Principles of Parallel Algorithm Design

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Chapter Overview: Algorithms and Concurrency

e Infroduction to Parallel Algorithms

— Tasks and Decomposition
- Processes and Mapping
- Processes Versus Processors

e Decomposition Technigques

- Recursive Decomposition
- Recursive Decomposition
- Exploratory Decomposition
- Hybrid Decomposition

e Characteristics of Tasks and Intferactions

- Task Generation, Granularity, and Context
- Characteristics of Task Interactions.

Chapter Overview: Concurrency and Mapping

e Mapping Technigues for Load Balancing

- Statfic and Dynamic Mapping

e Methods for Minimizing Interaction Overheads

- Maximizing Data Locality

- Minimizing Contention and Hot-Spots

- Overlapping Communication and Computations

- Replication vs. Communication

- Group Communications vs. Point-to-Point Communication

e Parallel Algorithm Design Models

- Data-Parallel, Work-Pool, Task Graph, Master-Slave, Pipeline, and Hybrid
Models

Preliminaries: Decomposition, Tasks, and
Dependency Graphs

The first step in developing a parallel algorithm is to decompose
the problem into tasks that can be executed concurrently

A given problem may be docomposed into fasks in many
different ways.

Tasks may be of same, different, or even inferminate sizes.

A decomposition can be lllustrated in the form of a directed
graph with nodes corresponding to tasks and edges indicating
that the result of one task is required for processing the next.
Such a graph is called a fask dependency graph.

Example: Multiplying a Dense Matrix with a Vector

A b y

01 n

Task 1

n-1
Task n

HNEEEEEEEEEN

Computation of each element of output vector y is independent of other
elements. Based on this, a dense matrix-vector product can be decomposed
into n tasks. The figure highlights the portion of the matrix and vector
accessed by Task 1.

Observations: While tasks share data (namely, the vector b), they
do not have any confrol dependencies - i.e., no Tfask needs to
walit for the (parfial) completion of any other. All tasks are of the
same size in ferms of number of operations. Is this the maximum
number of tasks we could decompose this problem info?

Example: Database Query Processing

Consider the execution of the query:

MODEL = ‘‘CIVIC’’ AND YEAR = 2001 AND
(COLOR = 'Y'GREEN’’” OR COLOR = ''WHITE)

on the following database:

ID# Model Year Color Dealer Price
4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000

6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19.,000

3845 Maxima 2001 Blue NY $§22.,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17.,000

7352 Civic 2002 Red WA $18.,000

Example: Database Query Processing

The execution of the query can be divided info subtasks in
various ways. Each task can be thought of as generafing an
intermediate table of entries that satisfy a particular clause.

ID# | Year
ID# | Model ID# | Color
7623 | 2001
4523 | Civic 6734 2001 ID# | Color 7623 | Green
6734 | Civic 5342 2001 9834 | Green
4395 | Civic 3845 | 2001 3476 | White 5342 | Green
7352 | Civic 4395 | 2001 6734 | White 8354 | Green
CIVIC 2001 Whlte
ID# | Color
ID# | Model | Year 3‘6‘32 ‘ghi‘e
reen
6734 | Civic | 2001 Civic AND 2001 [Whne OR Green] 0834 | Green
4395 | Civic | 2001 6734 | White
5342 | Green
8354 | Green

(Civic AND 2001 AND (White OR Green))

ID# | Model | Year| Color
6734 | Civic 2001 | White

Decomposing the given query into a number of tasks.
Edges in this graph denote that the outfput of one task
IS needed to accomplish the next.

Example: Database Query Processing

Note that the same problem can be decomposed into sulbtasks
in other ways as well.

ID# | Year
ID# | Model ID# | Color
7623 | 2001
4523 | Civic 6734 | 2001 ID# | Color 7623 | Green
6734 | Civic 5342 | 2001 9834 | Green
4395 | Civic 3845 2001 3476 | White 5342 | Green
7352 | Civic 4395 | 2001 6734 | White 8354 | Green

Civic 2001

ID# | Color

3476 | White
7623 | Green

White OR Green

reen
6734 | White
5342 | Green
8354 | Green

(2001 AND (White or Green)) [ID# | Color | Year

7623 | Green | 2001
6734 | White | 2001
5342 | Green | 2001

(Civic AND 2001 AND (White OR Green))

ID# | Model | Year| Color
6734 | Civic | 2001 | White

An alternate decomposition of the given problem into
subtasks, along with their data dependencies.

Different task decompositions may lead fo significant differences
with respect to their eventual parallel performmance.

Granularity of Task Decompositions

e The number of tasks info which a problem is decomposed
determines its granularity.

e Decomposition into a large number of tasks results in fine-
grained decomposition and that info a small number of tasks
results in a coarse grained decomposition.

A b
01 n

<

Task 1

Task 2

Task 3

Task 4

A coarse grained counterpart fo the dense matrix-vector product
example. Each task in this example corresponds to the computation of three
elements of the result vector.

