MPI in 2020: Opportunities
and Challenges

William Gropp
www.cs.illinois.edu/~wgropp

MPI and Supercomputing

e The Message Passing Interface (MPI) has been

amazingly successful

¢ First released in 1992, it is still the dominant
programming system used to program the world’s fastest

computers

¢ The most recent version, MPI 3.1, released in June 2015,
contains many features to support systems with >100K
processes and state-of-the-art networks

e Supercomputing (and computing) is reaching a
critical point as the end of Dennard scaling has
forced major changes in processor architecture.

e This talk looks at the future of MPI from the point
of view of Extreme scale systems

][¢ That technology will also be used in single rack systems
> PARALLEL@|LLINOIS

1867

Likely Exascale Architectures

-

Communication

~

(Low Capacity, High Bandwidth)

4)
3D Stacked (High Capacity,
Memory Low Bandwidth)

” =) = =
Thin Cores / Accelerators ”E

==

Integrated NIC

for Off-Chip

Note: not fully
cache coherent

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

From “Abstract Machine Models and Proxy Architectures for
Exascale Computing Rev 1.1,” J Ang et al

Note that I/O is not part of this (maybe hung off the NIC)

{ .

1867

3

PARALLEL@ILLINOIS

What This (Might) Mean for
MPI

e | ots of innovation in the processor and
the node

e More complex memory hierarchy; no
chip-wide cache coherence

e Tightly integrated NIC

e Execution model becoming more complex
¢ Achieving performance, reliability targets
requires exploiting new features
e Node programming changing
][¢ OpenMP/OpenACC/CUDA; shared memory

features in C11/C++11
4 PARALLEL@ILLINOIS

What This (Might) Mean for
Applications

e Weak scaling limits the range of problems
¢ Latency may be critical (also, some applications
nearing limits of spatial parallelism)
e Rich execution model makes performance
portability unrealistic

¢ Applications will need to be flexible with both their
use of abstractions and their implementation of
those abstractions

e One Answer: Programmers will need help with
performance issues, whatever parallel

programming system is used

¢ Much of this is independent of the internode
][parallelism, and can use DSLs, annotations, source-

to-source transformations.
- PARALLEL@ILLINOIS

Where Is MPI Today?

e Applications already running at
large scale:

System ___________[Cores

Tianhe-2 3,120,000 (most in Phi)
Sequoia 1,572,864

Blue Waters 792,064* + 59,136smx
Mira 786,432

K computer 705,024

Julich BG/Q 458,752

Titan 299,008* + 261,632smx

* 2 cores share a wide FP unit
6 PARALLEL@ILLINOIS

MPI+X

e Many reasons to consider MPI+X

¢ Major: We always have:
e MPI+C, MPI+Fortran

¢ Both C11 and Fortran include support of
parallelism (shared (C) and distributed memory
(Fortran))

e Abstract execution models becoming more
complex

¢ Experience has shown that the programmer must
be given some access to performance features

][¢ Options are (a) add support to MPI and (b) let X

support some aspects
, PARALLEL@ILLINOIS

Many Possible Values of X

e X = MPI (or X = &)
¢ MPI 3 has many features esp. important for
Extreme scale

¢ Nonblocking collectives, neighbor collectives,...

¢ MPI 4 looking at additional features (e.g., RMA
with notify; come to the MPI BoF today!)

e X = threads (OpenMP/pthreads/C11)

¢ C11 provides an adequate (and thus complex)
memory model for writing portable thread code

e X = CAF or UPC or other (A)PGAS
][¢ Think of as an extension of a thread model

: PARALLEL@ILLINOIS

What are the Issues?

1867

e [sn’t the beauty of MPI + X that
MPI and X can be learned (by
users) and implemented (by
developers) independently?
¢ Yes (sort of) for users
¢ No for developers

e MPI and X must either partition or
share resources

¢ User must not blindly oversubscribe

¢ Developers must negotiate ¢4 jielalllINOIs

More Effort needed on the “"+”

e MPI+X won't be enough for Exascale if
the work for "+” is not done very well

¢ Some of this may be language
specification:

e User-provided guidance on resource
allocation, e.g., MPI_Info hints; thread-based
endpoints

¢ Some is developer-level standardization

e A simple example is the MPI ABI specification
— users should ignore but benefit from
T developers supporting

0 PARALLEL@ILLINOIS

Which MPI?

e Many new features in MPI-3

¢ Many programs still use subsets of
M PI = 1 Using Advanced MPI “

Modern Features of the

e MPI implementations still
Improving
¢ A long process - harmed by non-
standard shortcuts
e MPI Forum is active and
considering new features relevant

for Exascale
¢ MPI 3.1 released June 2015
¢ See the MPI BoF Today for more info!

