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MPI and Supercomputing 
•  The Message Passing Interface (MPI) has been 

amazingly successful 
♦  First released in 1992, it is still the dominant 

programming system used to program the world’s fastest 
computers 

♦  The most recent version, MPI 3.1, released in June 2015, 
contains many features to support systems with >100K 
processes and state-of-the-art networks 

•  Supercomputing (and computing) is reaching a 
critical point as the end of Dennard scaling has 
forced major changes in processor architecture. 

•  This talk looks at the future of MPI from the point 
of view of Extreme scale systems 
♦  That technology will also be used in single rack systems  
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Likely Exascale Architectures 

•  From “Abstract Machine Models and Proxy Architectures for 
Exascale Computing Rev 1.1,” J Ang et al 

•  Note that I/O is not part of this (maybe hung off the NIC) 
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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache
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What This (Might) Mean for 
MPI 

•  Lots of innovation in the processor and 
the node 

•  More complex memory hierarchy; no 
chip-wide cache coherence 

•  Tightly integrated NIC 
•  Execution model becoming more complex 

♦ Achieving performance, reliability targets 
requires exploiting new features 

•  Node programming changing 
♦ OpenMP/OpenACC/CUDA; shared memory 

features in C11/C++11 
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What This (Might) Mean for 
Applications  

•  Weak scaling limits the range of problems 
♦  Latency may be critical (also, some applications 

nearing limits of spatial parallelism) 
•  Rich execution model makes performance 

portability unrealistic 
♦  Applications will need to be flexible with both their 

use of abstractions and their implementation of 
those abstractions 

•  One Answer: Programmers will need help with 
performance issues, whatever parallel 
programming system is used 
♦  Much of this is independent of the internode 

parallelism, and can use DSLs, annotations, source-
to-source transformations. 
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Where Is MPI Today? 

• Applications already running at 
large scale: 
System Cores 
Tianhe-2 3,120,000 (most in Phi) 
Sequoia 1,572,864 
Blue Waters 792,064* + 59,136smx 
Mira 786,432 
K computer 705,024 
Julich BG/Q 458,752 
Titan 299,008* + 261,632smx 

* 2 cores share a wide FP unit 
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MPI+X 

•  Many reasons to consider MPI+X 
♦ Major: We always have:  

• MPI+C, MPI+Fortran 
♦ Both C11 and Fortran include support of 

parallelism (shared (C) and distributed memory 
(Fortran)) 

•  Abstract execution models becoming more 
complex 
♦ Experience has shown that the programmer must 

be given some access to performance features 
♦ Options are (a) add support to MPI and (b) let X 

support some aspects 
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Many Possible Values of X 

•  X = MPI (or X = ϕ)

♦ MPI 3 has many features esp. important for 

Extreme scale

♦ Nonblocking collectives, neighbor collectives,…

♦ MPI 4 looking at additional features (e.g., RMA 

with notify; come to the MPI BoF today!)

•  X = threads (OpenMP/pthreads/C11)


♦ C11 provides an adequate (and thus complex) 
memory model for writing portable thread code


•  X = CAF or UPC or other (A)PGAS

♦ Think of as an extension of a thread model 
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What are the Issues? 

•  Isn’t the beauty of MPI + X that 
MPI and X can be learned (by 
users) and implemented (by 
developers) independently? 
♦ Yes (sort of) for users 
♦ No for developers 

• MPI and X must either partition or 
share resources 
♦ User must not blindly oversubscribe 
♦ Developers must negotiate 
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More Effort needed on the “+” 

• MPI+X won’t be enough for Exascale if 
the work for “+” is not done very well 
♦ Some of this may be language 

specification: 
• User-provided guidance on resource 

allocation, e.g., MPI_Info hints; thread-based 
endpoints 

♦ Some is developer-level standardization 
• A simple example is the MPI ABI specification 

– users should ignore but benefit from 
developers supporting 
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Which MPI? 