Degree of Concurrency

The number of tasks that can be executed in parallel is the
degree of concurrency of a decompaosition.

Since the number of tasks that can be executed in parallel
mMmay change over program execufion, the maximum degree
of concurrency is the maximum number of such fasks at any
point during execution. What is the maximum degree of
concurrency of the dafabase query examples?

The average degree of concurrency is the average number
of fasks that can be processed in parallel over the execution
of the program. Assuming that each fasks in the daftabase
example takes identical processing time, what is the average
degree of concurrency in each decomposition?

The degree of concurrency increases as the decomposition
becomes finer in granularity and vice versa.

Critical Path Length

e A directed path in the task dependency graph represents a
sequence of tasks that must be processed one after the ofher.

e The longest such path defermines the shorfest time in which the
program can be executed in parallel.

e The length of the longest path in a task dependency graph is
called the crifical path length.

Critical Path Length

Consider the task dependency graphs of the two database
qguery decompaositions:

(a) (b)

What are the critical path lengths for the two task dependency graphs?
If each task takes 10 fime units, what is the shortest parallel execution time
for each decomposition? How many processors are needed in each case to
achieve this minimum parallel execution time? What is the maximum degree
of concurrency”?

Limits on Parallel Performance

e |t would appear that the parallel time can be made arbitrarily
small by making the decomposition finer in granularity.

e There is an inherent bound on how fine the granularity of a
computation can be. For example, in the case of mulfiplying
a dense matrix with a vector, there can be no more than (n?)
concurrent fasks.

e Concurrent fasks may also have to exchange data with other
tasks. This results in communication overnead. The tradeoff
pbetween the granularity of a decomposition and associated
overheads often determines performance bounds.

Task Interaction Graphs

e Subtasks generally exchange data with others in a decomposition.
For example, even in the trivial decomposition of the dense
maltrix-vector product, if the vector is not replicated across all
tasks, they will have fo communicate elements of the vector.

e The graph of tasks (nodes) and their inferactions/data
exchange (edges) is referred to as a fask inferaction graph.

e Nofte that fask inferaction graphsrepresent data dependencies,
whereas fask dependency graphsrepresent control dependencies.

Task Interaction Graphs: An Example

Consider the problem of multiplying a sparse matrix A with a
vector b. The following observations can bbe made:

e As before, the computation of each element of the result vector can be
viewed as an independent task.

e Unlike a dense matrix-vector product though, only non-zero elements of
mMatrix A participate in the computation.

e [f, for memory optimality, we also partition b across tasks, then one can see
that the task interaction graph of the computation is identfical to the graph
of the maitrix A (the graph for which A represents the adjacency structure).

A b
01234567891011

Task 0) ™)) :

LIC) [J() i

o000 oo i

e [J n

4 |@ [I [] |

o0 oe0e [J]

e 0000000 i

[J 0]

8 |@ o o |

LIC) e]

[J e n

Task 11 ® ® ||

~
o
~
~
=)
~

Task Interaction Graphs, Granularity, and
Communication

In general, if the granularity of a decomposition is finer, the
associated overhead (as a ratio of useful work assocaited with a
tfask) increases.

Example: Consider the sparse matrix-vector product example
from previous foil. Assume that each node takes unit fime fo
process and eadch interaction (edge) causes an overhead of a
unit time.

Viewing node 0 as an independent task involves a useful
computation of one time unit and overhead (communication) of
three time unifs.

Now, if we consider nodes O, 4, and 5 as one task, then
the task has useful computation totaling tfo three time units and
communication corresponding to four fime units (four edges).
Clearly, this is a more favorable ratio than the former case.

Processes and Mapping

e In general, the number of fasks iIn a decomposition exceeds
the number of processing elements available.

e For this reason, a pardllel algorithm must also provide a
mapping of fasks to processes.

Note: We refer to the mapping as being from tasks o processes, as opposed
to processors. This is because typical programming APls, as we shall see, do
not allow easy binding of tasks fo physical processors. Rather, we aggregate
tfasks into processes and rely on the system to map these processes to physical
processors. We use processes, not in the UNIX sense of a process, rather, simply
as a collection of tasks and associated data.

Processes and Mapping

Appropriate mapping of tasks to processes is crifical to the
parallel performance of an algorithm.

Mappings are determined by both the task dependency and
task interaction graphs.

Task dependency graphs can be used to ensure that work
Is equally spread across all processes at any point (minimum
idling and optimal load balance).

Task inferaction graphs can be used to make sure that
processes need minimum interaction with other processes
(Minimum communication).

Processes and Mapping

An appropriate mapping must minimize parallel execution fime
py:

e Mapping independent tasks to different processes.

e Assigning fasks on critical path fo processes as soon as they
lbbecome available.

e Minimizing interaction between processes by mapping tasks
with dense inferactions to the same process.

Note: These criteria often conflict eith each other. For example,
a decomposifion infto one tfask (or no decomposition at all)
mMinimizes intferaction but does not result in a speedup at alll Can
you think of other such conflicting cases?

