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Abstract

There are many excellent toolkits which provide support fordeveloping machine learning soft-
ware in Python, R, Matlab, and similar environments. Dlib-ml is an open source library, targeted
at both engineers and research scientists, which aims to provide a similarly rich environment for
developing machine learning software in the C++ language. Towards this end, dlib-ml contains
an extensible linear algebra toolkit with built in BLAS support. It also houses implementations of
algorithms for performing inference in Bayesian networks and kernel-based methods for classifi-
cation, regression, clustering, anomaly detection, and feature ranking. To enable easy use of these
tools, the entire library has been developed with contract programming, which provides complete
and precise documentation as well as powerful debugging tools.
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1. Introduction

Dlib-ml is a cross platform open source software library written in the C++ programming language.
Its design is heavily influenced by ideas from design by contract and component-based software
engineering. This means it is first and foremost a collection of independent software components,
each accompanied by extensive documentation and thorough debugging modes. Moreover, the
library is intended to be useful in both research and real world commercialprojects and has been
carefully designed to make it easy to integrate into a user’s C++ application.

There are a number of well known machine learning libraries. However, many of these libraries
focus on providing a good environment for doing research using languages other than C++. Two
examples of this kind of project are the Shogun (Sonnenburg et al., 2006) and Torch (Collobert
and Bengio, 2001) toolkits which, while they are implemented in C++, are not focused on provid-
ing support for developing machine learning software in that language. Instead they are primarily
intended to be used with languages like R, Python, Matlab, or Lua. Then there are toolkits such
as Shark (Igel et al., 2008) and dlib-ml which are explicitly targeted at users who wish to develop
software in C++. Given these considerations, dlib-ml attempts to help fill some of the gaps in tool
support not already filled by libraries such as Shark. It is hoped that these efforts will prove useful
for researchers and engineers who wish to develop machine learning software in this language.
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Figure 1: Elements of dlib-ml. Arrows show dependencies between components.

2. Elements of the Library

The library is composed of the four distinct components shown in Figure 1. The linear algebra
component provides a set of core functionality while the other three implementvarious useful tools.
This paper addresses the two main components, linear algebra and machine learning tools.

2.1 Linear Algebra

The design of the linear algebra component of the library is based on the template expression tech-
niques popularized by Veldhuizen and Ponnambalam (1996) in the Blitz++ numerical software.
This technique allows an author to write simple Matlab-like expressions that, when compiled, ex-
ecute with speed comparable to hand-optimized C code. The dlib-ml implementation extends this
original design in a number of ways. Most notably, the library can use the BLAS when available,
meaning that the performance of code developed using dlib-ml can gain the speed of highly opti-
mized libraries such as ATLAS or the Intel MKL while still using a very simple syntax. Consider
the following example involving matrix multiplies, transposes, and scalar multiplications:

(1) result = 3*trans(A*B + trans(A)*2*B);
(2) result = 3*trans(B)*trans(A) + 6*trans(B)*A;

The result of expression (1) could be computed using only two calls to the matrix multiply routine
in BLAS but first it is necessary to reorder the terms into form (2) to fit the form expected by the
BLAS routines. Performing these transformations by hand is tedious and error prone. Dlib-ml
automatically performs these transformations on all expressions and invokes the appropriate BLAS
calls. This enables the user to write equations in the form most intuitive to them and leave these
details of software optimization to the library. This is a feature not found in the supporting tools of
other C++ machine learning libraries.

2.2 Machine Learning Tools

A major design goal of this portion of the library is to provide a highly modular and simple archi-
tecture for dealing with kernel algorithms. In particular, each algorithm is parameterized to allow a
user to supply either one of the predefined dlib-ml kernels, or a new userdefined kernel. Moreover,
the implementations of the algorithms are totally separated from the data on which they operate.
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This makes the dlib-ml implementation generic enough to operate on any kind of data, be it column
vectors, images, or some other form of structured data. All that is necessary is an appropriate kernel.

This is a feature unique to dlib-ml. Many libraries allow arbitrary precomputed kernels and
some even allow user defined kernels but have interfaces which restrictthem to operating on column
vectors. However, none allow the flexibility to operatedirectlyon arbitrary objects, making it much
easier to apply custom kernels in the case where the kernels operate on objects other than fixed
length vectors.

The library provides implementations of popular algorithms such as RBF networks and support
vector machines for classification. It also includes algorithms not presentin other major ML toolkits
such as relevance vector machines for classification and regression (Tipping and Faul, 2003). All of
these algorithms are implemented as generic trainer objects with a standard interface. This design
allows trainer objects to be used by a number of generic meta-algorithms that dotasks such as
performing cross validation, reducing the number of output support vectors (Suttorp and Igel, 2007),
or fitting a sigmoid to the output decision function to make decisions interpretable inprobabilistic
terms (Platt, 1999). This generic trainer interface, along with the contract programming approach,
makes the library easily extensible by other developers.

Another good example of a generic kernel algorithm provided by the library is the kernel RLS
technique introduced by Engel et al. (2004). It is a kernelized versionof the famous recursive least
squares filter, and functions as an excellent online regression method. With it, Engel introduced a
simple but very effective technique for producing sparse outputs fromkernel learning algorithms.

Engel’s sparsification technique is also used by one of dlib-ml’s most versatile tools, the kcen-
troid object. It is a general utility for representing a weighted sum of sample points in a kernel
induced feature space. It can be used to easily kernelize any algorithm that requires only the ability
to perform vector addition, subtraction, scalar multiplication, and inner products.

The kcentroid object enables the library to provide a number of useful kernel-based machine
learning algorithms. The most straightforward of which is online anomaly detection, which simply
marks data samples as novel if their distance from the centroid of a previouslyobserved body of data
is large (e.g., 3 standard deviations from the mean distance). A similarly simple but still powerful
application is in feature ranking, where features are considered good iftheir inclusion results in a
large distance between the centroids of different classes of data.

Another straightforward application of this technique is in kernelized clusteranalysis. Using
the kcentroid it is easy to create sparse kernel clustering algorithms. To demonstrate this, the library
comes with a sparse kernel k-means algorithm.

Finally, dlib-ml contains two SVM solvers. One is essentially a reimplementation of LIB-
SVM (Chang and Lin, 2001) but with the generic parameterized kernel approach used in the rest
of the library. This solver has roughly the same CPU and memory utilization characteristics as
LIBSVM. The other SVM solver is a kernelized version of the Pegasos algorithm introduced by
Shalev-Shwartz et al. (2007). It is built using the kcentroid and thus produces sparse outputs.

3. Availability and Requirements

The library is released under the Boost Software License, allowing it to beincorporated into both
open-source and commercial software. It requires no additional libraries, does not need to be con-
figured or installed, and is frequently tested on MS Windows, Linux and MacOS X but should work
with any ISO C++ compliant compiler.
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Note that dlib-ml is a subset of a larger project named dlib hosted at http://dclib.sourceforge.net.
Dlib is a general purpose software development library containing a graphical application for creat-
ing Bayesian networks as well as tools for handling threads, network I/O,and numerous other tasks.
Dlib-ml is available from the dlib project’s download page on SourceForge.
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