
MPI in 2020: Opportunities
and Challenges

William Gropp
www.cs.illinois.edu/~wgropp

2

MPI and Supercomputing
•  The Message Passing Interface (MPI) has been

amazingly successful
♦  First released in 1992, it is still the dominant

programming system used to program the world’s fastest
computers

♦  The most recent version, MPI 3.1, released in June 2015,
contains many features to support systems with >100K
processes and state-of-the-art networks

•  Supercomputing (and computing) is reaching a
critical point as the end of Dennard scaling has
forced major changes in processor architecture.

•  This talk looks at the future of MPI from the point
of view of Extreme scale systems
♦  That technology will also be used in single rack systems

3

Likely Exascale Architectures

•  From “Abstract Machine Models and Proxy Architectures for
Exascale Computing Rev 1.1,” J Ang et al

•  Note that I/O is not part of this (maybe hung off the NIC)

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Note: not fully
cache coherent

4

What This (Might) Mean for
MPI

•  Lots of innovation in the processor and
the node

•  More complex memory hierarchy; no
chip-wide cache coherence

•  Tightly integrated NIC
•  Execution model becoming more complex

♦ Achieving performance, reliability targets
requires exploiting new features

•  Node programming changing
♦ OpenMP/OpenACC/CUDA; shared memory

features in C11/C++11

5

What This (Might) Mean for
Applications

•  Weak scaling limits the range of problems
♦  Latency may be critical (also, some applications

nearing limits of spatial parallelism)
•  Rich execution model makes performance

portability unrealistic
♦  Applications will need to be flexible with both their

use of abstractions and their implementation of
those abstractions

•  One Answer: Programmers will need help with
performance issues, whatever parallel
programming system is used
♦  Much of this is independent of the internode

parallelism, and can use DSLs, annotations, source-
to-source transformations.

6

Where Is MPI Today?

• Applications already running at
large scale:
System Cores
Tianhe-2 3,120,000 (most in Phi)
Sequoia 1,572,864
Blue Waters 792,064* + 59,136smx
Mira 786,432
K computer 705,024
Julich BG/Q 458,752
Titan 299,008* + 261,632smx

* 2 cores share a wide FP unit

7

MPI+X

•  Many reasons to consider MPI+X
♦ Major: We always have:

• MPI+C, MPI+Fortran
♦ Both C11 and Fortran include support of

parallelism (shared (C) and distributed memory
(Fortran))

•  Abstract execution models becoming more
complex
♦ Experience has shown that the programmer must

be given some access to performance features
♦ Options are (a) add support to MPI and (b) let X

support some aspects

8

Many Possible Values of X

•  X = MPI (or X = ϕ)

♦ MPI 3 has many features esp. important for

Extreme scale

♦ Nonblocking collectives, neighbor collectives,…

♦ MPI 4 looking at additional features (e.g., RMA

with notify; come to the MPI BoF today!)

•  X = threads (OpenMP/pthreads/C11)

♦ C11 provides an adequate (and thus complex)
memory model for writing portable thread code

•  X = CAF or UPC or other (A)PGAS

♦ Think of as an extension of a thread model

9

What are the Issues?

•  Isn’t the beauty of MPI + X that
MPI and X can be learned (by
users) and implemented (by
developers) independently?
♦ Yes (sort of) for users
♦ No for developers

• MPI and X must either partition or
share resources
♦ User must not blindly oversubscribe
♦ Developers must negotiate

10

More Effort needed on the “+”

• MPI+X won’t be enough for Exascale if
the work for “+” is not done very well
♦ Some of this may be language

specification:
• User-provided guidance on resource

allocation, e.g., MPI_Info hints; thread-based
endpoints

♦ Some is developer-level standardization
• A simple example is the MPI ABI specification

– users should ignore but benefit from
developers supporting

11

Which MPI?