Processes and Mapping: Example

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1

(a) (b)

Mapping fasks in the database query decomposition to
processes. These mappings were arrived at by viewing the
dependency graph in terms of levels (no two nodes in a level
have dependencies). Tasks within a single level are then assigned
fo different processes.

Decomposition Techniques

SO how does one decompose a tfask info various subbtasks?

While there is no single recipe that works for all problems, we
present a set of commonly used tfechniques that apply to broad
classes of problems. These include:

e recursive decomposition
e data decomposition
e exploratory decompaosition

e speculative decomposifion

Recursive Decomposition

e Generdlly suited to problems that are solved using the divide-
and-conquer strategy.

e A given problem is first decomposed info a set of sub-problems.

e These sub-problems are recursively decomposed further until a
desired granularity is reached.

Recursive Decomposition: Example

A classic example of a divide-and-conquer algorithm on which
we can apply recursive decomposition is Quicksort.

512|111 1106 |8 |3 |7 4|92

11342 5(12|11(10(6 |8 | 7|9
112 3|4 56|87 9 (12|11]10
1 2 3 4 516 718 9 101211
5 6 7 8 10 11112

11 12

In fthis example, once the list has been partitioned around the pivot,
each sublist can be processed concurrently (i.e., each sublist represents an
independent subtask). This can be repeated recursively.

Recursive Decomposition: Example

The problem of finding the minimum number iIn a given list
(or indeed any other associative operation such as sum, AND,
etc.) can be fashioned as a divide-and-conquer algorithm. The
following algorithm illustrates this.

We first start with a simple serial loop for computing the
mMinimum entry in a given list:

procedure SERIAL_MIN (A4, n)
begin
min = A[0];
fori.=1ton—1do

if (A[i] < min) min:= Ali];
endfor;
return min;
end SERIAL_MIN

N Oh W~

Recursive Decomposition: Example

We can rewrite the loop as follows:

procedure RECURSIVE_MIN (A4, n)
begin
if (n =1) then
min := A[0];
else
Imin := RECURSIVE_MIN (A, n/2);
rmin := RECURSIVE_MIN (&(A[n/2]),n — n/2);
if (Imin < rmin) then
min = Imin;
else
min = rmin;
endelse;
. endelse;
return min,;
end RECURSIVE_MIN

WVONOO AN~

O —O-

Recursive Decomposition: Example

The code in the previous foil can be decomposed naturally using
a recursive decomposifion strategy. We illustrate this with the
following example of finding the minimum number in the set {4,
9.1.7.8, 11,2, 12}. The task dependency graph associated with
this computation is as follows:

min(1,2)

min(4,9) min(1,7) min(8,11) min(2,12)

Data Decomposition

|ldentify the data on which computations are performed.
Partition this data across various tasks.
This partitioning induces a decomposition of the problem.

Data can be partfitioned in various ways — this critically impacts
performance of a parallel algorithm.

Data Decomposition: Output Data Decomposition

e Often, each element of the output can be computed
independently of others (but simply as a function of the input).

e A partition of the output across tasks decomposes the problem
naturally.

Output Data Decomposition: Example

Consider the problem of multiplying two n x n matrices A and B
to yield matrix C'. The output matrix C' can be partitioned into four
tfasks as follows:

<A1,1 A1,2> (31,1 B1,2>_> Ci1 Cip
Asq1 Az)\ Ba1 DBao Ca1 Capo

Task 1: C1 1 =A11B11+ A1 2821
Task2: Chio=A11B12+ A12B2 2
Task 3: Ca1 = A21B1,1 + A22B2 1
Task 4: Co 0 = A2 1812+ A22B2

Output Data Decomposition: Example

A partifioning of outfput data does not resulf in a unique
For example, for the same problem
as in previus foil, with identical output data distribution, we can

decomposition info tasks.

derive the following two (other) decomposifions:

Decomposition |

Decomposition Il

Task 1:
Task 2:
Task 3:
Task 4:
Task &:
Task 6:
Task 7:
Task 8:

Ci1=411B11
Cii=0C11+ A28y
Ci2=A411B1>
Cio2=Ci12+ A1 2855
Co1=A21811
C21 =021+ A22Bs5 1
Caoo=A21B1 9

Coo=Co9+ As2Bs 5

Task 1:
Task 2:
Task 3:
Task 4:
Task &:
Task 6:
Task /:
Task 8:

Ci1=411B11
Cii1=0C11+ A12Bs;
Ci2=A12Bs5
Cio=Ci2+ A1 1B
Co1 = Az2B5,
Co1 =021+ A21B1 1
Caoo=A21B1

Coo=Co9+ As2Bs 9

Output Data Decomposition: Example

Consider the problem of counting the instances of given itemsets in @
database of transactions. In this case, the oufput (itfemset frequencies) can
e partitioned across tasks.