I

1867

pARALLEL@ILLINOIS

11

Fault Tolerance

e Often raised as a major issue for Exascale
systems

¢ Experience has shown systems more reliable than
simple extrapolations assumed

e Hardly surprising - reliability is costly, so systems
engineered only to the reliability needed

e Major question: What is the fault model?

¢ Process failure (why is this the common model?)

e Software - then program is buggy. Recovery may not
make sense

e Hardware - Where (CPU/Memory/NIC/Cables)?
Recovery may be easy or impossible

¢ Silent data corruption (SDC)
][e Most effort in MPI Forum is on process fail-
i stop faults 1 PARALLEL@ILLINOIS

Separate Coherence Domains
and Address Spaces

e Already many systems without cache coherence and
with separate address spaces

¢ GPUs best example; unlikely to change even when integrated
on chip

¢ OpenACC an “X” that supports this
e MPI designed for this case

¢ Despite common practice, MPI definition of MPI_Get_address
supports, for example, segmented address spaces;
MPI_Aint_add etc. provides portable address arithmetic

e MPI RMA “separate” memory model also fits this case

¢ "Separate” model defined in MPI-2 to support the World’s

fastest machines, including NEC SX series and Earth
][Simulator

1867

13 PARALLEL@ILLINOIS

Towards MPI-4

Many extensions being considered, either by the Forum
or as Research, including
Other communication paradigms

¢ Active messages

e Toward Asynchronous and MPI-Interoperable Active Messages,
Zhao et al, CCGrid'13

¢ Streams

Tighter integration with threads
¢ Endpoints

Data centric
¢ More flexible datatypes

¢ Faster datatype implementations (see, e.qg., Prabhu &
Gropp, EuroMPI'15)

¢ Better parallel file systems (match the MPI I/O semantics)
Unified address space handling

¢ E.g., GPU memory to GPU memory without CPU prpcessi
’ ! ! PARALLEL@IINOIS

14

MPI is not a BSP system

e BSP = Bulk Synchronous Programming

¢ Programmers like the BSP model, adopting it even
when not necessary (see “functionally irrelevant
barriers”)

¢ Unlike most programming models, designed with a
performance model to encourage guantitative design
in programs

e MPI makes it easy to emulate a BSP system
¢ Rich set of collectives, barriers, blocking operations

e MPI (even MPI-1) sufficient for dynamic
adaptive programming
¢ The main issues are performance and “progress”

¢ Improving implementations and better HW support for
][integrated CPU/NIC coordination is the right answer

s PARALLEL@ILLINOIS

Some Remaining Issues

1867

e | atency and overheads

¢ Libraries add overheads

e Several groups working on applying compiler
techniques to MPI and to using annotations to
transform user’s code; can address some issues

e Execution model mismatch

¢ How to make it easy for the programmer to
express operations in a way that makes it
easy to exploit innovative hardware or
runtime features?

¢ Especially important for Exascale, as
innovation essential in meeting 20MW,
MTBF, total memor}g, etc. PARAI.I_EI_ ”.I.lNOlS

What Are The Real Problems?

e Support for application-specific,
distributed data structures
¢ Not an MPI problem
¢ Very hard to solve in general

¢ Data-structure Specific Language (often
called "domain” specific language) a better
solution

e A practical execution model with a
performance model
e Greater attention to latency

][¢ Directly relates to programmability
17 PARALLEL@ILLINOIS

MPI in 2020

e Alive and well, using C11, C++11, Fortran 2008 (or later)

e Node programming uses locality-aware, autotuning
programming systems

e More use of RMA features

¢ Depends on better MPI implementations, continued co-evolution
of MPI and RMA hardware to add new features (notification?)

e (Partial?) solution of the "+" problem

¢ At least an ad hoc implementers standard for sharing most
critical resources

e Some support for fault tolerance

¢ Probably not at the level needed for reliable systems but ok for
simulations

o Better I/O support, including higher level libraries

¢ But only if the underlying system implements something better
than POSIX I/O

' 18 PARALLEL@ILLINOIS

I

1867

