
10 PRINT CHR$(205.5+RND(1)); : GOTO 10

NICK MONTFORT, PATSY BAUDOIN,

JOHN BELL, IAN BOGOST, JEREMY DOUGLASS,

MARK C. MARINO, MICHAEL MATEAS,

CASEY REAS, MARK SAMPLE, NOAH VAWTER

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Software Studies

Matthew Fuller, Lev Manovich, and Noah Wardrip-Fruin, editors

Expressive Processing: Digital Fictions, Computer Games, and Software Studies,

Noah Wardrip-Fruin, 2009

Code/Space: Software and Everyday Life, Rob Kitchin and Martin Dodge, 2011

Programmed Visions: Software and Memory, Wendy Hui Kyong Chun, 2011

Speaking Code: Coding as Aesthetic and Political Expression, Geoff Cox and

Alex McClean, 2012

10 PRINT CHR$(205.5+RND(1)); : GOTO 10, Nick Montfort, Patsy Baudoin,

John Bell, Ian Bogost, Jeremy Douglass, Mark C. Marino, Michael Mateas,

Casey Reas, Mark Sample, and Noah Vawter, 2013

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

NICK MONTFORT, PATSY BAUDOIN,

JOHN BELL, IAN BOGOST,

JEREMY DOUGLASS, MARK C. MARINO,

MICHAEL MATEAS, CASEY REAS,

MARK SAMPLE, NOAH VAWTER

THE MIT PRESS

CAMBRIDGE, MASSACHUSETTS

LONDON, ENGLAND

Except for images with their own copyright notices, this work is licensed under

the Creative Commons Attribution-NonCommercial-ShareAlike license, available

at http://creativecommons.org/licenses/by-nc-sa/3.0/ or by mail from Creative

Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

MIT Press books may be purchased at special quantity discounts for business or

sales promotional use. For information, email special_sales@mitpress.mit.edu or

write to Special Sales Department, The MIT Press, 55 Hayward Street,

Cambridge, MA 02142.

This book was designed and typeset by Casey Reas using Avenir by Adrian

Frutiger, C64 by Style, and TheSansMono by LucasFonts. Printed and bound in

the United States of America.

Library of Congress Cataloging-in-Publication Data

10 PRINT CHR$(205.5+RND(1)); : GOTO 10 / Nick Montfort . . . [et al.].

 p. cm.—(Software studies)

Includes bibliographical references and index.

ISBN 978-0-262-01846-3 (hardcover : alk. paper)

1. BASIC (Computer program language)—History. I. Montfort, Nick.

QA76.73.B3A14 2013

005.26'2—dc23

2012015872

10 9 8 7 6 5 4 3 2 1

Ten authors collaborated to write this book. Rather than produce a

collection of ten separate articles, we chose a process of communal

authorship. Most of the writing was done using a wiki, although this

process differed significantly from the most famous wiki-based project,

Wikipedia. Our book was not written in public and was not editable

by the public. We benefited from comments by reviewers and from

discussions with others at conferences and in other contexts; still, the

text of the book was developed by the ten of us, working together as

one, and we bear the responsibility for what this book expresses.

 All royalties from the sale of this book are being donated to

PLAYPOWER, a nonprofit organization that supports affordable,

effective, fun learning games. PLAYPOWER uses a radically affordable

TV-computer based on the 6502 processor (the same chip that was

used in the Commodore 64) as a platform for learning games in the

developing world.

 CONTENTS

 5 SERIES FOREWORD ix

 10 INTRODUCTION 1

 15 REM VARIATIONS IN BASIC 19

 20 MAZES 31

 25 REM PORTS TO OTHER PLATFORMS 51

 30 REGULARITY 63

 35 REM VARIATIONS IN PROCESSING..... 105

 40 RANDOMNESS 119

 45 REM ONE-LINERS 147

 50 BASIC 157

 55 REM A PORT TO THE ATARI VCS 195

 60 THE COMMODORE 64 209

 65 REM MAZE WALKER IN BASIC 243

 70 CONCLUSION 261

 75 END 269

 80 THANKS 271

 85 WORKS CITED 275

 90 VARIANTS OF 10 PRINT 287

 95 ABOUT THE AUTHORS 295

100 INDEX 299

SERIES FOREWORD {IX}

5
SERIES

FOREWORD

SERIES FOREWORD {XI}

Software is deeply woven into contemporary life—economically, culturally,

creatively, politically—in manners both obvious and nearly invisible. Yet

while much is written about how software is used, and the activities that

it supports and shapes, thinking about software itself has remained largely

technical for much of its history. Increasingly, however, artists, scientists,

engineers, hackers, designers, and scholars in the humanities and social

sciences are finding that for the questions they face, and the things they

need to build, an expanded understanding of software is necessary. For

such understanding they can call upon a strand of texts in the history of

computing and new media, they can take part in the rich implicit culture of

software, and they can also take part in the development of an emerging,

fundamentally transdisciplinary, computational literacy. These provide the

foundation for software studies.

 Software studies uses and develops cultural, theoretical, and practice-

oriented approaches to make critical, historical, and experimental accounts

of (and interventions via) the objects and processes of software. The field

engages and contributes to the research of computer scientists, the work

of software designers and engineers, and the creations of software artists.

It tracks how software is substantially integrated into the processes of con-

temporary culture and society, reformulating processes, ideas, institutions,

and cultural objects around their closeness to algorithmic and formal de-

scription and action. Software studies proposes histories of computational

cultures and works with the intellectual resources of computing to develop

reflexive thinking about its entanglements and possibilities. It does this

both in the scholarly modes of the humanities and social sciences and in

the software creation and research modes of computer science, the arts,

and design.

 The Software Studies book series, published by the MIT Press, aims

to publish the best new work in a critical and experimental field that is

at once culturally and technically literate, reflecting the reality of today’s

software culture.

INTRODUCTION {1}

10
INTRODUCTION

ONE LINE

CORE CONTRIBUTIONS

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

PLAN OF THE BOOK

{2} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 10.1

From left to right and top to bottom, the 10 PRINT program is typed into the

Commodore 64 and is run. Output scrolls across the screen until it is stopped.

INTRODUCTION {3}

Computer programs process and display critical data, facilitate communi-

cation, monitor and report on sensor networks, and shoot down incoming

missiles. But computer code is not merely functional. Code is a peculiar

kind of text, written, maintained, and modified by programmers to make

a machine operate. It is a text nonetheless, with many of the properties of

more familiar documents. Code is not purely abstract and mathematical; it

has significant social, political, and aesthetic dimensions. The way in which

code connects to culture, affecting it and being influenced by it, can be

traced by examining the specifics of programs by reading the code itself

attentively.

 Like a diary from the forgotten past, computer code is embedded with

stories of a program’s making, its purpose, its assumptions, and more. Ev-

ery symbol within a program can help to illuminate these stories and open

historical and critical lines of inquiry. Traditional wisdom might lead one to

believe that learning to read code is a tedious, mathematical chore. Yet in

the emerging methodologies of critical code studies, software studies, and

platform studies, computer code is approached as a cultural text reflecting

the history and social context of its creation. “Code . . . has been inscribed,

programmed, written. It is conditioned and concretely historical,” new me-

dia theorist Rita Raley notes (2006). The source code of contemporary soft-

ware is a point of entry in these fields into much larger discussions about

technology and culture. It is quite possible, however, that the code with the

most potential to incite critical interest from programmers, students, and

scholars is that from earlier eras.

 This book returns to a moment, the early 1980s, by focusing on a

single line of code, a BASIC program that reads simply:

 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

One line of code, set to repeat endlessly, which will run until interrupted

(figure 10.1).

 Programs that function exactly like this one were printed in a variety

of sources in the early days of home computing, initially in the 1982 Com-

modore 64 User’s Guide, and later online, on the Web. (The published

versions of the program are documented at the end of this book, in “Vari-

ants of 10 PRINT.”) This well-known one-liner from the 1980s was recalled

by one of the book’s authors decades later, as discussed in “A Personal

{4} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Memory of 10 PRINT” in the BASIC chapter. This program is not presented

here as valuable because of its extreme popularity or influence. Rather, it

serves as an example of an important but neglected type of programming

practice and a gateway into a deeper understanding of how computing

works in society and what the writing, reading, and execution of computer

code mean.

ONE LINE

This book is unusual in its focus on a single line of code, an extremely con-

cise BASIC program that is simply called 10 PRINT throughout. Studies of

individual, unique works abound in the humanities. Roland Barthes’s S/Z,

Samuel Beckett’s Proust, Rudolf Arnheim’s Genesis of a Painting: Picasso’s

Guernica, Stuart Hall et al.’s Doing Cultural Studies: The Story of the Sony

Walkman, and Michel Foucault’s Ceci n’est pas une pipe all exemplify the

sort of close readings that deepen our understanding of cultural produc-

tion, cultural phenomena, and the Western cultural tradition. While such

literary texts, paintings, and consumer electronics may seem significantly

more complex than a one-line BASIC program, undertaking a close study

of 10 PRINT as a cultural artifact can be as fruitful as close readings of

other telling cultural artifacts have been.

 In many ways, this extremely intense consideration of a single line

of code stands opposed to current trends in the digital humanities, which

have been dominated by what has been variously called distant reading

(Moretti 2007), cultural analytics (Manovich 2009), or culturomics (Michel

et al. 2010). These endeavors consider massive amounts of text, images,

or data—say, millions of books published in English since 1800 or a million

Manga pages—and identify patterns and trends that would otherwise re-

main hidden. This book takes the opposite approach, operating as if under

a centrifugal force, spiraling outward from a single line of text to explore

seemingly disparate aspects of culture. Hence its approach is more along

the lines of Brian Rotman’s Signifying Nothing (1987), which documents the

cultural importance of the symbol 0. Similarly, it turns out that in the few

characters of 10 PRINT, there is a great deal to discover regarding its texts,

contexts, and cultural importance.

 By analyzing this short program from multiple viewpoints, the book

INTRODUCTION {5}

explains how to read code deeply and shows what benefits can come from

such readings. And yet, this work seeks to avoid fetishizing code, an error

that Wendy Chun warns about (2011, 51–54), by deeply considering con-

text and the larger systems at play. Instead of discussing software merely

as an abstract formulation, this book takes a variorum approach, focusing

on a specific program that exists in different printed variants and executes

on a particular platform. Focusing on a particular single-line program fore-

grounds aspects of computer programs that humanistic inquiry has over-

looked. Specifically, this one-line program highlights that computer pro-

grams typically exist in different versions that serve as seeds for learning,

modification, and extension. Consideration of 10 PRINT offers new ways

of thinking about how professional programmers, hobbyists, and human-

ists write and read code.

 The book also considers how the program engages with the cultural

imagination of the maze, provides a history of regular repetition and ran-

domness in computing, tells the story of the BASIC programming language,

and reflects on the specific design of the Commodore 64. The eponymous

program is treated as a distinct cultural artifact, but it also serves as a grain

of sand from which entire worlds become visible; as a Rosetta Stone that

yields important access to the phenomenon of creative computing and the

way computer programs exist in culture.

CORE CONTRIbUTIONS

The subject of this book—a one-line program for a thirty-year-old micro-

computer—may strike some as unusual and esoteric at best, indulgent and

perverse at worst. But this treatment of 10 PRINT was undertaken to offer

lessons for the study of digital media more broadly. If they prove persua-

sive, these arguments will have implications for the interpretation of soft-

ware of all kinds.

 First, to understand code in a critical, humanistic way, the practice of

scholarship should include programming: modifications, variations, elab-

orations, and ports of the original program, for instance. The programs

written for this book sketch the range of possibilities for maze generators

within Commodore 64 BASIC and across platforms. By writing them, the

10 PRINT program is illuminated, but so, too, are some of the main plat-

{6} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

forms of home computing, as well as the many distinctions between Com-

modore 64 BASIC and contemporary programming environments.

 Second, there is a fundamental relationship between the formal work-

ings of code and the cultural implications and reception of that code. The

program considered in this book is an aesthetic object that invites its authors

to learn about computation and to play with possibilities: the importance of

considering specific code in many situations. For instance, in order to fully

understand the way that redlining (financial discrimination against residents

of certain areas) functions, it might be necessary to consider the specific

code of a bank’s system to approve mortgages, not simply the appearance

of neighborhoods or the mortgage readiness of particular populations.

 This book explores the essentials of how a computer interprets code

CRITICAL CODE STUDIES, SOFTWARE STUDIES, PLATFORM STUDIES

Critical Code Studies (CCS) is the application of critical theory and hermeneutics to

the interpretation of computer source code, as defined by one of this book’s authors

(Marino 2006). During an online, collaborative conference, another of this book’s

authors challenged the 2010 Critical Code Studies Working Group to apply these

methodologies to the one-line program that is this book’s focus (Montfort 2010). Un-

til then, a number of exemplary readings had taken up software and other encoded

objects possessing considerably more code, clear social implications (for example, a

knowledge base about terrorists), and more free space for writing of human signifi-

cance in the form of comments or variable names. Members of the working group

had demonstrated they could interpret a large program, a substantial body of code,

but could they usefully interpret a very spare program such as this one? What fol-

lowed, with some false starts, was a great deal of productive discussion, an article

in Emerging Language Practices (Marino 2010), and eventually this book, with those

who replied in the Critical Code Studies Working Group thread being invited to work

together as coauthors.

 CCS is a set of methodologies for the exegesis of code. Working together

with platform studies, software studies, and media archaeology and forensics, critical

code studies uses the source code as a means of entering into discussion about the

technological object in its fullest context. CCS considers authorship, design process,

INTRODUCTION {7}

function, funding, circulation of the code, programming languages and paradigms,

and coding conventions. It involves reading code closely and with sustained and rig-

orous attention, but is not limited to the sort of close reading that is detached from

historical, biographical, and social conditions. CCS invites code-based interpretation

that invokes and elucidates contexts.

 This book also employs other approaches to the interpretation of technical

objects and culture, notably software studies and platform studies. While software

studies can include the consideration and reading of code, it generally emphasizes

the investigation of processes, focusing on function, form, and cultural context at a

higher level of abstraction than any particular code. Platform studies conversely fo-

cuses on the lower computational levels, the platforms (hardware system, operating

system, virtual machines) on which code runs. Taking the design of platforms into

account helps to elucidate how concepts of computing are embodied in particular

platforms, and how this specificity influences creative production across all code and

software for a particular system. This book examines one line of code as a means of

discussing issues of software and platform.

 In addition to being approaches, software studies and platform studies

also refer to two book series from MIT Press. This book is part of the Software

Studies series.

and how particular platforms relate to the code written on them. It is not

a general introduction to programming, but instead focuses on the con-

nection of code to material, historical, and cultural factors in light of the

particular way this code causes its computer to operate.

 Third, code is ultimately understandable. Programs cause a computer

to operate in a particular way, and there is some reason for this operation

that is grounded in the design and material reality of the computer, the

programming language, and the particular program. This reason can be

found. The way code works is not a divine mystery or an imponderable.

Code is not like losing your keys and never knowing if they’re under the

couch or have been swept out to sea through a storm sewer. The working

of code is knowable. It definitely can be understood with adequate time

{8} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

and effort. Any line of code from any program can be as thoroughly expli-

cated as the eponymous line of this book.

 Finally, code is a cultural resource, not trivial and only instrumental,

but bound up in social change, aesthetic projects, and the relationship of

people to computers. Instead of being dismissed as cryptic and irrelevant

to human concerns such as art and user experience, code should be val-

ued as text with machine and human meanings, something produced and

operating within culture.

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

The pattern produced by this program is represented on the endpapers of

this book. When the program runs, the characters appear one at a time, left

to right and then top to bottom, and the image scrolls up by two lines each

time the screen is filled. It takes about fifteen seconds for the maze to fill

the screen when the program is first run; it takes a bit more than a second

for each two-line jump to happen as the maze scrolls upward.

 Before going through different perspectives on this program, it is use-

ful to consider not only the output but also the specifics of the code—what

exactly it is, a single token at a time. This will be a way to begin to look at

how much lies behind this one short line.

10

The only line number is this program is 10, which is the most conventional

starting line number in BASIC. Most of the programs in the Commodore 64

User’s Guide start with line 10, a choice that was typical in other books and

magazines, not only ones for this system. Numbering lines in increments of

10, rather than simply as 1, 2, 3, . . . , allows for additional lines to be insert-

ed more easily if the need arises during program development: the lines

after the insertion point will not have to be renumbered, and references to

them (in GOTO and GOSUB commands) will not have to be changed.

 The standard version of BASIC for the Commodore 64, BASIC version

2 by Microsoft, invited this sort of line numbering practice. Some exten-

sions to this BASIC later provided a RENUMBER or RENUM command that

would automatically redo the line numbering as 10, 20, 30, and so on.

INTRODUCTION {9}

This convenience had a downside: if the line numbers were spaced out in

a meaningful way so that part of the work was done beginning at 100, an-

other segment beginning at 200, and so on, that thoughtful segmentation

would be obliterated. In any case, RENUMBER was not provided with the

version of BASIC that shipped on the Commodore 64.

 One variant of this program, which was published in the Commodore-

specific magazine RUN, uses 8 as its line number. This makes this variant of

the program more concise in its textual representation, although it does not

change its function and saves only one byte of memory—for each line of

BASIC stored in RAM, two bytes are allocated for the line number, whether

it is 1 or the maximum value allowed, 63999. The only savings in memory

comes from GOTO 10 being shortened to GOTO 8. Any single digit includ-

ing 1 and even 0 could have been used instead. Line number variation

in the RUN variants attests to its arbitrariness for function, demonstrating

that 10 was a line-numbering convention, but was not required. That 8 was

both arbitrary and a specific departure from convention may then suggest

specific grist for interpretation. For a one-line program that loops forever,

it is perhaps appealing to number that line 8, the endlessly looping shape

of an infinity symbol turned upon its side. However, whether the program

is numbered 8 or 10, the use of a number greater than 0 always signals that

10 PRINT (or 8 PRINT) is, like Barthes’s “work,” “a fragment of substance,”

partial with potential for more to be inserted and with the potential to be

extended (Barthes 1977, 142).

 Why are typed line numbers required at all in a BASIC program? Pro-

grams written today in C, Perl, Python, Ruby, and other languages don’t

use line numbers as a language construct: they aren’t necessary in BASIC

either, as demonstrated by QBasic and Visual Basic, which don’t make use

of them. If one wants a program to branch to a particular statement, the

language can simply allow a label to be attached to the target line instead

of a line number. Where line numbers particularly helped was in the act of

editing a program, particularly when using a line editor or without access to

a scrolling full-screen editor. The Commodore 64 does allow limited screen

editing when programming in BASIC: the arrow keys can be used to move

the cursor to any visible line, that line can be edited, and the new version of

the line can be saved by pressing RETURN. This is a better editing capabil-

ity than comes standard on the Apple II, but there is still no scrollback (no

ability to go back past the current beginning of the screen) in BASIC on the

{10} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Commodore 64. Line numbers provide a convenient way to get back to an

earlier part of the program and to list a particular line or range of lines. Typ-

ing a line number by itself will delete the corresponding line, if one exists in

memory. The interactive editing abilities that were based on line numbers

were well represented even in very early versions of BASIC, including the

first version of the BASIC that ran on the Dartmouth Time-Sharing System.

Line numbers thus represent not just an organizational scheme, but also an

interactive affordance developed in a particular context.

{SPACE}

The space between the line number 10 and the keyword PRINT is actually

optional, as are all of the spaces in this program. The variant line 10PRINT

CHR$(205.5+RND(1));:GOTO10 will function exactly as the standard 10

PRINT with spaces does. The spaces are of course helpful to the person

trying to type in this line of code correctly: they make it more legible and

more understandable.

 Even in this exceedingly short program, which has no variables (and

thus no variable names) and no comments, the presence of these optional

spaces indicates some concern for the people who will deal with this code,

rather than merely the machine that will process it. Spaces acknowledge

that the code is both something to be automatically translated to machine

instructions and something to be read, understood, and potentially modi-

fied and built upon by human programmers. The same acknowledgment

is seen in the way that the keywords are presented in their canonical form.

Instead of PRINT the short form ? could be used instead, and there are

Commodore-specific two-character abbreviations that allow the other key-

words to be entered quickly (e.g., GOTO can typed as G followed by SHIFT-

O.) Still, for clarity, the longer (but easier-to-read) version of these keywords

is shown in this program, as it is in printed variants.

PRINT

The statement PRINT causes its argument to be displayed on the screen.

The argument to PRINT can take a variety of forms, but here it is a string

that is in many ways like the famous string “HELLO WORLD.” In PRINT

“HELLO WORLD” the output of the statement is simply the string literal, the

INTRODUCTION {11}

text between double quotes. The string in the maze-generating program is

generated by a function, and the output of each PRINT execution consists

of only a single character, but it is nevertheless a string.

 Today the PRINT command is well known, as are many similarly

named print commands in many other programming languages. It is easy

to overlook that, as it is used here, PRINT does not literally “print” anything

in the way the word normally is used to indicate reproduction by marking

a medium, as with paper and ink—instead, it displays. To send output to a

printer, PRINT must be followed by # and the appropriate device number,

then a comma, and then the argument that is to be printed. By default,

without a device number, the output goes to the screen—in the case of the

Commodore 64, a television or composite video monitor.

 When BASIC was first developed in 1964 at Dartmouth College, how-

ever, the physical interface was different. Remarkably, the language was

designed for college students to use in interactive sessions, so that they

would not have to submit batch jobs on punch cards as was common at

the time. However, the users and programmers at Dartmouth worked not

at screens but at print terminals, initially Teletypes. A PRINT command

that executed successfully did actually cause something to be printed. Al-

though BASIC was less than twenty years old when a version of it was made

for the Commodore 64, that version nevertheless has a residue of history,

leftover terms from before a change in the standard output technology.

Video displays replaced scrolls of paper with printed output, but the key-

word PRINT remained.

CHR$

This function takes a numeric code and returns the corresponding charac-

ter, which may be a digit, a letter, a punctuation mark, a space, or a “char-

acter graphic,” a nontypographical tile typically displayed alongside others

to create an image. The standard numerical representation of characters in

the 1980s, still in wide use today, is ASCII (the American Standard Code

for Information Interchange), a seven-bit code that represents 128 char-

acters. On the Commodore 64 and previous Commodore computers, this

representation was extended, as it often was in different ways on different

systems. In extensions to ASCII, the other 128 numbers that can be rep-

resented in eight bits are used for character graphics and other symbols.

{12} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

The Commodore 64’s character set, which had been used previously on the

Commodore PET, was nicknamed PETSCII.

 The complement to CHR$ is the function ASC which takes a quoted

character and returns the corresponding numeric value. A user who is curi-

ous about the numeric value of a particular character, such as the capital

letter A, can type PRINT ASC("A") and see the result, 65. A program can

also use ASC to convert a character to a numeric representation, perform

arithmetic on the number that results, and then convert the new number

back to a character using CHR$. In lowercase mode, this can be used to

shift character between uppercase and lowercase, or this sort of manipula-

tion might be used to implement a substitution cipher.

 Character graphics exist as special tiles that are more graphical than

typographical, more like elements of a mosaic than like pieces of type to

be composed on a press. That is, they are mainly intended to be assem-

bled into larger graphical images rather than “typeset” or placed along-

side letters, digits, and punctuation. But these special tiles do exist in a

typographical framework: a textual system, built on top of a bitmapped

graphic display, is reused for graphical purposes. This type of abstraction

may not be a smooth, clean way of accomplishing new capabilities, but it

represents a rather typical way in which a system, adapted for a new, par-

ticular purpose, can be retrofitted to do something else.

(

CHR$ and RND are both functions, so the keyword is followed in both cases

by an argument in parentheses. CHR$ ends with the dollar sign to indicate

that it is a string function (it takes a numeric argument and returns a string),

while RND does not, since it is an arithmetic function (it takes a numeric

argument and returns a number). The parentheses here also make clear

the order of arithmetic operations. For instance, RND(1-2) is the same as

RND(-1), while RND(1)-2 is two subtracted from the whatever value is

returned by RND(1).

205.5

All math in Commodore BASIC is done on floating point numbers (num-

bers with decimal places). When an integer result is needed (as it is in the

INTRODUCTION {13}

case of CHR$), the conversion is done by BASIC automatically. If this value,

205.5, were to be converted into an integer directly, it would be truncated

(rounded down) to become 205. If more than .5 and less than 1 is added to

205.5, the integer result will be 206.

 This means the character printed will either be the one correspond-

ing to 205 or the one corresponding to 206: ╲ or ╱. A quirk of the Com-

modore 64 character set is that these two characters, and a run of several

character graphics, have two numeric representations. Characters 109 and

110 duplicate 205 and 206, meaning that 109.5 could replace 205.5 in this

program and the identical output would be produced.

+

This symbol indicates addition, of course. It is less obvious that this is the

addition of two floating point numbers with a floating point result; Com-

modore 64 BASIC always treats numbers as floating point values when

it does arithmetic. The first number to be added is 205.5; the second is

whatever value that RND returns, a value that will be between 0 and 1. On

the one hand, because all arithmetic is done in floating point, figuring out

a simple 2 + 2 involves more number crunching and takes longer than it

would if integer arithmetic was used. On the other hand, the universal use

of floating point math means that an easy-to-apply, one-size-fits-all math-

ematical operation is provided for the programmer by BASIC. Whether

the programmer wishes to add temperatures, prices, tomato soup cans, or

anything else, “+” will work.

 The mathematical symbol “+” originated, like “&,” as an abbreviation

for “and.” As is still conventional on today’s computers, the Commodore

64 has a special “plus” or addition key but does not have any way to type

a multiplication sign or a division sign. While they appear in some eight-bit

codes that extend ASCII and in Unicode, the multiplication and division

signs are absent from ASCII and from PETSCII. Instead, the asterisk (*) and

the slash, virgule, or solidus (/) are used. Given the computer’s develop-

ment as a machine for the manipulation of numbers, it is curious that typo-

graphical symbols have to be borrowed from their textual uses (“*” indicat-

ing a footnote, “/” a line break or a juxtaposition of terms) and pressed

into service as mathematical symbols. But this has to do with the history

of computer input devices, which in early days included teletypewriters,

{14} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

devices that were not originally made for mathematical communication.

RND

This function returns a (more or less) random number, one which is between

0 and 1. The number returned is, more precisely, pseudorandom. While the

sequence of numbers generated has no easily discernible pattern and is

hard for a person to predict, it is actually the same sequence each time.

This is not entirely a failing; the consistent quality of this “random” output

allows other programs to be tested time and time again by a programmer

and for their output to be compared for consistency.

 It is convenient that the number is always between 0 and 1; this allows

it to easily be multiplied by another value and scaled to a different range. If

one wishes to pick between two options at random, however, one can also

simply test the random value to see if it is greater than 0.5. Or, as is done

in this program, one can add 205.5 and convert to an integer so that 205 is

produced with probability 0.5 and 206 with probability 0.5.

 More can be said about randomness, and much more is said in the

chapter on the topic.

1

When RND is given any positive value (such as this 1) as an argument, it pro-

duces a number using the current seed. This means that when RND(1) is

invoked immediately after startup, or before any other invocation of RND, it

will always produce the same result: 0.185564016. The next invocation will

also be the same, no matter which Commodore 64 is used or at what time,

and the next will be the same, too. Since the sequence is deterministic, the

pattern produced by the 10 PRINT program, when run before any other

invocation of RND, is a complex-looking one that is always the same.

;

Using a semicolon after a string in a PRINT statement causes the next

string to be printed immediately after the previous one, without a newline

or any spaces between them. Other options include the use of a comma,

which moves to the next tab stop (10 spaces), or the use of no symbol at

INTRODUCTION {15}

all, which causes a new line to be printed and advances printing to the next

line. Although this use of the semicolon for output formatting was not orig-

inal to BASIC, the semicolon was introduced very early on at Dartmouth, in

version 2, a minor update that had only one other change. The semicolon

here is enough to show that not only short computer programs like this

one, but also the languages in which they are written, change over time.

:

The colon separates two BASIC statements that could have been placed

on different lines. In a program like this on the original Dartmouth version

of BASIC, each statement would have to be on its own line, since, to keep

programs clear and uncluttered, only a single statement per line is allowed.

The colon was introduced by Microsoft, the leading developer of micro-

computer BASIC interpreters, as one of several moves to allow more code

to be packed onto home computers.

GOTO

This is an unconditional branch to the line indicated—the program’s only

line, line 10. The GOTO keyword and line number function here to return

control to an earlier point, causing the first statement to be executed end-

lessly, or at least until the program is interrupted, either by a user pressing

the STOP key or by shutting off the power.

 GOTO, although not original to BASIC, came to be very strongly asso-

ciated with BASIC. A denunciation of GOTO is possibly the most-discussed

document in the history of programming languages; this letter (discussed

in the “Regularity” chapter) plays an important part in the move from un-

structured high-level languages such as BASIC to structured languages

such as ALGOL, Pascal, Ada, and today’s object-oriented programming

languages, which incorporate the control structures and principles of these

languages.

RUN

Once a BASIC program is entered into the Commodore 64, it is set into

motion, executed, by the RUN command. Until RUN is typed, the program

{16} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

lies dormant, full of potential but inert. RUN is therefore an essential token

yet is not itself part of the program. RUN is what is needed to actualize the

program.

 In a similar fashion, describing the purpose of each of the twelve to-

kens in 10 PRINT does address the underlying complexity of the program.

A token-by-token explanation is like a clumsy translation from BASIC into

English, naively hewing to a literal interpretation of every single character.

Translation can happen this way, of course, but it glosses over nuance,

ambiguity, and most important, the cultural, computational, and historical

depth hidden within this one line of code. Plumbing those depths is pre-

cisely the goal of the rest of this book. The rest of this book is the RUN to

the introduction here. So, as the Commodore 64 says . . .

 READY.