(a) Transactions (input), itemsets (input), and frequencies (output)

A,B,C,E,G,H A,B,C 1
B.D,E.F,K,L D,E > 3
) (&)
S ABFHL C.F.G g 0
5 |
8 D,E,FH ® AE g 2
@ LC
§ FGHK § cb 5 1
= 2
2 AEFRKL D.K %2
§ B,C,D,G,H,L B,C,F =0
8 GHL C,D,K 0
D,E F.K, L
F,G,H,L

(b) Partitioning the frequencies (and itemsets) among the tasks

> >
A,B,C,E,G,H A,B,C g 1 A,B,C,E.G H C.D g 1
§2] o §2] o
B,D,E,F,K,L ® D,E 2 3 B,D,E,F,K,L ® DK 2 2
(2] [0) (2] (0]
5§ ABFEHL § cre &0 S ABFEHL § BCF £ O
S D,EFH AE g 2 S D.EFEH C.D,K g0
@ £ @ £
C [
§ F.GHK 8 § FGHK, (5
= - = -
o AEFKL o AEFKL
§ B,C,D,G,H, L % B,C,D,G,H,L
8 GHL 8 GHL
D,E,F, K, L D,E,F, K, L
F,G,H,L F,G,H,L

task 1 task 2

Output Data Decomposition: Example

From the previous example, the following observations can be
made:

o If the database of transactions is replicated across the
processes, each task can be independently accomplished
with no communication.

o If the database is partitioned across processes as well (for
reasons of memory utilization), each task first computes partial
counts. These counts are then aggregated at the appropriate
fask.

Input Data Partitioning

e Generally applicable if each oufput can be naturally
computed as a function of the input.

e [N Many cases, this is the only natural decomposition because
the oufput is not clearly known a-priori (e.g., the problem of
finding the minimum in a list, sorfing a given list, etc.).

e A fask is associated with each input data partition. The fask
performs as much of the computation with its part of the dafa.
Subsequent processing combines these partial results.

Input Data Partitioning: Example

In the database counting example, the input (i.e., the transaction set) can be
partitioned. This induces a task decomposition in which each task generates
partial counts for all itemsets. These are combined subsequently for aggregate
counts.

Partitioning the transactions among the tasks

wn wn
S ABCEGH A, B,C 1 5 A.B,C 0
§ B,D,E F K, L D,E 3 2 S D,E 3 1
& AB,FHL C,F, G 2 9 G C,F,G 20
- o =3 — @ =3
o DEFH o AE 21 o AEFKL o AE e
17 < L @ £ -
§ F,G, H,K, & CD B 0 % B,C,D,G,H,L g CD g
I D, K g 1 S GHL D, K £ 1
B,C,F 0 D,E,F,K,L B,C,F 0
C,D,K 0 F,G,H, L C,D,K 0

task 1 task 2

Partitioning Input and Output Data

Often input and output data decompaosition can be combined for a higher
degree of concurrency. For the itemset counting example, the transaction set
(input) and itemset counts (output) can both be decomposed as follows:

Partitioning both transactions and frequencies among the tasks

(2] (2]
S ABCEGH A,B,C 1 S ABCEGH
§ B.D.EFKL D, E 32| |8 BDEEKL)
2 o 2 &
s ABFHL C.F.G g0 s ABFHL g
[& g [2 g
o D,EFH 2 AE 1 o DEFH o g
n £ L) = L
8 FEGHK 5 T § FGHK, g CD B 0
I § I D, K 51
B,C,F 0
C,D,K 0
task 1 task 2
[0} (2]
5 A,B,C 0 S
s > ° %)
3 D,E g 1 g 3
S C,F,G go < g
— 2 g — 2 g
o AEFEKL © AE | o AEFEKL o o
a < L 2 S g
§ BCDGHL 5 I § BCDGHL g CD B 1
S GHL 5 S GHL D, K 51
D,E,F,K, L - D,E,F,K,L B,C,F 0
F,G,H, L F,G,H,L C,D,K 0

task 3 task 4

Infermediate Data Partitioning

e Computation can offten be viewed as a sequence of
tfransformation from the input to the output data.

e INn these cases, it is offen beneficial fo use one of the
intermediate stages as a basis for decomposition.

Intermediate Data Partitioning: Example

Let us revisit the example of dense matrix multiplication. We first show how we
can visualize this computation in terms of intermediate matrices D.

