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Abstract

There are many excellent toolkits which provide supportdeveloping machine learning soft-
ware in Python, R, Matlab, and similar environments. Dlibisran open source library, targeted
at both engineers and research scientists, which aims tadera similarly rich environment for
developing machine learning software in the C++ languagmvards this end, dlib-ml contains
an extensible linear algebra toolkit with built in BLAS swup It also houses implementations of
algorithms for performing inference in Bayesian networkd &ernel-based methods for classifi-
cation, regression, clustering, anomaly detection, aatlife ranking. To enable easy use of these
tools, the entire library has been developed with contremgiamming, which provides complete
and precise documentation as well as powerful debuggirg.too
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1. Introduction

Dlib-ml is a cross platform open source software library written in the C-eg@mming language.
Its design is heavily influenced by ideas from design by contract and @moemp-based software
engineering. This means it is first and foremost a collection of indep¢sdéware components,
each accompanied by extensive documentation and thorough debugoites.mbioreover, the
library is intended to be useful in both research and real world commenagdcts and has been
carefully designed to make it easy to integrate into a user's C++ application.

There are a number of well known machine learning libraries. Howevey wigthese libraries
focus on providing a good environment for doing research using Egwgiother than C++. Two
examples of this kind of project are the Shogun (Sonnenburg et al.) 20@6Torch (Collobert
and Bengio, 2001) toolkits which, while they are implemented in C++, are oot on provid-
ing support for developing machine learning software in that languaggtedd they are primarily
intended to be used with languages like R, Python, Matlab, or Lua. Thea #inertoolkits such
as Shark (lgel et al., 2008) and dlib-ml which are explicitly targeted atsusho wish to develop
software in C++. Given these considerations, dlib-ml attempts to help fill sbntfe @aps in tool
support not already filled by libraries such as Shark. It is hoped tkaethfforts will prove useful
for researchers and engineers who wish to develop machine leartfiiwausoin this language.
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Figure 1: Elements of dlib-ml. Arrows show dependencies between com{zone

2. Elementsof theLibrary

The library is composed of the four distinct components shown in Figurehk lifiear algebra
component provides a set of core functionality while the other three impleragnts useful tools.
This paper addresses the two main components, linear algebra and maahiiregléools.

2.1 Linear Algebra

The design of the linear algebra component of the library is based on théateragpression tech-
niques popularized by Veldhuizen and Ponnambalam (1996) in the Blitzfremncal software.

This technique allows an author to write simple Matlab-like expressions that) edrapiled, ex-

ecute with speed comparable to hand-optimized C code. The dlib-ml implementstimue this

original design in a number of ways. Most notably, the library can use t#SByvhen available,

meaning that the performance of code developed using dlib-ml can gaipekd sf highly opti-

mized libraries such as ATLAS or the Intel MKL while still using a very simpletayn Consider

the following example involving matrix multiplies, transposes, and scalar multiplication

(1) result
(2) result

3*trans(A*B + trans(A)*2*B);
3*trans(B)*trans(A) + 6*trans(B)*A;

The result of expression (1) could be computed using only two calls to thexmaiitiply routine
in BLAS but first it is necessary to reorder the terms into form (2) to fit trenfexpected by the
BLAS routines. Performing these transformations by hand is tedious aodmone. Dlib-ml
automatically performs these transformations on all expressions and &wrekappropriate BLAS
calls. This enables the user to write equations in the form most intuitive to thdrfreave these
details of software optimization to the library. This is a feature not found indpparting tools of
other C++ machine learning libraries.

2.2 Machine Learning Tools

A major design goal of this portion of the library is to provide a highly modular simple archi-
tecture for dealing with kernel algorithms. In particular, each algorithmiamaterized to allow a
user to supply either one of the predefined dlib-ml kernels, or a newde§ieed kernel. Moreover,
the implementations of the algorithms are totally separated from the data on whycopbete.
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This makes the dlib-ml implementation generic enough to operate on any kintbgbedt column
vectors, images, or some other form of structured data. All that is reyassan appropriate kernel.

This is a feature unique to dlib-ml. Many libraries allow arbitrary precomputrdeds and
some even allow user defined kernels but have interfaces which rédsencto operating on column
vectors. However, none allow the flexibility to operdigectly on arbitrary objects, making it much
easier to apply custom kernels in the case where the kernels operatgeots ather than fixed
length vectors.

The library provides implementations of popular algorithms such as RBF retwaod support
vector machines for classification. It also includes algorithms not prasetiter major ML toolkits
such as relevance vector machines for classification and regresgpm(and Faul, 2003). All of
these algorithms are implemented as generic trainer objects with a standam@cetérhis design
allows trainer objects to be used by a number of generic meta-algorithms thaskisuch as
performing cross validation, reducing the number of output supporbrse(Suttorp and Igel, 2007),
or fitting a sigmoid to the output decision function to make decisions interpretapl@habilistic
terms (Platt, 1999). This generic trainer interface, along with the contragtaamming approach,
makes the library easily extensible by other developers.

Another good example of a generic kernel algorithm provided by the jilisathe kernel RLS
technique introduced by Engel et al. (2004). It is a kernelized versitime famous recursive least
squares filter, and functions as an excellent online regression methiddit VEngel introduced a
simple but very effective technique for producing sparse outputs kenmel learning algorithms.

Engel’s sparsification technique is also used by one of dlib-ml's mosttilerszols, the kcen-
troid object. It is a general utility for representing a weighted sum of samplggin a kernel
induced feature space. It can be used to easily kernelize any algoriihmetfuires only the ability
to perform vector addition, subtraction, scalar multiplication, and innerymtsd

The kcentroid object enables the library to provide a number of usefokkbased machine
learning algorithms. The most straightforward of which is online anomaly tieteevhich simply
marks data samples as novel if their distance from the centroid of a prevahsdyved body of data
is large (e.g., 3 standard deviations from the mean distance). A similarly simipiilbpowerful
application is in feature ranking, where features are considered galoeiifinclusion results in a
large distance between the centroids of different classes of data.

Another straightforward application of this technique is in kernelized clustatysis. Using
the kcentroid it is easy to create sparse kernel clustering algorithmsmiondérate this, the library
comes with a sparse kernel k-means algorithm.

Finally, dlib-ml contains two SVM solvers. One is essentially a reimplementationl®f L
SVM (Chang and Lin, 2001) but with the generic parameterized kern@baph used in the rest
of the library. This solver has roughly the same CPU and memory utilizatioracteaistics as
LIBSVM. The other SVM solver is a kernelized version of the Pegasosriéiign introduced by
Shalev-Shwartz et al. (2007). It is built using the kcentroid and thudymes sparse outputs.

3. Availability and Requirements

The library is released under the Boost Software License, allowing it indoeporated into both
open-source and commercial software. It requires no additionaliléstadoes not need to be con-
figured or installed, and is frequently tested on MS Windows, Linux andd&X but should work
with any 1ISO C++ compliant compiler.
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Note that dlib-ml is a subset of a larger project named dlib hosted at http://ddibeforge.net.
Dlib is a general purpose software development library containing dm@@pplication for creat-
ing Bayesian networks as well as tools for handling threads, networlkil®numerous other tasks.
Dlib-ml is available from the dlib project’s download page on SourceForge.
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