PLaN OF ThE bOOk

The more general discussions in this book are organized in five chapters

and a conclusion. Preceding each of the five chapters and before the con-

clusion are six “Remarks.” These are more specific discussions of particular

computer programs directly related to 10 PRINT; they are programs that

the authors have found or (in the spirit of early Commodore 64 BASIC

programmers, who were encouraged to modify, port, and elaborate code

and who often did so) ones that the authors have developed to shed light

on how 10 PRINT works. These remarks are indicated with “REM” to refer

to the BASIC statement of that name, one that allows programmers to use

a line of a program to write a remark or comment, such as 55 REM START

OF MAIN LOOP.

 The first chapter, Mazes, offers the cultural context for reading a maze

pattern in 1982. The chapter plumbs cultural and scientific associations

with the maze and some of the history of mazes in computing as well.

Regularity, the second chapter, considers the aspects of 10 PRINT that

repeat in space, in time, and in the program’s flow of control. The aesthetic

and computational nature of repetition is discussed as well as the interplay

between regularity and randomness. The third chapter, Randomness, of-

fers a look at cultural uses and understandings of randomness and chance,

as they are generated in games, by artists, and in simulations. It aims to

INTRODUCTION {17}

show that behind a simple, commonly used capability of the computer lie

numerous historical associations and uses, from the playful to the extraor-

dinarily violent. BASIC, the fourth chapter, explains the origins of BASIC

and describes how this language came to home computing. The ways in

which short BASIC programs were circulated is also discussed. The fifth

chapter, The Commodore 64, delves into the computer’s history, exploring

the machine on which 10 PRINT runs. The most relevant technical topics,

including the PETSCII character set, the VIC-II video chip, and the KERNAL

(the Commodore 64’s operating system, stored in 8K of ROM) are also dis-

cussed. This chapter situates 10 PRINT in the context of its platform and

that platform’s rich cultural contexts.

 The remarks reflect on a series of slight variations in the original BA-

SIC program, all of which are also in Commodore 64 BASIC; on ports of 10

PRINT to different languages and computers; on several ports and elabo-

rations of 10 PRINT on the Processing platform; on a collection of one-lin-

ers, including some Commodore 64 BASIC one-liners found in early 1980s

print sources; on an Atari VCS port of the program; and on some greatly

elaborated versions of the program in Commodore 64 BASIC. The last re-

mark includes elaborations that generate stable full-screen mazes, allow a

user to navigate a symbol around those mazes, and test those generated

mazes for solubility.

 One line of code gives rise here to an assemblage of readings by ten

authors, offering a hint of what the future could hold—should personal

computers once again invite novice programmers to RUN.

REM VARIATIONS IN BASIC {19}

15
REM

VaRIaTIONS
IN baSIC

EMULATING THE COMMODORE 64

UNBALANCED

WEAVE

CORNERS

CORNERS AND DIAGONALS

FOUR WALLS

TWO WALLS

POKE

RANDOM SOUNDS

{20} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Even small changes to the 10 PRINT code can have a significant impact

on the visual output and the pattern produced. The output of 10 PRINT

has a unique visual appeal that can be understood in terms of design (a

diagonal vs. an orthogonal composition, for instance), and in terms of how

it plays against the contextual expectations of the historical period when

it emerged (all-text BASIC programs on the one hand and graphical soft-

ware, particularly videogames, on the other).

 To understand more about this, it’s possible not only to read the pro-

gram the way one might go over a poem or other literary text, but also to

modify the program and see what happens, as the Commodore 64 User’s

Guide and RUN magazine explicitly invite programmers to do. Writing

code can be a method of reading it more closely, as was recognized de-

cades ago. The text accompanying the first two printed variants suggested

modifying the distribution of characters (in Commodore 64 User’s Guide)

and adding code to cause random color changes (in the magazine RUN).

This section shows the results of doing the first of these, explores what hap-

pens if other PETSCII characters are chosen for display, and finally gives a

one-line variation that uses POKE to directly write to screen memory.

 As tweaking the program will show, 10 PRINT is a kind of optimal so-

lution that is uniquely elegant in its design space, that of the Commodore

64 BASIC one-line maze generator. Any similar attempt is both less concise

(it requires more code) and less expressive (it resembles a maze less or

produces a less interesting visual pattern). In fact, the concision of the code

and the expressiveness of the image are tightly related. They arise out

of a unique set of constraints and interactions, particularly the interaction

between the desire to constrain the program code to a single line and the

sequence of adjacent characters in the PETSCII table.

EMULaTINg ThE COMMODORE 64

The Commodore 64 was an extremely popular computer; many millions

of units were sold and many remain in working condition. It is still possible

to cheaply acquire a Commodore 64, hook it to a television, and operate

it as users of the 1980s did. When one’s goal is to provide a classroom

of students with access to the platform, however, or when one wishes to

be able to play with and program for the Commodore 64 in many differ-

REM VARIATIONS IN BASIC {21}

ent locations on one’s own contemporary notebook computer, there is a

more practical alternative to finding, setting up, and starting up the classic

taupe unit.

 This alternative is a Commodore 64 emulator, a software version of

the computer that runs on contemporary hardware and functions in the

way the original Commodore 64 did. In 1983, a Commodore 64 could be

purchased for $600. Today, for those who already have Internet-connected

computers, it costs nothing to download and use an emulator. Emulators

have been disparaged as inadequate attempts to mimic computers; while

they do not capture the material aspects of older computers, they need

not be considered as poor substitutes. Instead, an emulator can be usefully

conceptualized as an edition of a computer.

 When developers produce a program, such as the free software emu-

lator VICE, that operates like a Commodore 64, it can be considered as

a software edition of the Commodore 64. It isn’t an official or authorized

edition—only being a product of Commodore would allow for that. (There

are official, authorized emulators for some systems, but VICE and many of

the most frequently used emulators are not official.) An emulator like this is

an attempt—more or less successful—to produce a system that functions

like a Commodore 64. The development of an emulator typically takes a

great deal of effort and can be extremely effective, as it is in the case of

VICE. Thinking of this as an edition of the system seems to be a useful way

to frame emulation, as it allows users to compare editions and usefully un-

derstand differences and similarities. Some emulators (like some editions)

may be better for teaching, for casual reading or play, or for research and

study. Instead of dismissing the emulator as useless because it isn’t the

original hardware, it makes more sense to consider how it works and what

it affords, to look at what sort of edition it is.

 The BASIC programs printed in this chapter can be run on a Com-

modore 64 emulator. The reader is encouraged to download an emulator,

run the programs, and imagine how various differences between emulation

and the original hardware influence the experience. For instance, the mod-

ern PC keyboard does not have the Commodore 64 graphics characters

printed on the keys, and mapping the Commodore 64 keys to a mod-

ern keyboard layout is not straightforward. Graphically, a composite video

monitor or television display attached to a Commodore 64 do not function

exactly like a modern LED flat panel; the pixels drawn by an emulator are

{22} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 15.2

10 PRINT CHR$(198.5+RND(1)); : GOTO 10

Figure 15.1

10 PRINT CHR$(205.25+RND(1)); : GOTO 10

REM VARIATIONS IN BASIC {23}

overly crisp when compared to those seen on an early display. An emulator

lets the user to save the current state of memory, registers, and so on more

easily than BASIC programs can be saved to and loaded from disk on the

hardware Commodore 64.

UNbaLaNCED

The Commodore 64 User’s Guide encourages users to modify its version

of 10 PRINT in this way: “If you’d like to experiment with this program, try

changing 205.5 by adding or subtracting a couple tenths from it. This will

give either character a greater chance of being selected” (1982, 53).

 Figure 15.1 shows the effect of changing the “.5” to “.25.” As one

diagonal predominates, the perceived architecture of the maze tends to

long corridors along that direction. More extreme variations, such as go-

ing to or beyond 0.95 or below 0.05, present what looks like a regular

diagonal pattern with a very few lines going the other way, as if they were

occasional defects.

WEaVE

There are no other adjacent characters in the PETSCII data set that, when

substituted for the diagonal ╲ and ╱, will result in the construction of a tra-

ditional orthogonal maze, one that is aligned to the vertical and horizontal

axes of the screen. Using vertical and horizontal bars, for example, results

in a disconnected weave (figure 15.2), while solid and empty squares result

in a pattern similar to rough static.

 Though the result certainly does not suggest a maze as strongly, this

“Weave” version of the program is not without visual interest. The output

imparts a three-dimensional impression, as if someone had woven bands

of material over and under one another.

{24} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

CORNERS

The Commodore 64 PETSCII character set includes corner characters, such

as 204 and 207, which correspond to lower-left and upper-right corner

pieces. Randomly selecting either 204 or 207, as is done in this program,

produces an image similar to a honeycomb. Diagonal mazes are particu-

larly efficient ones to produce on a Cartesian grid. If a diagonal line is used,

four characters can meet at the corners, whereas only two meet along an

edge when tiles touch left-to-right or top-to-bottom. This pattern (see fig-

ure 15.3) does not offer as many meeting points, but has some of its own

interesting visual properties.

CORNERS aND DIagONaLS

A simplification of the program above involves dropping the INT function,

so that the program chooses at random between other characters in addi-

tion to 204 and 207, the two corners; this “Corners and Diagonals” version

can also choose the two characters in between. These characters are, of

course, 205 and 206, which are the ╲ and ╱ characters that are invoked by

10 PRINT. The result (see figure 15.4) does not have the clear structure of

the 10 PRINT maze and its pathways run for shorter stretches, appearing

to be blocked more frequently. Nevertheless, the pattern that is produced

is somewhat compelling in its confusion of elements.

FOUR WaLLS

A reasonably intuitive method of constructing a maze-grid is to fill in one

edge of each square on a sheet of graph paper. That is, when considering

any specific square, fill in the top, right, bottom, or left to form a “wall,”

then move to the next square and repeat. The four characters in this pro-

gram correspond to a top-wall, bottom-wall, left-wall or right-wall. Such

characters exist in PETSCII in both “thick” and “thin” variants; the ones

used in figure 15.5 are the thick ones. Such a process is unfortunately less

elegant, as these characters are not (in either variety) placed adjacent to

one another in the PETSCII character set—for instance, the ones used here

REM VARIATIONS IN BASIC {25}

Figure 15.4

10 PRINT CHR$(204+(RND(1)+.5)*3); : GOTO 10

Figure 15.3

10 PRINT CHR$(204+(INT(RND(1)+.5)*3)); : GOTO 10

{26} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 15.6

10 PRINT CHR$(181+(INT(RND(1)+.5)*3)); : GOTO 10

Figure 15.5

10 PRINT CHR$(181+(INT(RND(1)+.5)*3)+(INT(RND(1)+.5))); : GOTO 10

REM VARIATIONS IN BASIC {27}

are 181, 182, 184, and 185—and so cannot be addressed with a single

base value plus an offset, as was done in the previous program.

 The image that emerges is indeed mazelike, but this image, like the

underlying code, lacks simplicity and elegance. Since top and bottom and

left and right lines can be printed up against each other, a variation in the

thickness of the walls appears—a noticable but potentially distracting im-

plication of messiness and texture.

TWO WaLLS

The selection of characters 181 and 184, a thick left line and thick top line

(figure 15.6), provides the best approximation of the classic orthogonal

maze that is seen in arcade, console, and computer games. Producing it

is still less elegant than selecting between 205 and 206 as PETSCII values.

The characters used are not adjacent, so some trick, such as this one in-

volving the use of INT, must be used to select one of the two at random.

The resulting output is less visually interesting. It is a maze, but is both less

formally dynamic (being aligned to the screen) and less contextually unex-

pected (being typical of familiar game mazes).

POkE

A similar maze pattern can be drawn by directly placing characters in video

memory using the POKE command, which writes directly to memory—

screen memory, in this case, which is mapped to the decimal addresses

1024–2024 (see figure 15.7). The 1024+RND(1)*1000 selects a random

number in this range as the first argument to POKE, pointing that command

at some specific location on the screen. The 77.5+RND(1) selects ╱ or

╲. It should seem odd that after using 205.5 (and thus the values 205 and

206) to refer to these two characters, this program refers to them using the

values 77 and 78. It is, indeed, odd. This difference is due to the PETSCII

codes for characters not corresponding to their screen codes—each char-

acter has a different address for PRINTing and for POKEing into screen

memory. This rather esoteric feature of the Commodore 64 is discussed in

the final chapter of this book, The Commodore 64.

{28} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 This “POKE” program works by randomly selecting one of the one

thousand positions on the screen, randomly selecting the screen code for

╱ or ╲, and placing that code in that memory location. Then, of course,

it uses GOTO 10 to loop back to the beginning and do everything again.

While the steady-state output is a full screen of characters changing one

at time, the program overwrites the existing contents of the screen slowly,

filling in the maze pattern at random.

Figure 15.7

10 POKE 1024+RND(1)*1000,77.5+RND(1) : GOTO 10

REM VARIATIONS IN BASIC {29}

RaNDOM SOUNDS

Finally, consider this considerably more complex program, an audio ana-

logue of 10 PRINT. It plays a sequence of tones chosen from a distribution

of two, both of which have the same timbre that approximates that of a

piano. The selection is done using the same pseudorandom pattern that

10 PRINT uses, thanks to the invocation of RND(1) in line 30:

 10 S=54272 : POKE S+24,15 : POKE S+5,190 : POKE S+6,248

 20 A(0)=17 : A(1)=37 : A(2)=21 : A(3)=76

 30 Q=INT(.5+RND(1)) : POKE S+1,A(Q*2) : POKE S,A(Q*2+1)

 40 POKE S+4,17 : FOR T=1 TO 75 : NEXT

 50 POKE S+4,16 : FOR T=1 TO 150 : NEXT

 60 GOTO 30

 In Commodore 64 BASIC, one can point into a table of PETSCII

characters by simply using 205 and 206 as indices. But there is no similar

built-in way to index into a table of notes. After setting up the sound chip

in line 10, this program builds such a table using the array A in line 20.

Furthermore, the sound chip requires two POKE commands—the ones on

line 30—to change the note frequency. Although this is because the chip

is extremely accurate in its pitch control, it does make for longer and more

involved programs.

 This book does not cover arrays (which are not part of the canoni-

cal 10 PRINT) in any detail; it would move the discussion quite far afield

to explain exactly what is happening in each invocation of POKE in this

program. Suffice it to say that POKE is being used to set the sound chip’s

registers, causing the Commodore 64 to emit musical sounds in a stright-

forward way—the standard way one would produce music in BASIC. The

invocations of POKE are not simply storing values in memory for later use,

nor are they placing values in screen memory, as in the previous example—

yet all of this is necessary to move from a randomized generator of block

graphics to a randomized generator of tones. This program shows how

much easier it is for Commodore 64 BASIC to work on graphic, rather than

musical, elements.

MAZES {31}

20
MaZES

WHAT IS A MAZE?

MYTH, RITUAL, AND ALLEGORY

THE LABORATORY MAZE

THE COMPUTERIZED MAZE

ENTERING THE MAZE

{32} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

What is the pattern produced by 10 PRINT? The 1982 Commodore 64

User’s Guide says the program uses the two graphical characters “for the

maze” (53). And the programmer who submitted the one-line version in

the magazine RUN also described it as “drawing a continuous maze” (13).

Surely, the program would be less interesting if framed as “Random Pat-

tern of Lines.” But if it is a maze, what kind of maze is it and what cultural

associations does that evoke?

 An adult seeing a maze appear on the screen, after a young program-

mer has typed in and run 10 PRINT, could easily trivialize and dismiss it as

simply a childish amusement. It is easy to overlook the cultural resonance

and historical depth of the maze, which could be seen as nothing more

than a flat, empty, puzzle-book diversion. The same dismissal can be lev-

eled against short, recreational BASIC programs, which can seem trivial

and of no importance. This chapter rejects that view and looks deeper into

the maze—in part, to look deeper into 10 PRINT and the surrounding cul-

ture of creative, exploratory computing.

 The maze synthesizes the program’s output as a visual trope that

evokes a long history of meaningful mazes. Mazes can be visual renderings,

textual artifacts, horticultural expanses, and architectural spaces. Situated

as amusing puzzles, places of terror, behavioral proving grounds, or invi-

tations to contemplative meanderings, in the West the maze’s meanings

date back to the legend of Theseus and the Minotaur in the labyrinth of

Knossos, a bewildering and life-threatening space. In more recent times,

mazes have served as spaces for playful movement and as commonplace

diversions in puzzle books. Sometimes, mazes are abstract mathematical

objects or scientific tools for studying animal behavior. And in computer

games, the maze takes on an archetypal, structural frame for adventure,

chase, and combat. A full cultural history of mazes throughout the centu-

ries is outside of the scope of this book (for in-depth historical accounts

of mazes, see Doob 1990, Kern 2000, and Matthews 1922). Instead, this

chapter highlights the mazes throughout history that Commodore 64 users

in the 1980s would have been likely to associate with the output they saw

after running 10 PRINT.

MAZES {33}

WhaT IS a MaZE?

A maze can mean a structure, a network of connected passages that con-

tains a navigable route as well as dead ends and backtracks. Or, a maze can

have a more abstract meaning: a complex network of paths with or with-

out a solution. In popular use, the meaning of the term “maze” has been

stretched to cover intellectual puzzles, tangled legal code, and confusing,

labyrinthine situations. 10 PRINT’s output can thus evoke a rich collection

of associations by means of a simple yet resonant figure.

 10 PRINT meets some of the criteria that William Henry Matthews

establishes for mazes in his Mazes and Labyrinths (1922): they are “works of

artifice,” not “‘labyrinths’ of nature, such as forests, caverns, and so forth”;

they are endowed with “an element of purposefulness in the design” (182).

They also betray “a certain degree of complexity” (183). Finally, he requires

“communication” among the maze’s component parts and between its “in-

terior and exterior” (183).

 This short program is, indeed, a complex work of artifice. However,

ironically, the compelling and captivating quality of 10 PRINT arises from

the lack of an obvious, purposeful designer. Someone wrote the line of

code, certainly, but the specific person who was the author was not named.

The purposefulness of the design arises from a set of accidents, including

the BASIC RND function and the appearance of the two diagonal line char-

acters, elements that were themselves created anonymously. Furthermore,

in 10 PRINT, communication among the component parts is established

by accident, from gaps that appear between slashes. Overall, the construc-

tion of 10 PRINT’s maze is considerably more muddled than Matthews’

criteria would seem to demand.

 As material, architectural structures, mazes have a finite size. But there

is no limit to how long 10 PRINT can be left running. As an endless produc-

tion, 10 PRINT suggests the form of a maze, but it does not always offer a

path or solution. As such, the program exists in between the two definitions

of maze: a physical structure on the one hand and an intricate confusion on

the other.

 Mazes typically offer at least one path; the key structural difference

is whether they offer more than one—whether they are unicursal or mul-

ticursal. A unicursal maze offers a single path along which walkers pro-

ceed, never making a choice about where to turn. A multicursal maze, by

{34} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

contrast, invites wrong turns, has dead ends, and may even have multiple

paths to the exit or center.

 In unicursal mazes, the navigable space is bounded and a single path is

set; users have no directional decisions to make, save to follow the meander-

ings of the path, leaving their attention, mind, or emotions free to wander or

focus elsewhere, while continuing to the end at the center of the maze or to

a unique exit. The unicursal maze sometimes allegorizes temporality, offer-

ing a spiritual and contemplative space to the walker. Unicursal mazes can

be traversed repeatedly and ritualistically for peace and spiritual comfort. In

unicursal hedge mazes the hedges often limit one’s vision to an immediate

and foreshortened horizon, suggesting enclosure and protection.

 Multicursal mazes, by contrast, ask to be solved. Instead of following

the unicursal maze’s predetermined path, visitors to a multicursal maze run

the risk of getting lost as they attempt to find the exit.

 The 10 PRINT program itself (not its output) can be seen as a unicur-

sal maze. When inputting this program, beginning programmers follow a

series of characters, copying them from manual or magazine to computer

terminal. The program starts as a puzzle for those who have some under-

standing but not complete knowledge of BASIC and the Commodore 64.

Once the code has been typed and executed and the programmer wit-

nesses the maze, there is no returning to a naive view of this line of code—

it is impossible to read the line without imagining its output. With some

study, it becomes clear how the program produces this output: the single

MAZE VS. LABYRINTH

The terms “maze” and “labyrinth” are generally synonyms in colloquial English. Still,

many scholars and historians have argued over the distinction between these two

terms. In the most popular proposed distinction, “labyrinth” refers only to single-

path (unicursal) structures, while “maze” refers only to branching-path (multicursal)

structures.

 In this book, the terms “maze” and “labyrinth” are not used to distinguish two

different categories of structure or image. Instead, the two terms indicate a single

conceptual category, with this book primarily using the term “maze” for both.

MAZES {35}

path through this short but initially tangled program is revealed.

 Yet the program’s output also suggests a multicursal maze, because

the patterm can apparently be traversed, or at least attempted, in several

ways. Even though the maze generates itself anew line by line, it does so

slowly, and at any given point a single screen can be interpreted and one

can consider whether a solution is possible. To do so does require that the

viewer make some assumptions about where the maze starts and ends as

well as about other matters. (An exploration of this process appears in the

remark Maze Walker in BASIC). In any case, the invitation to see this as a

multicursal maze is clear to many.

MyTh, RITUaL, aND aLLEgORy

The novice programmers of the Commodore 64, particularly those who

were young, would have no doubt been enticed by the depiction of maz-

es as sites for adventure. Mazelike environments, printed in modules and

drawn by hand, were a part of Dungeons & Dragons, the popular role-

playing game that began in the mid-1970s. Dungeon masters in that game

plotted spaces, commonly on graph paper, full of monsters and fiends that

were inspired by several fantastic and legendary sources, including the

myths of ancient Rome and Greece.

 The most famous ancient maze of myth is the labyrinth of Knossos,

Crete, in which Theseus encounters the Minotaur, a horrifying hybrid, the

cursed offspring of Minos’s wife and a bull (Minos + tauros). Like a basement

or attic in Gothic literature (see Gilbert and Gubar 2000), the Knossos laby-

rinth is the hiding place for a defective, dangerous family member. Theseus

arrives at Knossos and wins the affection of the king’s daughter Ariadne,

who offeres him a means of returning from the labyrinth after he enters it

to defeat the Minotaur. She suggests he tie a string to the entrance and

unravel it as he proceeds through the maze so that he can follow it back to

the entrance. Thanks to Ariadne’s thread, Theseus successfully makes his

way through the maze, slays the Minotaur, and escapes. The allegory here

invokes the danger of illicit desire; it also shows that those who hold tight

to a predetermined path can succeed.

 The Knossos maze is best understood in terms of Theseus’s narrative

path through it, not as the space of the labyrinth itself. This transforma-

{36} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 20.1

The central labyrinth and maze patterns of Amiens Cathedral were built in the

thirteenth century. Courtesy of Stephen Murray. ©1991, Stephen Murray.

MAZES {37}

tion from multicursal, unknowable confusion to a marked and bounded

pathway reflects the mastery of any system, from challenging, mysterious,

threatening, and deadly to easy, known, mapped, and tamed. This original

labyrinthine myth underscores the reality of many puzzles: when the solu-

tion is known, the puzzle seems simpler if not trivial. Rather than the fan-

tasy of a warrior moving freely through an open map, the tale of Theseus

teaches that success comes from adhering to a string, a particularly useful

analogy in the unforgiving corridors of programming syntax.

 The morphing of the maze from complex to simple (or at least un-

derstandable) is part of the Commodore 64 user’s ideal encounter with 10

PRINT, but the user is more like the creator of a maze than its explorer.

Daedalus, the architect of the labyrinth at Knossos, holds a place of honor

as puzzle maker supreme. Daedalus understands that planning, intention-

ality, and construction are integral characteristics of the mystique of the

maze. 10 PRINT thus channels Daedalus more than Theseus: the program

is a blueprint for a maze, not just a structure or image that appears without

any history or trace of its making. And at the same time, 10 PRINT itself

takes the role of maze creator: the programmer may be the maze’s archi-

tect, but the program is its builder.

 The associations evoked by 10 PRINT may begin with the Minotaur’s

maze, but they continue through history, adding to the complex symbology

and sacred rites of Christian churches and then rising in the turf and hedges

of the countryside. Mazes take on religious import on the floors of cathe-

drals and basilicas. Among the largest and most famous church labyrinths is

at Chartres, France, built circa 1200 CE. It is a walkable, eleven-circuit laby-

rinth ornamented around its outer ring with lunations (Kern 2000, 153), and

has been an object of endless speculation, from rumors of treasure buried

under its center to theories about its functioning as a lunar calculator.

 Church mazes are usually meant to be walked or crawled on the path

to penance. The names of these include Labyrinth of Sin, The Path to Re-

demption, and The Path to Jerusalem. These pathways symbolized paths

to Christian salvation, relating a Paschal instead of a Minoan mystery. In-

terestingly, the path of the meanderings in the labyrinths at the cathedrals

at Chartres and at Amiens are exactly the same, even though the former is

circular and the latter octagonal, as seen in figure 20.1 (Wright 2001, 60).

 10 PRINT retains a dimension of spiritual mystery. The program

certainly doesn’t seem to be part of any religious practice, but as code,

{38} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

DANCING A COMPLEX STRUCTURE

Mazes are usually imagined as architectural, material, and fixed, but cultures have

long noticed that they can correspond directly to a human activity, dance. In The

Iliad, Homer credits Daedalus both with a dance floor and a labyrinth. Kern specu-

lates that the labyrinth was a choros, which has the double meaning of dance and

dance surface. Given that no labyrinthine buildings survive in Crete, the depictions

of labyrinths on coins may indicate the path of a dance—particularly since maze

dances have survived. Theseus meets the Minotaur in a Minoan maze, but he and

his men immortalize that adventure in dance on the way back. As Matthews explains,

“On the island of Delos they performed a peculiar dance called the Geranos, or

‘Crane Dane,’ in which they went through the motions of threading the Labyrinth,

and . . . this dance was perpetuated by the natives of that island until fairly recently”

(1922, 19). These dances have continued to be performed elsewhere, and numer-

ous other labyrinthine dances are known, some with military purposes and some

tied to rites of spring. Martha Graham adapted the motifs of the Cretan maze story

in “Errand into a Maze” (1949), where it is Ariadne who is trapped by the Minotaur.

After contemplating her escape from the labyrinth—represented by a rope on the

floor—“she breaks her pattern and breaks her tormentor. The maze of rope reflects

the maze of her mind and the maze of the myth” (Zlokower 2005).

 The dancer’s relationship to the maze is analogous to that of the amateur

learning BASIC. As the novice programmer prepares to face the Minotaur machine,

a single line of code serves as a clue leading to safety. As with the maze dance, it

is in tracing this labyrinth by typing and running 10 PRINT that the very corridors

are created.

 The maze dance has not been completely forgotten in digital media. It may

seem odd to think of Dance Dance Revolution as a maze game, but its arrows do

show a labyrinthine path that the dancer, standing in place, is supposed to navigate.

Missing a step is allowed, but the perfect performance will be as ritualized a motion

through space as a Pac-Man pattern. Looking beyond the arcade, Diana Slattery

has created a work called The Maze Game that brings together the maze as a site

of meaningful dance. In her digital work and companion novel, moving through a

lethal maze takes grace and literacy, since the maze is constructed out of glyphs from

Slattery’s created visual language “glide.” Slattery’s work stands at the intersection

of dance, maze, and narrative, showing a new connection.

MAZES {39}

10 PRINT taps into the mazelike mystery that visual symbols and glyphs

evoke: to type in a program from a manual is to follow the twisted line

from code to output and back again. The programmer follows the single

path of the code from ignorance to knowledge, a pilgrim’s path. 10 PRINT

may not help programmers attain salvation, but it does offer an accessible

means by which novice programmers can trace the steps of writing code to

be initiated into the mysteries of a magic box, the personal computer.

 As with a rosary and the Stations of the Cross, the Christian labyrinth is

unicursal. None included dead ends or choice points until the fifteenth cen-

tury, when multicursal aberrations appeared, as Helmut Birkhan explains,

as a “symptom of the secularization of the labyrinth idea” (quoted in Kern

2000, 146). With this secular turn, the maze becomes a space of leisure as

well as ritual, and is lined with hedges, marked by rocks, and surrounded by

grooves. Church-like mazes and mazes that invite a ritual attitude surfaced

throughout Europe, although several of these were more related to pagan

rites of spring than to Christianity. In A Midsummer Night’s Dream, the fa-

erie queen Titania ponders the ghostly outlines of abandoned turf mazes:

 The nine men’s morris is fill’d up with mud,

 And the quaint mazes in the wanton green

 For lack of tread are undistinguishable. (2.1.98–100)

As more and more pagan and secular mazes emerged alongside church

and other labyrinth traditions, they retained some of their profound, sacred

nature while also offering puzzle play and leisure.

 Hedge mazes and 10 PRINT possess affinities that their material

differences obscure. Hedge mazes need to be planned and plotted, but

unlike most other mazes, they must grow in order to fulfill that plan. 10

PRINT’s maze does as well, albeit in a different way than bushes do: once

seeded, the computer-generated maze grows without tending, growing

until the viewer interrupts it.

 Hedge mazes offer decoration in a garden, but as leisure devices in-

stead of religious rituals, they also offer exhilaration and vertigo when they

are “run.” Writing of a famous half-mile hedge maze at Hampton Court

Palace near London, Matthews describes it as an “undiluted delight” to

“scores of hundred of children, not to mention a fair sprinkling of their

elders” (1922, 129). This way of encountering the maze was carried into

{40} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

video games such as Doom (1993) and Pac-Man (1980). 10 PRINT’s con-

tinuously cascading display echoes the playful zigzagging of children gam-

boling through the hedges.

ThE LabORaTORy MaZE

The maze traveler has had many manifestations: the brave warrior facing

obstacles, the penitent disciple undertaking a divine ritual, the Elizabethan

child experiencing vertiginous pleasure. But no discussion of the cultural

touchstones of mazes (and their resonances for maze creators) would be

complete without that humbler maze walker, or crawler, the laboratory rat.

