request and send

data (e.g. JSON) rather than rendered pages (HTML), thus
payloads are smaller but more frequent. Node’s asynchronous
model excels at handling these high-frequency, small-
payload requests.

• Node’s rich ecosystem of npm modules allows you to build
web applications front to back with the relative ease of a
scripting language that is already ubiquitously understood on
the front end.

• Single Page Applications must be written in (or compiled to)
JavaScript. A Node backend means the whole stack is in
one language.

EXAMPLES OF FRAMEWORKS FOR NODE:

• LoopBack

• Express

• Sails.js

• Hapi

• Meteor

• MEAN.js

API SERVERS AND MOBILE BACKENDS
An I/O library at its heart, Node.js is a popular choice for APIs and
mobile backends. Node’s ease of use has been applied toward the
classic enterprise application use case to be able to gather and
normalize existing data and services.

REASONS WHY:
• As the shift toward hybrid mobile applications becomes more

dominant in the enterprise, client JavaScript code can be
leveraged on the server.

• Node’s rich ecosystem has almost every underlying driver or
connector to enterprise data sources such as RDBMS, Files,
NoSQL, etc. that would be of interest to mobile clients.

• JSON, the de-facto standard format for API data interchange, is
a representation of native JavaScript objects, so of course Node
handles it easily. If you need to support another format (for
example, XML), there’s probably a module for it.

EXAMPLES OF MOBILE BACKENDS BUILT WITH NODE:
• LoopBack (Open-source framework)

• FeedHenry (Proprietary)

• Appcelerator Cloud Services (Proprietary)

• Restify (Open-source framework)

IoT SERVERS
As more objects in the workplace, the home, and beyond get
connected into the “Internet of Things,” Node.js is emerging as the
server technology of choice for many IoT platforms.

REASONS WHY:
• Sensors reporting temperature, vehicle speed, etc. can

generate lots of data points, each one as small as a single
number. Node.js is built to efficiently handle this sort of “many
requests, small payloads” use-case.

• Node.js’ popularity as a platform for building APIs means that its
strengths and weaknesses here are well explored, and there are
many mature solutions that fit the IoT problem.

EXAMPLES OF OPEN SOURCE IOT SERVERS BUILT IN NODE:
• Zetta
• mqtt-connection
• adafruit-io
• phant

HOW CAN I MAKE NODE USEFUL?
WHAT IS NPM?
Node Package Manager (“npm”) is the command-line package manager
for Node that manages dependencies for your application. npmjs.com
is the public repository where you can obtain and publish modules.

HOW DOES NPM WORK?
For your Node application to be useful, it needs things like libraries,
web and testing frameworks, data-connectivity, parsers and other
functionality. You enable this functionality by installing specific
modules via npm. npm comes bundled with Node.js (since v0.6.3) so
you can start using it right away!

You can install any package with this command:

$ npm install <name of module>

Some popular and most used modules include:

express
A fast, unopinionated, minimalist web framework for Node. Express
aims to provide small, robust tooling for HTTP servers, making it a
great solution for single page applications, web sites, hybrids, or public
HTTP APIs.

lodash
A “toolbelt” utility library with methods for performing lots of
common JavaScript tasks. It can be used stand-alone, in conjunction
with other small libraries, or in the context of a larger framework.

async
A utility module that provides straightforward, powerful functions
for working with asynchronous JavaScript. Although originally
designed for use with Node, it can also be used directly in the
browser. Async provides around 20 functions that include the usual

'functional' suspects (map, reduce, filter, each…) in addition to your
async function.

NODE.JS

http://www.dzone.com?refcardz
https://strongloop.com/strongblog/node-js-is-faster-than-java/
http://engineering.linkedin.com/nodejs/blazing-fast-nodejs-10-performance-tips-linkedin-mobile
https://benchmarking.nodejs.org/
http://www.hostingadvice.com/blog/comparing-node-js-vs-php-performance/
https://benchmarksgame.alioth.debian.org/u64q/javascript.html
http://loopback.io/
http://expressjs.com/
http://sailsjs.org/
http://hapijs.com/
https://www.meteor.com/
http://meanjs.org/
https://www.npmjs.com/package/xml
http://loopback.io/
http://www.feedhenry.com/
http://www.appcelerator.com/cloud/
http://restify.com/
http://www.zettajs.org/
https://www.npmjs.com/package/mqtt-connection
https://github.com/adafruit/adafruit-io-node
https://github.com/sparkfun/phant
https://www.npmjs.com/
https://npmjs.org/package/express
https://lodash.com/
https://npmjs.org/package/async