A
1.1 B11 | Big Dt | Diig
A
2.1 Disi | Dian
+
A
1,2 D1 | Do
o —_—
A
2,2 Bo1 | Bonp Dot | Dano
Ci1] Ci12

Intermediate Data Partitioning: Example

A decomposition of intermediate data structure D leads to the following
decomposition intfo 8 + 4 tasks:

Stage |

(Di11 Dijap)
(A1 Ao) (Bi1 Bip) . Di22 D122

As1 Ago Ba1 Bap

Stage I
(Dii11 Diipo) n (Dsi11 Dajo) . (Cii1 Cip)
Di22 Digapo D292 Daao Co1 Capo
Task O1: D1,1’1 = A1,131,1 Task 02: D2,1’1 = ALQBQ,l
Task 03: D1,1’2 = A1,1B1,2 Task 04: D2,1’2 = A1,2B2,2
Task 05: D1,2’1 = A2,1B1,1 Task 06: D2,2’1 = A2,2B2,1
Task O7: D1,2’2 = A2)1.Bl)2 Task 08: D2,2’2 = A2,2_B2’2

Task 09: 0171 = D171,1 + D2,1’1 Task 10: 0172 = D171,2 + D2,1’2
Task 11 02,1 = D1,2,1 -+ D2,2’1 Task 12: 02,2 = D1,2,2 -+ D2,2’2

Intermediate Data Partitioning: Example

The task dependency graph for the decomposition (shown in
previous foil) into 12 tasks is as follows:

The Owner Computes Rule

e The Owner Computes Rule generally states that the process
assined a particular data item is responsible for all computation
associated with it.

e In the case of input data decomposition, the owner computes
rule imples that all computations that use the input data are
performed by the process.

e IN the case of output data decomposition, the owner
computes rule implies that the outfput is computed by the
process to which the outfput data is assigned.

Exploratory Decomposition

e In Mmany cases, the decomposition of the problem goes hana-
iNn-hand with its execution.

e These problems typically involve the exploration (search) of a
state space of solutions.

e Problems in this class include a variety of discrete optimization
problems (0/1 integer programming, QAP efc.), theorem
proving, game playing, efc.

Exploratory Decomposition: Example

A simple application of exploratory decomposition is in the
solution to a 15 puzzle (a tile puzzle). We show a seqguence of
three moves that fransform a given initial state (a) tfo desired final
state (d).

11234 11234 112(3|4 11234
50648 506|178 506|718 5067
|
9 110| 7 |11 9 10| =11 9 110|11] 9110|1112
I
1314|1512 1314|1512 13|14]15|12 131415
(a) (b) (c) (d)

Of-course, the problem of computing the solution, in general,
Is much more difficult than in this simple example.

Exploratory Decomposition: Example

The state space can be explored by generating various successor
staftes of the current state and to view them as independent tasks.

CL|ST|vI (€T
1T 01| 6

S|1L|9]S

vle|T|T

—
Q
[72]
=
—_

task 2 task 3 task 4

S| |wn|— S| |wn |~ Do |wn|— S| |wn |~

=N E|S|o|w = il g RN Rl

R | w S| fy S = N A

o= || o= e | & o= ||~ =y 0 | &
Dl |ln|l—| |Zloejvn|—||Z|o|wn |~ S|e|wn|l—=]| |Z|e|wn Dl |ln|l—| |Z|e|lwn|— Sl |ln|l—=| |Zle|lwn|l—]| |5 W= | |5 e |w|— D|e|n|—=| |Z|lojn|l—]||S|o|wn|—
Tl || S || =l || |||~ =l = N RS || IrSEES RS =) R E[e o N Tl || =S| |w =l || |||~
73 ~ | w IS RvI RSN A Dla ||« Y = w o w oo | w | |oo | w DS |N | S| |N|w S| |w| & ~ W o el N I) [y = B AV oy = w
o2 || o= ||~ = oo |~ o= | & o= e | & o= e | & o= LS o= e | & o= e | & o= || & o= e | & SRR o | L I e e =l

Exploratory Decomposition: Anomalous
Computations

e [N Many instances of exploratory decomposition, the decompaosition
techniqgue may change the amount of work done by the
parallel formulation.

e This change results in super- or sub-linear speedups.

N NN N N

\ Solution /

Total serial work: 2m+1 Total serial work: m

Total parallel work: 1 Total parallel work: 4m

(a) (b)

Speculative Decomposition

In some applications, dependencies between tasks are not
known a-priori,

For such applications, it is impossible to identify independent
tasks.

There are generally two approaches to deadling with
such applications: conservative approaches, which identify
independent fasks only when they are guaranteed to not have
dependencies, and, optimistic approaches, which schedule
tfasks even when they may potentially be erroneous.

Conservative approaches may vield little concurrency and
opftimistic approaches may require roll-back mechanism in the
case of an error.

Speculative Decomposition: Example

A classic example of speculative decomposifion is in discrete
event simulation.

e [The central data structure in a discrete event simulation is a
fime-ordered event list.

e Events are extracted precisely in time order, processed, and if
required, resulfing events are inserted back into the event list.

e Consider your day today as a discrete event system — you get
up., get ready, drive to work, work, eat lunch, work some more,
drive back, eat dinner, and sleep.

e Each of these events may be processed independently,
however, in driving fo work, you might meet with an
unfortunate accident and not get to work at all.

e Therefore, an optimistic scheduling of other events will have to
e rolled back.

