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Overview

• We will use the characteristic polynomial of a
random unitary matrix to model the
Riemann zeta function.

• Using this, we will present a conjecture for
the moments of the zeta function.

• We will use this conjecture to predict
extremely small values of the zeta function.

• This will naturally lead into the study of
discrete moments of the derivative of zeta.

• We will use random matrix theory to make a
conjecture about such moments.
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The Riemann zeta function

For Re(s) > 1

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

1
1− p−s

.

Analytic extension into the whole complex plane,
apart from a simple pole at s = 1

Functional equation:

ζ(s) = χ(s)ζ(1− s)

where

χ(s) = πs−1/2 Γ( 1
2 − 1

2s)
Γ( 1

2s)
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trivial zeros,
s = −2n

non-trivial zeros,
s = 1/2 + iγn

the critical line, Re(s) = 1/2

simple pole at s = 1

The zeros and poles
of the Riemann zeta function

(Not to scale)

Number of zeros in critical strip:

N(T ) =
T

2π
log

T

2πe
+O(log T )

If ρ is a zero, so is 1− ρ, ρ, 1− ρ.

Riemann Hypothesis: Re(ρ) = 1
2

Under RH, 1− ρ = ρ.



'

&

$

%

Random unitary matrices

Let U(N) be the set of N ×N unitary matrices.
It is a compact Lie group.

This means it has a (unique) Haar measure (left-
and right-invariant measure). That is for any
measurable set A ⊂ U(N) and any U ∈ U(N),

PHaar{A} = PHaar{UA} = PHaar{AU}

H. Weyl calculated the probability density of
eigenangles under Haar measure. It equals

1
(2π)NN !

∏

1≤j<k≤N

∣∣eiθj − eiθk
∣∣2

where θ1, . . . , θN are the eigenvalues.
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Take an N ×N unitary matrix, and scale its
eigenangles by N

2π , so they have average spacing
unity.

Scale the non-trivial zeros around height T by
1
2π log T

2π , so they have average spacing unity.

There is much evidence (theoretical, heuristic and
numerical) relating statistics of the scaled zeros of
the Riemann zeta function high up the critical
line, with statistics of the scaled eigenangles of
large Haar-measured unitary matrices.
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This led Keating and Snaith to model the
Riemann zeta function with the characteristic
polynomial,

Z(U, θ) := det(I − Ue−iθ)

=
N∏

n=1

(1− ei(θn−θ))

of an N ×N random unitary matrix, U , with
eigenvalues eiθn .

Equate density of eigenangles with density of
zeros:

N = log
T

2π
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Central limit theorems

Theorem (Selberg). For rectangles B ⊆ C,

1
T

meas



T ≤ t ≤ 2T :

log ζ( 1
2 + it)√

1
2 log log T

∈ B





→ 1
2π

∫∫

B

e−(x2+y2)/2 dx dy.

Theorem (Keating and Snaith). For fixed θ,

PHaar





log Z(U, θ)√
1
2 log N

∈ B





→ 1
2π

∫∫

B

e−(x2+y2)/2 dx dy
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Graph of the negative log of the value distribution of

log |ζ( 1
2 + it)| around the 1020th zero (red), against the

negative log of the probability density of log |Z(U, 0)| with

N = 42 (green).
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Set σ :=
√

1
2 log N . One can actually prove that

log Z(U, θ)/σ is ergodic, in the sense that for
almost all U the distribution of log Z(U, θ)/σ over
θ is the same as the distribution of log Z(U, θ)/σ

over U , as N →∞.

Theorem (CPH, Keating and O’Connell).
Denote by m the uniform probability measure on
(−π, π] (so that m(dθ) = dθ/2π). The sequence of
laws 




m ◦

 log Z(U, θ)√

1
2 log N



−1





converges weakly in probability to X + iY , where
X, Y are iid standard normal random variables.
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The moments of the zeta function

Theorem (Baker and Forrester, Keating
and Snaith). For any fixed θ,

E
{|Z(U, θ)|2k

}
=

N∏

j=1

Γ(j)Γ(j + 2k)
Γ(j + k)2

∼ G2(k + 1)
G(2k + 1)

Nk2
as N →∞

G is the Barnes G–function, and satisfies
G(z + 1) = Γ(z)G(z).

Some results:

k E{|Z(U, θ)|2k}

1 N

2 1
12N4

3 42
9! N

9

4 24024
16! N16
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There is a “folklore” conjecture that

1
T

∫ T

0

|ζ(1
2 + it)|2k dt ∼ gka(k)

(
log

T

2π

)k2

where

a(k) =
∏
p

prime

(
1− 1

p

)k2 ∞∑
m=0

(
Γ(m + k)
m! Γ(k)

)2

p−m

k 1
T

∫ T

0
|ζ( 1

2 + it)|2k dt

1 log T
2π

2 1
12a(2)(log T

2π )4

3 42
9! a(3)(log T

2π )9

4 24024
16! a(4)(log T

2π )16
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The Keating-Snaith conjecture

Since N = log T
2π , this leads to

Conjecture (Keating and Snaith).

