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Abstract— Costas Efstathiou et al present (IEEE Trans. Computers, Vol. 53, No. 9 pp. 1211-1216) an n-bit totally parallel prefix
(TPP) implementation of modulo 2"+1 adders with 6 + 2logn latency in terms of unit gate delay. We locate a flaw in the logic
equation for the most significant bit and present a simple counter example to prove this claim. We provide the relevant correct
equation and its derivation details. We also show that it can be implemented within the TPP tree, without additional latency.
Furthermore, despite the correctness of the equations for individual carry signals, we point out a missing parallel prefix operand
in the corresponding general equation. In lack of any derivation or proof for the latter, we provide the relevant correct equation

with derivation details.

Index Terms— Binary adders, Modulo 2"+1 arithmetic, Parallel prefix adders, RNS.

1 INTRODUCTION

HE moduli set {2 -1, 27, 2"+1} is popular in the

applications of residue number system (RNS).

Modular adders for the 2" and 2"-1 channels have
been reported via n-bit parallel prefix and n-bit totally
parallel prefix (TPP) trees, with (3 + 2logn) latency in
terms of unit gate delay [2]. Timing coordination within
the three RNS channels calls for modulo 2"+1 adders with
O (log n) latency. This has motivated the authors of [1] to
design such adders via a (log n) level TPP, where the
overall latency is 6+ 2logn. Unfortunately however,
there is a flaw in the logical equation for the most
significant bit (MSB) of the sum that leads to wrong
results in several instances of the input operands.
In this comment we underline the aforementioned flaw
via a counter example, provide the derivation details of
the pertinent correct equation and its implementation
within the same (log 1) level TPP tree of [1] such that the
(6 + 2logn) latency is preserved. Moreover, we offer the
derivation details for Equation (4) of [1], where our
motive is twofold: First, this equation has a key role since
it computes all the TPP carries, while no derivation or
proof is given for it in [1]. Secondly, there is a missing
parallel prefix operand, although all applications of this
equation, for n = 8, are correct.

2 THE FLAW

The modulo 27+1 addition scheme in [1] primarily
computes M = A+ B +2"—1, where A and B are the
n+1-bit operands in [0, 2"]. Equation (1), adapted from [1],
defines R =1,1_y ...1375 = |A + B|,ny, in terms of M,
where |X|,, stands for X modulo m and x stands for the
complement of x.

R =|mym,_;.mmy+ 2" + 1)m, 1 |,n+1 (1)
Fig. 1 depicts a typical computation of M (= S+C), where
si=a;j®b;,¢c;=2a;Vb;, s, = a,®b, and ¢, = a, Ab,.
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Fig. 1: Computation of M
The computation of R can be analyzed as follows:

To: o =My @ My =Sy Dc, VG, , where G, is the
carry-out of position n in the original computation of M.
Note that since M < 2%14+2" —1 no carry is generated in
the computation of ¢, + G, ,. Therefore, m, ., = ¢, V G, ;.
re (1 =i =n-1)n=m®G_1,=5Dc_1DG_qq,
where G;_, ; is the carry into position i within the addition
My_g ..My +C, VG

Tul Ty = Sy + Cyq + Myyq + Gy, This is simply sum of
the bits in position n of Fig. 1.

The S+C stage of Fig. 1 is trusted to a TPP tree, with
Cin = €y V Gy 1. However, there is flaw in the actual
equation implemented in Fig. 3 of [1] for 7,.

2.1 The flaw in the computation of r,

It is rightly stated in [1] that r, = 1 if A+B = 2". Then the
authors, without providing any proof, conclude that
Ty = Cu AP, Asy, where P, is the group propagate signal
from position 1 to n. It is not difficult to prove that
(A+B =2") implies (¢, AP, Asy,=1). However, the
converse (i.e., (c,APB,Asy=1)= (A+ B =2")) is not
always true. In fact it fails in 25% of the cases of input
data for n = 8. This claim is supported by exhaustive test
via VHDL simulation. However, Example 1 below clearly
demonstrates the flaw.

Example 1 (Counter example for r,= c, AP, ASp):
Consider an instance of Fig. 1, for n =4, as depicted in Fig.
2, where ¢4 =0,s0=1,and Py =1 lead toc, AB, Asy = 1.
However, R=|12+12|17=7, which leads to r4 = 0. «

A=12 0 1.1 0 O
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Fig. 2: An instance of Fig. 1 forn =4

The correct equation, as will be derived in Section 3, is:

rn = (Cn \% Sn A Cn—l \% (Sn \% Cn—l) A Gn—l,l) @ G;;—l,l (3)
The correctness of the latter is exhaustively tested via
VHDL simulation for n = 8. Besides the latter flaw, a
parallel prefix term (c,V g,,p,) is missing in the third
part of Equation (4) in [1]. The corrected Equation (4), as
will be derived in the next section, is as follows, where
¢(G,P) 5 G:

Gi*,l = g’((Gi,l' Pi,l) °5gA(Cp V Gnsbn) © (Gn—l,i+1' Pn—l,i+1)> (4)




3 THE CORRECTED DESIGN

The corrected Equations (3) and (4) are derived below.