Speculative Decomposition: Example

Another example is the simulation of a nefwork of nodes (for
instance, an assembly line or a computer network through which
packets pass). The task is to simulate the behavior of this network
for various inputs and node delay parameters (note that networks

mMmay become unstable for certain values of service rates, queue
sizes, efc.).

C
[7p)
5 ——= A D -
o >S5
(e o
E 5
S E G [——= ©O
E E
> —= B 3
@ 5
™ F H)
7 -

System Components

Hybrid Decompositions

Often, a mix of decomposition tfechniques is necessary for decomposing a
problem. Consider the following examples:

e In quicksort, recursive decomposition alone limits concurrency (Why?). A
mMix of data and recursive decompositions is more desirable.

e In discrete event simulation, there might be concurrency in task processing.
A mix of speculative decomposition and data decomposition may work
well,

e Even for simple problems like finding a minimum of a list of numibers, a mix
of data and recursive decompaosition works well.

37 [2]9 1l 4 58 7 10| 6 13 11193 9 dDeaCtgmposition
2 1 Recursive

decomposition

Characteristics of Tasks

Once a problem has been decomposed into independent tasks,
the characteristics of these tasks critically impact choice and
performance of parallel algorithms. Relevant fask characteristics
iNnclude:

e Task generation.
e Jask sizes.

e Size of data associated with tasks.

Task Generation

e Stafic task generation: Concurrent tasks can be identified
a-priori. Typical matrix operations, graph algorithms,
iImage processing applications, and ofther regularly structured
problems fall in this class. These can typically be decomposed
using datfa or recursive decomposifion technigues.

e Dynamic task generation: Tasks are generated as we perform
computafion. A classic example of this is in game playing
— each 15 puzzle board is generated from the previous
one. These applications are typically decomposed using
exploratory or speculative decomposifions.

Task Sizes

e Jask sizes may be uniform (i.e., all tasks are the same size) or
non-uniform.

e Non-uniform fask sizes may be such that they can be
determined (or estimated) a-priori or not.

e Exampiles in this class include discrete optimization problems, in
which it is difficult to estimate the effective size of a state space.

Size of Data Associated with Tasks

e The size of dafta associated with a fask may be small or large
when viewed in the context of the size of the task.

e A small context of a task implies that an algorithm can easily
communicate this fask to other processes dynamically (e.g.,
the 15 puzzle).

e A large context fies the task to a process, or alternately, an
algorithm may attempt to reconstruct the context at another
processes as opposed to communicating the context of the
task (e.g., 0/1 infeger programming).

Characteristics of Task Interactions

Tasks may communicate with each other in various ways. The
associated dichotomy is:

e Stafic intferactions: The tasks and their interactions are known
a-priori. These are relatively simpler to code info programes.

e Dynamic inferactions: The fiming or interacting fasks cannot
e determined a-priori. These interactions are harder to code,
especitally, as we shall see, using message passing APIs.

Characteristics of Task Interactions

e Regular inferactions: There is a definite pattern (in the graph
sense) o the inferactions. These patterns can be exploited for
efficient implementation.

e lrregular interactions: Interactions lack well-defined fopologies.

Characteristics of Task Interactions: Example

A simple example of a regular stafic inferaction pattern is
iNn iImage dithering. The underlying communication pattern is a
stfructured (2-D mesh) one as shown here:

)
)
O
)

00O

O O
O O
O O
OO

/2 N U NN
XK
SHONeRS

© OO O
© OO O
ONONONE:
O 000
OO0 00
© OO O
ONONONE
OO0 00
OO0 00
ONONONE
ONONONE
ONONOR®

SHONeRS

2 0P C
A P IR
/

OO0 00
OO0 00
OO0 00
O 0 OO
[A VR WA
PN Y AN AN
O 0 00
OO0 00
N N SN N
NN AN Y
N N N N
POV AN AN
O 000
O 0 0 0
O 0 O O

N N\ N\ N\
~ ~

ONOCRORG

CNONORS

O XO §

\

\

R Tasks
/

O .
3 Pixels

Characteristics of Task Interactions: Example

The multiplication of a sparse maftrix with a vector is a good
example of a static irregular interaction pattern. Here is an
example of a sparse matrix and its associated inferaction pattern,

91011

CIES
@| oo

o0
o000 00 v

Task 0

(I JE=)
000 —
o0 |- >

~J

o0 000

s |@

LITTTTTTIITT] &

Task 11

~
o
~

(b)

Characteristics of Task Interactions

Interactions may be read-only or read-write,

In read-only inferactions, tfasks just read data itfems associated
with other tasks.

In read-write intferactions tasks read, as well as modily dafa
items associated with other tasks.

In general, read-write inferactions are harder to code, since
they require additional synchronization primitives.

Characteristics of Task Interactions

Inferactions may be one-way or two-way.

A one-way interaction can be inifiated and accomplished by
one of the two interacting tasks.

A two-way interaction requires participation from both fasks
involved in an interaction.

One way interactions are somewhat harder to code in
message passing APIs.