© DZONE, INC. | DZONE.COM

5

request
A simplified HTTP request client. It supports HTTPS and follows
redirects by default.

grunt
A JavaScript task runner that helps automate tasks. Grunt can perform
repetitive tasks like minification, compilation, unit testing, linting, etc.
The Grunt ecosystem is also quite large with hundreds of plugins to
choose from. You can find the listing of plugins here.

socket.io
Socket.io makes WebSockets and real-time possible in all browsers
and provides built-in multiplexing, horizontal scalability, automatic
JSON encoding/decoding, and more.

mongoose
A MongoDB object modeling tool designed to work in an asynchronous
environment. It includes built-in type casting, validation, query
building, business logic hooks and more, out of the box.

HOW IS NODE.JS MAINTAINED AND IMPROVED ON
A DAY-TO-DAY BASIS?

Some people may not know the various high-level Node.js groups and
how day to day work on Node.js happens. Let’s take a look at the
various groups and how they all work on Node.

The Node.js Foundation Board, which is made up of corporate
member representatives, a Technical Steering Committee
representative, and elected individual membership class
representatives, does not deal with the day to day work. Instead,
responsibilities of the board are primarily:

• set business/technical direction
• oversee intellectual property (IP) management
• marketing
• event planning

The Technical Steering Committee (TSC), which is the technical
governing body of the Node.js Foundation, does not deal with the day
to day work. It admits and retains oversight of all top-level projects
under the Node.js Foundation's purview.

The Core Technical Committee, which is in charge of the ongoing
maintenance and evolution of Node.js as well as driving the project
and community forward, does handle day to day technical decisions,
however only when they need to be made. (See below for more information.)

Primarily, the development work done on Node.js core is governed by
a distributed consensus model, managed by a group of collaborators.

The process goes roughly as follows:

• a pull request is made against the repository

• if more than a single collaborator agrees it should be merged, it
will move forward

• the PR should land within 48 hours (72 if during the weekend)

The only time a decision goes to the CTC is when a consensus cannot
be reached.

The release schedule of Node.js loosely follows these guidelines:

• major semver increments happen bi-yearly

• current releases can happen weekly or bi-weekly

• LTS releases fluctuate based on needs; typically, early in the
LTS term, releases happen every two weeks but it slows to a
monthly pace. (Only even numbered releases go to LTS.)

More details can be found in the Collaborator Guide.

NODE API GUIDE
Below is a list of the most commonly-used Node APIs. For a complete
list and for an APIs current state of stability or development, see the
Node API documentation.

Buffer
Functions for manipulating, creating and consuming octet streams,
which you may encounter when dealing with TCP streams or the file
system. Raw data is stored in instances of the Buffer class. A Buffer
is similar to an array of integers but corresponds to a raw memory
allocation outside the V8 heap. A Buffer cannot be resized.

Child Process
Functions for spawning new processes and handling their input and
output. Node provides a tri-directional popen(3) facility through the
child_process module.

Cluster
A single instance of Node runs in a single thread. To take advantage
of multi-core systems, the user will sometimes want to launch a
cluster of Node processes to handle the load. The cluster module
allows you to easily create child processes that all share server ports.

Crypto
Functions for dealing with secure credentials that you might
use in an HTTPS connection. The crypto module offers a way of
encapsulating secure credentials to be used as part of a secure
HTTPS net or http connection. It also offers a set of wrappers for
OpenSSL's hash, hmac, cipher, decipher, sign and verify methods.

Debugger
You can access the V8 engine’s debugger with Node’s built-in
client and use it to debug your own scripts. Just launch Node with
the debug argument (node debug server.js). A more feature-filled
alternative debugger is node-inspector. It leverages Google’s Blink
DevTools, allows you to navigate source files, set breakpoints and
edit variables and object properties, among other things.

Events
Contains the EventEmitter class used by many other Node objects.
Events defines the API for attaching and removing event listeners
and interacting with them. Typically, event names are represented
by a camel-cased string; however, there aren't any strict restrictions
on case, as any string will be accepted. Functions can then be
attached to objects, to be executed when an event is emitted. These
functions are called listeners. Inside a listener function, the object is
the EventEmitter that the listener was attached to. All EventEmitters
emit the event newListener (when new listeners are added) and
removeListener (when a listener is removed).