In the context of psychological testing, the rat’s encounter with the maze

does not prove bravery, piety, or ingenuity so much as it reduces human

agency and learning to behavioral conditioning.

 The first maze constructed for rats by researchers was built in the

late 1890s—but it was not originally used for testing the creatures. Wil-

lard Small of Clark University built a maze environment to allow rats to eat

and exercise when they weren’t taking part in experiments. Small wanted

the environment to simulate the burrows that rats inhabit in nature, but

he modeled the first laboratory rat maze after the Hampton Court Palace

maze (Lemov 2005, 25). The restorative maze is quite consonant with the

purposes for which the Hampton Court Palace maze was built, although

Small was attending to the constitution of rodents rather than royals.

 John B. Watson used maze environments for more familiar research

purposes: to determine whether rats could make their way through a maze

under different experimental conditions. After his rats had learned their

way through a maze, Watson blinded or otherwise maimed the creatures

to deprive them of different senses. His work attracted public attention,

and he was denounced in a New York Times editorial as a torturer. Watson,

however, was sure of his behavioral science agenda, and he concluded

that the same principles of operant conditioning that apply to rats apply

to people as well. By 1916 he had moved on to experiments with infants.

In one famous experiment he conditioned a baby, “Little Albert,” to fear a

furry white rat and furry white things in general (Buckley 1989).

 The use of mazes in experiments with rats increased greatly during

the 1920s. Behaviorism, the perspective that all animal and human actions

MAZES {41}

are behaviors, is now mainly associated with another American scientist,

B. F. Skinner. His operant conditioning chamber, also known as the Skinner

box, is another famous environment for laboratory animals that was built

decades after Watson’s mazes saw their first use. While Skinner’s name is

better known today, Watson’s maze remains emblematic—and similar envi-

ronments are still used for experiments today.

 In 1959, one of the earliest computer programs written for fun—an

example of “recreational computing”—depicted an experimenter’s maze.

The program, perhaps the first computer program to draw a maze of any

sort, was written for the TX-0 at MIT by Douglas T. Ross and John E. Ward.

The TX-0 was an experimental computer that provided one of the first op-

portunities for people to program when not working on an official project.

It also allowed programmers to work on the machine interactively, much

as Commodore 64 programmers later would, rather than submitting batch

jobs in the form of decks of punched cards. In the program that became

known as “Mouse in the Maze,” a mouse moves through a maze, eating

cheese. The mouse could also consume martinis, which cause it to become

disoriented and degrade its performance. In this case, the environment

implemented was not the hedge maze of diversion and fun, but a more

staid experimenter’s maze. This essentially serious maze was then made

playful with the addition of an amusing alcoholic reward and the simulation

of appropriate behavior.

 10 PRINT picks up on aspects of “Mouse in the Maze.” Its output is a

regular arrangement of “walls” in a grid—akin to the display of that earlier

program and similar to the arrangement of the stereotypical laboratory

maze. “Mouse in the Maze” does not present the compelling creation of an

inspired Daedalus, but a behaviorist experiment. This maze is a challenge

to intelligence—not, however, a romantic, riddling intelligence, but a clas-

sically conditioned, animal kind. It also brings in the idea of the scientist,

who may be indifferent to the struggles of the creatures lost in the maze.

 But who is the user at the interface of 10 PRINT, the scientist or the

rodent? When 10 PRINT runs, it may generate its maze relentlessly, but it

does not trap the user like a rat. Instead, given the top-down view and the

lack of a user-controlled maze walker, the computer presents the program-

mer with the point of view of the maze designer, offering in a sense to

collaborate with the user in creating a new design. Amid the playful and re-

ligious connotations of the maze are those things the experimenter’s maze

{42} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 20.2

Information theory pioneer Claude Shannon pictured ca. 1950 with his mechani-

cal mouse Theseus and its magnetic metal maze. Courtesy and copyright MIT

Museum.

MAZES {43}

hints at: that the computer is a scientific instrument, and the walker of the

maze might be not a Greek hero but a small creature driven by hunger.

ThE COMPUTERIZED MaZE

In the early 1950s the mathematician and engineer Claude Shannon de-

signed a mechanical mouse (see figure 20.2) that appears to solve the

same kind of maze a real mouse might be expected to navigate in one of

Watson’s behavioral experiments. Shannon, a foundational figure in mod-

ern computing, named the mouse Theseus, collapsing the mythological

hero and his noble plight into a mere contraption guided by a mechanized

system. Although featured in both Time and Life (“Mouse with a Memory”

1952; “Better Mouse” 1952), Theseus itself was not a sophisticated piece

of artificial intelligence. It was simply a wooden mouse on wheels with a

bar magnet inside and copper-wire whiskers. The true magic of this mouse

resides underneath the maze, in a system of electronic relays that switch

positions when the mouse’s whiskers touch corresponding walls in the

maze above. The first time through a maze, Theseus blunders randomly,

propelled by its magnet, flipping the relays underneath whenever it en-

countered a passage. The next time, Theseus navigates the maze perfectly,

thanks to the relays underneath, which record the correct route.

 This means of negotiating the twisting passages of Shannon’s maze

was not mere novelty. As Time explained in 1952, Theseus is “useful in

studying telephone switching systems, which are very like labyrinths.” In-

deed, George Dyson argues that Theseus inspired the RAND Corporation

engineer Paul Baran’s “adaptive message block switching”—the precursor

to what is now known as packet switching, the protocol that defines the

way data flows on the Internet (Dyson 1997, 150).

 Aside from its significance to network computing, Theseus serves as

a vivid example of an early connection between mazes and computers.

Furthermore, Theseus shares a procedural resonance with 10 PRINT. The-

seus “learns” through repetition, or looping, the fundamental process that

is used to draw the 10 PRINT maze. And like a computer program, the

mouse in Shannon’s maze is only the surface-level signifier of much deeper

processes. Theseus in fact is not only dumb but, by itself, inert. The “brain”

of Theseus lies in the relays hidden underneath the surface of the maze,

{44} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

much in the same way the on-screen design of 10 PRINT is generated by

a piece of code, initially not very clear, which depends upon an invisible,

low-level call to a pseudorandom number generator.

 Computers did not completely change the cultural idea of the maze,

but they did provide new ways to represent, generate, solve, and play in

mazes. And, as computers came into the home and became widely ac-

cessible, they helped to bring mazes into daily life once again. In part,

this happened thanks to the work of early computer scientists who wrote

programs to generate mazes. But many popular mazes were not as com-

putationally sophisticated. They were, however, integrated cleverly into

enjoyable computer games that reached a mass audience.

 It is useful to group these computer mazes by the point of view they

offer to their interactors. There are first-person mazes, partially represented

on a screen, which show the wall or passageway directly in front of the maze

walker. There are also second-person mazes, textually represented, in which

the maze walker is the “you” to whom the traversal of the maze is narrated.

And, there are third-person mazes, sometimes fully represented mazes, in

which the maze walker maintains a large-scale or omniscient view.

 A significant early maze program is Maze, which presents a 3D view

of a maze in which a player can see (and shoot) opponents. This program

was created in 1973 at the NASA Ames Research Center by Steve Col-

ley and Howard Palmer and later made into a multiplayer game by Greg

Thompson. In 1974 the program was then expanded at MIT; Dave Lebling

wrote a server that provided text messaging and supported up to eight

players or robots. The same program was later ported to the Xerox Alto as

Maze War.

 The Maze environment was created for entertainment, but it was re-

ally little more than a convoluted battlefield—not a space to be explored

or solved and certainly nothing like the entirely nonviolent English hedge

maze. Other terrifying maze environments became a staple of early home

computer mazes, and some contained a Minotaur-like threat. 3D Monster

Maze was an early example, developed in 1981 and released the following

year on the Sinclair ZX81. The game uses character graphics and features a

randomly generated 16 × 16 maze with a Tyrannosaurus Rex.

 Although 3D mazes with some more exploratory aspects were offered

in the Ultima, Wizardry, and Bard’s Tale series, the maze is more a frighten-

ing site for combat than a playful place of discovery in many first-person

MAZES {45}

games. This can be seen as early as 1984 in the Commodore 64 game Skull,

which allows the player to search for treasure and sends threatening skulls

into the maze as opponents. Wolfenstein 3D (1992) and Doom (1993) make

this perspective on a mazelike environment even more fearsome. Sound

design, darkness, and the use of conventions from horror films that give the

effect of seeing without peripheral vision all contribute to this effect. The

first-person maze, in addition to connecting players to the perspective and

to some extent the subjective experience of their maze-bound characters,

is likely to inspire close and constant attention.

 Many of the earliest computer-presented mazes are not visual; they

are described textually, narrated to the player from a second-person per-

spective. Second-person mazes of a sort are found in early text-based

games such as Hunt the Wumpus, a 1973 BASIC program by Gregory Yob.

Hunt the Wumpus departs from the standard grid-based BASIC game by

providing a playing field of a different topology, a dodecahedron. The

player stalks and is stalked by a formidable opponent, much as the dino-

saur later pursues the player of 3D Monster Maze.

 Textually described mazes developed into their most complex and

confusing configurations in text-based adventure games of the sort now

called interactive fiction. The genre began with the groundbreaking Ad-

venture, written by Will Crowther for the PDP-10 in 1976 and later expand-

ed by Don Woods into a full-fledged underground adventure. Basing the

game in part on his own caving experience in the Mammoth Cave system,

Crowther includes a ten-room maze introduced with “YOU ARE IN A MAZE

OF TWISTY LITTLE PASSAGES, ALL ALIKE.” “YOU” works to connect the

player to the character in the maze, although in a different way than first-

person 3D games do. For one thing, that pronoun sometimes is explicitly

used to address the operator of the program rather than to indicate the

main character, as when Adventure outputs “IF YOU PREFER, SIMPLY TYPE

W RATHER THAN WEST.”

 From Hunt the Wumpus through Adventure, another notable differ-

ence is that second-person mazes are typically turn-based rather offering

real-time play. They also are embedded in a broader context of simu-

lated spaces. Sometimes these are confusing ones that, even if they are

not called mazes, require that players map them on paper. In any case,

they usually invite different forms of systematic, high-level thinking that al-

lows the environment to be figured or puzzled out. The player’s activity is

{46} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

thoughtful and paced at the player’s discretion rather than being based on

twitch reflexes.

 When players draw maps of the mazes in Adventure, Zork, or other

interactive fictions, they transform textually represented second-person

mazes into visually represented third-person mazes. Such maps convey a

sense of mastery of the maze even though a third-person perspective on a

maze does not guarantee its safety or solubility.

 Shannon’s Mouse in the Maze offered an early glimpse of the third-

person computer maze, but this form truly erupted in the Unites States less

than two years before the release of the Commodore 64, in October 1980.

This is when the original Pac-Man arcade game arrived from Japan. In

Japan, the genre of games inspired by Pac-Man is called “dot-eat” games

(ドットイート), but in the United States such games are called maze or maze

chase games.

 Pac-Man cannot thread his way through the environment to find an

exit—except for the tunnel that links the left and right side of the screen

together. The playing field may be better described as being littered with

obstacles rather than as being “a maze” in the sense that church labyrinths

and hedge mazes are usually understood. Nevertheless, the playing field

was called a maze from the beginning. The New York Times called Pac-

Man “a circle with a big mouth that eats up dots in a maze while other big

mouths try to eat it up” (Latham 1981), while Newsweek mentioned the

“maddening Pac-Man maze” (Langway 1981). The puzzle the game poses

to the voracious Pac-Man is not to get out of the maze, but to run through

all of it while avoiding the pursing monsters.

 Pac-Man’s maze is aligned to the axes of the display: the paths are

either horizontal or vertical. But just as the tanks in Tank (1974) and the

player’s ship in Asteroids (1979) can turn and fire in many different direc-

tions, it is possible to represent a maze that is not “orthogonal” in this

way: 10 PRINT provides a very simple alternative, a diagonal maze. Third-

person videogame mazes, in contrast, are almost always aligned as in Pac-

Man, even those that predate the dot eater.

 Magnavox’s infamous K. C. Munchkin (1981) is something of a Pac-

Man knock-off that was itself knocked off shelves by a famous court ruling,

Atari v. Philips. To players today, the game looks like just another maze

game. With doors that open and close, only twelve dots on the screen, and

other notable differences, it now seems impossible to confuse with Pac-

MAZES {47}

Man. The two games are similar in that they both feature mazes that are

orthogonally aligned. But among K. C. Munchkin’s differences are that it

allows players to take on the role of Daedalus, designing their own levels.

 Other videogame mazes, and games with mazy environments, quick-

ly made their way into the home, too. The game bundled with the classic

cartridge-based Atari VCS in 1977 was Combat, which brought the convo-

luted battlefields of Tank into the home. Soon after, that console featured

Maze Craze (1978), which allows players to compete in several different

challenges in maze environments that were automatically generated.

 All of these games treat the screen display as a single complete visual

unit, like the board of a board game. The continuously scrolling maze of 10

PRINT at least suggests a maze that is larger than the screen, even if one

cannot navigate around to see what is offscreen. Another interesting con-

trast to the single-screen maze is a close-up design that puts the player in a

larger-scale maze, seen in the 1979 Atari VCS game Adventure (see figure

20.3). This console game is loosely based on the interactive fiction work of

the same name, and features a hero who can collect treasure despite the

efforts of three dragons. Unlike Pac-Man, in which the player can guide

Pac-Man out a warp gate on one side of the screen and see him enter

on the other side, Adventure contains numerous topologically impossible

warps that are always hidden from view and can only be deduced. Instead

of an overview map of the total maze, each screen is a closeup of simple

paths, often emphasizing discontinuous fragments of other paths that can’t

easily be reached.

 Diagonal orientation of the sort produced by 10 PRINT did have a

place in the design of early mazelike games. It emerged through isomet-

ric video games that introduced diagonal motion at the same time they

challenged the picture plane through the pseudo-3D effect of isometric

perspective. Two isometric games came to arcades in 1982: Q*bert, a

completion/avoidance platformer on an isometric pyramid, and Zaxxon,

an obstacle-racer emphasizing pseudo-3D elements. Neither is particu-

larly mazelike compared to later isometric games from years after the first

version of 10 PRINT. Ant Attack (1983) and Marble Madness (1984) are

examples of games with more convoluted obstacle courses on fields that

were larger than the screen.

{48} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 20.3

Adventure (1979) for the Atari VCS featured a maze to navigate while fighting

dragons and searching for keys to enter castles.

MAZES {49}

ENTERINg ThE MaZE

While 10 PRINT seems to be a noninteractive 2D third-person maze, its

single line of code produces an unusual twist on this form of maze, shifting

it to a different axis than is traditionally used. This is accomplished by the

simple selection of two diagonal character graphics. That design element

introduces another complexity: even though the maze is built from left to

right and down the screen, the walls and paths do not follow this axis of

construction.

 In the mid-1980s, it would be impossible for most users to consider

a maze-generating computer program without thinking of the many com-

puter games that take place in mazes. But, for many, the maze would also

be associated with different types of terror, contemplation, experimenta-

tion, and play. Would the user be Theseus or Daedalus? The scientist or the

rat? Pac-Man or Zaxxon? And would programming be meditating, dancing,

escaping, solving, or architecting a maze? This richness seems to be part of

what encouraged new Commodore 64 programmers to “enter the maze”

by entering this program on their computer, to work at solving and under-

standing this code only to revise, extend, and reimagine it in their own

programs.

 Considering 10 PRINT in light of the cultural history of mazes situates

the program’s output in a space of symbolic meanings and design princi-

ples—the many ways in which something can be seen as mazelike or de-

signed to be mazelike. This view sheds light on the specific ways in which

10 PRINT both echoes and alters earlier notions of a maze. The output is

not unicursal, after the fashion of early labyrinths, nor is it marked for tra-

versal with clear entrances and exits, as in a meditative or hedge maze, nor

is its system of paths continuous and fully explorable, as in a laboratory run

for rats. Instead, 10 PRINT produces something of the visual complexity

of later mazes, but this complexity does not address a particular purpose,

and instead emerges out of an absolute simplicity of design. If 10 PRINT is

a maze in a new and different way, this difference is based in deep similar-

ity to the precursors it resembles, in particular, the way that all mazes arise

out of shared principles of regularity on the one hand and randomness on

the other.

REM PORTS TO OTHER PLATFORMS {51}

25
REM PORTS

TO OThER
PLaTFORMS

APPLESOFT BASIC AND TANDY COLOR BASIC

PERL AND JAVASCRIPT: MODERN ONE-LINERS

PATH: MAZE AS PERVERSE PROGRAM

WHAT PORTING REVEALS

{52} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Adapting a program from one hardware system to another is “porting,” a

term derived from the Classical Latin portāre—to carry or bear, not unlike

the carrying across (trans + lātus) of translation. A port is borne from one

platform to another, and the bearer is the programmer, who must gather

up the details of the original and find places for them amid the particulars

of the destination, attempting to identify and preserve the program’s es-

sential properties. The translator faces these same sorts of problems when

encountering a text, and such problems are particularly acute when the

text is a poem. Where does the poetry of the poem lie? In its rhythm? Its

rhyme? Its diction? Its constraints? Its meanings? Which of these must be

carried over from one language to another in order to produce the most

faithful translation?

 In Nineteen Ways of Looking at Wang Wei, a study of the act and art

of translation, Eliot Weinberger (1987) reads nineteen versions of a four-

line, 1,200-year-old poem by the Chinese master Wang Wei, attentive to

the way translators have reinterpreted the poem over the centuries, even

as they attempted to be faithful to the original. With a single word, a trans-

lator may create a perspective unseen in Wei’s original, radically shift the

mood of the poem, or transform it into complete tripe. Many times these

changes come about as the translator tries to improve the original in some

way. Yet translation, Weinberger writes, “is dependent on the dissolution

of the translator’s ego: an absolute humility toward the text” (17).

 The programmer who ports faces similar challenges. What must be

preserved when a program is carried across to a new platform: The pro-

gram’s interface? Its usability? Its gameplay? Its aesthetic design? The

underlying algorithm? The effects of the constraints of the original? And

should the programmer try to improve the original? The ethos of adapta-

tion will vary from project to project and programmer to programmer; what

a programmer chooses to prioritize will help to determine the qualities of

the final port and its relationship to the original program.

 In this remark, a number of ports—translations—are presented. These

are ports from Commodore 64 BASIC to other platforms and languages,

developed specifically for this book. Other ports can be found elsewhere in

this book. By striving to design accurate adaptations, and to capture quali-

ties of the original code as well as the output, nuances of the original that

might otherwise be overlooked can be revealed. Just as the variations of

10 PRINT in the previous remark illustrate the consequences of choosing

REM PORTS TO OTHER PLATFORMS {53}

one particular set of parameters among the many that were possible on the

Commodore 64, ports of 10 PRINT can highlight the constraints and af-

fordances of individual platforms. The ports provide a tightly focused com-

parison of the Commodore 64 to other systems, emphasizing the unique

suitability of the Commodore 64 for this particular program.

aPPLESOFT baSIC aND TaNDy COLOR baSIC

Applesoft BASIC is one of two standard BASIC implementations for the

Apple II; Applesoft is the one that supports floating point math and seems

very similar to Commodore 64 BASIC. The Apple II family of computers

was of the same era and uses the same processor as did the Commodore

64, the MOS 6502. Applesoft BASIC, like Commodore 64 BASIC, was writ-

ten by Microsoft and based on its 6502 BASIC, a version (as discussed

in the chapter on BASIC) that derives from Microsoft’s Altair BASIC. The

Apple II computers and the Commodore 64 were really quite alike, almost

as if they were siblings separated by corporate circumstance.

 This makes the Apple II a good starting point for a series of 10 PRINT

ports. The same BASIC statements and keywords can be used in a version

for this computer, and the same sort of scrolling will push the maze continu-

ally up the screen.

 On the Apple II, however, the slash and backslash characters must

serve as the maze walls, since the PETSCII diagonal-line characters are not

available. The codes for those Apple II characters are not adjacent; they

have the ASCII values 47 and 92. This means that a more elaborate expres-

sion for the selection of a character must be used. The first step is selecting

the value 0 or 1. This first selection is accomplished in INT(RND(1)*2),

which in the inner expression produces a floating point number that is at

least 0 and less than 2, such as 0.492332 or 1.987772; then, using INT, this

value is truncated to either 0 or 1. The next step is to multiply that value by

45 and add 47 so that either 47 or 92 results. This is a reasonably simple

way to make this selection, but, as with certain Commodore 64 BASIC vari-

ants, the code that is needed is more elaborate and less pleasing than in

the canonical 10 PRINT:

 10 PRINT CHR$(47+(INT(RND(1)*2)*45)); : GOTO 10

{54} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 25.2

Screen capture from the TRS-80 Color Computer port of 10 PRINT.

Figure 25.1

Screen capture from the Apple II port of 10 PRINT.

REM PORTS TO OTHER PLATFORMS {55}

The output of the program is less satisfying, too (figure 25.1). Although the

“/” and “\” characters on Apple II computers are exactly diagonal, they

do not span the entire square that bounds a character. This means that the

“walls” do not meet either horizontally or vertically. Each Apple II character

is five pixels wide and seven pixels tall, so the perfect diagonals of the slash

and backslash have a pixel of empty space at the top and another at the

bottom. In any case, Apple II characters cannot be drawn directly against

one another, as all characters on the system are printed with a one-pixel-

wide space on either side of them and a one-pixel space below.

 This space between characters is even more evident in the port of

10 PRINT to another competitor of the Commodore 64 in the 1980s—

the TRS-80 Color Computer (or “CoCo”), sold through Radio Shack. If the

Apple II was the Commodore 64’s sibling, raised by another corporation,

then the Color Computer, with the Motorola 6809 and a different version

of Microsoft BASIC, was the eccentric cousin. Just as with Applesoft BASIC,

the Color BASIC port of 10 PRINT requires the use of ASCII characters 47

and 92; one significant change, however, must be made to the program:

 10 PRINT CHR$(47+INT(RND(0)*2)*45);:GOTO 10

Note the change from RND(1) to RND(0). This revision is due to the Color

Computer’s implementation of RND, which diverges quite a bit from that

in other BASICs. In a move to make the RND command more intuitive, the

TRS-80 chooses a random number between 1 and the argument, X. So

RND(6) chooses a random number between 1 and 6. RND(1) in Color BA-

SIC will only ever choose the number 1, making for a decidedly nonrandom

pattern. RND(0), however, selects a floating point number between 0 and

1, which, multiplied by 2, can serve as the numerical basis for the random

pattern. The execution of the program reveals, though, that randomness

is not the only essential element of 10 PRINT (figure 25.2). Even when

compared to the Apple II, the TRS-80’s text display is poorly suited for the

transformation of typographical symbols into graphical patterns. The Color

Computer’s slash and backslash characters each occupy a 5 × 7 region on

a larger grid of 8 × 12, leaving so much space between the characters that

they can never resolve themselves into the suggestion of a connected pat-

tern, much less a maze.

{56} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 While the Apple II and Color Computer had many interesting BASIC

programs written for them and shares features with the Commodore 64,

the way these computers handle text display means that neither can host a

one-line BASIC version of 10 PRINT that is as satisfying as the Commodore

version.

PERL aND JaVaSCRIPT: MODERN ONE-LINERS

Perl and JavaScript programs were devised that are parts of 10 PRINT and

output the ASCII slash and backslash characters. The JavaScript program is

chiefly interesting because it presents a graphical, or typographical, prob-

lem that is even worse than the ones seen on the Apple II and the Tandy

Color Computer. The default font on a Web page, viewed in a graphical

user interface browser, is proportional—different letterforms have differ-

ent widths. While slash and backslash are the same width, differences in

kerning mean that the pair “/\” is wider than either “//” or “\\”. So the two

symbols do not line up in a grid, and the result is even less like a maze.

 A first version of the Perl one-liner follows; it's shown in figure 25.3:

 while (print int(rand(2)) ? "/" : "\\") {}

The “\” character (the backslash) is used in combination with another char-

acter in Perl to print special characters such as the newline, which is indi-

cated as “\n”. (The same is true in JavaScript.) Because of this, it is neces-

sary to use “\\” to print a single backslash character. This Perl port uses the

while construct to create an infinite loop. The condition of this loop prints

either “/” or “\” at random. The print statement, which should always

succeed, will return a value of 1, corresponding to true—so the loop will al-

ways continue. The body of the while loop is empty; nothing else except

printing a character needs to be done, and that is already accomplished

within the condition. The resulting output is similar to that of the Apple

II program: random slashes are produced that line up in a grid but don’t

meet horizontally or vertically.

 There are a few ways to tweak this code to make it more like 10

PRINT in form and to have it produce output that is more like 10 PRINT’s.

First, the somewhat obscure but more GOTO-like redo statement can be

REM PORTS TO OTHER PLATFORMS {57}

Figure 25.4

Screen capture of the Unicode Perl port of 10 PRINT, which uses characters

9585 and 9586 to better approximate the PETSCII characters.

Figure 25.3

Screen capture of the ASCII Perl port of 10 PRINT, which uses the slash and

backslash to approximate the diagonal lines.

{58} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

used, causing the program to loop back to the beginning of its code block,

which is enclosed in curly braces, “{“ and “}”. Second, the Unicode char-

acters 9585 and 9586 can be used to build the maze. These characters are

the two diagonal lines, similar to the PETSCII characters on the Commo-

dore 64, and like those characters they are also adjacent. This means that

a trick similar to 205.5+RND(1) can be used to randomly select between

them—in this case, 9585.5+rand. That expression is used as an argu-

ment to Perl’s chr function, just as the original BASIC program wraps it

in the CHR$ function. Finally, to avoid the production of error messages, a

statement needs to be included that tells Perl it can output characters in

Unicode. That statement could go outside or inside the loop; the program

just runs slightly slower, which is probably desirable, if it is placed inside

and executed each time:

 {binmode STDOUT,"utf8";print chr(9585.5+rand);redo}

While the original 10 PRINT produces a maze with gaps or thin connec-

tions at each grid point, this maze (see figure 25.4) has what look like over-

laps at each of these junctures. Nevertheless, the use of Unicode’s similar

characters does a great deal to enhance the appearance of the output.

PaTh: MaZE aS PERVERSE PROgRaM

While computer users may think of programming languages as relatively

straightforward instruments used to produce increasingly complex or effi-

cient tools and experiences, 10 PRINT begins to show that code itself can

have aesthetic features.

 Some programmers choose to reject—at least for a while—the values

of clarity and efficiency in programming in favor of other values. While

some of the techniques such programmers use rely on the exploitation of

conventions in existing, “normal” programming languages, others involve

the invention of entirely new languages with their own aesthetic properties.

These “weird languages” (sometimes also called “esoteric languages”) test

the limits of programming language design and comment on program-

ming languages themselves. One them is the unusual-looking language

called PATH.

REM PORTS TO OTHER PLATFORMS {59}

 The sort of weird languages Michael Mateas and Nick Montfort (2005)

dub “minimalist” comment on the space of computation itself. As they

put it, “Minimalist languages strive to achieve universality while provid-

ing the smallest number of language constructs possible. Such languages

also often strive for syntactic minimalism, making the textual representa-

tion of programs minimal as well.” The archetypical minimalist language

is Brainfuck, which provides seven commands, each corresponding to a

single character of punctuation.

 Another style of weird language eschews the usual organization into

lines of code and uses a two-dimensional space to hold a program’s instruc-

tions. One such language is Piet, whose source code resembles abstract

paintings (like those by its namesake, Piet Mondrian). Another is Befunge,

which uses typographical symbols including “<,” “v,” and “^” to direct

program flow.

 PATH is a weird language that borrows from the conventions of Brain-

fuck and Befunge, offering a syntactically constrained language whose

control flow takes place in a two-dimensional space. PATH has a natural

connection to 10 PRINT because the language uses the slash and back-

slash characters to control program flow. These symbols are reflectors in

PATH. As the program counter travels around in 2D space, it bounces off

the reflectors in the intuitive way.

 In addition to “/” and “\,” PATH uses “v,” “^,” “<,” and “>” to

move the flow conditionally, down, up, left, and right, if the current mem-

ory location is nonzero. Memory locations are arrayed on an infinite tape

Turing style, and the program can increment and decrement the current

memory focus.

 Given PATH’s strong typographical similarity to the output of 10

PRINT, it is possible to implement a port of 10 PRINT in PATH—a program

that generates labyrinths by endlessly walking a labyrinth (figure 25.5).

 When the program is run, the result is similar to figure 25.3. Confus-

ing? The point of such a program, and such a programming language, is

to confuse and amuse, of course. Without understanding the details of

how this program works, one can still appreciate an intriguing property it

has. The output of 10 PRINT in PATH is itself a PATH program. This new

program doesn’t do anything very interesting; it simply moves the program

counter around without producing any output. Still, it demonstrates a gen-

eral idea: that programs are texts, and there is nothing to keep people from

{60} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 25.5

The PATH port of 10 PRINT, an actual computer program written in an

intentionally perverse programming language.

/ /

\ + } } } } } + } } + } } + } + } + } + } } } + } + \

/ /

\ } +++ \

/ /

\ } ++++++++++++++++++++++++++++++ \

 / ++++++++++++++++++++++++++++++ /

 \ ++++++++++++++++++++++++++++++++ \

/ {{{{{{{{{{{{{{{{{{ /

!