Mapping Techniques

Once a problem has been decomposed into concurrent tasks,
these must be mapped to processes (that can be executed on
a paradllel platform).

Mappings must minimize overnheads.
Primary overheads are communication and idling.

Minimizing these overheads often represents confradicting
objectives.

Assigning all work to one processor ftrivially minimizes
communication at the expense of significant idling.

Mapping Techniques for Minimum Idling

Mapping must simulfaneously minimize idling and load
balance. Merely balancing load does not minimize idling.

start synchronization finish start synchronization finish

¢ ¢
| |

P1 1 5 : 9 P1 1 2 3]
| |
| |

P 2 6 i 10 P2 4 5 6 i
| |
| |

P3 3 7 : 11 P3 7 8 : 9
| |
| |

P4 4 8 i 12 P4 i 10 11 12
v V

t=0 t=2 t=3 t=0 t=3 t=6

(a) (b)

Mapping Techniques for Minimum Idling

Mapping technigues can be static or dynamic.

e Static Mapping: Tasks are mapped to processes a-priori. For
this o work, we must have a good estimate of the size of each
tfask. Even in these cases, the problem may be NP complete.

e Dynamic Mapping: Tasks are mapped to processes atf runfime.
This may be because the tasks are generated at runtime, or
that their sizes are not known.

Other factors that determine the choice of techniques include
the size of data associated with a task and the nature of
underlying domain.

Schemes for Static Mapping

e Mappings based on data partitioning.
e Mappings based on task graph partitioning.

e Hylbrid mappings.

Mappings Based on Data Partitioning

We can combine data partitioning with the “owner-
computes” rule to partition the computation info subtasks. The
simplest data decomposition schemes for dense matrices are 1-D

block distribution schemes. . e
row-wise distribution column-wise distribution

Block Array Distribution Schemes

Block distribution schemes can be generadlized to higher
dimensions as well.

Py P Py Ps

P, Ps Ps P

Ps| Py|Prg P11\ P1o P13 P14 P

Block Array Distribution Schemes: Examples

For mulfiplying two dense matrices A and B, we can partition
the output maftrix C' using a block decomposition.

For load balance, we give each task the same numlber of
elements of C'. (Note that each element of C corresponds to a
single dot product.)

The choice of precise decomposition (1-D or 2-D) is determined
by the associated communication overhead.

In general, higher dimension decomposition allows the use of
larger number of processes.

Data Sharing in Dense Matrix Multiplication

B

C

1o

Cyclic and Block Cyclic Distributions

e If the amount of computation associated with data items
varies, a block decomposition may lead fo significant load
imbalances.

e A simple example of this is in LU decompaosition (or Gaussian
Elimination) of dense matrices.

LU Factorization of a Dense Matrix

A decomposition of LU factorization info 14 tfasks — nofice the
significant load imbalance.

Arn A Ais
Asq Az Asg
Aszq Az Ass

10 A1 — L11Up
2: L2,1 = A2,1U1_’11
3: L3’1 = A3,1U1_’11
4: U1’2 = Ll_jAl’Q
o} U1,3 = Ll_jAl,g

Lii 0 0
— | Lo1 L22 O
Ls1 Lsa L33z

6: Ago=Aso— Lo1U; o
/i Az o= Az 20— L3 1U; 5
8: Ao g = Aoz — La1U;3
Q. A3 =A33— L3 1U; 3
10: Ag,g — L2,2U2,2

U1 Uiz Us
0 Uz Uss
0 0 Uss

11t Ly o = A32Us 5
12: U2,3 = LE’%A2,3
13: A3 3= As3— L32Us3
14: Az 3 — L3 3Us 3

Block Cyclic Distributions

e Variation of the block distribution scheme that can be used o
alleviate the load-imbalance and idling problem:s.

e Parfition an array info many more blocks than the number of
available processes.

e Blocks are assigned to processes in a round-robin manner so
that each process gets several non-adjacent blocks.

Block-Cyclic Distribution for Gaussian Elimination

The active part of the matrix in Gaussian Elimination changes.
By assigning blocks in a block-cyclic fashion, each processor
receives blocks from different parts of the matrix.

Inactive part

_|. Column k
Column |

TTTRewk [T (el —& (i) o] ~ ALK,j] := A[K,jVA[KK]

Active part -+ -~

____R_O;)V_i_ ___________ (l,k) (1,_]) = A[l,_]] = A[laj] - A[l’k] X A[k’J]

Block-Cyclic Distribution: Examples

One- and two-dimensional block-cyclic distribufions among 4
processes.

T, T, T,

Block-Cyclic Distribution

e A cyclic distribution is a special case in which block size is one.

e A block distribufion is a special case in which block size is n/p,
where n is the dimension of the matrix and p is the numlber of

Processes.

R BFAR Sy Epm
P1 0 1 0 1
Py
P, — P Ps Py Ps
i _ p—+ P, P, P,
Py
Py

_P2 P3 P2 P3
i | | | |

(a)

(b)

Graph Partitioning Dased Data Decomposition

In case of sparse matrices, block decompositions are more
complex.