1
T

∫ T

0

|ζ( 1
2 + it)|2k dt

∼ G2(k + 1)
G(2k + 1)

a(k)
(

log
T

2π

)k2

as T →∞.
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Very small values of |ζ( 1
2 + it)|

Theorem (CPH, Keating, O’Connell). As
N →∞, if 0 < y < N−(1/2+ε),

P {|Z(U, 0)| ≤ y} ∼ G2( 1
2 )N1/4y.

Proof.

P {|Z(U, 0)| ≤ y} =

∫ log y

−∞
p(t) dt

where

p(t) =
1

2π

∫ ∞

−∞
e−ixt E

{
|Z(U, 0)|ix

}
dx

When t < −( 1
2

+ ε) log N , the Fourier integral is

dominated by the pole at x = i, and so,

p(t) ∼ i Res
x=i

{
e−ixt E

{
|Z(U, 0)|ix

}}

∼ etG2( 1
2
)N1/4



'

&

$

%

Define P (T, y) to equal

1
T

meas
{
0 ≤ t ≤ T : |ζ( 1

2 + it)| ≤ y
}

.

A similar calculation using the Keating-Snaith
conjecture for the moments of the zeta functions
leads to:

Conjecture. If y < (log T )−(1/2+ε), then

P (T, y) ∼ G2( 1
2 )a(− 1

2 )y
(

log
T

2π

)1/4

as T →∞.

From the graph: T = 1.52× 1019 and N = 42.

− log P (T, e−10) + log P {log |Z(0)| ≤ −10} ≈ 0.087

whereas log a(− 1
2
) = −0.085 . . .
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As y → 0+,

P (T, y) ∼ 2y

T

∑

0<γn≤T

∣∣ζ ′( 1
2 + iγn)

∣∣−1

which leads to

Conjecture.

1
N(T )

∑

0<γn≤T

∣∣ζ ′( 1
2 + iγn)

∣∣−1 ∼

πG2( 1
2 )a(− 1

2 )
(

log
T

2π

)−3/4

It is natural then to ask

Question. Can random matrix theory model

1
N(T )

∑

0<γn≤T

∣∣ζ ′(1
2 + iγn)

∣∣2k ?
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Discrete moments of the derivative

We wish to study

E

{
1
N

N∑
n=1

|Z ′(U, θn)|2k

}
= E

{|Z ′(U, θ1)|2k
}

by rotational invariance of Haar measure.

Theorem (CPH, Keating, O’Connell).

E
{|Z ′(U, θ1)|2k

} ∼ G2(k + 2)
G(2k + 3)

Nk(k+2)
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Conjecture.

1
N(T )

∑

0<γn≤T

∣∣ζ ′( 1
2 + iγn)

∣∣2k

∼ G2(k + 2)
G(2k + 3)

a(k)
(

log
T

2π

)k(k+2)

Agrees with all known results:

Theorem (Gonek). Under RH,

1
N(T )

∑

0<γn≤T

∣∣ζ ′( 1
2 + iγn)

∣∣2 ∼ 1
12

(
log

T

2π

)3

Conjecture (Gonek). If all the zeros are simple
and RH is true, then

1
N(T )

∑

0<γn≤T

∣∣ζ ′( 1
2 + iγn)

∣∣−2 ∼ 6
π2

(
log

T

2π

)−1
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Taking a theorem due to Conrey, Ghosh and
Gonek, and extending it beyond the range of
proven applicability, one can deduce

Conjecture.

1
N(T )

∑

0<γn≤T

∣∣ζ ′( 1
2 + iγn)

∣∣4 ∼ 1
1440π2

(
log

T

2π

)8

This is of the correct order of magnitude:

Theorem (Nathan Ng).

(
√

97−√61)2

30240π2

(
log

T

2π

)8

≤ 1
N(T )

∑

0<γn≤T

∣∣ζ ′( 1
2 + iγn)

∣∣4

≤ (
√

97 +
√

61)2

30240π2

(
log

T

2π

)8

Numerically, the bounds are

1.392× 10−5 7.036× 10−5 1.045× 10−3
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Theorem (Hejhal). Under RH and an
assumption that the zeros don’t get too close
together,

log
∣∣∣ ζ′(1/2+iγn)

log T

∣∣∣
√

1
2 log log T

when averaged over all zeros between T and 2T ,
behaves like a standard normal random variable.

Similarly,

Theorem (CPH, Keating, O’Connell).

log |Z ′(U, θ1)| − log N√
1
2 log N

converges in distribution to a standard normal
random variable.
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Summary

• Statistically zeros of zeta behave like
eigenangles of a random unitary matrix.

• One can model zeta by the characteristic
polynomial of a unitary matrix.

• The model works well in the local regime
(central limit theorems).

• The model must be corrected by a
non-random matrix (zeta-specific) term in the
global regime (moments / large deviations).