/ \

 / - { \ / - { \ / - { \ / - { \

\} } } } } } } v }^ { !/ !\ !/ { v }^ { !/ !\ !/ { v }^ { !/ !\ !/ { v }^ { !/ !\ !/ \

 { { { {

 \ } ^ + { / \ } ^ + { / \ } ^ + { / \ } ^ + { /

 / /

 / - { \ / - { \ / - { \ / - { \

 \ { v }^ { !/ !\ !/ { v }^ { !/ !\ !/ { v }^ { !/ !\ !/ { v }^ { !/ !\ !/ v !/ \

 { { { { \ - /

 \ } ^ + { / \ } ^ + { / \ } ^ + { / \ } ^ + { /

/ {{{{{{{{ v }}}}}}}} /

 \ {{{{{{{{ \

 /+ \ /+ { \

 \{{{{{{{{{ \ \{{{{{{{{{ \

\ v }}}}}}}}} ^ !/ {{{{{{{{{ !\ !/ } v }}}}}}}}} ^ !/ {{{{{{{{{{ !\ !/ \

 /- / /- { /

 \{{{{{{{{{ \ \{{{{{{{{{ \

 \ }}}}}}}}} ^ / \ }}}}}}}}} ^ /

/ /

 /+ {{ \ /+ {{{ \

 \{{{{{{{{{ \ \{{{{{{{{{ \

\ }} v }}}}}}}}} ^ !/ {{{{{{{{{{{ !\ !/ }}} v }}}}}}}}} ^ !/ {{{{{{{{{{{{ !\ !/ \

 /- {{ / /- {{{ /

 \{{{{{{{{{ \ \{{{{{{{{{ \

 \ }}}}}}}}} ^ / \ }}}}}}}}} ^ /

/ /

 /+ {{{{ \ /+ {{{{{ \

 \{{{{{{{{{ \ \{{{{{{{{{ \

\ }}}} v }}}}}}}}} ^ !/ {{{{{{{{{{{{{ !\ !/ }}}}} v }}}}}}}}} ^ !/ {{{{{{{{{{{{{{ !\ !/ \

 /- {{{{ / /- {{{{{ /

 \{{{{{{{{{ \ \{{{{{{{{{ \

 \ }}}}}}}}} ^ / \ }}}}}}}}} ^ /

/ /

 /+ {{{{{{ \ /+ {{{{{{{ \

 \{{{{{{{{{ \ \{{{{{{{{{ \ !

\ }}}}}} v }}}}}}}}} ^ !/ {{{{{{{{{{{{{{{ !\ !/ }}}}}}} v }}}}}}}}} ^ !/ {{{{{{{{{{{{{{{{ !\ !/ \

 /- {{{{{{ / /- {{{{{{{ /

 \{{{{{{{{{ \ \{{{{{{{{{ \

 \ }}}}}}}}} ^ / \ }}}}}}}}} ^ /

/ /

\ }}}}}}}} v }}}}}}}}} . !/ {{{{{{{{{{{{{{{{{ /

 \ }}}}}}}}}} . { /

REM PORTS TO OTHER PLATFORMS {61}

writing programs (such as the much less perverse compilers and interpret-

ers that are in continual use) that accept programs as input and produce

programs as output.

WhaT PORTINg REVEaLS

Porting a program is always an act of translation and adaptation. As such,

porting reveals what in a program is particular to its source context, sug-

gests many potential approaches to what is essential about the program,

and explores how that essence may be portable to a specific target con-

text. Each port is unique, whether to a related platform, to a modern script-

ing language, or even to a weird, minimalist language. Each involves differ-

ent constraints, and once realized each offers different insights. Sometimes

these insights are into the platform itself, such as when different imple-

mentations of randomness require a change in how a value is used or a

calculation is done. At other times, the new insights may be into the syntax

of a particular language, which may afford more or less elegant ways of

expressing the same process. Other insights may point to the permeable

boundaries between a program and its platform environment, as when

the graphic qualities of a particular character are vital to a particular visual

effect. Porting to radically different languages can also challenge deeper

paradigmatic assumptions about a program’s form and function, including

how and why output is produced and whether it (in turn) becomes input

of some kind. Taken together, the combined insights of many ports may

produce a new, different understanding of the original source. Inhabiting

the native ecosystem of its platform, articulated in the mother tongue of

its language, ports clarify the original source by showing the many ways it

might have been other than what it is. Notably, many of these insights are

not available through token-by-token analysis of code. They require closely

considered reading, writing, and execution of code.

 Other ports of 10 PRINT are discussed in detail later in this book.

Three of these, discussed in the remark Variations in Processing, are ver-

sions of the program that elaborate on the original and are written in the

system Processing. Two others ports are in assembly language, written at

the lower level of machine instructions and requiring things to be imple-

mented that are taken for granted in other ports. The first of these, also

{62} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

discussed in a remark, is for a system without character graphics or, in-

deed, without typographical characters at all: the Atari VCS. Finally, the last

chapter introduces and explicates a Commodore 64 assembly version of

10 PRINT to show some of the differences between BASIC and assembly

programming and to reveal more about the nature of the Commodore 64.

These explorations all interrogate the canonical 10 PRINT program, asking

what it means to try to write the same program differently or to try to make

a program on another platform the same.

REGULARITY {63}

30
REgULaRITy

REPETITION IN SPACE

THE GRID IN MODERN ART

THE COMPUTER SCREEN

REPETITION IN TIME

REPETITION IN PROCESS

PERFORMING THE LOOP

{64} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 30.1

Vera Molnar, Untitled (Quatre éléments distribués au hasard). Collage on

cardboard, 1959, 75 × 75 cm. Paris, Centre Pompidou-CNAC-MNAM. © bpk |

CNAC-MNAM | Georges Meguerditchian.

Permission was only granted to include

this image in the print edition.

In 1959 artist Vera Molnar created Untitled (Quatre éléments distribués

au hasard), a collage similar to 10 PRINT (figure 30.1). A variant of the

10 PRINT program shipped with the first Commodore 64s in 1982 (figure

30.2). And in 1987, Cyril Stanley Smith more or less recreated 10 PRINT’s

output from a reduced, random arrangement of Truchet tiles (figure 30.3).

How did the same essential mazelike pattern come to appear in all of these

different contexts in the twentieth century?

REGULARITY {65}

Figure 30.2

Random maze program from the Commodore 64 User’s Guide, 1982.

Figure 30.3

Truchet’s four tiles placed in random orientations by Cyril Stanley Smith

in 1987. The solid coloring was removed to show the formal connection to

the 10 PRINT pattern.

{66} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 The repetitions of the 10 PRINT process are connected to two cat-

egories of artistic tradition and to the flow of control in computer pro-

grams. The first tradition within the arts is in the domain of craft, particu-

larly pattern-based crafts such as needlework and ornamental design. The

second is the creation of complex patterns using repeated procedures and

a small number of elements. In this way, the aesthetic of 10 PRINT parallels

experiments in painting, sculpture, sound composition, video art, perfor-

mance, experimental animation, and dance. In both cases, these artistic

practices owe their success to factors that also make 10 PRINT compel-

ling: the continual repetition of a simple rhythmic procedure or rule across

a regular space or time signature creating a complex and stimulating ge-

stalt. In its minimalist and constructivist strains the world of art confronts

the constraints and regularity of the technē of programming, which makes

room for a formal definition of a repeating process that a computer can

carry out. In all of its newfangled (for the 1980s) sophistication, 10 PRINT

ties the computer to the homespun tradition of handicraft: stitching, sew-

ing, and weaving.

 This intersection of design craft, art, and computation is not acci-

dental, for 10 PRINT is a demonstration of the generative qualities of re-

peated procedure. 10 PRINT was written and published at a time when

the art world was turning to explore the constraints and possibilities of the

systematization of creativity in an age of Taylorism and Fordism, of which

the computational machine is itself an expression. Situating 10 PRINT not

only within twentieth-century art, but also in the larger traditions of formal

experimentation and craft culture can help to explain how the personal

computer is a site of procedural craft.

 This chapter explores the first of two formal aspects of the 10 PRINT

program that give it its compelling visual power. This chapter focuses on

regularity, while the next one deals with randomness. Although the pattern

of 10 PRINT cannot be established at a glance, the program is nothing

if not regular. It works regularly in space, time, and process—and each of

these aspects of regularity is examined in the discussion that follows. Spa-

tial regularity is considered, beginning with tilings, continuing through the

history of the grid, and ending with a discussion of the computer screen.

Artistic repetition in time, particularly in music and performance, is consid-

ered next. Then, repeating processes and the programming constructs that

support them are discussed.

REGULARITY {67}

REPETITION IN SPaCE

In a classic, provocative text, The Sense of Order, E. H. Gombrich (1994)

wrestles with the tensions between pleasing repetition and uninteresting

redundancy. As he reflects on pavement designs he notes the pleasure in

encountering one whose pattern cannot be fully grasped. Gombrich ex-

plains this desire for variation or complexity in terms of the information

theory emerging at the time, which posits that information increases in step

with unpredictability (9). He goes on to speculate that the viewer exam-

ines patterns by trying to anticipate what comes next. “Delight,” he writes,

“lies somewhere between boredom and confusion” (9). Consider, again,

the Labyrinth at Chartres as one such balance of the two.

 10 PRINT no doubt offers similar delights, thanks to its creation of a

complex pattern from a simple random alternation. As Gombrich later ar-

gues, the greatest novelties computers bring to visual design and variation

are not only their ability “to follow any complex rule of organization but

also to introduce an exactly calculated dose of randomness” (1994, 94). In

this view, computers prove to be entrancing weavers, and the design of 10

PRINT, as a work of pattern rather than paths, may be less like the work of

Daedalus than that of Arachne.

 Patterns are inextricably tied to a process of repetition. This notion is

clearly demonstrated in Gombrich’s commentary on “the hierarchical prin-

ciple” by which units are “grouped to form larger units, which in turn can

easily fit together into larger wholes” (1994, 8), or a gestalt. The sum of the

pattern then is the result of a process. This interrelationship of pattern, per-

ceived whole, and process becomes clear in his discussion of paving and

of various methods for selecting stones. By extension, visual design relies

on the process of repeating patterns across space, even if these patterns

are not drawn as individual units. The regulated backdrop or foundation of

these orderly patterns in Euclidean space is the grid.

 The grid provides a framework within which human intuition and in-

vention can operate and that it can subvert. Within the chaos of nature,

regular patterns provide a contrast and promise of order. From early pat-

terns on pottery to geometric mosaics in Roman baths, people have long

used grids to enhance their lives with decoration. In Islamic culture, the fo-

cus on mathematics and prohibition on representational images led to the

most advanced grid systems of the time, used to decorate buildings and

{68} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

religious texts. Grids have also long been used as the basis for architecture

and urban planning. For example, it is impossible to imagine New York,

the one-time city of the future, without the regular grid of upper Manhat-

tan. (Broadway breaks this grid in ways that form many of the city’s most

notable public spaces.) The grid is also the basis for our most intellectual

play, from chess to go, whether the design submits to or reacts against it.

 The grid has proved essential to the design of computers from the

grid of vacuum tubes on the ENIAC (1946) to the latest server farms that

feed data to the Internet. A new era of more reliable computing was

spawned in the 1950s by a grid of ferrite rings called core memory (figure

30.4). This technology works by addressing each ring on the grid to set its

charge to clockwise or counterclockwise to store one bit of information.

Because the information is stored as a magnetic force, it maintains its state

with or without power. The grid is an essential geometry of computation.

 The two-dimensional regularity of the grid is essential to the impact

of 10 PRINT, as removing a single character from the program reveals. Tak-

ing out the semicolon that indicates that each character should be drawn

immediately to the right of the previous one, the symbol that wraps the

program’s output continually rightward across the screen, makes the im-

portance of the grid clear (see figure 30.5):

 10 PRINT CHR$(205.5+RND(1)) : GOTO 10

As a column of diagonal lines, the output does not form a maze and the

vibrant pattern that encourages our eyes to dance across the screen is

not established (figure 30.5). The essential process of 10 PRINT in time

is a single, zero-dimensional coin flip to pick one of two characters; when

this recurs in time, it becomes a one-dimensional stream of diagonal lines

that either flows quickly down the left side (if the semicolon is omitted) or

moves right to wrap around to the next position below the current line and

to the left. The visual interest of this program results from wrapping this

one-dimensional stream of tiles into the two-dimensional grid.

Truchet Tiles

Imagine the diagonal character graphics in 10 PRINT are painted on a set

of square ceramic tiles, of the sort used for flooring. Each tile is painted

REGULARITY {69}

Figure 30.4

Magnetic core memory.

{70} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

with a black diagonal line dividing two white triangles. A tile can be rotated

in two orientations, so that the diagonal line appears to be a backslash or

a forward slash. Now imagine painting one of the two triangles black. Each

tile can now be rotated in four different orientations, like a black arrow

pointing at each of four corners. Repeatedly placing tiles down in the same

orientation will create a pattern (figure 30.6). Two tiles can be placed next

to each other to create one of sixteen unique formations, and laying down

any such pair repeatedly will again produce patterns. Indeed, any unique

grouping of tiles (whether 2 × 1, 4 × 4, etc.) can serve as a building block

for larger regularity.

 Now, imagine a whole floor or tapestry covered with a regular pattern

of these repeating tiles. This thought exercise suggests the power of the

Truchet tile, so named because the Dominican priest Sebastien Truchet first

described what he called the “fecundity of these combinations” in 1704,

after experimenting with some ceramic tiles he came across at a building

site for a château near Orléans (Smith and Boucher 1987, 374).

 Matching a single Truchet tile with another, and another, and another,

Figure 30.5

This screen capture from the 10 PRINT variation without the semicolon

shows the importance of the two-dimensional grid as a defining characteristic

of the program.

REGULARITY {71}

and so on, a designer is able to create an incredible array of patterns. The

interplay between the direction of each tile and the varying repetition of

black and white—of positive and negative—produces symmetrical designs

that can range from grid-like patterns to mesmerizing, almost three-dimen-

sional illusions. Unlike earlier, Islamic patterns or Celtic designs, which both

relied on multiple-sized shapes, the Truchet tile uses only a single size and

a single shape (Smith and Boucher 1987, 378). In his original 1704 essay,

Truchet provides examples of thirty different patterns, barely evoking the

aesthetic possibilities of his tiles, though he notes that he “found too great

a number to report them all” (374). Truchet’s work would be the inspiration

for a later book, Doüat’s modestly named Methode pour faire une infinite

de desseins differents . . . [Method for Making an Infinity of Different De-

signs . . .] which in turn had a considerable impact on eighteenth-century

European art (373).

 Yet all of Truchet’s and Doüat’s examples are regular patterns, sym-

metrical and repetitive. The historian of science Cyril Stanley Smith ob-

served in 1987 that even more compelling designs can be generated from

Truchet tiles if dissymmetries are introduced. What happens when the reg-

ularity of a Truchet pattern is interrupted by randomness? Smith provides

one example, a block of Truchet tiles arranged at random (figure 30.3).

The lattice of the basic grid is still visible, but randomness has made its

mark, leaving imperfections that disrupt any nascent pattern. Unlike the

symmetrical examples Truchet and Doüat give, there is no resolution to the

structure. The center cannot hold, and neither can the margins. Smith next

pushes the limits of the Truchet tiles’ regularity by omitting solid coloring

from the tiles, leaving only the black diagonal line. The four possible orien-

tations of any given tile are then reduced to two.

 These modified Truchet tiles generate a design that looks unmis-

takably like the output of 10 PRINT, a program published a half decade

before Smith and Boucher’s article. The grid still remains—indicating the

edges of each tile—but the diagonals no longer seem to bound positive or

negative space. Instead, they appear to be the walls of a maze, twisty little

passages, all different. In this Truchet tile-produced artifact the dynamic

between regularity and its opposite come into play, suggesting that regu-

larity is not an aspect of design that exists in isolation, but rather can only

be defined by exceptions to it, by those moments when the regular be-

comes irregular. Rather than celebrating that 10 PRINT “scooped” Smith,

{72} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 30.6

Patterns from Sébastien Truchet’s “Mémoire sur les combinaisons,” 1704.

Each 12 × 12 pattern redrawn above is constructed from smaller patterns using

one tile design, half black and half white cut across the diagonal.

REGULARITY {73}

Figure 30.7

Examples of litema patterns from South Africa. These patterns are typically etched

into the plastered mud walls on the exterior of homes. The patterns are construct-

ed by repeating and rotating a single square unit.

{74} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 30.8

Examples of stitchwork from The Square Pattern technique from The Young Ladies’

journal Complete guide to the work-table.

it seems appropriate to note that there are several ways up the mountain—

or into the maze—of this particular random and regular pattern; one was

discovered at Commodore, another by taking a mathematical perspective

on tiling patterns and their aesthetics.

Textiles and Craft

The experiments of Truchet and Doüat did not introduce the idea of creat-

ing patterns out of simple variations on shapes. Such practice is common-

place across many forms of design, particularly in the realm of ornament,

where both regular and irregular patterns have long been created. Franz

Boas documented compelling examples of theme and variation of Peru-

vian weavers, for example (cited in Gombrich 1994, 72). The Kuba of Zaire

create patterns of a complexity that has puzzled electrical engineers, pat-

terns with the mazelike passageways of 10 PRINT and yet of a far greater

intricacy (Huang et al. 2005). Or consider the murals of the Sotho women

of South Africa, decorative geometric murals known as litema (figure 30.7).

This technique, documented as early as 1861, involves assembling net-

works of squares made of painted mud and etched with fingers and sticks

REGULARITY {75}

(Gerdes 1998, 87 –90). In fact, the decorative arts have long held this secret

to 10 PRINT. Such techniques are detailed in the examples of fancy work

in the 1885 The Young Ladies’ journal Complete guide to the work-table

(figure 30.8). The examples therein demonstrate the orthogonal basis for

stitchwork that is evocative of the grid of the computer screen.

 The hundreds of techniques define patterns ranging from simple

grids to complex emergent patterns. As Mark Marino argues elsewhere

(2010), these pattern books and instructive texts, primarily aimed at young

women, provided models of fundamental processes similar to the role of

the computer manuals and magazines such as RUN. Many of the tech-

niques result from a repeated process with instructions, similar to that indi-

cated by a computer program. For example, the Square Pattern technique

(figure 30.8) in the Fancy Netting chapter is defined as a pair of operations

that are repeated:

 No. 6.— SQUARE PATTERN

 For this pattern:—

 1st Row: Work one plain row.

 2nd Row: One ordinary stitch, and twist the thread twice round for the

 large square. Repeat to the end of the row.

 The first and second rows are repeated alternately. Arrange the stitches

 so that a long stitch always comes under a short stitch.

Such examples demonstrate that while the systematic theorization of pat-

terns such as the one produced by 10 PRINT may emerge periodically, the

production of those patterns is deeply woven into the traditions of deco-

rative craft. The fundamental role of shared techniques for process and

pattern place computer programming squarely in the realm of technē, ar-

tistic craft. As in the Commodore 64 User’s Manual, this text promotes the

execution of a set of instructions collected as a technique. On the surface,

the parallels between teaching needlecraft and programming are striking.

The programmers, however, are not taught to repeat the procedure but

instead, initially, to repeat a formal description of the procedure by typing

it into the machine—which then does the repeating for them. It is the very

automation of the process that makes 10 PRINT possible; the program

{76} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

operates less like handy stitching and more like the machinery of the Jac-

quard Loom.

 Prior to that loom, during or near the second century BCE, China

gave birth to a loom “that made it possible to create a pattern in fabric . . .

called a drawloom because [it] allowed the warp threads to be drawn up

individually to create the design to be woven” (10). That loom, however,

was irregular: “the arrangement of the individual warp threads was differ-

ent for every single row of weaving” (10). By contrast, the loom designed

by Joseph-Marie Jacquard was regular and programmable (12). Such a ma-

chine relied on an exacting degree of regularity. Of course, much has been

made of the Jacquard Loom as the prototypical computer, for example

James Essinger’s book Jacquard’s Web: How a Hand-Loom Led to the Birth

of the Information Age (2004). The core similarity in these early accounts

were the punch cards, which were automatically applied to the control sys-

tem and which served as patterns for the loom to follow. Earlier punch card

looms have been discovered and attributed to J. B. Falcon, B. Bouchon

and Vaucanson, whose invention of a mechanical duck is a bit more widely

known (Zemanek 1976, 16). According to Essinger, Falcon’s punch cards

were “clumsily made and unreliable” (36).

 Commercial-grade textiles require up to four thousand cards strung

together—a far cry from the two statements on the one line of 10 PRINT

(figure 30.9). The cards are applied to a bar, an “elongated cube,” full of

“hundreds of identical holes . . . to accommodate the tips of needles,”

which are raised according to the selections on the punch card. As the bar

turns with each pick of the shuttle, it moves down the material as if mov-

ing down a computer screen. Regularity made it possible for the Jacquard

Loom to draw its intricate patterns. But the use of the cards as a pure pat-

tern and the inability to regulate the flow of control meant that patterns

have to be defined exhaustively rather than through concise programs.

In other words, the number of cards is proportional to the size of the pat-

tern being woven. While needlework instructions demonstrate the role of

repeated process and pattern over somewhat regulated space, the loom

regulates time and space without, in effect, repeating the process.

 10 PRINT can be imagined as the complete method of craft pro-

grammed into the computer—as it was not fully programmed into the

loom. The loop offers a way for the weavers of the computer screen to shift

their emphasis from a fixed template, traversed once, to a more intricate

REGULARITY {77}

Figure 30.9

Punch card-operated loom at the Sjølingstad Uldvarefabrik in Sjølingstad,

Norway. Courtesy of Lars Olaussen, Creative Commons Attribution-

NonCommercial-ShareAlike 2.0 Generic.

{78} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

model of process. 10 PRINT demonstrates the power of the computational

machine to rapidly prototype a repeated pattern, and since it executes the

pattern itself, the incipient programmer is freed to experiment with varia-

tions and extensions of that process.

ThE gRID IN MODERN aRT

In the 1960s and 1970s, artists moved away from abstract expressionism,

the dominant current of the 1950s, and its preference for raw emotion.

Newer movements such as op-art and minimalism along with the contin-

ued line of constructivism in Europe engendered a body of rational, calcu-

lated visual art that utilized grids and even spacing to define order. A tour

through any major American modern art museum will reveal Frank Stella’s

canvases of regular lines, Ad Reinhardt’s hard-edge grids of barely distin-

guishable tones, Carl Andre’s grids of metal arranged on the floor, Donald

Judd’s regularly spaced steel fabrications, Dan Flavin's florescent matri-

ces, and Agnes Martin’s exquisite, subtle grids on canvas. This list could

continue for pages as it moves forward in history; the point has no doubt

been made. This American tendency to move toward minimal forms was

expressed well by Ad Reinhardt in “Art-as-Art” in 1962: “The one object

of fifty years of abstract art is to present art-as-art and as nothing else, to

make it into the one thing it is only, separating and defining it more and

more, making it purer” (Rose 1991, 53).

 In Europe at the same time, a massive number of artists were working

with grid systems, and they were often doing so with more explicit focus

and rigor. This energy was frequently channeled into groups that formed

in different cities. For example, there was GRAV (François Morellet, Julio

Le Parc, et al.) in Paris, ZERO (Heinz Mack, Otto Piene, et al.) based in

Düsseldorf and extending a wide net across Europe, The Systems Group

(Jeffrey Steele, Peter Lowe, et al.) in London, and the Allianz in Zurich (Max

Bill, Richard Paul Lohse, et al.). The most iconic artist to work with grids

might be the optical artist Victor Vasarely, whose grids were mesmerizingly

distorted. His work was so systemized that he invented a notation system

to enable a team of assistants to assemble his works using instructions and

modular, prefabricated colored pieces. Although it is difficult to discern by

just looking at the work, there was tension between the artists who worked

REGULARITY {79}

toward the primacy of mathematical form and those who maintained a de-

sire to imbue subjectivity and emotion in their geometric compositions.

 In critiquing of the former category of art, Ferreira Gullar, a Brazilian

poet and essayist, wrote the 1959 “Neo-Concrete Manifesto” declaring

that it was dangerous for art to be concerned only with “objective prob-

lems of composition, of chromatic reactions, of the development of serial

rhythms, of lines or surfaces” (Zelevanksy 2004, 57). Gullar’s manifesto har-

kens back and reimagines works of the early twentieth century by artists

such as Wassily Kandinsky, Kasimir Malevich, and Alexander Rodchenko.

Within the specific context of the grid, pioneers Piet Mondrian, Theo Van

Doesburg, and other artists affiliated with De Stijl abandoned representa-

tion entirely. Van Doesburg et al. coined the term “concrete art” to catego-

rize works that are conceived without reference to nature and symbolism.

The manifesto “The Basis of Concrete Painting” published in April 1930

stated, “The work of art should be fully conceived and spiritually formed

before it is produced. It should not contain any natural form, sensuality, or

sentimentality. We wish to exclude lyricism, dramaticism, symbolism and

so forth” (Fabre and Wintgens Hotte 2009, 187). Van Doesburg continued

in “Elementarism (The Elements of the New Painting)” from 1932: “One

must not hesitate to surrender our personality. The universal transcends it.

. . . The approach to universal form is based on calculation of measure and

number” (187). Representative works such as Mondrian’s Composition with

Red, Blue, Black, Yellow, and Gray (1921) and Van Doesburg’s Counter-

Composition VI (1925) were composed exclusively with orthogonal lines

to form a grid. Works from this time also experiment with rotating the grid

45 degrees to create a more dynamic composition. This formal technique

manifests itself, of course, in 10 PRINT.

 While the 10 PRINT program came out of the computer culture and

not the art world, it has an uncanny visual resemblance to prior works of

twentieth-century art. Paul Klee, a Bauhaus professor and highly influential

artist (1879–1940), produced works in the 1920s that seemed to resume

Truchet’s and Doüat’s experiments. In his concise Pedagogical Sketchbook,

published in 1925, Klee presents his thoughts on quantitative structure,

rhythm, repetition, and variation. His Variations (Progressive Motif), painted

in 1927, demonstrated his theories as a visual composition. He divided the

40cm-square canvas into a grid of nine units, where each unit contains a

pattern of parallel lines, with some exceptions, which run vertical, horizon-

{80} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

tal, or diagonal. More insight into this painting is found in his notebooks,

as published in The Thinking Eye in 1964. Klee discusses the difference

between natural and artificial measurement as the difference between id-

iosyncratic and rational order. More important, he discusses tension and

dynamic density through the linear and progressive spacing of parallel

lines. Through these visual contrasts in Variations, Klee explores the same

aesthetics questions that can arise from 10 PRINT. First he created an arti-

ficial grid to work within; then he populated each square with ordered but

variable patterns. Klee didn’t have the advantage of motion that is afforded

to 10 PRINT, but he simulated it through the expansion and contraction of

parallel lines within his grid.

 In France, a group of like-minded artists within and around GRAV

(Groupe de Recherche d’Art Visuel) were exploring variations within grids.

François Molnar and Vera Molnar worked on a series of images in 1959

that presented a visual system strikingly similar to 10 PRINT. In the essay

“Towards Science in Art,” published in the anthology DATA: Directions in

Art, Theory and Aesthetics in 1968, François Molnar published the images

Simulation d’une série de divisions de Mondrian à partir de trois au hasard

and Quatre éléments au hasard. Both are 24 × 24 unit grids with one of

a few possible forms painted into each grid unit with black gouache. As

the titles suggest, a random process defines the elements in each square.

Their Composition Stochastique of the same year systematizes the random

component by producing a modular set of two elements—left and right di-

agonals that are placed within a 10 × 10 unit grid. In the illustrations for the

essay, they feature a 1 percent, 5 percent, 30 percent, and 50 percent ratio

of left to right diagonal lines to show the result of chaos intruding upon

order. Given that this is a 100 unit grid, these percentages correspond to

precisely 1, 5, 30, and 50 units in each figure. In the 50 percent figure, the

only substantive difference with our 10 PRINT program is the variation on

the core elements. So, just as a mathematician independently described

the output of 10 PRINT in 1987, a team of artists working in Paris produced

the fundamental algorithm for 10 PRINT in 1959—twenty-three years prior

to the printing of the Commodore 64 User’s Guide.

 In her 1990 essay entitled “Inconceivable Images,” Vera Molnar wrote

that she was thinking about Composition Stochastique as a computer pro-

gram, because she had access to a machine:

REGULARITY {81}

 To genuinely systematize my research series I initially used a technique

 which I called machine imaginaire. I imagined I had a computer. I designed

 a programme and then, step by step, I realized simple, limited series which

 were completed within, meaning they did not exclude a single possible

 combination of form. As soon as possible I replaced the imaginary computer,

 the make-believe machine by a real one.

Across the Atlantic in the 1960s the American artist Sol LeWitt embarked

on decades of work exploring grids and regular structures. In 1968, LeWitt

started making drawings directly on walls, rather than on paper or canvas

that would be placed on the wall. In this return to the scale of frescos, his

drawings within grids integrated into architecture to transform the space

(Singer 1984). His Wall Drawing 291 from 1976 is a striking work, with a

strong similarity to 10 PRINT. Instead of the binary decision within 10

PRINT, LeWitt’s drawing allows for horizontal and vertical lines, to create

four choices for each grid element. LeWitt’s work is encoded as an algo-

rithm—another similarity with 10 PRINT. A difference is that the instruc-

tions are in English, rather than BASIC:

 291. A 12” (30cm) grid covering a black wall. Within each 12” (30cm)

 square, a vertical, horizontal, diagonal right or diagonal left line bisecting

 the square. All squares are filled. (The direction of the line in each square

 is determined by the draftsman.)

This grid-based wall drawing wasn’t an isolated work within LeWitt’s output.

He created dozens of similar drawings, each with slightly different rules and

allowing for varied lines including arcs and dotted lines.

 While many artists and critics in the twentieth century were clearly

obsessed with the grid, not all have celebrated it. The critic Rosalind Krauss

put the grid into a different context in her 1979 essay “Grids” (Krauss 1979).

She acknowledges the proliferation of the grid but criticizes it as a dead

end: “It is not just the sheer number of careers that have been devoted to

the exploration of the grid that is impressive, but the fact that never could

exploration have chosen less fertile ground.” She continues, “The grid de-

clares the space of art to be at once autonomous and autotelic.” Through

pursuing pure visual exploration like variations on grids, Krauss argued that

{82} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

SCREENSAVERS AND COMPUTER DREAMS

While no one has ever claimed that 10 PRINT might be used as a screensaver to

prevent phosphor burn-in on CRT monitors and televisions, its noninteractive, end-

lessly looping nature coupled with its pleasing and changing image make it a close

cousin to this type of program. If one had to place 10 PRINT into a familiar software

category, “screensaver” would not be a bad one to choose.