•  Many new features in MPI-3
♦  Many programs still use subsets of

MPI-1
•  MPI implementations still

improving
♦  A long process – harmed by non-

standard shortcuts
•  MPI Forum is active and

considering new features relevant
for Exascale
♦  MPI 3.1 released June 2015
♦  See the MPI BoF Today for more info!

12

Fault Tolerance

•  Often raised as a major issue for Exascale
systems
♦  Experience has shown systems more reliable than

simple extrapolations assumed
•  Hardly surprising – reliability is costly, so systems

engineered only to the reliability needed

•  Major question: What is the fault model?
♦  Process failure (why is this the common model?)

•  Software – then program is buggy. Recovery may not
make sense

•  Hardware – Where (CPU/Memory/NIC/Cables)?
Recovery may be easy or impossible

♦  Silent data corruption (SDC)

•  Most effort in MPI Forum is on process fail-
stop faults

13

Separate Coherence Domains
and Address Spaces

•  Already many systems without cache coherence and
with separate address spaces
♦  GPUs best example; unlikely to change even when integrated

on chip
♦  OpenACC an “X” that supports this

•  MPI designed for this case
♦  Despite common practice, MPI definition of MPI_Get_address

supports, for example, segmented address spaces;
MPI_Aint_add etc. provides portable address arithmetic

•  MPI RMA “separate” memory model also fits this case
♦  “Separate” model defined in MPI-2 to support the World’s

fastest machines, including NEC SX series and Earth
Simulator

14

Towards MPI-4
•  Many extensions being considered, either by the Forum

or as Research, including
•  Other communication paradigms

♦  Active messages
•  Toward Asynchronous and MPI-Interoperable Active Messages,

Zhao et al, CCGrid’13
♦  Streams

•  Tighter integration with threads
♦  Endpoints

•  Data centric
♦  More flexible datatypes
♦  Faster datatype implementations (see, e.g., Prabhu &

Gropp, EuroMPI’15)
♦  Better parallel file systems (match the MPI I/O semantics)

•  Unified address space handling
♦  E.g., GPU memory to GPU memory without CPU processing

15

MPI is not a BSP system

•  BSP = Bulk Synchronous Programming
♦  Programmers like the BSP model, adopting it even

when not necessary (see “functionally irrelevant
barriers”)

♦  Unlike most programming models, designed with a
performance model to encourage quantitative design
in programs

•  MPI makes it easy to emulate a BSP system
♦  Rich set of collectives, barriers, blocking operations

•  MPI (even MPI-1) sufficient for dynamic
adaptive programming
♦  The main issues are performance and “progress”
♦  Improving implementations and better HW support for

integrated CPU/NIC coordination is the right answer

16

Some Remaining Issues

•  Latency and overheads
♦  Libraries add overheads

•  Several groups working on applying compiler
techniques to MPI and to using annotations to
transform user’s code; can address some issues

•  Execution model mismatch
♦ How to make it easy for the programmer to

express operations in a way that makes it
easy to exploit innovative hardware or
runtime features?

♦ Especially important for Exascale, as
innovation essential in meeting 20MW,
MTBF, total memory, etc.

17

What Are The Real Problems?

•  Support for application-specific,
distributed data structures
♦ Not an MPI problem
♦ Very hard to solve in general
♦ Data-structure Specific Language (often

called “domain” specific language) a better
solution

•  A practical execution model with a
performance model

•  Greater attention to latency
♦ Directly relates to programmability

18

MPI in 2020

•  Alive and well, using C11, C++11, Fortran 2008 (or later)
•  Node programming uses locality-aware, autotuning

programming systems
•  More use of RMA features

♦  Depends on better MPI implementations, continued co-evolution
of MPI and RMA hardware to add new features (notification?)

•  (Partial?) solution of the “+” problem
♦  At least an ad hoc implementers standard for sharing most

critical resources
•  Some support for fault tolerance

♦  Probably not at the level needed for reliable systems but ok for
simulations

•  Better I/O support, including higher level libraries
♦  But only if the underlying system implements something better

than POSIX I/O