To access the EventEmitter class use:

require(‘events’).EventEmitter.

emitter.on(event, listener) adds a listener to the end of the
listeners array for the specified event. For example:

server.on(‘connection’, function (stream) {
console.log(‘someone connected!’);
});

This calls returns emitter, which means that calls can be chained.

NODE.JS

http://www.dzone.com?refcardz
https://npmjs.org/package/request
https://npmjs.org/package/grunt
http://gruntjs.com/plugins
https://npmjs.org/package/socket.io
https://npmjs.org/package/mongoose
https://nodejs.org/en/foundation/board/
https://github.com/nodejs/tsc
https://github.com/nodejs/ctc
https://github.com/nodejs/node#collaborators
https://nodejs.org/en/about/releases/
https://github.com/nodejs/node/blob/master/COLLABORATOR_GUIDE.md
http://nodejs.org/api/
http://nodejs.org/api/buffer.html
http://nodejs.org/api/child_process.html
http://nodejs.org/api/cluster.html
http://nodejs.org/api/crypto.html
http://nodejs.org/api/debugger.html
https://npmjs.org/package/node-inspector
http://nodejs.org/api/events.html

© DZONE, INC. | DZONE.COM

6

Filesystem
The filesystem API contains methods to manipulate files on disk.
In addition to read and write methods, there are methods to create
symlinks, watch files, check permissions and other file stats, and
so on. The major point of note here is that as I/O operations, the
core filesystem methods are asynchronous. There are synchronous
versions of most methods as well (e.g. readFileSync in addition to
readFile), but these synchronous methods should be avoided when
performance is a consideration! Node.js’ asynchronous nature
depends on the event loop continuing to loop; if it’s blocked for a
synchronous I/O operation, much of Node’s speed is lost.

Globals
Globals allow for objects to be available in all modules. (Except where
noted in the documentation.)

HTTP
This is the most important and most used module for a web developer.
It allows you to create HTTP servers and make them listen on a given
port. It also contains the request and response objects that hold
information about incoming requests and outgoing responses. You
also use this to make HTTP requests from your application and do
things with their responses. HTTP message headers are represented
by an object like this:

{ 'content-length': '123',
 'content-type': 'text/plain',
 'connection': 'keep-alive',
 'accept': '*/*' }

In order to support the full spectrum of possible HTTP applications,
Node's HTTP API is very low-level. It deals with stream handling and
message parsing only. It parses a message into headers and body but it
does not parse the actual headers or the body.

Modules
Node has a simple module loading system. In Node, files and modules
are in one-to-one correspondence. As an example, foo.js loads the
module circle.js in the same directory.

The contents of foo.js:

var circle = require('./circle.js');
console.log('The area of a circle of radius 4 is '
 + circle.area(4));

The contents of circle.js:

var PI = Math.PI;

exports.area = function (r) {
 return PI * r * r;
};

exports.circumference = function (r) {
 return 2 * PI * r;
};

The module circle.js has exported the functions area() and
circumference(). To add functions and objects to the root of your
module, you can add them to the special exports object. Variables local
to the module will be private, as though the module was wrapped in a
function. In this example the variable PI is private to circle.js.

Net
Net is one of the most important pieces of functionality in Node core. It
allows for the creation of network server objects to listen for connections
and act on them. It allows for the reading and writing to sockets. Most of
the time, if you’re working on web applications, you won’t interact with
Net directly. Instead you’ll use the HTTP module to create HTTP-specific
servers. If you want to create TCP servers or sockets and interact with
them directly, you’ll want to work with the Net API.

Process
Used for accessing stdin, stdout, command line arguments, the
process ID, environment variables, and other elements of the system
related to the currently-executing Node processes. It is an instance
of EventEmitter. Here’s example of listening for uncaughtException:

process.on('uncaughtException', function(err) {
 console.log('Caught exception: ' + err);
});

setTimeout(function() {
 console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
 nonexistentFunc();
console.log('This will not run.');

REPL
Stands for Read-Eval-Print-Loop. You can add a REPL to your own
programs just like Node’s standalone REPL, which you get when
you run node with no arguments. REPL can be used for debugging
or testing.

Stream
An abstract interface for streaming data that is implemented by other
Node objects, like HTTP server requests, and even stdio. Most of the
time you’ll want to consult the documentation for the actual object
you’re working with rather than looking at the interface definition.
Streams are readable, writable, or both. All streams are instances of
EventEmitter.