 The earliest screensaver dates to 1968, when researchers at Stanford Univer-

sity programmed the text “Take Me, I’m Yours” to appear at random locations on an

open terminal screen of Stanford’s Artificial Intelligence Lab’s time-sharing system,

signaling the terminal was free to use. In 1973, engineers at the famed Xerox PARC

lab created screensavers with bouncing and zooming graphics, moving screensavers

beyond mere text (Davenport 2002, 65). In the early 1980s, commercial screensavers

followed, such as Berkeley Systems’ bestselling After Dark collection. By the height

of the screensaver craze in 1996, the design of computer monitors made phosphor

burn-in nearly impossible. Yet screensavers lived on in roles that went beyond their

original utilitarian or aesthetic function. The SETI (Search for Extraterrestrial Intelli-

gence) project released software for PCs that harnessed unused computer cycles to

process radio waves from outer space—all the while displaying a screensaver on the

computer display. Along different lines, Nancy Davenport created the “May Day”

screensaver that captures the repetitive and often image-based nature of contem-

porary political protests.

 There are provocative parallels of the screensaver in the history of art. David

Reinfurt (2009) considers a wide variety of moving visual and mechanical pieces,

including Marcel Duchamp’s Precision Optics projects, Alexander Calder’s mobiles,

phased oscilloscope displays, Brion Gysin and Ian Sommerville’s Dreammachine,

and generated visual and sound art. Reinfurt sought to find interesting connections

and not to trace a genealogy or demonstrate influence, but there appears to be a

compelling pre-war antecedent of these programs.

 Perhaps the most intriguing protoscreensavers are found even earlier, in the

form of Duchamp’s 1933 Rotoreliefs. This set of six discs, each printed on both sides

with offset lithography, allowed the purchaser to do something with a 33 RPM turn-

table when it was not being used for its primary purpose: listening to music. Of

course, the disc caused additional wear on one’s turntable and did not “save” it, but

screensavers have seldom been truly valued as savers. Just as a screensaver pack of-

REGULARITY {83}

fers several options to suit the mood of the non-computer-using viewer, Rotoreliefs

offered twelve options for the viewer, the nonlistener. One side of the third disc fea-

tures “Poisson Japonais” and—just as the screensaver would later make the monitor

into a simulation of a fish tank—makes the turntable into a fish bowl.

 This twist on the electronic device (initially the turntable, later the television or

computer monitor) calls attention to its being a piece of furniture; it also simulates

the activity of a living creature using electricity and technology. It shows us our pow-

erful media technologies made mute, circling, and amusingly off-kilter. The relation-

ship to technology that is suggested by the aquarium screensaver (or fish Rotorelief)

is one of odd juxtaposition and low-key looping motion, probably not far off from

the effect of spinning a bicycle wheel that has been fixed in a stool.

 One very emblematic screensaver combines life and technology in an even

more curious way. In Berkeley Systems’ After Dark 2.0, the “Flying Toasters” screen-

saver features toasters flitting across the screen using their small (birdlike) wings. The

toaster, that single-purpose device used only to cause bread to undergo the Maillard

reaction, drifts lazily through space alongside . . . pieces of toast. This screensaver

suggests that androids do dream of electric sheep and that computers, when they

snooze, have visions of lower forms of technology in flight. The After Dark 2.0 toast-

ers, remarkably, are not pure technological artifacts—they are cyborg toasters with

organic wings. While the scene they take part in is amusing, it also at least risks call-

ing attention to the limitations of the computer, which, despite its general-purpose

capabilities, does not help to prepare food, is entirely inorganic, and, of course,

does not fly. The computer may be capable of symbolic manipulations and machine

dreams, but there are realms into which it cannot go, realms towards which it is left

to aspire. Perhaps all of this is not imagined by the average computer nonuser ob-

serving toasters in flight, but any of it which is will contribute to the absurdity of the

image and the pleasure of the onlooker.

 Some screensavers create very abstract patterns that have no simple inter-

pretation, even as something like an abstract maze. Others, like the early Windows

“Starfield” and the Windows 95 “Maze” (which shows movement through a 3D,

RPG-like maze) suggest that the computer is a vehicle for exploration. These screen-

savers live alongside those that play with our perceptions of life, inviting us to think

about how technologies relate to creatures like fish and birds. But in addition to all

{84} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

the visual arts abandoned narrative and discourse and moved into cultural

isolation.

 During the era of our 10 PRINT program, in wake of the Vietnam

war and social movements of the late 1960s and early 1970s, the larger

emphases within visual arts communities had moved away from minimal-

ism and constructivism (and their variants) to focus back on expressive and

realistic painting and the emerging acceptance of photography. The visual

work created for early home computers and games systems like the Atari

VCS and Commodore 64, however, were highly constrained by the techni-

cal limitations of the hardware and therefore had more in common with the

visual art of prior decades.

 A chief explanation for these uncanny similarities is the grid itself. In

“Designing Programmes,” the Swiss designer Karl Gerstner (1964) asks,

“Is the grid a programme? Let me put it more specifically: if the grid is

considered as a proportional regulator, a system, it is a programme par ex-

cellence.” Gerstner’s encounters with the computer led him to theorize the

of these, there are screensavers that accumulate structures in a way that suggest

industrious, technical production. The Windows 95 “Pipes” screensaver is a fairly

famous example. It assembles 3D tangles of multicolored pipes which become im-

possibly dense and intricate. This screensaver does more plumbing work in a few

minutes than Nintendo’s Mario has done in his lifetime. The busy visuals show that

the computer is hard at work, even though its user is not interacting with it. While the

image is pleasing to look at, it also projects a more serious image than the frivolous

flying toaster or simulated fish tank.

 While 10 PRINT is extremely abstract, its generation process seems to be

one of furious and constant construction. 10 PRINT suggests that the computer is

a maker of structures, is tireless at producing these at a regular rate, and can create

patterns that are both pleasing to view and perplexing to walk through. While the

Windows 95 “Maze” screensaver provides the viewpoint of Theseus (or perhaps the

Minotaur), 10 PRINT shows us the maze as seen by Daedalus: from the mind’s eye

of the architect, the viewer shares the imagination of a structure that is continually in

the process of being built.

REGULARITY {85}

regulated space as a program itself. The grid systematizes artistic creation

even as it presents a challenging and yet generative platform for experi-

mentation, whether on canvas, the dance floor, or a computer screen.

ThE COMPUTER SCREEN

While the traditions of twentieth-century art and earlier craft traditions are

significant for 10 PRINT, the program functions the way it does because

of the circumstances of technology, the history of the Commodore 64's

display, and the types of regularity it supports. Again, the grid acts as a

program to determine the final output.

 The Commodore 64’s video image is a grid 320 pixels wide and 200

pixels tall. This accommodates an array of characters or, in the terminology

of Commodore 64 hi-res graphics, attribute cells. Specifically, the grid is 40

attribute cells wide and 25 high. (There are other graphics modes that of-

fer advantages, but for understanding 10 PRINT, this array of characters or

attribute cells is most important.) The 40 × 25 grid contains exactly 1,000

characters, each represented by a byte. This fits nicely into one kilobyte

(which equals 1024 bytes)—in fact, it is the largest grid that is forty charac-

ters wide and occupies 1024 bytes or less.

 Economically and conveniently, the Commodore 64 could be taken

out of its box and hooked to an ordinary television. It was an idea that

could be seen in Steve Wozniak’s Apple I, introduced in April 1976. Later,

the more widespread Apple II could also be connected to a television if

one used an inexpensive RF modulator, purchased separately. (This com-

ponent was left off the Apple II as a workaround; the FCC would not

otherwise approve the computer, which would have produced too much

interference.) The Apple II was the main precedent in home computing—

other early home computers such as the TRS-80 Model II and Commo-

dore PET had built-in monitors—but the idea was not original to Apple.

At Atari, television engineer and employee #1 Al Alcorn had designed a

Pong cabinet that, rather than using an expensive commercial CRT (cath-

ode ray tube), incorporated an ordinary black-and-white television that was

initially bought from a retail store. Wozniak, who did the original design for

the Atari arcade game Breakout, knew about this trick of using a TV as a

monitor. Videogame consoles (including Atari’s 1977 VCS, later called the

{86} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Atari 2600, and the Magnavox Odyssey by Ralph Baer, introduced in 1972)

would typically hook to televisions, too.

 The rectangular form of the television image had its origins in the

movie screen, which was rectangular due to the material nature of film and

apparently obtained its 4:3 aspect ratio thanks to a gesture by Thomas Edi-

son, one which resulted in a frame that was four perforations high. While

the aspect ratio of film changed and diversified over the years, television

in the United States (standardized in the NTSC format in 1953) and many

computer monitors, through the 1980s and 1990s, used the 4:3 ratio.

 Although composite monitors were available for the Commodore 64,

the relationship between that system and the television was clear and was

the default for those setting up their computer and hooking it up to a

display. For a Commodore 64 purchased in the United States, the system’s

video output usually terminated in a NTSC television. But the computer

display did not begin there: it has a heritage that included at least two

output methods, ones that seem unusual today.

 As one of this book’s ten coauthors has noted, “Early interaction with

computers happened largely on paper: on paper tape, on punch cards,

and on print terminals and teletypewriters, with their scroll-like supplies of

continuous paper for printing output and input both” (Montfort 2004). The

standard output devices for computers through much of the 1970s were

print terminals and teletypes. Output was not typically produced on pages

of the sort that come from today’s laser printers, but on scrolls of stan-

dard or thermal paper. The form factor for such output was not a standard

81/2 × 11-inch page, but an essentially endless scroll that was typically 80

columns wide.

 Teletypes were used to present the results of the first BASIC pro-

grams written at Dartmouth in the 1960s, and they were the typical means

of interacting with important early programs such as Eliza and Adventure.

With such a system for output, there was no need for an automated means

of saving and viewing the “scrollback”—a user could actually pick up the

scroll of output and look at it. Of course, this sort of output device meant

that animation and other effects specific to video were impossible.

 An argument has been advanced that the modern computer screen

also has an important heritage in the round CRT display of the radar screen

(Gere 2006). The SAGE early warning system, the PDP-1, and the system

on which Douglas Engelbart did the “mother of all demos” all sported

REGULARITY {87}

round CRTs, as did early televisions. It is notable that the first two sys-

tems that may have been videogames in the modern sense, Tennis for Two

by William Higginbotham and Spacewar by Steve “Slug” Russell, Martin

“Shag” Graetz, Alan Kotok, and others were both created for circular CRT

displays. While radar and some other images were actually round, as the

early cathode ray tube was, the television signal and the page were not.

What was, for radar, a radial display eventually gave way in computing to

the rectangular, grid format that was adhered to by both page and televi-

sion image.

REPETITION IN TIME

While 10 PRINT would be impossible without the regularity of space, it

would also be wholly other without regularity of time and process. The

program is as much the product of ordered isometric shapes across a grid

as it is the repeated placement of those shapes. Gombrich notes that “Ev-

erything . . . points to the fact that temporal and spatial orders converge

in our experience. No wonder language speaks of patterns in time and of

rhythms in space” (1994, 10). He continues to examine simple mechanical

temporal rhythms from the pendulum’s swing to the turn of the cog. As a

bridging example between spatiality and temporality, he notes the way

a regular configuration of stairs’ height and depth in a staircase lead to a

regular climb up the steps.

 As Gombrich develops the notion of temporal repetition and regu-

larity, he quickly transitions into a discussion of process. Whether a clock

ticking or a person climbing the stairs, the temporal regularity is the re-

sult of a repeated process. Gombrich then moves to a discussion of work,

by referencing K. Bucher’s Work and Rhythm, which insists “on the need

for timed movement in the execution of joint tasks,” for example workers

loading bricks onto wheelbarrows (Gombrich 1994, 10). The ticking clock

does more than set the hours of labor on the factory floor: it epitomizes the

regular movement of the workers. Gombrich continues, “And here again

it is not only the simultaneous movement that is ensured by rigid timing.

Even more important is the possibility inherent in any order of constructing

a hierarchy of movements or routines to ensure the performance of more

complex tasks” (10). This formulation suggests the relationship between

{88} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

regulated time and instruction, hierarchies of movements and routines,

which recalls Taylorist models of production as well as programming. While

a full investigation of those connections lies outside the aim of this book,

it is important to note the fundamental role of processed instructions in

producing rhythms in time and space.

 Process and the appearance of motion are essential to 10 PRINT.

The still images that show a moment in the program’s run, the sort that are

reproduced in this book, document the program to some extent but are

an incomplete representation. A full understanding of the program comes

only through experiencing the pattern building one unit at a time and the

surprise of the unexpected sequences and connections that form into a

maze as the left or right line is randomly drawn.

 The visual arts at their most traditional, represented by frescoes, stone

and bronze sculptures, and canvases, are static. A viewer creates motion

by moving around a work, eyes exploring the surface, but the object is still.

The thrust of machines into life at the beginning of the twentieth century

was an inspiration to painters (the Futurists), photographers (Étienne-Jules

Marey, Eadweard Muybridge), and sculptors who used motors to create

motion. The origin of integrating physical movement into artworks in the

twentieth century is often credited to Naum Gabo for his Kinetic Construc-

tion (Standing Wave) from 1919–1920. This sculpture created a virtual vol-

ume in space by mechanically hitting a metal rod near the base to send a

wave through the object. Gabo was thrilled to bring motion into his art and

his enthusiasm led to “The Realistic Manifesto,” cowritten with his brother,

Antoine Pevsner, in 1920. After rejecting the traditional foundations of art

they declared:

 We renounce the thousand-year-old delusion in art that held the static

 rhythms as the only elements of the plastic and pictorial arts. We affirm in

 these arts a new element, the kinetic rhythms as the basic forms of our

 perceptions of real time. (Quoted in Brett and Nash 2000, 228)

With kinetic rhythm as the base of all new art, Gabo’s Kinetic Construction

is an ideal demonstration. It is a machine without visual interest or relation

to the sculpture of the time. It performs the same motion precisely over

and over. The work of art is reduced to a rhythmic repetition. While other

pioneers of motion in art such as Marcel Duchamp and Alexander Calder

REGULARITY {89}

worked with motors to create regular machines, by the middle of the cen-

tury the dominant form of motion had shifted to the type of chance mo-

tion experience through the wind moving a Calder or Rickey mobile or the

anarchic mechanical chaos of Jean Tingely. The essence of 10 PRINT lies

in the relationship between both forms.

 The next phase of the pairing motion and repetition in visual art brings

us closer to 10 PRINT. Artists began to create works for screens, first with

film and later for CRT screen with video. Akin to the minimalist sculptures

referenced above, there was a proliferation of minimal gestures within ex-

perimental film and animation. Starting in the 1960s, artists including Lillian

Schwartz, John Whitney, Norman McLaren, Bruce Nauman, Richard Serra,

and Paul Sharits explored repetitive physical movements and abstract mo-

tion with rigor. The Flicker (1965), a film by Tony Conrad, stands out for its

clarity. As shown earlier, without the semicolon in 10 PRINT, each diagonal

line could be seen as a panel of a film strip. It’s only a small leap to imagine

the left line of the program as an unexposed film frame (clear) and the right

line as the maximum exposure (black) to bring the fundamental mechanism

of 10 PRINT close to The Flicker. The fundamental difference is the larger

arc within Conrad’s work. The pace at which the projection flips from pure

light to black is slower at the beginning and end of the film to give it a be-

ginning and end, while 10 PRINT maintains the same pace, does not vary

in any way as it begins, and continues running until interrupted.

 Simultaneously with the exploration of repetition in film, a host of

composers based musical works on repetition. Like film and video, musi-

cal performance is temporal, but unlike these linear media, performances

and 10 PRINT unfold in real time, each step happening in the moment

and potentially informed by the present state. Piano Phase (1967) by Steve

Reich is an iconic sound work built on repetition. In this approximately

twenty-minute-long composition, two pianists start by playing the same

twelve-note melody continuously. One pianist plays the sequence faster so

it moves out of phase until they are back in phase, but the faster pianist is

playing the second note, while the slower is on the first note. This continues

until the faster pianist has complete a full loop and both are again playing

the same sequence at the same time. The piece iterates further from that

point, but the same phasing technique is used until the end. The concept

is the same as in Reich’s later and simpler piece Clapping Music (1972),

which is clapped by two performers and varies only in rhythm. In 10 PRINT,

{90} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

new forms emerge from the program’s decision to display the left or right

line, but in Piano Phase and Clapping Music, new sonic forms emerge by

playing the same sequence over and over, with performers playing at a dif-

ferent speeds.

REPETITION IN PROCESS

The artworks in this chapter engage with regularity as a style and tech-

nique; computers employ regularity as a necessary paradigm of their exis-

tence. The execution of a computer program, even one that is riddled with

bugs or does numerous complex and interesting things, is nothing if not

regular. In fact, it is the regularity of computer processes that many of the

artworks discussed in the chapter are reacting to and against. Even more

than in the Ford factory, regularity becomes a paradigm of the computa-

tional age, to be explored and resisted because it is the central logic for

even the most basic computational literacy. While the assembly line might

put many goods in the hands of twentieth-century consumers, families did

not need to contemplate assembly lines to consume these goods. Even for

workers actually in a factory, the flow of the factory would be defined else-

where. However, to write even the most rudimentary program, a person

must understand and engage the regularity of the machine. Consequently,

it is worthwhile to articulate the process of flow and control that allows this

regularity to become such a generative space.

 Part of what gives programs their power is that they can be made

even more regular by repeating a sequence of instructions. This repeti-

tion can be accomplished in two main ways: in a loop that continues for

a certain number of iterations or in an unbounded loop. These two loops

correspond to two types of branching, the conditional and unconditional

branch. To understand the unbounded loop of 10 PRINT and the specific

legacy of GOTO is to understand the essentials of the flow of control in

computer programs.

 To explain the loop, it is necessary to first juxtapose it with the al-

ternative: not having a loop and letting a program progress in the usual

sequence. In any imperative programming language, commands are pro-

cessed in a particular order that relates to the left-to-right then top-to-bot-

tom path that Western readers’ eyes take along a page. If one types two

REGULARITY {91}

PRINT commands directly into the Commodore 64’s BASIC interpreter,

with a colon between them, like so:

 PRINT "FIRST": PRINT "SECOND"

the result is

 FIRST

 SECOND

The command on the left is executed first, then, the command on the right.

In executing the following program, the top-most, left-most command is run

first, then the one to the right, and then the one on the next line, so that

 10 PRINT "FIRST": PRINT "SECOND"

 20 PRINT "THIRD"

prints FIRST, SECOND, and THIRD, in that order. Since BASIC uses line

numbers to determine the sequence, the order in which these two lines are

typed is completely irrelevant to how the program runs.

 There are some important ways to complicate this straightforward

program flow. All of these ways involve branching, which causes program

flow to shift to some other command rather than continuing along to the

subsequent one. The same could be said of the low level of machine code

and its execution by the processor. A machine language program is a se-

quence of numbers typically processed in order of appearance. An exe-

cuting machine language program, however, like a high-level program in

BASIC or another imperative language, can either continue to process the

next instruction or can move out of sequence to process a different instruc-

tion. The standard case is when a processor continues to the next machine

language instruction, just as the reader of a text moves to the next word or

line. This involves incrementing the program counter so that it points to the

place where the next instruction is located in memory. If the current instruc-

tion is one that can change the flow of control, however, the program may

jump to a new memory location and a new piece of code. The branch or

jump is the key operation that is used to build a loop.

{92} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Conditional and Unconditional branching

There are two essential ways that the flow of control can change and a pro-

gram can branch, continuing from a new point. An unconditional branch

always directs the program to jump to a new location, like the instruction

“Go directly to Jail. Do not pass Go” in Monopoly. The assembly mnemon-

ic for an unconditional branch is jmp; the corresponding BASIC keyword

is GOTO; packaging together a branch away from a line of code and then a

subsequent branch that returns to the original line constitutes a subroutine,

implemented in BASIC using GOSUB and RETURN. When an unconditional

branch is used to point back to an earlier instruction, it can cause repetition

in process as in the case of 10 PRINT.

 The other type of branch is a conditional branch, a type of instruc-

tion that is critical to general-purpose computing. There are many different

types of conditional branches in assembly, since there are many different

types of conditions. beq is “branch if equal,” for instance: when used after

a comparison (cmp), the branch will be taken only if the compared values

are equal. bmi, “branch if minus,” checks to see if the last computation

resulted in a negative value. In BASIC, using the IF . . . THEN statement

is the most straightforward way to accomplish a conditional branch, as this

program demonstrates:

 10 INPUT A$

 20 IF A$ = "1" THEN PRINT "YOU TYPED ONE!" : END

 30 PRINT "SOMETHING ELSE..."

If, after running this program, the user types just the digit “1” and then

presses RETURN, all of the statements on line 20 will be executed. “YOU

TYPED ONE!” will be printed and then the program will terminate as END

instructs. This is another way to change the flow of the program, of course:

use END or STOP to terminate the program. If STOP is used, the CONTINUE

command can be issued to pick up where the program left off.

 If the user types nothing or anything other than a single “1” be-

fore pressing RETURN, the flow of control moves to line 30; both the first

PRINT statement and the END are skipped. “SOMETHING ELSE . . .” is

printed instead. This program, although written differently, does exactly

the same thing:

REGULARITY {93}

 10 INPUT A$

 20 IF A$ = "1" THEN GOTO 40

 30 PRINT "SOMETHING ELSE..." : END

 40 PRINT "YOU TYPED ONE!"

Instead of using the IF . . . THEN to directly determine whether two

statements (the PRINT and END statements) should be executed, this one

changes the flow of control with GOTO. The GOTO statement is used to skip

ahead past PRINT “SOMETHING ELSE...” and END to line 40. Although

this isn’t a very exciting program, it shows that unconditional branching

can be used to jump ahead in the sequence of lines; there is nothing about

GOTO that means it must be used to repeat or loop.

 Although there is no IF . . . THEN statement in 10 PRINT, and

the program does not by any interpretation contain a conditional branch,

this short program does accomplish a very small-scale sort of variation. By

computing 205.5+RND(1) and passing that value to the function CHR$,

the program prints either PETSCII character 205 or PETSCII character 206.

This variation between two characters is a one-bit variation, a selection

from the smallest possible set of options. Yet, in combination with the

regularity of a repeating processes and the regularity of the Commodore

64’s screen grid, these selections take shape as something evocative and

visually interesting.

The harmfulness of gOTO

Those aware of the discourse in computer science might turn to 10 PRINT

with some trepidation, thanks to a 1968 letter to the editor from famous

computer scientist Edsger W. Dijkstra, one that was headlined “Go To

Statement Considered Harmful” (EWD 215). Although the title was actually

written by the editor—Dijkstra called this article “A Case against the GO

TO Statement”—the letter and the sentiment behind it have gained lasting

fame. One author called it “probably the most often cited document about

any type of programming” (Tribble 2005). As this author explains, Dijkstra’s

exhortation was written at a time when the accepted way of programming

was to code iterative loops, if-thens, and other control structures by hand

using goto statements. Most programming languages of the time did not

support the basic control flow statements that we take for granted today,

{94} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

or only provided very limited forms of them. Dijkstra did not mean that all

uses of goto were bad, but rather that superior control structures should

exist and should replace most uses of goto popular at the time.

 Indeed, there is an obvious control structure, unfortunately absent

from BASIC, which would accomplish the purpose of 10 PRINT’s GOTO with-

out requiring the use of GOTO. This is the while or do . . . while loop,

which in this case could simply be used with a condition that is always true

so that the loop would always repeat. For instance, if Commodore 64 BASIC

had a DO . . . WHILE statement and a keyword TRUE, one could write:

 10 DO : PRINT CHR$(205.5+RND(1)); : WHILE TRUE

This would certainly be a clearer way to write the program, and it would be

widely recognized today as clearer because Dijkstra’s view of programming

has prevailed. When the creators of BASIC introduced True BASIC in 1983

they included the DO loop; its syntax was a bit different from the preceding,

but the essential construct was the same.

 Although this important construct is missing from early versions of

BASIC, it’s not obvious that the tiny program 10 PRINT would have par-

ticularly offended Dijkstra. In his letter, he objects to the “unbridled use of

the go to statement,” but he does not state that every use of it is unam-

biguously bad. He describes the GOTO-related problems that arise when

programmers are not able to track and understand the values of variables.

But 10 PRINT has no variables, so this particular problem with GOTO is not

an issue in this particular case.

 As mentioned, GOTO has a assembly language equivalent, jmp.

Dijkstra essentially exempted assembly language from his critique of GOTO.

He recognized that computer programs written in a high-level language

are more complicated and nuanced ways of expressing thought, not tied

directly to machine function. By creating a new sort of language that does

not directly mimic the operation of the processor, it is possible for pro-

grammers to think more flexibly and powerfully. Although Dijkstra objected

to the way BASIC was designed, he, like the original designers of BASIC,

worked strenuously to describe how high-level languages, useful for think-

ing about computation, could work in machine-independent ways.

REGULARITY {95}

bounded and Unbounded Loops

10 PRINT works as it does because of its repetition of the PRINT state-

ment, repetition that is unconditional: it will continue until something out-

side the program interrupts it, such as the user pressing the key labeled

RUN STOP or unplugging the computer. This ability to repeat endlessly

differentiates the program from its artistic parallels in other media.

 At a high level, programs can contain two types of loops: bounded

(also called “finite”) and unbounded (or “infinite”). 10 PRINT has the latter

kind. If one is writing a program that is intended to produce some result

and exit, it would be a mistake to include an unbounded loop, creating a

bug that would make the program hang on a particular set of operations.

Even among comparisons to repetitions in fine art and craft work, the com-

puter stands alone as a system capable of infinite looping. Nonetheless,

the unbounded loop does have legitimate uses. It can be used to keep an

application, usually an interactive one, running and possibly accepting in-

put until the system is shut off, rebooted, or interrupted. This can be done,

and is done, even on a Commodore 64.

 Bounded loops are those that end under certain conditions. The exact

conditions vary; some will continue until the program reaches a predefined

exit state, while others execute a specific number of times. If there are exit

conditions for a loop at all, that suggests the programmer expected some

kind of change to be introduced as the program executes.

 A common use of finite loops is to create an iterative process. Itera-

tion is a special type of looping where the result of one pass through the

loop influences the result of succeeding passes. The simplest example of

an iterative process is nothing more than counting: beginning with an initial

value of 1, adding 1 to this (that is, incrementing it) to produce 2, perform-

ing the same incrementing operation again to yield 3, and so on. If the

program goes to some limit, say 10, the loop is bounded:

 10 A=1

 20 PRINT A

 30 A=A+1

 40 IF A<=10 GOTO 20

If line 40 is replaced with 40 GOTO 20, the loop becomes unbounded. A

{96} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

conditional branch is what makes loop bounded—it ends when the condi-

tion is met. Therefore, an unconditional branch to earlier in the program

corresponds to an unbounded loop.

 The bounded loop, and counting up or down to a particular value,

is so important in programming that BASIC has its own special syntax for

specifying that sort of loop, using the FOR . . . TO and NEXT statements.

The bounded program above could also be written:

 10 FOR A=1 TO 10

 20 PRINT A

 30 NEXT

BASIC CONSIDERED HARMFUL

Edsger W. Dijkstra, of “Go To Statement Considered Harmful,” was not at all a fan of

the BASIC programming language in which 10 PRINT is written. He wrote in a 1975

letter, “How do we tell truths that might hurt?,” published in 1982: “It is practically

impossible to teach good programming to students that have had a prior exposure

to BASIC: as potential programmers they are mentally mutilated beyond hope of

regeneration” (EWD 498).

 The statement appears amid other one-sentence jabs at programming lan-

guages (FORTRAN, PL/I, COBOL, and APL), IBM, and projects to allow “natural

language” programming. In a 1984 keynote address, “The Threats to Computing

Science,” Dijkstra said, similarly, that “the teaching of BASIC should be rated as a

criminal offence: it mutilates the mind beyond recovery” (EWD 898). In both cases,

his statements are not part of arguments, nor are they elaborated at all. They are sim-

ple denunciations of BASIC—no doubt resonant with many computer scientists and

no doubt of some tactical value at the time, when the structured programming that

predominates today and that Dijkstra was advocating was still being questioned.

 Dijkstra’s papers contain a single reference to BASIC coinventor John Kemeny.

Dijkstra read Kemeny’s 1983 article in Daedalus, an article that discussed the idea

of computer literacy and declared that “the development of ‘structured languages’

in recent years has been a giant step forward.” Dijkstra simply wrote a dismissive

REGULARITY {97}

sentence about the article, saying it “gave a striking example of superficiality” by

comparing computer languages to natural languages (EWD 858).

 The context for these statements was a time of formation and fortification of

the discipline of computer science. Also important was that at this time, computer

scientists were undertaking the development and use of languages that might sup-

port first formal verification (the provability of programs) and later the weaker, but

still potentially very useful, technique of program derivation (Tribble 2005). BASIC,

created for quick interactive use and very amenable to creative production, was not

a suitable language for Dijkstra’s goals.

 Much of Dijkstra’s influential thinking (about stepwise programming, for in-

stance) applies most clearly to programs of some complexity. It would be difficult

to develop a program as simple as 10 PRINT using stepwise programming, since it

may take about one step to write it. As mentioned, 10 PRINT is in a sense exempt

from Dijkstra’s critique of GOTO because of its lack of variables. But in another sense,

it is one of many extremely simplified programs that could lead programmers to

learn programming methods that don’t scale. The risk of learning programming via

one-liners is that one learns tricks and particular methods instead of gaining an un-

derstanding of programming methodologies.

The same program could be written in yet another way:

 10 A=1

 20 PRINT A

 30 A=A+1

 40 PRINT A

 50 A=A+1

 ...

