
1. Lines and planes in Rn.

Definition 1.1. We say a subset L of Rn is a line if there are r0,v ∈ Rn such that
v 6= 0 and

L = {r(t) : t ∈ R}
where we have set

(1) r(t) = r0 + tv for t ∈ R.

Remark 1.1. Thus
r : R→ Rn

and
rng r = L.

The function r is called a parameterization of L. It is obviously univalent; this
means that

t1, t2 ∈ R and r(t1) = r(t2) ⇒ t1 = t2.

Theorem 1.1. Suppose

(i) L is a line in Rn;
(ii) a,b ∈ L and a 6= b;
(iii) r is as in (1) with v = b− a.

Then

(iv) r is a parameterization of L;
(v) all parameterizations of L arise in this way;
(vi) if K is a line in Rn and a,b ∈ K then K = L.

Proof. Once you understand what all this means it’s obvious. ¤

Definition 1.2. We say a subset P of Rn is a plane if there are r0,v,w ∈ Rn

such that v 6‖ w and
P = {r(t, u) : (t, u) ∈ R2}

where we have set

(2) r(t, u) = r0 + tv + uw for (t, u) ∈ R2.

Remark 1.2. Thus
r : R2 → Rn

and
rng r = P.

The function r is called a parameterization of P . It is obviously univalent; this
means that

(t1, u1), (t2, u2) ∈ R2 and r(t1, u1) = r(t2, u2) ⇒ (t1, u1) = (t2, u2).

Definition 1.3. We say a set S of points in Rn is collinear if there is a line L in
Rn such that S ⊂ L. We say S is noncollinear if S is not collinear. Note that a
noncollinear set has at least three points.
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Remark 1.3. Suppose a,b, c ∈ R3. Then {a,b, c} is noncollinear if and only if
0 6= (b− a)× (c− a)

= (b− a)× c− (b− a)× a

= b× c− a× c− b× a + a× a

= a× b + b× c + c× a.

Theorem 1.2. Suppose
(i) P is a plane in Rn;
(ii) a,b, c ∈ P and {a,b, c} is noncollinear;
(iii) r is as in (2) with v = b− a and w = c− a.

Then
(iv) r is a parameterization of P ;
(v) all parameterizations of P arise in this way;
(vi) if O is a plane in Rn and a,b, c ∈ O then O = P .

Proof. Once you understand what all this means it’s obvious. ¤
Remark 1.4. Can you see what how to define higher dimensional analogues of
lines and planes?

Definition 1.4. Whenever S ⊂ Rn and a ∈ Rn we let

a + S = {a + x : x ∈ S}
and call this set the translation of S by a. We say a pair of lines or planes in
RN are parallel if one is a translation of the other.

Definition 1.5. Suppose S is a line or a plane in Rn. We let

S⊥ = {n ∈ Rn : (x− y) • n = 0 whenever x,y ∈ S.

We say a vector n ∈ S⊥ is normal to S. Note the following:
(i) 0 ∈ S⊥;
(ii) if c ∈ R and x ∈ S⊥ then cx ∈ S⊥.
(iii) if x,y ∈ S⊥ then x + y ∈ S⊥.

A set with these three properties is called a linear subspace of Rn. Note that a
line or a plane is a linear subspace if and only if it contains 0.

Theorem 1.3. Two lines or planes in Rn are parallel if and only if they have the
same normal space.

Proof. Exercise for the reader. ¤
Theorem 1.4. Suppose L is a line in R2, r is as in (1) and n = v⊥. Then

L = {x ∈ R2 : (x− a) • n = 0}
and

L⊥ = {tn : t ∈ R};
in particular, L⊥ is a line in R2.

Moreover, if n ∈ R2, n 6= 0, c ∈ R and

L = {x ∈ R2 : x • n = c}
then L is a line in R2; n is a normal to L; cn/|n|2 ∈ L and is the closest point in
L to 0; and |c|/|n| is the distance from 0 to L.
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Proof. Not hard at all. We’ll do it in class. ¤

Theorem 1.5. Suppose P is a plane in R3, r is as in (2) and n = v ×w. Then

P = {x ∈ R3 : (x− a) • n = 0}
and

P⊥ = {tn : t ∈ R};
in particular, P⊥ is a line in R3.

Moreover, if n ∈ R3, n 6= 0, c ∈ R and

P = {x ∈ R2 : x • n = c}
then P is a plane in R3; n is a normal to P ; cn/|n|2 ∈ P and is the closest point
in P to 0; and |c|/|n| is the distance from 0 to P .

Proof. Not hard at all. We’ll do it in class. ¤

Theorem 1.6. Suppose L is a line in R3 and r is as in (1). Then

L⊥ = {x ∈ R3 : x • v = 0};
in particular, L⊥ is a plane in R3.

Moreover, if ni ∈ L⊥, i = 1, 2, n1 6‖ n2 and

Pi = {x ∈ R3 : (x− a) • ni = 0}, i = 1, 2,

then P1 and P2 are planes in R3 with normal v and

L = P1 ∩ P2.

Proof. Not hard at all. We’ll do it in class. ¤

Remark 1.5. Suppose

(3) r(t) = r0 + tv, t ∈ R,

parameterizes the line L in R3. Let

x0, y0, z0 and a, b, c

be scalars such that

r0 =< x0, y0, z0 > and v =< a, b, c > .

Let
x : R→ R, y : R→ R, z : R→ R

be such that
r(t) =< x(t), y(t), z(t) > for t ∈ R.

Then (3) amounts to

x(t) = x0 + at, y(t) = y0 + bt, z(t) = z0 + at

which, when each equation is solved for t, amounts to

x(t)− x0

a
=

y(t)− y0

b
=

z(t)− z0

c

provided none of a, b, c are zero.
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Remark 1.6. Suppose a, b, c are scalars, < a, b >6=< 0, 0 >,

P = {(x, y) ∈ R2 : ax + by = c}.
Then P is a line with normal < a, b > at distance

|c|√
a2 + b2

to the origin.
The point here is that if n =< a, b > then

P = {x • n = c}.
Remark 1.7. Suppose a, b, c, d are scalars, < a, b, c > 6=< 0, 0, 0 >,

P = {(x, y, z) ∈ R3 : ax + by + cz = d}.
Then P is a plane with normal < a, b, c > at distance

|d|√
a2 + b2 + c2

to the origin.
The point here is that if n =< a, b, c > then

P = {x • n = d}.