Consider the problem of multiplying a sparse matrix with @
vector,

The graph of the matrix is a useful indicator of the work (number
of nodes) and communication (the degree of each node).

In this case, we would like tfo partition the graph so as to assign
equal number of nodes to each process, while minimizing
edge count of the graph partition.

Partitioning the Graph of Lake Superior

ing

Random Partition

iINng for minimum edge-cut.

ioning

Part

Mappings Based on Task Paritioning

e Partitioning a given task-dependency graph across processes.

e Defermining an optimal mapping for a general task-
dependency graph is an NP-complete problem.

e Excellent heuristics exist for stfructured graphs.

Task Paritioning: Mapping a Binary Tree Dependency
Graph

Example illustrates the dependency graph of one view of
quick-sort and how it can be assigned fo processes in a
nypercube.

/ \ / \
/ \ / \
:/ \: :/ \:
O I\ 2 I\ 4 /N 6 /N
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
0 1 2 3 4 5 6 7

Task Paritioning: Mapping a Sparse Graph

Sparse graph for computing a sparse matrix-vector product
and ifs mapping.

A b
01234567 891011 .
DOEED °]
Process0 [eleiol Tele — CO = (4,5.6,7.8)
o0 D B
[] oe []
Process | v Tedevees | C1=(0,1,2,3,89,10,11)
[) [1)
0 o o]
Process 2 *®e e | C2 = (0.4.5,6)
° ° N
C1=(0,5,6) Process 1
Process 0
CO = (1,2,6,9)

Process 2 C2=(1,2,4,5,7,8)

Hierarchical Mappings

e Sometimes a single mapping tfechnique is inadequate.

e For example, the task mapping of the binary tree (quicksort)
cannot use a large number of processors.

e For this reason, task mapping can be used at the fop level and
data partitioning within each level.

Hierarchical Mapping: Example

An example of task partitioning at fop level with data
partitioning at the lower level.

I I I

PO P11 P41P5

s T IE

P2'P3'P6'P7

/\
PO ' P1 P41 P5
P2'P3 P6 ' P7
A A
PO{Pl P21P3 P41P5 P61P7

PO Pl P2 P3 P4 P5 P6 P7

Schemes for Dynamic Mapping

e Dynamic mapping is sometimes also referred to as dynamic
load balancing, since load balancing is the primary motivation
for dynamic mapping.

e Dynamic mapping schemes can be centralized or distributed.

Centralized Dynamic Mapping

Processes are designated as masters or slaves.

When a process runs out of work, it requests the master for more
work.,

When the number of processes increases, the master may
bbecome the bottleneck.

To adlleviate this, a process may pick up a number of tasks (a
chunk) at one fime. This is called Chunk scheduling.

Selecting large chunk sizes may lead tfo significant load
imbalances as well.

A number of schemes have been used to gradually decrease
chunk size as the computation progresses.

Distributed Dynamic Mapping

Each process can send or receive work from other processes.
This alleviates the bottleneck in cenfralized schemes.

There are four critical questions: how are sensing and receiving
processes paired together, who initiates work fransfer, how
much work is fransferred, and when is a transfer triggered?

Answers to these questions are generally application specific.
We will look at some of these techniques later in this class.

Minimizing Interaction Overheads

Maximize data locality: Where possible, reuse intermediate
data. Restructure computation so that data can be reused
iNn smaller time windows.

Minimize volume of data exchange: There is a cost associated
with each word that is communicated. For this reason, we must
mMinimize the volume of data communicated.

Minimize frequency of interactions: There is a startup cost
associated with each interaction. Therefore, try to merge
multiple inferactions to one, where possible.

Minimize contenftion and hot-spofs: Use decentralized
fechniques, replicate data where necessary.

Minimizing Interaction Overheads (continued)

Overlapping computations with interactions: Use non-blocking
communications, mulfithreading, and prefetfching to hide
latencies.

Replicating data or computations.
Using group communications instfead of point-to-point primitives.

Overlap interactions with other intferactions.

Parallel Algorithm Models

An algorithm model is a way of structuring a parallel algorithm
by selecting a decomposition and mapping technique and
applying the appropriate strategy to minimize interactions.

e Data Parallel Model: Tasks are statically (or semi-statically)
mapped to processes and each task performs similar
operations on different data.

e Task Graph Model: Starting from a task dependency graph,
the interrelationships among the tasks are ufilized to promote
locality or fo reduce interaction costs.

Parallel Algorithm Models (continued)

e Master-Slave Model: One or more processes generate work
and dllocatfe it fo worker processes. This allocation may be
static or dynamic.

e Pipeline / Producer-Comsumer Model: A stream of data is
passed through a succession of processes, each of which
perform some task on it.

e Hybrid Models: A hybrid model may be composed either
of multiple models applied hierarchically or multiple models
applied sequentially to different phases of a parallel algorithm.

