1. LINES AND PLANES IN R".

Definition 1.1. We say a subset L of R™ is a line if there are rg, v € R" such that
v # 0 and

L={r(t):teR}

where we have set

(1) r(t)=ro+tv forteR.
Remark 1.1. Thus

r:R—R"
and

rngr = L.

The function r is called a parameterization of L. It is obviously univalent; this
means that

t1,to E R and r(t1) =r(t2) = t; =to.

Theorem 1.1. Suppose
(i) L is a line in R™;
(ii) a,b € L and a # b;
(iii) ris asin (1) with v=Db — a.
Then

(iv) r is a parameterization of L;
(v) all parameterizations of L arise in this way;
(vi) if K is a line in R™ and a,b € K then K = L.

Proof. Once you understand what all this means it’s obvious. (I

Definition 1.2. We say a subset P of R" is a plane if there are rg,v,w € R”
such that v [f w and

P={r(t,u): (t,u) € R?*}

where we have set

(2) r(t,u) =ro +tv+uw for (t,u) € R%
Remark 1.2. Thus

r:R? - R"
and

rngr = P.

The function r is called a parameterization of P. It is obviously univalent; this
means that

(tl,ul), (tQ,UQ) € RQ and I'(t1,ul) = I‘(tQ,UQ) = (tl,ul) = (tQ,UQ).

Definition 1.3. We say a set S of points in R" is collinear if there is a line L in
R™ such that S C L. We say S is noncollinear if S is not collinear. Note that a
noncollinear set has at least three points.
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Remark 1.3. Suppose a,b,c € R3. Then {a, b, c} is noncollinear if and only if
0#(b—a)x(c—a)
=(b-a)xc—(b—a)xa
=bxc—axc—bxa+axa
=axb+bxc+cxa.
Theorem 1.2. Suppose
(i) P is a plane in R"™;
(ii) a,b,c € P and {a, b, c} is noncollinear;
(iii) ris as in (2) withv=b —aand w =c — a.
Then
(iv) r is a parameterization of P;

(v) all parameterizations of P arise in this way;
(vi) if O is a plane in R™ and a,b,c € O then O = P.

Proof. Once you understand what all this means it’s obvious. (Il

Remark 1.4. Can you see what how to define higher dimensional analogues of
lines and planes?

Definition 1.4. Whenever S C R"™ and a € R" we let
a+S={a+x:x€5}
and call this set the translation of S by a. We say a pair of lines or planes in
RY are parallel if one is a translation of the other.
Definition 1.5. Suppose S is a line or a plane in R"”. We let
St ={neR":(x—y)en=0 whenever x,y € S.
We say a vector n € St is normal to S. Note the following:
(i) 0 € St;

(ii) if c € R and x € S+ then cx € S*.

(iii) if x,y € S* then x +y € S+.
A set with these three properties is called a linear subspace of R™. Note that a
line or a plane is a linear subspace if and only if it contains 0.

Theorem 1.3. Two lines or planes in R™ are parallel if and only if they have the
same normal space.

Proof. Exercise for the reader. O
Theorem 1.4. Suppose L is a line in R?, r is as in (1) and n = v*. Then
L={xcR?*:(x—a)en=0}
and
Lt ={tn:tcR};
in particular, L' is a line in R2.
Moreover, if n € R2, n # 0, c € R and
L={xcR’:xen=c}
then L is a line in R?; n is a normal to L; en/|n|? € L and is the closest point in
L to 0; and |c|/|n]| is the distance from 0 to L.
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Proof. Not hard at all. We’ll do it in class. O

Theorem 1.5. Suppose P is a plane in R?, r is as in (2) and n = v x w. Then
P={xcR®: (x—a)en=0}

and
Pt ={tn:tcR};

in particular, P+ is a line in R3.
Moreover, if n € R®, n # 0, ¢ € R and

PZ{XERQ:xon:c}

then P is a plane in R3; n is a normal to P; cn/|n|*> € P and is the closest point
in P to 0; and |c|/|n| is the distance from O to P.

Proof. Not hard at all. We’ll do it in class. O

Theorem 1.6. Suppose L is a line in R? and r is as in (1). Then
Lt ={xcR®: xev =0}

in particular, L' is a plane in R3.
Moreover, if n; € Lt, i = 1,2, n; [/ ny and

Pi={xcR®: (x—a)en; =0}, i=1,2,

then P, and P» are planes in R?® with normal v and

L=PNP.
Proof. Not hard at all. We’ll do it in class. O
Remark 1.5. Suppose
(3) r(t)=ro+tv, teR,

parameterizes the line L in R3. Let
To, Yo, 20 and a, b, c
be scalars such that
rg =< xg,¥Y0,20 > and v =<a,b,c>.

Let

z:R->R, y:R—-R, 2z:R—R
be such that

r(t) =< xz(t),y(t), z(t) > forteR.
Then (3) amounts to

z(t) =xo+at, yt)=yo+bt, z(t) =2 +at

which, when each equation is solved for ¢, amounts to

z(t)—xo  yt)—vyo 2(t) — 20

a - b c

provided none of a, b, ¢ are zero.
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Remark 1.6. Suppose a, b, ¢ are scalars, < a,b >#< 0,0 >,
P={(z,y) €R*:ax +by =c}.
Then P is a line with normal < a,b > at distance
lc|
va? + b2
to the origin.
The point here is that if n =< a,b > then

P={xen=c}.
Remark 1.7. Suppose a,b, ¢, d are scalars, < a,b,c >#< 0,0,0 >,
P={(z,y,2) €R®:azx + by + cz = d}.
Then P is a plane with normal < a, b, ¢ > at distance
d|
Va2 + b2 + 2
to the origin.
The point here is that if n =< a,b,c > then

P={xen=d}.