 200 PRINT A

Doing so is an inefficient and error-prone way to write a process. The pro-

grammer is forced to do a repetitive task that the computer is extremely

{98} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

well suited to accomplish on its own. Modifying the program to count to 50

takes four times as long as writing the original program, if this way is cho-

sen. In the previous program, one simply changes “10” to “50” in line 10.

Looping and Iterating

10 PRINT’s unbounded loop produces iterative effects, even if it is not

enacting a purely iterative process. The unconditional branch at the end

is what accomplishes this: 10 PRINT clearly repeats. There is nothing in

the code, however, to indicate that 10 PRINT is an example of iteration

in the more mathematical or computational sense. There are no variables

that change value from one pass to the next—there are no variables at all,

in fact—and the code inside the loop, and the way that code works, never

changes. In the most straightforward computing sense, the BASIC program

10 PRINT CHR$(205.5+RND(1)); : GOTO 10 does not iterate.

 Nonetheless, watching the program execute on screen shows hints

that there is something changing as it runs: the position where a new char-

acter is displayed changes every time the loop executes, moving one loca-

tion to the right until it reaches the fortieth column; then, the display of

characters continues on the next line in column 1. The entire contents of

the screen also moves up by two lines, with the top two lines disappearing,

once the display of characters reaches the bottom left position.

 None of this is a direct result of any BASIC statements included in

10 PRINT. Displaying strings on the screen generally has this effect, since

BASIC’s PRINT command calls the Commodore 64 KERNAL’s CHROUT rou-

tine to produce output. So, while 10 PRINT is not an iterative program, it

invokes the iterative behavior of PRINT. 10 PRINT exposes the power of

using simple, iterative steps to create a complex construction.

 Computing is full of iterations and simple loops. The highest level of

an application program is typically the “main loop” that checks for user in-

put and for other events. Turn-based games, such as a chess program that

plays against a human player, will typically have a conditional loop for each

turn, conditioned upon whether or not the game is over. And frames of a

graphics window or the screen overall, whether drawn in OpenGL, Process-

ing, or by some other means, are drawn within a loop that repeats more or

less rapidly depending upon the framework.

REGULARITY {99}

PERFORMINg ThE LOOP

Step Piece by Vito Acconci is a performance work based on repetition that

is interesting to compare and contrast with 10 PRINT; it is a defined, re-

petitive procedure that is carried out by a person rather than a computer.

Acconci defined this work in a brief text: “An 18-inch stool is set up in

my apartment and used as a step. Each morning, during the designated

months, I step up and down the stool at the rate of 30 steps a minute; each

morning, the activity lasts as long as I can perform it without stopping.”

 Since there are months designated for the performance, Acconci de-

fined a bounded loop. Step Piece was certainly meant to be the same

every morning in particular ways during these months. But it was not the

same at every point for a viewer or for Acconci, and will not be the same

at every point for someone considering the piece years later. How is re-

peating the same thing over and over not repetitive? A person’s repeti-

tive performance cannot be exactly the same each time. Acconci no doubt

stepped more rapidly at some times and then needed to slow down; his

foot struck the stool in a slightly different way, producing a different sound.

There is no close analogue to this in 10 PRINT, since a Commodore 64

runs the program the same way each time and the symbols are presented

in the same way on the same well-functioning television. The photographic

documentation of Step Piece shows Acconci in action with one foot on the

stool and the other on the way up or down. Just as different screen cap-

tures from 10 PRINT are different, each photo is different—they differ even

more in some large-scale ways since they are images of the same person in

different postures, not a 40 × 25 grid with different elements in it.

 Additionally, as the days pass, Acconci gets better at his repetitions

(like a weightlifter doing “reps” to improve strength) while 10 PRINT

writes characters to the screen at the same rhythm and in the same man-

ner as long as the program runs. Some computer programs do actually

improve over time—for example, because they cache frequent operations

or use machine learning to classify inputs better. A one-line program like

10 PRINT, however, is an exemplar of the legacy of computers as basic

calculating machines that do the same thing with symbols each time they

are run. Finally, the repetition does not have the same effect on the viewer

because the context of life changes from day to day. Thus, repetitive mo-

tion may elicit different thoughts at different times.

{100} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

FOR . . . TO . . . STEP

The FOR loop in BASIC is a bit more general than is shown in the example on page

96. It can be used not only to increment a variable, but also to change its value each

time by any amount. A different increment is set using the STEP keyword. To show

only the even numbers between 2 and 10:

 10 FOR A=2 TO 10 STEP 2

 20 PRINT A

 30 NEXT

If STEP is omitted, it’s the same as adding STEP 1. The step value can be set to a

negative number or even to zero. By setting the value to 0, an unbounded FOR loop

can be created:

 10 FOR A=1 TO 10 STEP 0

 20 PRINT "FOREVER!"

 30 NEXT

This allows for an alternate version of 10 PRINT that uses a FOR loop instead of

GOTO:

 10 FOR A=1 TO 2 STEP 0 : PRINT CHR$(205.5+RND(1)); : NEXT

This one is slightly longer and exceeds the forty characters of a physical line but still

a “one-liner” in the sense that it fits into the eighty-character logical line.

 In this version, the “10” at the beginning is optional. The three statements can

be entered together in immediate mode, just as one can type PRINT "HELLO" and

have the PRINT statement executed immediately:

 FOR A=1 TO 2 STEP 0 : PRINT CHR$(205.5+RND(1)); : NEXT

The only reason the line number is needed in the original program is as a point to

branch back to. As GOTO goes, so goes the line number.

REGULARITY {101}

 So, these are at least four ways that Step Piece changes through its

repetition: (1) human performance changes in subtle ways from repetition

to repetition; (2) documentation shows different, nonrepetitive moments;

(3) human performance improves over time; and (4) the work is perceived in

different contexts, even by the same viewer. Step Piece is exemplary here

because it seems to be the more or less pure repetition of pure repetition,

but actors putting on the same play on different nights encounter a similar

type of nonrepeating repetition and all of these four points also apply to

the case of plays that run for several performances. Even though 10 PRINT

is a performance by a digital machine, (2) and (4) still apply, so that its rep-

etition also varies in these ways.

 The performance piece Dance, a collaboration between choreogra-

pher Lucinda Childs, composer Phillip Glass, and artist Sol LeWitt, inter-

weaves these performance strands together. Like all of the works already

discussed, narrative is absent and the subject is literally movement, hear-

ing, and seeing through variation and repetition (figure 30.10). For three of

the five sections of the performance, LeWitt created films of the dancers

performing the same sequence of motions that they perform live on stage.

He filmed them on top of a grid to reinforce the structure within the chore-

ography. The film is projected onto a scrim at the front of the stage during

the performance, and it is synchronized to a recorded version of Glass’s

score. At times the projected image is enlarged and at times it is slowed

down as the film echoes the movements of the live performance. Glass’s

music for Dance features his signature style of repeating and transforming

brief passages. The foundation of Dance is Lucinda Childs’s choreography,

which she has referred to as stripped-down ballet. In the first and stron-

gest movement, the dancers move along straight lines from left to right

and right to left across the stage. As they quickly follow the line in a mix

of running, skipping, and turning, they move through a series of tilts. The

perception is they are moving through every permutation within the gram-

mar of movements created for the dance. As with 10 PRINT, the sound

and motion are hypnotic and emphasize the details of the variation rather

than larger global structural changes. Dance, however, is unlike 10 PRINT

in that it works across multiple media to synthesize a powerful and at times

overwhelming aesthetic experience.

 Regularity is an important technique of the mid-to-late twentieth cen-

tury in part because artists explored systematic production and repeated

{102} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 30.10

Image from the 2009 revival of Dance, a 1979 collaboration of Lucinda Childs,

Phillip Glass, and Sol Lewitt. Photo by Sally Cohn, ©2009. Courtesy of Sally Cohn.

REGULARITY {103}

processes as epitomized by computer programs. The impact of those art

forms is in the stripping away of their representational and expressive pos-

sibilities, the minimalism in their constructivist techniques. By contrast, 10

PRINT, as an initial and initiating example for novices at the Commodore

64, does not strip away but offers an introductory glimpse of the effects

of the flow and control of computer systems processing an unbounded

loop within the constraints of regulated time and space. If the art world

was moving away from representation and expression to this minimalism,

the novice programmer was encountering 10 PRINT as the beginning of

a movement toward representation and expression, in this case within the

world of computer graphics.

 In the cases discussed, regularity in time, space, and process be-

comes programmatic, a proportional regulator that proves to be a genera-

tive constraint, producing larger patterns that can be quite unexpected.

Through the unrelenting predictability of regularity, the repeated random

presentation of two diagonal lines across a grid becomes a quite unantici-

pated scroll of mazes. As a pedagogical example in the technē of program-

ming, 10 PRINT is both a product of and a demonstration of the force of

computational regularity.

35
REM

VARIATIONS
IN

PROCESSING

{106} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Building a high-resolution, interactive program that is inspired by 10 PRINT

allows visual design variations that might not be easy or even possible

within a Commodore 64 program. Computational visual art has been cre-

ated on a variety of platforms and in many systems and languages over the

last fifty years, but the last decade has seen an explosion in the use of com-

mercial tools for designers with embedded programming languages (most

notably, Adobe Flash) along with programming environments designed by

visual artists. John Maeda’s Design by Numbers system from 2001 offers

one example of the latter; a far more influential tool is Ben Fry and Casey

Reas’s Processing, itself inspired by Maeda’s work and started within his

research group at the MIT Media Lab.

 While a simple BASIC program writes some text to the screen with

10 PRINT "HELLO WORLD", a simple Processing program draws a square

to the screen with rect(20, 30, 80, 60);. This one-line Processing pro-

gram draws the rectangle with its upper-left corner at coordinate (20, 30)

and with a width of 80 pixels and height of 60 pixels. Essentially, Process-

ing is an image-making programming language that builds on knowledge

of geometry, photography, typography, animation, and interaction. Under

the hood, Processing is based on Java with a specialized toolkit, program

framework, and authoring environment, all suited to the development of

interactive visual sketches. Because Processing is situated between pro-

gramming and the visual arts, it serves as a bridge between two profes-

sional cultures. Those who approach Processing with a programming back-

ground are encouraged to learn more about making sophisticated visual

images. From the other side, visual artists learn the fundamentals of pro-

cedural literacy.

 The algorithm underlying 10 PRINT is of course not specific to the

Commodore 64; it can be executed with a sheet of graph paper, a pen,

and a coin to toss. The act of running the algorithm on a number of differ-

ent platforms reveals what is essential to the algorithm, on the one hand,

and to the specific constraints and affordances of the system on the other:

lines produced by PRINT wrap and scroll automatically, for instance, so

characters can accumulate and fill the screen without being addressed by

x and y coordinates. More subtle defaults of the Commodore 64 include

the color (light blue on blue) and the speed at which each new section of

the maze is added. When 10 PRINT is ported to another platform, certain

features of the Commodore 64 must be defined consciously or at least

REM VARIATIONS IN PROCESSING {107}

approximated within the new platform; the programmer can renegotiate

the precise color, resolution, and speed of the maze. While many ele-

ments and aspects of the original program can be modified in BASIC on

the Commodore 64, some are more firmly fixed. Primarily, the 40 × 25

character screen that defines the resolution of the grid is fundamental to

the computer’s video system and defines the number of units that make

up the maze.

 The first Processing port of 10 PRINT was written to take advantage

of the increased resolution of contemporary screens. It does this by mak-

ing the thickness and ends of the lines into variables that can be changed

while the program runs. The lines of the maze can range in width from 0.5

to 10 pixels, and the lines can terminate with a rounded or square end. Like

10 PRINT, this Processing port maintains the grid of lines at 40 × 25 units,

but, unlike 10 PRINT, it doesn’t add each grid unit in sequence from left

to right and top to bottom. In the new high-resolution version, the entire

maze is refreshed at once. Using the default Processing colors to create

white lines and a black background confers a mood similar to that of the

original lower-contrast blues of the Commodore 64 (see figure 35.1).

 While creating these variations, some additional quick changes were

introduced to explore the visual aspects of the 10 PRINT maze. First, the

50–50 chance to draw a left or right line was altered so it could be re-

weighted while the program runs to increase the chance of drawing one

line instead of the other. The result is shown in figure 35.2. Then, graphic

symbols different from the original diagonal lines were used to expose part

of the program’s structure.

 The optical effect of the maze is created as these diagonals align

themselves to produce walls and paths. The viewer’s eyes dance across

the image as they attempt to find their way through the structure. Some

symbols also create a strong, but different optical effect, while other sym-

bols generate a boring, flat graphic. Figure 35.3 shows the result of using

a blank image (space) and circle in place of the diagonals. This exploration

into applying a different visual skin to the fundamental coin-toss structure

of the 10 PRINT program reveals that the appeal of 10 PRINT derives from

the random choice among two or more elements, the precise selection of

which optically activates the viewer to create an interesting and culturally

relevant image—in this case, the maze.

 The changes just discussed can be explored directly on the Commo-

{108} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 35.1

Processing ports of 10 PRINT that explore the effects of changing the line weights

and endings.

REM VARIATIONS IN PROCESSING {109}

Figure 35.2

Processing ports of 10 PRINT that explore different weightings for the random

values. The top image has a 25 percent chance of drawing a left-leaning diagonal

line and the bottom image has a 95 percent chance.

{110} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 35.3

Processing port of 10 PRINT that replaces the lines with circles and blank spaces.

Figure 35.4

Processing port of 10 PRINT focused on closely imitating the behavior of the

Commodore 64.

REM VARIATIONS IN PROCESSING {111}

dore 64, some more easily and some less so, as has been shown to some

extent in the remark Variations in BASIC. It is convenient to explore these

changes in Processing, however. For one thing, Processing exposes many

dimensions of variation, down to the pixel level, which would be difficult to

change on the original platform. For another, a programmer who is highly

fluent in Processing can work through ideas and problems easily using that

system.

 Some variations that are most easily accomplished on the Commo-

dore 64 are the ones involving reweighting the distribution of lines and

replacing the lines with spaces and circles. As discussed earlier, 10 PRINT’s

distribution of ╱ and ╲ can be altered by simply changing the “.5” in

“205.5,” for instance:

 10 PRINT CHR$(205.25+RND(1)); : GOTO 10

The 10 PRINT variation to show spaces and circles instead of diagonal lines

also changes the selection of value 205 or 206 to choose between the nu-

merical code of the space character, 32, and that for a circle character, 113:

 10 PRINT CHR$(32+(INT(RND(1)+.5)*81)); : GOTO 10

Writing and running this first Processing port, which focuses entirely on the

image of the maze and on allowing runtime changes in parameters, points

out an important visual aspect of the original 10 PRINT: watching the maze

building up or accumulating one unit at a time on the Commodore 64 is a

major component of the experience. This behavior doesn’t naturally take

place with Processing because the entire screen updates at once, not char-

acter by character. Processing makes more extensive use of the computer’s

double-buffered graphics system. This allows graphics to be drawn to an

off-screen image buffer, stored in RAM, and, once completed, pushed

across to the computer screen. For programs that feature animation or in-

teraction, and thanks to today’s much faster hardware, the result is a new

image written and drawn to the screen about sixty times per second.

 The lines of Processing programs do not begin with numbers, as they

do in Commodore 64 BASIC. Each line is executed in order from top to

bottom and according to some higher-level rules. This can be seen in the

following Processing port of 10 PRINT. This program does not allow the

{112} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

user to interactively vary parameters, but it does reproduce the character-

at-a-time construction of the original:

 int w = 16;

 int h = 16;

 int index = 0;

 void setup() {

 size(640, 384);

 background(#0000ff);

 strokeWeight(3);

 stroke(224);

 smooth();

 }

 void draw() {

 int x1 = w*index;

 int x2 = x1 + w;

 int y1 = h*23;

 int y2 = h*24;

 if (random(2) < 1) {

 line(x2, y1, x1, y2);

 } else {

 line(x1, y1, x2, y2);

 }

 index++;

 if (index == width/w) {

 PImage p = get(0, h, width, h*23);

 background(#0000ff);

 set(0, 0, p);

 index = 0;

 }

 }

REM VARIATIONS IN PROCESSING {113}

The primary structure of the program is defined by the setup() and

draw() blocks. Variables may be defined outside of these blocks, but ev-

erything else is sequenced through them. When the program starts, the

variables outside of the blocks are declared and assigned. Next, the lines

of code inside of setup() are read from top to bottom. Here, the size of

the display window is set to be 640 pixels wide and 384 pixels high, and

the colors for the background and lines are defined. Next, the code inside

draw() runs from top to bottom. Whatever code is inside the draw()

block runs, from top to bottom, once for each frame until the program is

terminated. The code within the if statement, inside draw(), samples a

random value and then draws one of the two possible lines. The code in

the if block at the bottom of draw() moves the maze up when the maze

line that is currently drawing is filled. This code behaves and looks more

similar to the canonical Commodore 64 10 PRINT (see figure 35.4), but the

process is defined differently.

 There is a way within Processing to make a 10 PRINT port that is in

some ways a better approximation of the program on the Commodore 64.

This method uses the text console of the Processing Development Envi-

ronment (PDE) instead of the pixels in the display window; this console is

typically used for error messages and writing debug statements through

the print() and println() functions, which are similar to PRINT in

BASIC. The console, however, can only print text; programs themselves

are not typed in this area, and graphics cannot be drawn there. The other

significant difference is that the graphic characters of PETSCII are not avail-

able in the native console font for the PDE. As a result the “/” and “\” (slash

and backslash) characters need to be used in place of diagonal graphics ╱

and ╲. This results in space between the lines which prevents the illusion

of a continuous maze. The output is similar to that of the first 10 PRINT

port in Perl, shown in figure 25.3. A Processing program that produces this

approximation of 10 PRINT can also be realized in one line:

 void draw() { print((random(1)<0.5) ?'/' :'\\'); }

When the program is run in Processing, an empty display window opens

and the text is printed to the console as seen in figure 35.5. This explora-

tion raises a crucial difference between writing this program in Commodore

64 BASIC and writing it in Processing. The one-line Processing program is

{114} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 35.5

This one-line Processing 10 PRINT port is algorithmically more similar to the

Commodore 64 program, but the visual output is extremely different. The code

is written in the text editor and the output is drawn to the console rather than

opening a new display window.

REM VARIATIONS IN PROCESSING {115}

quite similar as code but produces a divergent result, one that looks a great

deal like that of the first Perl one-liner and the Apple II one-liner discussed

in the previous remark.

 Evaluating the similarities and differences between the Commodore

64 10 PRINT program and the Processing port shows that the shape of the

small component lines, and specifically the shape of their ends, is a subtle

but crucial factor. In the Commodore 64 10 PRINT image, each single-

character diagonal line comes to a point on both ends. This is a result of

the characters being 8 × 8 pixel tiles with thick lines that run all the way to

the corners. This maze is created by tiling these 64-pixel squares.

 In the Processing program, each added line is free to extend beyond

any particular box within the window. A Processing window is a continuous

surface of pixels, each of which can be addressed precisely with an x- and

y-coordinate. The 10 PRINT program comprises 320 × 200 pixels, but the

controllable resolution is 40 × 25, for a total of 1000 elements. A Process-

ing version of the program can utilize all of the pixels in a window—and in a

screen-filling window on a large, contemporary display, this can mean mil-

lions of pixels. A 1080p high-definition display, for example, is composed

of 2,073,600 pixels.

 With this enhanced resolution in mind, a third version of 10 PRINT

in Processing follows—one that takes more liberties with the original pro-

gram. The number of rows and columns in the grid is variable, the direction

of the line defines its color (black or white), each line is defined as a quad-

rilateral to give the shape more flexibility, and a third color is used for the

background. Each time the code is run, the size of the grid unit is defined

at random as a power of 2 (2, 4, 8, 16, or 32), and the thickness of the lines

is set randomly to 2, 4, or 8. Figure 35.6 shows some of the varied results.

With the ability to further define the graphics, the code becomes longer

than a one-liner, but still fairly compact.

 The decision to display one direction of lines as white and the other

as black triggers the viewer’s evolved perception to create depth within this

two-dimensional image. The ordinary process of visual perception indicates

that there is a light source that is reflecting off one directional edge and

creating a shadow on the other. The angle at which the lines terminate in

this program enhances the effect by occlusion and termination at the edge.

This creates an isometric perspective that further enhances the perceived

dimensionality. These effects work well in some randomly determined con-

{116} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 35.6

Processing port of 10 PRINT that adds a new line shape, colors, and variation of

grid units.

REM VARIATIONS IN PROCESSING {117}

Figure 35.7

Processing program based on 10 PRINT, but significantly different, in which each

line has a random thickness.

{118} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

figurations and are subverted by others (figure 35.6). This is accomplished

with the following program:

 size(1020, 680);

 noStroke();

 background(0, 0, 255);

 int rows = int(pow(2, int(random(1, 6))));

 int u = height / (rows + 4);

 int thickness = int(pow(2, int(random(1, 4))));

 int uth1 = u / thickness;

 int uth2 = u + uth1;

 int startX = int(-u * 0.75);

 int startY = height/2 - rows/2 * u;

 int endX = width+u;

 int endY = height/2 + rows/2 * u;

 for (int x = startX; x < endX; x += u) {

 for (int y = startY; y < endY; y += u) {

 if (random(1) > 0.5) {

 fill(255);

 quad(x, y, x+u, y+u, x+uth2, y+u, x+uth1, y);

 }

 else {

 fill(0);

 quad(x, y+u, x+u, y, x+uth2, y, x+uth1, y+u);

 }

 }

 }

It is worth noting that, despite all of the random options in the newly de-

fined program, the line weight remains constant throughout. To check the

visual effect of selecting a random line weight, one can simply move lines

6–8 of the program (declaring and defining thickness, uth1, and uth2)

right underneath the second line beginning with for, so they are with-

in that for loop. The results are shown in figure 35.7. At this stage, the

program distinguishes itself significantly from its parent and emerges as a

qualitatively unique algorithm.

RANDOMNESS {119}

40
RANDOMNESS

GAMES OF CHANCE

RANDOMNESS BEFORE COMPUTING

RANDOMNESS COMES TO COMPUTING

COMPUTATIONAL RANDOMNESS IN THE ARTS

THE COMMODORE 64 RND FUNCTION

{120} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

An essential element of 10 PRINT is randomness; the program could not

produce its mesmerizing visual effect without it. This randomness comes by

way of RND, a standard function in BASIC. RND has been part of the BASIC

lexicon since the language’s early days at Dartmouth. What the function

does is easily characterized, yet behind those three letters lie decades,

even centuries, of a history bound up in mathematics, art, and less ab-

stract realms of culture. This chapter explores randomness in computing

and beyond. The role of randomness in games, literature, and the arts is

considered, as are the origins of random number generation in modern

mathematics, engineering, and computer science. Also discussed is the

significance of “pseudorandomness”—the production of random-like val-

ues that may appear at first to be some sad, failed attempt at randomness,

but which is useful and even desirable in many cases. The chapter argues

that the maze pattern of 10 PRINT is entwined with a complex history of

aesthetic and utilitarian coin flips and other calculations of chance.

 Since a random occurrence is “hap,” the root of happy, it might

seem that “random” would have a happy etymology. But this is not so.

In centuries past, before the philosophers and mathematicians in the Age

of Enlightenment sought to rationalize chance, randomness was a night-

mare. Likely ancestors of the word “random” are found in Anglo-Norman,

Old French, and Middle French and include randoun, raundun, raundoun,

randon, randun, and rendon—words signifying speed, impulsiveness, and

violence. These early forms are found beginning around the twelfth cen-

tury and probably derive from randir, to run fast or gallop (“random, n.,

adv., and adj.” 2011). Bumper stickers implore drivers to “practice random

acts of kindness,” but only because people in our culture fear random acts

of violence so much that this phrase has become ingrained and can be

punned upon—and at a deeper level, perhaps, because the speed and

violence of other vehicles are to be feared. While in recent days it might be

harmless to encounter “a random” sitting in the computer lab exploring a

system at random, a “random encounter” centuries ago was more likely to

resemble a random encounter in Dungeons & Dragons: a figure hurtling on

horseback through a village, delivering death and destruction.

 Only recently have the meanings of the word “random” coalesced

around science and statistics. The history of this word is strewn with obso-

lete meanings: the degree of elevation of a gun that maximizes its range;

the direction of a metallic vein in a mine; the sloping board on the top

RANDOMNESS {121}

of a compositor’s frame where newly arranged pages are stored before

printing. These particular randoms kill opponents, create wealth, or help

assemble texts. The RND command in 10 PRINT selects one of two graphi-

cal characters—a kind of textual composition that recalls the last of these

meanings of random. 10 PRINT’s random is a flip or flop, a symbol like a

slash forward or backward (but fortunately less fearsome than the horse-

man’s random slash). The program splays each random figure across the

screen using the PRINT command, another echo of the printing press and

a legacy of the early days of BASIC, when PRINT literally meant putting ink

on paper. Although RND on the Commodore 64 may seem remote from

these early meanings of “random,” there are, beneath the surface, connec-

tions to speed, violence, devastation, and even printing.

GAMES Of ChANCE

Life itself is full of randomness and the inexplicable, and it is no small won-

der that children and adults alike consciously incorporate chance into their

daily lives, as if to tame it. Games of chance are one of the four fundamental

categories of games that all humans play, according to the French cultural

historian Roger Caillois. Whereas agon are competitive games dependent

upon skill, games of mimicry are imaginative, and ilinx are games causing

disorder and loss of control, the alea are games of chance. Craps, rou-

lette, the lottery—these are some of the games in this category, ones with

unpredictable outcomes. Taken from the Latin name for dice games, alea

“negates work, patience, experience, and qualifications” (Caillois 2003, 17)

so that everything depends on luck. In Latin, the āleātor is a gambler; in

French, aléatoire is the mathematical term for random.

The Appeal of the Random

In his Arcades Project on nineteenth-century Paris, Walter Benjamin de-

votes an entire section to dice games and gambling, a curious assemblage

of notes and excerpts from sources ranging from Casanova to Friedrich

Engels. “Gambling,” Anatole France is quoted as saying, “is a hand-to-

hand encounter with Fate” (Benjamin 1999, 498 [O4A]). Every spin of the

roulette wheel is an opportunity to show that fate smiles upon the player.

{122} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Fortunes rise and fall in the blink of an eye, the roll of the die, or the cut of

the cards. Every gambler knows this, accepts it, and even relishes it.

 The allure of gambling—and more generally, the allure of chance in

all games—rests on uncertainty. Uncertainty is so compelling that even oth-

erwise skill-based games usually incorporate formal elements of chance,

such as the coin toss at the beginning of a football game. As Katie Salen

and Eric Zimmerman put it, uncertainty “is a key component of meaningful

play” (2004, 174). Once the outcome of a game is known, the game be-

comes meaningless. Incorporating chance into the game helps delay the

moment when the outcome will become obvious.

 Consider the case of George Hurstwood in Theodore Dreiser’s Sister

Carrie, first published in 1900. Driven by “visions of a big stake,” Hurst-

wood visits a poker room:

 Hurstwood watched awhile, and then, seeing an interesting game,

 joined in. As before, it went easy for awhile, he winning a few times

 and cheering up, losing a few pots and growing more interested and

 determined on that account. At last the fascinating game took a

 strong hold on him. He enjoyed its risks and ventured on a trifling

 hand to bluff the company and secure a fair stake. (Dreiser 1981, 374)

What is intriguing about Dreiser’s account is that it is only when Hurst-

wood’s good fortune wavers that his interest in the game grows and he

begins to enjoy it. Losing a few hands makes a winning streak that much

more thrilling. “A series of lucky rolls gives me more pleasure than a man

who does not gamble can have over a period of several years,” Edouard

Gourdon avers in one sexually charged extract in the The Arcades Proj-

ect. “These joys,” he continues, “vivid and scorching as lightning, are too

rapid-fire to become distasteful, and too diverse to become boring. I live a

hundred lives in one” (Benjamin 1999, 498 [O4A]).

 Unlike the early, purely malevolent associations of randomness de-

scribed in the beginning of this chapter, randomness here involves the mas-

ochistic interplay between pleasure and pain. There is also a monumental

compression of time: a hundred lives in one. Anatole France calls gambling

“the art of producing in a second the changes that Destiny ordinarily ef-

fects only in the course of many hours or even many years” (Benjamin 1999,

498 [O4A]). Benjamin himself declares that “the greater the component of

RANDOMNESS {123}

chance in a game, the more speedily it elapses” (512 [O12A,2]). Waiting,

boredom, monotony—these frustrations disappear as “time spills from his

[the gambler’s] every pore” (107 [D3,4]).

forms of Randomness

Perhaps Benjamin describes games of chance with a bit more whimsy

than is useful for critical discussion of the role of randomness in culture.

Although words like randomness, chance, and uncertainty may be casually

interchanged, not all forms of chance are actually the same. To highlight

distinctions between various forms of chance, consider the anthropologist

Thomas Malaby’s account of gambling in a small Greek city on the island of

Crete—an appropriate site of exploration, given alea’s Greek etymology.

Malaby’s goal is to use gambling as a “lens through which to explore how

social actors confront uncertainty in . . . key areas of their lives” (2003, 7).

How do people account for the unaccountable? How do we deal with the

unpredictable? And what are the sources of indeterminacy in our lives?

 Malaby presents a useful framework for understanding indeterminacy

based on four categories. The first category is formal indeterminacy, or

what is commonly referred to as chance. This is any form of random al-

lotment, which often can be understood and modeled through statistical

methods. Malaby argues that the ascendancy of statistical thinking in the

social sciences has so skewed our conception of indeterminacy in gam-

bling (in particular) and in our lives (in general) that formal indeterminacy

has become a stand-in for other types of indeterminacies. The second cat-

egory is social indeterminacy, the impossibility of knowing or understand-

ing someone else’s point of view or intentions. A bluff is a type of social in-

determinacy. The third category is performative indeterminacy, that is, the

unreliability of one’s own or of another’s actions, say a fumble in football

game or misreading the information in plain view on a chessboard. Finally,

the fourth category Malaby describes, cosmological indeterminacy, refers

to skepticism about the fairness and legitimacy of the rules of the game in

the first place at a local, institutional, or cosmological level. Suspicion that a

game is rigged, for example, is concern about cosmological indeterminacy

(Malaby 2003, 15 –17).