Util
This API contains various utility methods, mostly for meta-tasks like
logging and debugging. It’s included here to highlight one method:
inherits. Constructor inheritance can be a bit unwieldy in JavaScript,
util.inherits makes such code a bit easier to write (and read).

DEVELOPER TOOLS FOR NODE
Below are some key tools widely adopted in the enterprise and in
the community for developing Node applications:

DEVELOPMENT ENVIRONMENTS

PRODUCT/PROJECT FEATURES/HIGHLIGHTS

WebStorm
• Code analysis
• Cross-platform
• IntelliJ based

Sublime Text
• Goto anything
• Customizable
• Cross-platform

Atom
• Built on JavaScript
• Extensible
• Maintained by GitHub

Nodeclipse
• Open source
• Built on Eclipse

Cloud9 IDE
• Cloud-based
• Collaborative
• Debug and deploy

Visual Studio
• Open source
• Debug and Profile
• TypeScript integration

NODE.JS

https://twitter.com/angularjs
https://nodejs.org/api/fs.html
http://nodejs.org/api/globals.html
http://nodejs.org/api/http.html
http://nodejs.org/api/modules.html
http://nodejs.org/api/net.html
https://nodejs.org/api/http.html
http://nodejs.org/api/process.html
http://nodejs.org/api/repl.html
http://nodejs.org/api/repl.html
http://nodejs.org/api/stream.html
https://nodejs.org/api/util.html
http://www.jetbrains.com/webstorm/
http://www.sublimetext.com/
http://atom.io/
http://www.nodeclipse.org/
https://c9.io/
https://www.visualstudio.com/en-us/features/node-js-vs.aspx

7

APPLICATION PERFORMANCE MONITORING
PRODUCT/PROJECT FEATURES/HIGHLIGHTS

StrongLoop Arc • Error tracing
• Event loop response times
• Slowest endpoints

New Relic • Error rates
• Transaction response times
• Throughput monitoring

AppDynamics • Error tracing
• Endpoint response time
• Historical metrics

Keymetrics • CPU monitoring
• Load balancing
• Exception reporting

DEBUGGING
PRODUCT/PROJECT FEATURES/HIGHLIGHTS

V8 Debugger • Manual code injection
• Breakpoints
• Event exception handling

Node Inspector • Google Blink Dev-Tools based
• Breakpoints
• CPU & memory Profiling

PRODUCT/PROJECT FEATURES/HIGHLIGHTS

Cloud9 IDE
• Cloud-based
• Code completion
• Debug and deploy

WebStorm
• Code analysis
• Cross-platform
• VCS integration

Nodeclipse
• Code completion
• Built-on Eclipse
• Tracing and breakpoints

RESOURCES

• StrongLoop website

• StrongLoop technical blog

• Official Node website: nodejs.org

• Node downloads

• Node documentation

• devdocs (searchable documentation)

NODE.JS

DZONE, INC.

150 PRESTON EXECUTIVE DR.

CARY, NC 27513

888.678.0399

919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

DZone communities deliver over 6 million pages each month to more than 3.3 million software

developers, architects and decision makers. DZone offers something for everyone, including

news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

DAVE WHITELEY focused in on Node.js in 2012 as part of Vancouver-based start-up NodeFly.

After StrongLoop acquired NodeFly in 2013, he became part of the StrongLoop team and helped grow

its presence in the Node.js community. Then he joined IBM after it acquired StrongLoop in 2015. Today,

his mission is to help grow the Node.js and open-source communities and spread the word about

LoopBack and the OpenAPI Specification.

ABOUT THE REFCARD UPDATER

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

• Node on GitHub

• Official npm website: npmjs.com

• npm documentation

• Nodeschool

• Stack Overflow

BROUGHT TO YOU IN PARTNERSHIP WITH

https://strongloop.com/node-js/arc/
http://newrelic.com/nodejs
http://www.appdynamics.com/solutions/nodejs-monitoring
https://keymetrics.io/
https://github.com/node-inspector/node-inspector
https://c9.io/
http://www.jetbrains.com/webstorm/
http://www.nodeclipse.org/
http://strongloop.com/
http://strongloop.com/strongblog/
http://nodejs.org/
https://nodejs.org/en/download/
https://nodejs.org/api/
http://devdocs.io/node/
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
https://dzone.com/user/register
https://github.com/nodejs/node
https://npmjs.com/
https://docs.npmjs.com/
http://nodeschool.io/
http://stackoverflow.com/questions/tagged/node.js