•  Many new features in MPI-3 
♦  Many programs still use subsets of 

MPI-1 
•  MPI implementations still 

improving 
♦  A long process – harmed by non-

standard shortcuts 
•  MPI Forum is active and 

considering new features relevant 
for Exascale 
♦  MPI 3.1 released June 2015 
♦  See the MPI BoF Today for more info! 
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Fault Tolerance 

•  Often raised as a major issue for Exascale 
systems 
♦  Experience has shown systems more reliable than 

simple extrapolations assumed 
•  Hardly surprising – reliability is costly, so systems 

engineered only to the reliability needed 

•  Major question: What is the fault model? 
♦  Process failure (why is this the common model?) 

•  Software – then program is buggy.  Recovery may not 
make sense 

•  Hardware – Where (CPU/Memory/NIC/Cables)? 
Recovery may be easy or impossible 

♦  Silent data corruption (SDC) 

•  Most effort in MPI Forum is on process fail-
stop faults 
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Separate Coherence Domains 
and Address Spaces 

•  Already many systems without cache coherence and 
with separate address spaces 
♦  GPUs best example; unlikely to change even when integrated 

on chip 
♦  OpenACC an “X” that supports this 

•  MPI designed for this case 
♦  Despite common practice, MPI definition of MPI_Get_address 

supports, for example, segmented address spaces; 
MPI_Aint_add etc. provides portable address arithmetic  

•  MPI RMA “separate” memory model also fits this case 
♦  “Separate” model defined in MPI-2 to support the World’s 

fastest machines, including NEC SX series and Earth 
Simulator 
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Towards MPI-4 
•  Many extensions being considered, either by the Forum 

or as Research, including 
•  Other communication paradigms 

♦  Active messages 
•  Toward Asynchronous and MPI-Interoperable Active Messages, 

Zhao et al, CCGrid’13 
♦  Streams 

•  Tighter integration with threads 
♦  Endpoints 

•  Data centric 
♦  More flexible datatypes 
♦  Faster datatype implementations (see, e.g., Prabhu & 

Gropp, EuroMPI’15) 
♦  Better parallel file systems (match the MPI I/O semantics) 

•  Unified address space handling 
♦  E.g., GPU memory to GPU memory without CPU processing 
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MPI is not a BSP system 

•  BSP = Bulk Synchronous Programming 
♦  Programmers like the BSP model, adopting it even 

when not necessary (see “functionally irrelevant 
barriers”) 

♦  Unlike most programming models, designed with a 
performance model to encourage quantitative design 
in programs 

•  MPI makes it easy to emulate a BSP system 
♦  Rich set of collectives, barriers, blocking operations 

•  MPI (even MPI-1) sufficient for dynamic 
adaptive programming 
♦  The main issues are performance and “progress” 
♦  Improving implementations and better HW support for 

integrated CPU/NIC coordination is the right answer 
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Some Remaining Issues 

•  Latency and overheads 
♦  Libraries add overheads 

•  Several groups working on applying compiler 
techniques to MPI and to using annotations to 
transform user’s code; can address some issues 

•  Execution model mismatch 
♦ How to make it easy for the programmer to 

express operations in a way that makes it 
easy to exploit innovative hardware or 
runtime features? 

♦ Especially important for Exascale, as 
innovation essential in meeting 20MW, 
MTBF, total memory, etc. 
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What Are The Real Problems? 

•  Support for application-specific, 
distributed data structures 
♦ Not an MPI problem 
♦ Very hard to solve in general 
♦ Data-structure Specific Language (often 

called “domain” specific language) a better 
solution 

•  A practical execution model with a 
performance model 

•  Greater attention to latency 
♦ Directly relates to programmability 
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MPI in 2020 

•  Alive and well, using C11, C++11, Fortran 2008 (or later) 
•  Node programming uses locality-aware, autotuning 

programming systems 
•  More use of RMA features 

♦  Depends on better MPI implementations, continued co-evolution 
of MPI and RMA hardware to add new features (notification?) 

•  (Partial?) solution of the “+” problem 
♦  At least an ad hoc implementers standard for sharing most 

critical resources 
•  Some support for fault tolerance 

♦  Probably not at the level needed for reliable systems but ok for 
simulations 

•  Better I/O support, including higher level libraries 
♦  But only if the underlying system implements something better 

than POSIX I/O 