 Privileging of the stochastic principles of formal determinacy means

that players, scholars, and even programmers dismiss social and performa-

{124} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

tive indeterminacies altogether. In the case of 10 PRINT, thinking about

social indeterminacy can reveal several new layers of randomness, such

as the idiosyncratic line numbers in the 1982 and 1984 versions of the

program. Likewise, understanding performative indeterminacies may ac-

count for the textual variants of the program, for example, the version that

appeared in the online publication Commodore Free that will not actually

execute as printed (Lord Ronin 2008).

 Cosmological indeterminacy is perhaps the most difficult form of in-

determinacy to apply to 10 PRINT. The rise of the scientific method can

be seen as one enduring struggle to impose a more rational view upon the

world and to abolish cosmological indeterminacy. From Aristotle to Gali-

leo to Newton, classical mechanics defined the universe as an organized

system without random actions. Einstein declared that “God does not play

dice with the universe.” Yet, as a closer examination of randomness on

the Commodore 64 will reveal, there is evidence that randomness on this

computer—and indeed, on any computer—is fundamentally “rigged” in

a way that echoes Malaby’s idea of cosmological indeterminacy. Random-

ness and chance operations are so necessary to daily life, well beyond the

realm of games, that randomness itself is framed as fixed, repeatable, and

knowable.

RANDOMNESS bEfORE COMPuTING

Just as the different categories of indeterminacy in games are often grouped

together and called “chance,” so too in the visual arts, music, and other

aesthetic practices is the word “chance” used instead of “randomness.” In

his chapbook Chance Imagery, the conceptual artist George Brecht (1966)

describes two distinct types of chance operations by which an artist might

create a work: “one where the origin of images is unknown because it lies in

deeper-than-conscious levels of the mind” and a second “where images de-

rive from mechanical processes not under the artist’s control.” The first defi-

nition describes the work of the Surrealists and Abstract Expressionists, who

sought to allow subconscious processes to dictate their work. The second

definition is reminiscent of Dada and closer to the typical concept of ran-

domness in computing; it describes the mechanical operations of the artists

most directly connected to 10 PRINT. These two senses are worth noting

RANDOMNESS {125}

because it is difficult to pull on one of the two senses of “chance” without

the other one—the unconscious, in this case—at least feeling a tug.

 The tension between these two chance operations is captured in Wil-

liam Burroughs’s story about a Surrealist rally in the 1920s. Tristan Tzara

suggested writing a poem “on the spot by pulling words out of a hat,”

and as Burroughs tells it, “a riot ensued” and “wrecked the theater.” In his

version of events, André Breton, the leading Surrealist, expelled Tzara from

the group, his purely mechanistic chance operation being an affront to the

power and vagaries of the Freudian unconscious (Burroughs 2003). Bur-

roughs is most certainly conflating several events, and the break between

Surrealism and Dada had as much to do with a personality clash between

Breton and Tzara as with their approaches to art (Brandon 1999, 127). Bur-

roughs himself clearly preferred the anarchic mode of Tzara and famous-

ly described a similarly unpredictable mode of composition, the cut-up

method, also proposed by Tzara in his 1920 “To Make a Dadaist Poem.”

Burroughs explains that “one way to do it” is to cut a page in four quarters

and then rearrange the sections: “you will find that it says something and

something quite definite” (90). Tzara suggests pulling words blindly from a

bag. The generative possibilities of this cut-up technique resemble the col-

lage in art and the montage in film, and have become far more mainstream

today than Tzara might have imagined in 1920. For instance, Thom Yorke,

the lead singer for the band Radiohead, wrote the lyrics to “Kid A” in 1999

by pulling fragments of text out of a top hat.

Chance Operations

Though Yorke employed a type of cut-up method to address severe writer’s

block, artistic experimentation with randomness in the early part of the

twentieth century can be seen as a response to the sterile functionality of

rationality and empiricism wrought by the Industrial Age and as a deliber-

ate reaction against World War I. Consider Marcel Duchamp’s Three Stan-

dard Stoppages (1913–1914). According to his description of the piece,

Duchamp dropped three meter-long pieces of string from the height of

one meter and let gravity and chance dictate the paths of the twisting

string downward. Then he adhered the twisted string onto canvas, the

shape and length of which he preserved in 1918 in wooden cutouts, creat-

ing three new “stoppages” that parodied the supposed rationality of the

{126} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

meter. When Duchamp described his method in 1914, he observed that

the falling thread distorts “itself as it pleases” and the final result becomes

“the meter diminished,” subverting both the straightness and the length

of what commonly goes unquestioned (Duchamp 1975, 141–142). On his

use of randomness, Duchamp said, “Pure chance interested me as a way of

going against logical reality” (Cabanne 1971, 46).

 Duchamp, like the other Dada artists with whom he associated, saw

“logical reality” as a failure, epitomized by the horrors of World War I. Sat-

ire, absurdity, and the embrace of indeterminacy seemed to the Dadaists to

be the most “reasonable” response to modernity. In the words of the Dada

artist Jean (Hans) Arp, “Dada wished to destroy the reasonable frauds of

men and recover the natural, unreasonable order. Dada wished to replace

the logical nonsense of the men of today with an illogical nonsense.” To

Arp, individual authorship was synonymous with authoritarianism and ran-

dom elements were used to liberate the work (Motherwell 1989, 266).

 The major twentieth-century composer to explore randomness was

certainly John Cage, who was strongly influenced by Duchamp. From Cage’s

point of view, random elements remove individual bias from creation; they

may be used to reach beyond the limitations of taste and bias through

“chance operations.” Cage influenced generations of artists through his

compositions as well as through his writing, lectures, and classes. In his text

“Experimental Music,” Cage wrote, “Those involved with the composition

of experimental music find ways and means to remove themselves from the

activities of the sounds they make. Some employ chance operations, de-

rived from sources as ancient as the Chinese Book of Changes, or as mod-

ern as the tables of random numbers used also by physicists in research”

(1966, 10).

 Cage’s method of random composition was to create a system of pa-

rameters and then leave the results to circumstance. Cage explained, “This

means that each performance of such a piece of music is unique, as inter-

esting to its composer as to others listening. It is easy to see again the par-

allel with nature, for even with leaves of the same tree, no two are exactly

alike” (1996, 11). Random components are used to transform a single com-

position into a space of potential compositions. Over the decades, Cage

used an array of techniques to insert unexpected elements into his compo-

sitions. He defines the range of techniques he and his contemporaries used

in the 1958 lectures “Composition as Process.” There are generally two

RANDOMNESS {127}

methods for using random values in music: to define the work at the time

of composition or to allow for variation when the work is performed. The

most obvious use of randomness in 10 PRINT is in the second category as

random decisions are made during the program’s execution—that is, while

the BASIC instructions are performed by the Commodore 64.

 Within two-dimensional visual art, artists also explored mechanical

random processes for reasons championed by Cage. The eminent con-

temporary painter Gerhard Richter provided a simple answer to this meth-

od’s benefits when he said, “I’m often astonished to find how much better

chance is than I am.” There are precedents for chance used within visual

works dating back to collage works by Arp from 1916, but the two early

works most relevant in the discussion of 10 PRINT are the Spectrum of

Colors Arranged by Chance collage series (1951) by Ellsworth Kelly and

Random Distribution of 40,000 Squares Using the Odd and Even Numbers

of a Telephone Directory (1961) by François Morellet. These works start

with an even grid and fill the grid carefully with elements based on the

algorithms developed by the artists. Kelly uses squares of colored paper,

placed according to a system he designed. He assigned a number to each

color and plotted the numbers on the grid systematically (Malone 2009,

133). Morellet employed a stricter system, reading a series of numbers

from the telephone book. He made a grid of 200 vertical and horizontal

lines, painting a square blue if its assigned number is even, painting it red

if it is odd. In both of these artworks and in 10 PRINT, the structure of the

grid is what makes it possible to focus on the variability created through

the random operations.

A Million Random Digits

The need for large batches of random numbers is so acute that there are

standardized collections of them. In Deborah Bennett’s history of humans’

quest for randomness—which she suggests goes as far back as ancient

Babylonia (1998, 17)—she highlights one of the earliest and largest sets

of random numbers, A Million Random Digits with 100,000 Normal Devi-

ates (135). This series of numbers (figure 40.1) was generated in 1947 from

“random frequency pulses of an electronic roulette wheel” by the RAND

Project, a research and development think tank that would eventually be-

come the RAND Corporation. The 1955 publication of the series in book

{128} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

form was an important contribution to any study of probability; the book is

still in use today. As the forward to the undated online edition of the table

notes:

 The tables of random numbers in the book have become a standard

 reference in engineering and econometrics textbooks and have been

 widely used in gaming and simulations that employ Monte Carlo trials.

 Still the largest known source of random digits and normal deviates,

 the work is routinely used by statisticians, physicists, polltakers, market

 analysts, lottery administrators, and quality control engineers. (RAND

 Corporation 1955)

Considering its sophisticated origins and uses, A Million Random Digits

proposes a surprisingly unscientific method of using the book: “In any use

of the table, one should first find a random starting position. A common

procedure for doing this is to open the book to an unselected page of the

digit table and blindly choose a five-digit number.” The RAND report goes

on to somewhat ominously explain that its one million random numbers

were originally “prepared in connection with analyses done for the United

States Air Force.” Like so many other advances in computing, randomness,

it turns out, is intimately linked to Cold War military strategies. In fact, most

of the early work on computer-based random number generation was per-

formed under the auspices of the U.S. Atomic Energy Commission see, for

example, Rotenberg’s [1960] work in the late 1950s) or the U.S military (see

Green, Smith, and Klem’s [1959] work at MIT, done with joint support of the

U.S. Army, Navy, and Air Force).

RANDOMNESS COMES TO COMPuTING

The RND command acts as the algorithmic heart of 10 PRINT, its flip-flop-

ping beat powering the construction of the maze. The RND function is as

fully specified as any BASIC keyword, but its output is, by that definition,

unpredictable. Mathematicians and computer scientists don’t think in terms

of predictability, though; rather, the standard mathematical treatment of

randomness defines randomness in terms of probability. A random process

generates a sequence of values selected from a set of possible values ac-

RANDOMNESS {129}

Figure 40.1

A Million Random Digits with 100,000 Normal Deviates was published in 1955 by

the RAND Corporation and was the largest list of random values yet published. It

was necessary for RAND to execute their research without repeating values from

previously published, smaller number tables.

{130} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

cording to a probability distribution. In the case of a discrete distribution

(heads or tails, for instance), the distribution explains how much weight is

on each possible outcome—how likely that value is to appear.

 If, for example, one draws a single card from a thoroughly shuffled

deck, the probability distribution from which this draw is done is uniform:

it is equally likely that any particular card will be chosen. Similarly, random

numbers are typically defined as numbers drawn from a uniform distribu-

tion over all possible numbers in some range. A difficulty with this defini-

tion is that the randomness of a number is defined in terms of that range.

Given a number such as 42, it is impossible to tell how random a selection

it was. To determine randomness without knowing the means of genera-

tion, one must consider a sequence of numbers; knowing the range in

which the numbers are supposed to lie or, more generally, the distribution

from which they are supposed to be drawn, is also essential.

 Digital computers are deterministic devices—the next state of the

machine is determined entirely by the current state of the machine. Thus,

computer-based random number generators are more technically described

as pseudorandom number generators. The somewhat dismissive-sounding

“pseudo” refers to the fact that a deterministic process (a computer pro-

gram) is being used to generate sequences of numbers that appear to

be uniformly distributed. This works well in practice for sequences that

aren’t astronomically long. But eventually, for long enough sequences,

the deterministic nature of a pseudorandom number generator will be un-

masked, in that eventually statistical properties of the generated sequence

will start diverging from those of a true random process. In an extremely

long sequence, for example, a true random process will generate the same

number many times in a row. A version of 10 PRINT running using a true

random process will eventually generate the regular image in figure 40.4

(and the image in figure 40.5, and every other possible pattern), while the

pseudorandom number generator in the Commodore 64 will not. Tests for

long runs are one of the many statistical tests used to judge the quality of

pseudorandom number generators.

 An obvious question to ask about randomness is why a computer

would need to implement it in any form. Chance might produce stunning

poetry, breathtaking art, uncanny music, and compelling games, but what

is its role in the sciences? Why provide a calculating machine with the abil-

ity to generate random numbers in the first place? Certainly, one stereo-

RANDOMNESS {131}

type of computing is that it is done exactly, repeatedly, with perfect preci-

sion and accuracy. Computers are commonly thought to order the world,

to sift through reams of data and then model possible outcomes, possible

futures, providing certain—and deterministic—answers. Yet a function to

generate random numbers was present in the first Dartmouth BASIC. Every

version of BASIC since then has had one or more ways to create random

numbers. Nearly every contemporary programming language, including

Python, Perl, Java, JavaScript and C++, has a built-in way to generate

randomness.

 Quite simply, the answer to this puzzle is that randomness is necessary

for any statistical endeavor, any simulation that involves unknown variables.

Practically everything involves unknown variables: the meteorological con-

ditions at a rocket launch site, the flow of air under a bomber’s wings, and

the spread of an infectious disease. Additionally, there is the movement

and halting of traffic, the cost of bread, and the drip of water from the

kitchen faucet. Forecasting any of these phenomena requires reckoning

with uncertainty, which in turn requires a pool of random numbers. Further-

more, one or two random numbers are not enough. Large-scale statistical

calculations or simulations require large batches of random numbers.

 John von Neumann was the first to propose the idea of harnessing

a computer to generate random numbers (Knuth 1969, 3). It was around

1946 and von Neumann was fresh off the Manhattan Project and soon to

begin his lead work on the hydrogen bomb. Seeking a way to statistically

model each stage of the fission process, von Neumann and his colleague

Stanislaw Ulam first relied on the Monte Carlo method to generate tables

of random numbers. These tables, however, soon grew too large to be

stored on computers (Bennett 1998, 138–139). Von Neumann’s solution

was to design a computer program to produce random numbers on the fly,

using the middle-square method. It worked by squaring an initial number,

called the seed, and extracting the middle digits; this number was then

squared again, and the middle digits provided a new random number (von

Neumann 1961). Because each number is a function of the one before it,

the sequence, as Donald Knuth explains, “isn’t random, but it appears to

be” (3)—that is, it is “pseudorandom.”

{132} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

GRAPHING RANDOM MAZES

Randomness has enabled the construction of mazes for decades. These mazes are

not grown in a careful arrangement of hedgerows, or built amid the mossy walls of

Cretan dungeons. Instead, they are typically graphs, mathematical objects consist-

ing of a set of nodes (also called vertices), pairs of which may be connected with a

link (also called an edge). Graphs, or networks, don’t need to have any particular

geometry. They are simply nodes linked to other nodes, and they can be drawn on

paper in many different ways that are correct representations.

 Consider, however, a piece of graph paper, blank white except for a regular

grid of pale blue lines. Each point where two lines cross can be taken to represent a

node, while the lines between these points can define links. This construction, based

on a lattice, is a special kind of graph called a grid graph. Using a pencil and trac-

ing only along the pale blue demarcations, how does one draw a maze whose links

(hallways) connect all of the nodes (rooms) to each other?

 Graph theory, a field of mathematics, offers a number of methods for produc-

ing random mazes of this kind. The most well-known approaches are algorithms for

calculating a minimal spanning tree, a graph in which all links are connected and with

only one simple path between any two points. (Minimum spanning trees are found

to solve problems in various domains, from phone networks to demographic analy-

sis.) Because they lack cycles—there is exactly one path between any two nodes—

the mazes produced by such trees are called “perfect mazes.” Spanning solutions

are not always mazes in the multicursal sense; they don’t need to have forking paths.

For example, on a grid graph, it’s possible to create a minimal spanning tree using

a single line, winding back and forth on a labyrinthine path until the page is filled.

Of the myriad spanning solutions to a piece of graph paper, however, the vast ma-

jority of them are branching mazes. Thus, selecting a solution at random can be a

good way to produce different mazes. A straightforward maze-generation technique

involves adding random values (or weights) to all the links in the grid graph, then

employing an algorithm to find a minimum spanning tree and thus generate a maze.

Depending on the algorithm used, the resulting mazes may reflect different aesthet-

ics, for instance, having different proportions of shorter and longer paths.

 Significant minimum spanning tree algorithms were pioneered by Czech math-

ematicians in the early twentieth century (Otakar Borůvka in 1926; Vojtěch Jarník in

1930) and independently rediscovered many times thereafter, including decades

RANDOMNESS {133}

COMPuTATIONAl RANDOMNESS IN ThE ARTS

To those interested in randomness and expressive culture, perhaps the

most intriguing element of Donald Knuth’s magisterial discussion of ran-

dom numbers appears in a footnote. Knuth recalls a CBS television docu-

mentary in 1960 called “The Thinking Machine” which featured “two West-

ern-style playlets” written by a computer (Knuth 1969, 158–160). In fact,

three playlets were acted out on national television that day in October

1960, generated by a TX-0 computer housed at MIT’s Electronics Systems

Laboratory. SAGA II, the script-writing program behind the mini Westerns,

took programmers Douglas Ross and Harrison Morse two months to de-

velop and consisted of 5,500 instructions (Pfeiffer 1962, 130–138). The key

to SAGA II was its thirty “switches,” which made “various alternative or

branching paths” possible (136). “Among other things,” Pfeiffer observed,

“the robber may go to the window and look out and then go to the table,

or he may go to the table directly. You cannot tell in advance which one of

these alternatives the program will select, because it does the equivalent

of rolling a pair of dice” (136).

 Even before the SAGA II playlets, there were other literary experi-

ments with randomness and computers. Noah Wardrip-Fruin identifies the

later by computer scientists writing in English (e.g., Sollin in 1965). Two of the most

well-known maze-generating algorithms in graph theory today are Joseph Kruskal’s

and Robert Clay Prim’s. Both algorithms were published in 1957—although Prim’s

was a rediscovery of Jarník’s and was in turn rediscovered by Dutch computer scien-

tist Edsger W. Dijkstra, famous opponent of GOTO, in 1959 (Foltin 2011, 15). Both are

greedy algorithms, which means that they choose the best link to take at every turn.

Kruskal’s algorithm chooses across the entire graph, while Prim’s algorithm builds

up a connected path. These algorithms can be modeled with paper and pencil, but

computational randomization allows them to rapidly generate a plethora of maze

forms, thanks to the interaction of the regularity of the grid, the deterministic algo-

rithm, and the random weighting of links.

{134} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

British computer scientist Christopher Strachey as the creator of the first

work of electronic literature, a series of “love letters” generated by the

Ferranti Mark I computer at Manchester University in 1952 (Wardrip-Fruin

2005). Affectionately known as M.U.C., the Manchester University Com-

puter could produce the evocative love letters at a pace of one per minute,

for hours on end, without producing a duplicate. The “trick” is, as Strachey

put it, the two model sentences (e.g., “My adjective noun adverb verb

your adjective noun” and “You are my adjective noun”) in which the nouns,

adjectives, and adverbs are randomly selected from a list of words Strachey

had culled from Roget’s Thesaurus. Adverbs and adjectives randomly drop

out of the sentence as well, and the computer randomly alternates the two

sentences. On the whole, Strachey is dismissive of his foray into the literary

use of computers, using the example of the love letters simply to illustrate

his point that simple rules can generate diverse and unexpected results

(Strachey 1954, 29–30). Nonetheless, a decade before Raymond Que-

neau’s landmark combinatory work One Hundred Thousand Billion Poems,

Strachey had unwittingly laid the foundation for the combinatory method

of composition by computer, a use of randomness that would grow more

central to literature and the arts in the following decades.

 Other significant early works involving random recombination had

more visible connection to literary tradition and artistic movements. The

1959 “Stochastic Texts” of Theo Lutz combined texts from Franz Kafka

with logical operations to produce “EVERY CASTLE IS FREE. NOT EVERY

FARMER IS LARGE” among other statements (Lutz 1959/2005). In the next

decade, Fluxus artist Alison Knowles and James Tenney, a programmer

who worked in FORTRAN, devised A House of Dust. The program’s out-

put combines a regular stanza form and repetition with random variation

in vocabulary, and was printed on a scroll of line printer paper for a 1968

chapbook publication (Pearson 2011, 194–203). More than a decade later,

Jackson Mac Low made use of the venerable book A Million Random Dig-

its to devise “Converging Stanzas,” which were randomly populated with

words from the 1930 850-word Basic English Word List (Mac Low 2009,

236). This poet’s “Sade Suit” similarly used playing cards and A Million

Random Digits to rewrite the work of Marquis de Sade (46).

RANDOMNESS {135}

Early Experiments in Computational Art

The 1960s were a time of radical experimentation with randomness in the

visual arts. Even though computers were available at that point for the

exploration of chance operations, they were used in a very limited way be-

cause it was difficult to gain access to the machines, and there was a gen-

eral distrust of computer technology in the arts. The 10 PRINT program

is remarkable because it was created later, when these barriers were far

fewer. The Commodore 64 was relatively inexpensive and accessible. The

public image of the computer was changing from a machine that support-

ed technocracies to a tool for self-empowerment and creativity. Before per-

sonal computers, calculating machines could only be found in universities

and research labs and, because of their cost and perceived purpose, they

were typically used exclusively for what seemed more serious work, not for

creating aesthetic images. When artists did gain access to these machines,

it was typically through artists-in-residence programs at companies such

as Bell Labs and IBM, and through infrastructures such as Experiments in

Art and Technology (E.A.T.) based in New York or the Los Angeles County

Museum of Art’s Art and Technology initiative. Many of the first aesthetic

computer graphics were made not by artists, but by mathematicians and

engineers who were curious about other uses to which the machines at

their labs could be put.

 Within the first years that computer images were made, random pro-

cesses were explored thoroughly. The first two exhibitions of computer-

generated graphics appeared in art galleries in 1965; both shows included

pieces that were created using random values. In New York, the works of

A. Michael Noll and Bela Julesz, both researchers at Bell Labs, were ex-

hibited at the Howard Wise gallery from April 6–24, 1965, under the title

“Computer-Generated Pictures.” In Stuttgart, the works of Georg Nees

and Frieder Nake were exhibited at the Wendelin Niedlich Gallery from

November 5–26, 1965, under the title “Computer-Grafik Programme.”

 In 1962, Noll published a technical memorandum at Bell Labs en-

titled “Patterns by 7090,” the number referring to the IBM 7090 digital

computer. He explained a series of mathematical and programming tech-

niques that use random values to draw “haphazard patterns” to a Carlson

4020 Microfilm Printer. The eight patterns documented in the memo are

the basis for his Gaussian Quadratic image that was exhibited in the 1965

{136} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

exhibition. Noll used existing subroutines of the printer to draw a sequence

of lines to connect a series of x- and y-coordinates that he calculated and

stored inside an array. The x-coordinates in the array were generated by a

custom subroutine he wrote called WNG (White Noise Generator), which

produced random values within the range of its parameters, and the y-

coordinates were set using a quadratic equation. Through this series of

patterns, Noll explored a tension between order and disorder, regularity

and random values.

 In 1965, Nake created his Fields of Rectangular Cross Hatchings se-

ries, which succeeds through pairing ordered patterns with random place-

ment (figure 40.2). Nake explained the way random values are used in the

images:

 Within a given (arbitrarily chosen) image size, a random number

 of hatchings were generated. Each one of them was determined

 by the following random variables: location (x, y), size (a, b),

 orientation of lines within rectangle (horizontal or vertical), number

 of lines, pen. So for each rectangle there were seven random

 numbers determining its details. (Nake 2008)

After the first wave of visual images were created on plotters and microfilm

at universities and research labs, a few professional artists independently

started to gain access to computers and use them in their practice. The

artists with the most success integrating a computer into their work had

previously created drawings using formal systems. These artists continue

to use computers in their work to this day. Artists who worked seriously

with computers in the late 1960s, either individually or with technical col-

laborators, include Edward Zajec, Lillian Schwartz, Colette Bangert, Stan

Vanderbeek, Harold Cohen, Manfred Mohr, and Charles Csuri. All of them

employed random numbers in their early works created with software.

 Manfred Mohr, for example, started as a jazz musician and later stud-

ied art in Paris; he began writing software to create drawings in 1969, at the

Meteorological Institute of Paris, during the night after researchers had left

for the day. In 1971, Mohr’s work was featured in “Une Esthétique Program-

mée” at the Musée d’Art Moderne de la Ville de Paris (see figure 40.3),

the first solo exhibit of artworks created with a computer at a museum.

Random values are used extensively in the creation of the work shown.

RANDOMNESS {137}

Figure 40.2

Frieder Nake, Fields of Rectangular Cross Hatchings, Overlaid by Vertical Lines.

22/10/65 Nr. 2. Computer drawing, ink on paper, 50 × 44 cm. Collection Etzold,

Museum Abteiberg Mönchengladbach. Courtesy of Frieder Nake. ©1965, Frieder

Nake.

{138} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 Charles Csuri’s Random War (1967) is an early notable work of com-

puter art to use random values. Like much of Csuri’s early computer work

and unique in relation to his contemporaries, Random War is figurative

rather than abstract. This plotter drawing comprises outlined military fig-

ures, patterned off of the toy figures of little green army men that were

popular at the time. Each figure, named after a real person, is placed ran-

domly on the page and randomly given a status: dead, wounded, or miss-

ing. The soldiers of one army are drawn in red, of the other army in black;

the name and status of each soldier appear at the top of the drawing. In

general terms, Csuri’s work comments on the often arbitrary nature of war

through both its form and its content; more specifically, with his reliance on

random number generation, Csuri gestures toward the days of computers,

random numbers, and their inextricable link to the Cold War.

Figure 40.3

Manfred Mohr, P-071, 1970. Plotter drawing, ink on paper, 13.75 × 16.5” / 35 × 42

cm. Courtesy of bitforms gallery nyc. ©1970, Manfred Mohr.

RANDOMNESS {139}

Acceptance and Resistance

While the first decade of computer-generated art was well documented in

magazines, books, and exhibition catalogues, there are fewer source mate-

rials from the 1970s, when public interest veered and the energy needed to

publish and exhibit waned. Later in the decade, computer graphics started

to make their way into advertising and films. The 1982 film Tron is a land-

mark in the history of computation and aesthetics that pushed graphics to a

new aesthetic level and therefore revealed the limitations of computer im-

agery at that time. Tron’s images are purely geometric and cold; they lack

the organic qualities of our natural world. Ken Perlin, one of the program-

mers for the graphics in Tron, expressed frustration with the clean look.

Later, in 1983, he developed a technique called Perlin Noise to generate

organic textures that have a random appearance even though they are fully

controllable to allow for careful design. Perlin Noise makes it possible for

computer graphics models to have the subtle irregularities of real objects;

it is used to create hard surfaces such as rocks and mountains and softer

systems like fire and clouds. By the 1990s, it was being used extensively in

Hollywood special-effects films and had been incorporated into most off-

the-shelf modeling software.

 Today the most widely known artists to use random values still do

so without computers. For example, 2002 Turner Prize winner Keith Tyson

designed sculptures not by using a computer to produce random numbers,

but by rolling dice. One reason for this sort of reluctance to use comput-

ers, certainly, is the stigma surrounding computers in art. As Manfred Mohr

remarked in an interview, “I called my work generative art, or occasionally

also algorithmic works. The problem was that no-one understood either

of these terms, and I was forced—so to speak—to declare my drawings as

art from the computer . . . people accused me of degrading art, because I

was employing capitalistic instruments of war—computer was a word non

grata!” (Mohr 2007, 35). While Mohr was referring to the situation in the

1970s, the aversion to computers in art remains strong today.

 More recently, however, as a new generation of visual artists have

started to program their work, computed random numbers are playing an

increasing role in the visual landscape. The most prominent programming

languages used by visual artists have functions for generating random num-

bers and noise values, as well as for setting the random seed value to allow

{140} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

RANDOMNESS IN CONTEMPORARY COMPUTING

In the many examples of randomness given here, the random element of the pro-

cess—whether computational, literary, or aesthetic—is often foregrounded, or at

least made very obvious. Randomness is not always visible, however, even though

it is often used in ordinary computing tasks. Randomness plays an essential role

in the security of networked computers, for instance, and is also a part of popular

computer games. Other uses of randomness lie beyond the everyday computing

experience, but security, networking, and gaming are a few of the ones that are

closest at hand.

 When a computer needs to generate a new password for a user, a URL that will

let someone reset a password, or a CAPTCHA to keep automated spammers at bay,

randomness is invoked. A nonrandom password could easily be predicted, but a

random password, URL, or distorted word is much harder to crack through guessing

or brute force. Randomness also plays a behind-the-scenes role in protocols such as

SSH (Secure Shell) and SSL (Secure Sockets Layer) in a few ways, including the gen-

eration of keys for encryption and padding out the rest of a block when a plain-text

message is too short to complete it. Without randomness, it would not be possible

to complete a secure credit card transaction on the Web, which happens over SSL.

Early versions of SSL as implemented in the Netscape browser suffered from being

insufficiently random: The seeds for random number generation were the current

time, the process ID, and the parent process ID, which were sufficiently predictable

to leave the browser vulnerable to attack. Better randomness was the solution to this

problem.

 Computers using Ethernet—almost all of those that are plugged into wired

networks—communicate with one another thanks to randomness, too. All systems

on a single local area network send information over the same wire. If two of them

start sending on this single wire at the same time, what is known as a “collision”

occurs; the data sent is not intelligible to the intended recipients. When a collision

happens, the computer that detects the problem sends a jamming signal and tries

to restart the transmission. But rather than restarting immediately, the computer

chooses at random to start or wait—and the other computer that was trying to send

does the same. If there is another collision, the computers either send immediately

or wait for one of three intervals. The increasing number of intervals is part of the

technique of exponential backoff; the selection of one of these intervals at random

RANDOMNESS {141}

is an essential part of this method of avoiding network congestion.