3.1 Derivation of the most significant bit r,
Recalling the arithmetic equation for r, from Section 2 (i.e,
rn = Sn + Cn—l + mn+1 + G‘Z—l,l)/ and mn+1 = Gn,l \ Cnr the
MSB 7, can be computed by the logical Equation (5).
=S @ C1 @My @ Gpyy =

((5n @ (G2 Ven) @ cn1) ®Gy_y;  (5)
Giventhats, Ac, =0,c, AS, =¢Cp, Gy = Gn VDPu AGpoq 1,
gn= SpACh_y, and p,=s,Vc,_,, the inner
parenthesized XOR equation can be simplified as follows:
Sn® (GniVen)=(5pVnVGny) ASyAGry Vs, Acy
=Sy NG VS NGy VCa ASyV ey AGpy
= VS NGy VEAGn,i =CpV Sy AgnvpnAGn—l,l\/E
A (gn Vpn A Gn—l,l) =CyVSp AGn A (EV Gn—l,l) Vs, A
SpACp_1 V g A (Sn \4 Cn—l) A Gn—l,l
= VS AR V) A (E ANCp1V Gn—l,l) VS, ACpq
ANGpo11 = VSpACu g ANGpo11VSy ACpog NGy
Given that ¢, =1=c¢,_; =0= c, Ac,_; = ¢, the outer
parenthesized XOR equation within Equation (5) can now
be simplified as follows:
(Cn \ Sn A Cn-1 A Gn—l,l \% g A Cn-1 A Gn—l,l) @ Cn—1

= (Cn VS ANCpg AGpo11VSpACpg AGpoq1 V Cn—l)

Acn VS AN i AGp11 VS ACyy AGryq) ACyyq

= (Cn Vsp AGpgq V Cn—l) A (Cn ACpg VS ACpg A Gn—l,l)

=Ca ASpVCu ACuog Ve NGy VSy AGy_qq V Sy ACy_q
Vep_1 A Gn—1,1 =Cn Visp A Cn-1 v (Sn v Cn—l) A Gn—1,1

It only remains to apply the latter into Equation (5) that
leads to the desired Equation (3). Direct implementation
of this equation leads to the overall latency of 7 + 2logn.
3.2 Derivation of G;; (1 <i < n-2)

Gi1=Gi1 VP NGy =Gy VP A(SoAcnV gn V PuGno1,1)

= Gi1 VP ASo ACy Vg A(Pn V Gnove1 V Paoie1 A Git)

=G  V(PiASoAC A G ADR) V (Pia ASg AcnV gy
AGrio1 APr_1i51) V (Pa ASo Ay V g AGr_yiin AGyy)
=G V(Pia ASoACu APR) V Py ASg ACy V Gy A Gy ie
=Gy VP ASo A (Cu VDRV Cr V gn AGr1is1))

=Gig VP NS A (e VD) (Cn V gn V Grot,iv1)

=G VP ASoAC Y Gn VDu AGpog i

=g((Gi1, Pi1) © 5o A(en V GnPn) © (Gnovivr, Paotiv1))
Given the above carry signals, which are computable via
a TPP tree exactly as in [1], the final sum bits 7; can be
computed as follows:

=h®G 1,=5@D 1 DG4,
3.3 Implementation of r,, within the TPP tree

The left operand of the XOR in Equation (3) can be
represented as a prefix equation and implemented within
the TPP tree as in Equation (6) and Fig. 3, where
Yy=a,Vb,Vc,.4, and m=a,Ab,V(a,Vb,)AcCy4.

1<i<n-1)

The y and T equations are justified as follows:

CaV Sy ACr V(S VCpoy) AT_M

=a, Ab,V(anVby) Aay AbyAcy_yV(ayVby)Aay Aby
ANGpggVCa1 NGy -
=an A bn \ (an \ bn) A Cn-1 v (an \ bn v Cn—l) A Gn—l,l

=a,Vb,Vcy_yVa, Ab,V(a, Vb)) Acy1 AGyqq

=g ((Y' ) ° (Gn—l,lan—l,l))

h=9 ((Y; Tt) ° (Gn—l,l' Pn—l,l)\) @ G;—l,l (6)

The prefix node that could compute G,_;, in the last
row and column n-1 of the TPP tree is missing in Fig. 3 of
[1]. This and the path leading to rs, defined by Equation
(7),are now added in the new Fig. 3 below.

=g (0o (9,9, ° - (91,7)) ® G, @)

The latency of y and =n is 2 and 3 unit gate delay.
Therefore, the prefix operand (y, n) is ready as soon as all
other prefix operands are. This leads to availability of , at
time 5 + 2logn in terms of unit gate delay.

bya, b,a, bea, b.a.

Ty g Ts fs 4 I r, r o

Fig. 3: The corrected modulo 2"+1 TPP adder
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