 A typical computer user of the 2010s will encounter randomness in many com-

puter games. Randomness will shuffle the cards in poker or solitaire, for example,

and will be invoked to arrange jewels and tiles in casual games. Randomness may

also be used to determine the behavior of computer opponents, whether in poker,

chess, or a first-person shooter. Some action, arcade-style, open-world, and other

types of games incorporate randomness in other ways to determine what happens.

Many early games and certain contemporary ones, however, are entirely determin-

istic. As those who discovered and exploited Pac-Man patterns know, that game is

deterministic; Ms. Pac-Man, in contrast, uses randomness.

 Though modern computers have many ways to provide initial values to seed

their pseudorandom number generators, when higher levels of randomness are re-

quired one of the most reliable methods is to look beyond the computer. External

entropy collection means that the random seed cannot be determined by knowing

information about the computer’s hardware, a common source for seeds inside the

computer. In some cases the computer has to turn to a human to become more ran-

dom, recording data from users mashing the keys on their keyboard or wiggling their

mouse around to generate a random key or password. Even more unguessable are

inputs from physical systems of sufficient complexity—anything from video of a lava

lamp to atmospheric radio distortions can be used to create random numbers for

computation. These levels of randomness are now required for demanding applica-

tions like high-level cryptography and scientific simulations. With continual increases

in processing power, attacks on encryption are becoming easier, and the goal of

making random numbers more random will be critical for securing society’s constant

digital transactions.

{142} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

for the repetition of sequences. With the perspective of time, it seems that

aesthetic computational work and random values are intertwined. Writing

in 1970, Noll highlights randomness as an essential feature of the com-

puter in relation to the arts:

 The computer is a unique device for the arts since it can function solely as

 an obedient tool with vast capabilities for controlling complicated and

 involved processes, but then again, full exploitation of its unique talents

 for controlled randomness and detailed algorithms could result in an entirely

 new medium—a creative artistic medium. (Noll 1970, 10)

ThE COMMODORE 64 RND fuNCTION

The way that 10 PRINT invokes the randomness provided by the Com-

modore 64 is of interest for reasons that will each be explored in turn.

First, using randomness is aesthetically necessary in this program; there

is no other way to achieve a similar effect. Second, the methods used in

Commodore 64 BASIC are historically quite typical of computational ap-

proaches to pseudorandomness since the 1950s. Finally, out of several

common approaches to randomness available on the Commodore 64, 10

PRINT uses a very standard method that is well suited to experimentation,

debugging, and the production of canonical results, although this method

is not without its deficiencies.

 10 PRINT produces a wrapping series of diagonal lines that alternate

between left and right unpredictably. This unpredictability is crucial to pro-

ducing the impression of a maze. Looking at variations of 10 PRINT that

have regular or no alternation demonstrates the significance of random-

ness in the program. It’s possible to write an even simpler program than

10 PRINT to draw only the left diagonal to the screen in a regular pattern

(figure 40.4):

 10 PRINT CHR$(205); : GOTO 10

This program can be extended by writing the other diagonal character to

the right to form a chevron that repeats (figure 40.5):

RANDOMNESS {143}

Figure 40.4

Screen capture from 10 PRINT CHR$(205); : GOTO 10,

a regular repetition of the ╲ character.

Figure 40.5

Screen capture from 10 PRINT CHR$(205)CHR$(206); : GOTO 10,

a regular repetition of the ╲ character followed by ╱.

{144} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 10 PRINT CHR$(205)CHR$(206); : GOTO 10

The next step in this elaboration is the canonical 10 PRINT, which draws

either the left or right diagonal to the screen based on the result of the

random number (figure 40.6):

 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

In 10 PRINT, random numbers are provided through RND, one of ten math-

ematical functions available in BASIC since the earliest version of the lan-

guage. As described the original Dartmouth BASIC manual (1964), RND

produces a “new and different random number” between 0 and 1 “each

time it is used in a program” (39). These numbers can then be used to drive

unpredictable processes, as in fact they do drive the coin-toss decision

between diagonal lines in 10 PRINT output. A similar process might also

determine the direction changes of ghosts in Ms. Pac-Man or the way other

game elements appear or behave.

 RND is, like most computational sources of randomness, a pseudoran-

dom number generator. While there may be no apparent pattern between

any two numbers, each number is generated based on the previous one

using a deterministic process. When the first number is the same, the en-

tire sequence will always be the same. In the case of the Commodore 64,

this is particularly important because the same seed, and thus the same

first number, is set at startup. So when RND(1) is invoked immediately

after startup, or before any other invocation of RND, it will always produce

the same result: 0.185564016. The next invocation will also be the same,

no matter what Commodore 64 is used or how long the system has been

on. The next invocation—and all others—will also be the same. Since the

sequence is deterministic, the pattern produced by the 10 PRINT program

typed in and run as the first program is always the same, on every computer

or well-functioning emulator.

 When called on any positive number, as when RND(1) is invoked

in 10 PRINT, RND produces the next number in this sequence. RND(8),

RND(128), and RND(.333) do exactly the same as RND(1). RND, how-

ever, has two other modes besides the one used in 10 PRINT. The sec-

ond is stopwatch-based: when RND(0) is called, the clock time since the

computer was powered on is used in generating a new seed, meaning

RANDOMNESS {145}

that if RND(0) replaces RND(1), each run of 10 PRINT at a different

second should generate a different output. After a single call to RND(0),

subsequent calls to RND(1) will continue generating numbers in that new

sequence.

 The third mode for RND applies when any negative number is called.

A call to RND(−17) stores −17 as the seed value for the random number

generator, directly, and produces a new number. This negative seeding

must be followed by positive calls to the function, such as RND(1), in or-

der to provide a useful sequence. Because negative calls simply set the

seed, calling RND(−1) repeatedly will always return 0.544630526. For this

reason, 10 PRINT could not be a single-line loop that calls a negative RND

value; that program would output the same diagonal again and again. A

single call to RND, however, with any negative number, followed by the

rest of the 10 PRINT program, will generate a unique (and repeatable) 10

PRINT pattern.

 Pseudorandomness, however lacking it may sound, is generally ac-

ceptable and in many situations desirable. Engineers running a computer

simulation, for example, often have many random variables, but every run

Figure 40.6

Screen capture from 10 PRINT CHR$(205.5+RND(1)); : GOTO 10,

which has a 50/50 chance of writing a ╲ or ╱ at each loop.

{146} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

of the simulation needs those variables to have the same values; otherwise

the program cannot be tested or the experiment repeated. Pseudorandom

number generators are also highly useful in hashing, since they allow data

to be distributed widely but also placed in known locations. Similarly, they

are useful in cryptography, where it is vital that sequences be repeatable if

(and only if) the initial conditions are known.

 The Commodore 64 User’s Guide introduces the concept of random-

ness using an example that sidesteps the origins of randomness in com-

puting. There is no mention of the hydrogen bomb, computer-generated

literature, or prime numbers. Randomness comes into play in the shape of

a game when it is necessary to, as the manual puts it, “simulate the throw

of dice” (Commodore 1982, 48). This example takes the reader back to

preindustrial notions of randomness. Yet, centuries ago, long before Mal-

larmé provided his assurance that a throw of the dice would not abolish

chance, Sir Walter Raleigh wrote of this event as apocalyptic:

 Dead bones shall then be tumbled up and down,

 In every city and in every town.

Fortune’s wheel and what Paul Auster called The Music of Chance have

long been considered a matter of life and death. As 10 PRINT scrolls its

playful, pleasing maze pattern upon the screen, there may be the faint-

est echo of the dead bones of the dice and the random simulation of the

hydrogen bomb. And perhaps, as well, there is the transformation of this

grim, military use of randomness into a thing of beauty.

45
REM

ONE-lINERS

{148} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

One-liners, as single-line programs such as 10 PRINT are known, predate

home computing, the exchange of BASIC code in magazines, and even the

BASIC programming language itself. These concise little programs were

written at least as early as the beginning of the 1960s. The language that

was most famous for writing such programs was APL, designed by Kenneth

Iverson using special (non-ASCII) notation. APL was first described in his

1957 book A Programming Language and was first implemented at IBM

beginning in 1960.

 In APL there is no limit on the length of a line; anything that a pro-

grammer can express as a single statement counts. A report shows that “all

‘practically’ computable functions” can be written as APL one-liners (Lipton

and Snyder 1977, 2), so perhaps one-liners in this language should not be

particularly impressive. Programmers have nevertheless been impressed

by them. APL one-liners have been published that solve the problem of

placing N queens on an N × N chessboard (Selfridge 1977, 243) and that

completely encode John Conway’s Game of Life (McDonnell 1988, 6). The

final Game of Life APL function presented is only nine tokens long. While

not everyone involved with computing shares an enthusiasm for one-liners,

or for APL, the exchange and academic publication of APL one-liners does

demonstrate that interest in this form of program was not limited to ama-

teurs or newcomers to computing.

 In the early 1980s, magazines published one-line programs, some-

times regularly, to fascinate and intrigue home computer users and to help

them explore programming. In the Commodore-specific magazine RUN,

they appeared in a section near the front of the magazine entitled “Mag-

ic,” which contained “Hints and tricks that will let you perform computing

wizardry.” Some of their one-liners and tips were clearly for amusement

and educational purposes. Others were practical programming aids. Many

were quite expressive and produced interesting visual effects.

 Here is the first trick, numbered zero in hexadecimal, in the very first

“Magic” section from the inaugural issue of RUN:

 Trick $00. This month’s “one line special” is an antiquity—from

 the far-off days of 1978, when an 8K Commodore PET cost $795,

 and readable documentation was unheard of. There weren’t any books,

 and the only magazines were newsletters produced by amateurs.

 The PET Gazette was one of them, and here is one of its early

REM ONE-LINERS {149}

 offerings, called “BURROW”:

 1A$="[up][down][left][right]":PRINTMID$(A$,RND(.5)*4+1,1)"

 *[left]";:FORI=1TO30:NEXT:PRINT"[rvs on][space][left]";:GOTO1

 It fits on one 40-column line, and it does get exciting. We’d like to see your

 one-line programs, and we want to print at least one good one each month.

 Programs can be fun, funny, useful or useless, as long as they fit in 40

 columns or less. What do you have? (Sander 1984)

The program featured here (see figure 45.1) moves the cursor randomly

either up, down, left, or right, prints an asterisk, moves left over it, turns on

reverse video, prints a space, and moves left over that—and then repeats.

This means that it will “dig” a reverse-video hole (green, not black, on a

PET computer) haphazardly, although orthogonally, from its starting point

to wherever it ends up around the screen. Its mazelike path involves both

regularity (each move is directly along an axis) and randomness (which of

the four directions it moves in is chosen at random), producing the prom-

ised excitement. The program has some affinity with 10 PRINT, although

10 PRINT creates a different sort of scrolling pattern and suggests a struc-

ture rather than traversing the screen a character at a time.

 This printing of the “BURROW” program, already declared an an-

tique, also shows an awareness of computing history and a willingness to

rediscover older programs so they can be enjoyed by a new generation of

programmers and users.

 Here is another intriguing one-liner from RUN (Rapp 1985):

 When he’s not looking, run this on a friend’s VIC or C-64. Then get him

 to type a line or two, and watch the fun as he scrambles for his warranty.

 10 POKE207,0:POKE204,0:WAIT198,1:GETA$: PRINT"{CTRL RVS OFF}"

 CHR$(ASC(A$)+1.1*RND(0));:GOTO 10

This program is similar to 10 PRINT in a few ways. It runs in an infinite

loop; it also makes use of the RND function. These are true of “BURROW”

as well. An additional similarity between this April Fool’s program and 10

PRINT is the use of CHR$. There is a significant difference, too. Rapp’s

program doesn’t do anything obvious when run. After running it, the cursor

sits blinking as if one were in the BASIC interpreter. Once run, this one-liner

is actually in control of keyboard input and screen output and effectively

{150} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 45.1

Screen capture from one-line “BURROW” program.

Figure 45.2

Screen capture from one-line program featured in RUN magazine to check

monitor resolution.

REM ONE-LINERS {151}

intercepts input from BASIC and the Commodore 64’s operating system,

the KERNAL, running atop them. Typing something will (often) cause the

typed characters to appear on the screen as they usually would, but about

one time in eleven, the next character in the PETSCII sequence will appear

instead, possibly transforming the user’s typed 10 PRINT "HELLO" to the

puzzling and frustrating 10 PRJNT "HFLLO".

 10 PRINT uses RND differently, to draw from an even distribution of

two characters. As the Commodore 64 User’s Manual explains, this distri-

bution can be skewed, as it is in the first variant of the program presented

in the first remark, written in BASIC. Even with a somewhat unbalanced dis-

tribution, the larger impression is still mazelike. The “essential frustration”

of the maze, on the one hand, is one that is evident and stems from its

interlocking, larger structure to which the randomness contributes. Rapp’s

prank is tricky, on the other hand, because it is biased toward intermittent

unpredictability and operates invisibly.

 By the late 1980s, although the “Magic” section continued in RUN

(through the magazine’s last issue), it was handed off to other editors and

filled with utility programs, in BASIC and assembly, that were significantly

longer—often around twenty lines. This late one-liner from RUN (Hub-

bard 1987) offers help for the Commodore user looking for a new monitor

and shows the utilitarian turn that programs took in later years (see figure

45.2):

 10 PRINT CHR$(14):FOR A=1TO40*23:PRINT",V";:NEXT

 Enter the program and run it. The screen will fill with 23 lines of commas

 and lowercase V’s. To check the resolution, look at the single pixel that forms

 the point of the center of the v or the tail of the comma. On a monochrome

 monitor the pixels should be a single round point of light.

 Some one-line utilities were compatible across BASIC machines such

as the Commodore, Apple, and Atari home computers and might also run

on the original Dartmouth BASIC—but many of the fun and exciting ones

were specific to particular platforms. The numerous versions of BASIC in-

cluded some which included commands such as PLOT and SOUND to facili-

tate making graphics and music. Of course, a one-liner in a BASIC of this

variety could take advantage of these special commands. In these cases,

one-liners were often teaching tools: programs that helpfully introduced

{152} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

commands needed to perform higher-level tasks.

 This practice continues in the contemporary practice of programming

tutorials; one example is Peteris Krumins’s “Perl One-Liners Explained”

(Krumins 2009–2011). It introduces more than a hundred single-line pieces

of code such as:

 perl -MPOSIX -le'@now = localtime; $now[0] -= 7;

 $now[4] -= 14; $now[7] -= 9; print scalar localtime

 mktime @now'

Each of Krumins’s examples includes a description—often a somewhat

mysterious one, such as this program’s: “Print date 14 months, 9 days and 7

seconds ago.” The first question a non-coder might consider is “Why that?

What was 14 months ago?” This sort of arbitrary program construction is

not valuable as a utility in its given form. Rather, it is useful to try out be-

cause of what the programmer can accomplish by daring to change it and

by inserting the code into a more complex program. That code snippet

could be useful, for example, in a vacation scheduling or beer fermentation

system. It resembles 10 PRINT in that it unlocks the workings of higher-

level functions (such as localtime and mktime). 10 PRINT arouses inter-

est not only from its visually active display with minimum code but because

that code reveals an elegant means of accessing the higher-level video

terminal system, which is an entry point vital to writing a diverse area of

types of programs.

 Many programmers of one-liners took advantage of the BASIC com-

mands for high- and low-resolution graphics on computers contemporane-

ous with the Commodore 64, such as the Apple II. Apple II users enjoyed a

rich culture of one-line graphics display programming as well as a tradition

of “two-step” programs, which consisted of two lines instead of one. Apple

II users also benefited from having a longer maximum line size than on the

Commodore.

 The two-line format came about because often one line was reserved

to initialize the graphics display hardware and other variables. It did not

and should not have run multiple times. The second line was a loop that,

like 10 PRINT, produced animated graphical output. In 10 PRINT, an ini-

tialization line was unnecessary, because the default state of the Commo-

dore 64 was a pseudo-graphics terminal: at power-up not only was the

REM ONE-LINERS {153}

computer in a state to immediately begin accepting and executing BASIC

commands, it could also draw graphics characters from a set which was

printed on the keyboard. Computers, such as those in the Atari and Apple

series, had BASIC multimedia commands (COLOR, GR, PLOT, HLIN, PSET,

to name a few) to access their platform hardware, and could be said to

have led to more impressive one-liners that were not possible on the Com-

modore computers—something that only increased the value of the most

impressive Commodore one-liners, including 10 PRINT.

 By way of example, consider the one-liner “Icicle Storm,” developed

for this book to demonstrate how the use of one-liners can communicate

valuable details about a computer system. The program generates a simple

multimedia display that looks like the sky filling with icicles, drawn using one

of the diagonal graphics characters used in 10 PRINT (see figure 45.3):

 10 POKE 1024+RND(1)*1000,78: GOTO 10

Although it is a minimal simulation, the code highlights several useful de-

tails about the Commodore 64 platform. First, the repeated calls to POKE

the distribution 1024+RND(1)*1000 indicate setting values in a section

of memory. This is the “direct route” or memory-mapped access to the

text/graphics terminal on the platform. To experienced programmers of

other computers, this one-liner communicates “This computer has a screen

memory just like many others. This particular one begins at 1024 and is

1000 bytes long.” The transfer of knowledge from platform to platform is

a key part of the practice of programming; another key part is learning the

differences among platforms. Sometimes knowing just a few details about

a new system enables one to leverage a great deal of previous experience

into competency of the new system.

 While such addresses were not secret—they could be obtained simply

by buying the Commodore 64 Programmer’s Reference Guide that Com-

modore published (1982)—they held a certain value when printed material

about programming was still sparse, in the early days of home computing.

While commercial software empowered users within the realm of their ap-

plications, short programs in books and magazines illustrated how to make

the computer do impressive things and empowered readers to program.

They associated brief BASIC texts with sufficiently compelling title and

graphical output or other effects to allow one to build up a catalogue of

{154} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

appropriately useful code segments. Thus “Icicle Storm,” like 10 PRINT, is

not an effort to tell a story about weather. It is a cartoon that presents the

physics of the virtual world it runs in, the text/graphics terminal, through

the speed of the screen update and the properties of its regular grid.

 The slow, ruthless instantiation of icicles mimics the dynamics of a

mounting storm because the computer cannot draw them fast enough to

fill the screen instantly. The pace of that experience is CPU-limited. It would

be possible to slow down the drawing, but not to speed it up without re-

sorting to something other than changes in BASIC code. Understanding

the general pace or speed at which a platform executes code is useful

information to programmers.

 The kinetic movement of the storm, determined by the update rate of

the screen, fulfills the purpose of the illusion sufficiently that the impression

is uniquely identifiable and memorable. It thus invites and aids the pro-

grammer to remember the useful numbers in the program. As part of the

cartoon illusion that the program conjures, the evoked scene also assumes

the default foreground and background colors of the computer, producing

blue ice crystals against an azure sky. This may even be a more appropriate

Figure 45.3

Screen capture from the “Icicle Storm” one-liner. Characters are drawn at random

positions on screen one at a time.

REM ONE-LINERS {155}

and specific play on the default colors than 10 PRINT provides.

 A similar one-line program developed for this book, “Windy Day in

Chicago,” illustrates another feature of the VIC-II that is useful to program-

mers, smooth horizontal scrolling:

 10 POKE 53248+22,INT(192+4+3*SIN((TIME*3.456+RND(1)

 *.5))): GOTO 10

The program doesn’t change any of the characters or colors on the screen;

it simply causes everything on the screen to move back and forth semi-

regularly as if the display were being blown around. This program dem-

onstrates the relative simplicity of working with the side-scrolling register

in the video chip, an advanced topic which is never taught explicitly in the

Commodore 64 manuals.

 Finally, another way to go about probing the capabilities of complex

chips, including the Commodore 64’s sound chip, the SID, is to simply write

random values to their registers and attend to the result. Here is such a

program for the SID, one which produces random sounds:

 10 POKE 54272 + (0*TI+(RND(1)*25)),(RND(1)*256)

 AND255:GOTO 10

Computers no longer power on to the READY prompt and the BASIC

programming language, but, as the discussion of Perl one-liners shows,

short, impressive, inviting programs live on in other languages and en-

vironments. There is more on the way that some Perl one-liners are ap-

prehended and remembered in the next chapter, in the section “BASIC in

Human Memory.”

50
bASIC

PROGRAMMING AND THE BEGINNING OF BASIC

BASIC COMES TO THE HOME

COMMODORE BASIC

THE CIRCULATION OF BASIC PROGRAMS

LATE BASIC

{158} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

The character graphics themselves, the way they line up in rows and then in

columns, and even the speed at which they appear—these characteristics

all contribute to the aesthetic of 10 PRINT’s output. However, 10 PRINT

functions the way it does, in part, because it is written in a specific pro-

gramming language with particular affordances and attributes: BASIC.

 This “Beginner’s All-purpose Symbolic Instruction Code” has a fabled

cultural and technical history. BASIC was developed by John Kemeny and

Thomas Kurtz, two professors at Dartmouth College. In 1964 its creators

freely shared a working version of the language, leading to its widespread

adoption at the high school and college level. By that time, general-pur-

pose computers had existed for about two decades. Many were still pro-

grammed in low-level machine languages, but high-level languages, ab-

stracted from the idiosyncrasies of an individual machine, had also been

in widespread use for a decade. BASIC continued the evolution of high-

level languages, building on some of what FORTRAN, Algol, and other

languages had accomplished: greater portability across platforms along

with keywords and syntax that facilitated understanding the language and

writing programs.

 The language was developed for an early time-sharing environment,

the Dartmouth Time-Sharing System (DTSS). This revolutionary configura-

tion allowed multiple programmers to use a single system at the same

time. A system of this sort—with many terminals connected to a mainframe

or minicomputer—differs considerably from the personally owned, rela-

tively inexpensive, single-user computers of the microcomputer era. But in

the early 1960s, the DTSS also distinguished itself from earlier systems that

required the batch processing of stacks of punched cards. Time-sharing al-

lowed people to engage with and explore computation in significant new

ways, with what felt like “real time” processing; BASIC was an important

part of this computing revolution. Given the educational purpose of DTSS

and BASIC, ease of use was paramount. Being easy to use helped BASIC’s

massive popularity and success.

 BASIC became even more influential as microcomputers entered

people’s homes. In 1975 the MITS Altair 8800 computer, widely acclaimed

as the first home computer, became available. Perhaps the most significant

piece of software for this system was Altair BASIC, a version of BASIC that

was the first product of a young company called Microsoft. Following its

success with the Altair 8800, Microsoft wrote versions of BASIC for many

BASIC {159}

popular microcomputers. Thanks in large part to Microsoft, BASIC became

the lingua franca of home computing. BASIC resided in the ROM of these

computers, meaning a user could turn on the computer and immediately

begin programming. From the late 1970s through the early 1980s, BASIC

reigned supreme on home computers, with 10 PRINT and thousands of

other programs circulating through books, magazines, and computer club

newsletters. BASIC was so canonical that some books of BASIC programs

did not even bother to mention “BASIC” on their covers.

 Despite or because of its ubiquity, BASIC has become a target of

derision for many modern programmers. Inextricably associated with Mi-

crosoft and that bane of structured programmers, GOTO, the language has

been said to encourage tangled, unmanageable code, to be unbearably

slow, and to be suitable only for children and amateurs. Yet BASIC has

not completely disappeared, and many programmers in the early twenty-

first century remember BASIC fondly. The language was a popular success,

worked well for small programs that let home users explore computing,

and fostered creativity and innovation in several generations of computer

users and programmers.

PROGRAMMING AND ThE bEGINNING Of bASIC

While there is some dispute over who should rightly be called the first com-

puter programmer, many have awarded this designation to Ada Byron, the

Countess of Lovelace (1815–1852). She was raised by her mother and edu-

cated extensively in mathematics and logic specifically so that she might

follow a different path from that of her father, Lord Byron. Such a stark

separation in Ada’s upbringing offers a very early example of the perceived

incompatibility between computation and poetics.

 Ada Lovelace’s contributions as an early programmer are most evi-

dent in her translation of and notes to an Italian article by Louis Menabrea

about Charles Babbage’s Analytical Engine (Menabrea 1842). In this work,

completed in 1843, she envisioned the Analytical Engine as a general-pur-

pose computer and described an algorithm that could be used to output

Bernoulli numbers. Although the computer to execute Lovelace’s program

was never built, her project made an important contribution to the modern

idea of computing (Fuegi and Francis 2003). Lovelace’s “program” was an

{160} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

algorithm described in mathematical notation.

 The computer programs that followed in the electromechanical and

early electronic age of computing were less intelligible than Lovelace’s

algorithm, bearing little relationship to any kind of written word. For ex-

ample, the ENIAC, a fully electronic computer built at the University of

Pennsylvania from 1943 to 1945, was programmed initially by plugging

in an elaborate set of cables (da Cruz 2011). To run particular calculations,

constants were then set using dials. Though the notion of punch cards

dates back at least to Babbage in the nineteenth century and Falcon and

his loom from the eighteenth century, programming the ENIAC was a mat-

ter of direct physical interaction with hardware rather than the manipula-

tion of symbols. The operators of the ENIAC, who were primarily women,

“played an important role in converting the ENIAC into a stored-program

computer and in determining the trade-off between storing values and in-

struction” (Chun 2011, 31). Historically, even as programming continued

to expand away from direct hardware manipulation and into progressively

higher levels of abstraction, these operators were inventing both computa-

tion and the act of programming as embodied, materially engaged activi-

ties and vocations.

Machine language and Assembly language

The move beyond cables and dials was accomplished with machine lan-

guage. A program in machine language is simply a sequence of numbers

that causes the computer to operate but can be understood by humans. On

the ENIAC, the numbers that formed a machine language program were

decimal (base 10), but different bases were used on other early systems.

The EDVAC used binary; the ORDVAC, octal; and the BRLESC, sexadeci-

mal (Bergin 2000, 62). The numbers specify what operations the computer

is to carry out and consist of opcodes (indicating low-level commands) that

may be followed by operands (giving one or more parameters to those

commands). For instance, the opcode to add a value to the accumulator

has to have one operand after it, specifying what value is to be added,

while the opcode to increment the x register does not have any operands

at all, since that opcode by itself specifies everything that is to be done.

 To jump unconditionally to a particular absolute address, an opcode

such as “76” (in base 10) is used, followed by two bytes specifying the

BASIC {161}

address. In fact, this is the opcode used for an unconditional branch to

an absolute address on the Commodore 64. While the sequence of num-

bers in a machine language program is unambiguous to the computer, it

is far from obvious at a glance even which numbers represent opcodes

and which operands. An expert in machine language could pick out some

patterns, but would often have to start at the beginning, recognizing each

opcode, knowing how many operands correspond to those opcodes, and

continuing through as if simulating the calculations and memory storage

operations as the program executes. Writing a machine language program

requires similar low-level expertise. Working at this level is clearly some-

thing that computers do better than people, as was acknowledged when

programming took the next step.

 A more legible form of code arose in the second generation of pro-

gramming languages, called assembly languages. Assembly allows mne-

monics for operators such as lda (load accumulator), jmp (jump), and inc

(increment memory) to stand in for the more esoteric numerical codes. On

the Commodore 64, the letters jmp followed by an absolute address are

converted by the assembler to 76, translating the human-legible mnemonic

into machine language. The first assembler ran on Cambridge University’s

EDSAC in 1949. EDSAC was, incidentally, the first computer capable of

storing programs, a feature modern computer users have taken for granted

for decades (Campbell-Kelly and Aspray 1996, 184). Although cryptic com-

pared to a high-level language such as BASIC, an assembler program is

nevertheless more comprehensible to a human than a machine language

program. While assembly is still used today in, for instance, programming

firmware and in the demoscene, there are usually significant disadvantages

to programming at this level. While programming in assembly highlights

technical details of platforms and the transfer of values between memory

locations and registers, higher-level languages allow the programmer to

concentrate on other matters, such as solving mathematical and scientific

problems or modeling financial processes.

high-level languages

During the first decade of electronic computing, programming was still

crawling toward the ideal of Lovelace’s “program” that specified an algo-

rithm in high-level, human-readable form. To reach a level of programming

{162} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

more appropriate for mathematical and scientific tasks, FORTRAN (FOR-

mula TRANslation) was outlined in 1954 and first implemented in 1957.

This language, and particularly the next version of it (FORTRAN II, which

appeared in 1958), had a very strong influence on BASIC. Just as FORTRAN

was designed with mathematics in mind, COBOL (COmmon Business-Ori-

ented Language) was introduced in 1960 to address business uses.

 FORTRAN and COBOL both allowed for more intelligible code, im-

proving on assembly. But both were also developed in the context of batch

processing, for use with stacks of punched cards that would be processed

by the machine one at a time. Punch cards were first used in the eigh-

teenth century to define patterns in mechanical textile looms, as discussed

in the chapter Regularity, but the concept was adopted in computing in

the twentieth century. The paragon of the punched card became known as

simply “the IBM card,” the eighty-column punched card introduced by that

company in 1928. The Commodore 64’s eighty-column logical line, which

appears as two forty-column lines on the screen, is one legacy of this early

material medium for computing.

 Programs written in early versions of COBOL and FORTRAN were

specific to the punched card in definite ways. COBOL reserved columns

1–6 for the line number and column 7 for a continuation mark if the card’s

code ran on from the previous one. FORTRAN was similar, with columns

1–5 indicating the statement number. “Comments” (usually the program

name) went in columns 73–80 in both languages; a “C” in the first column

indicated that the whole FORTRAN card was to be considered a comment.

Unless a programmer wrote a one-liner—which in this case means writing a

program that fits on a single card—a COBOL or FORTRAN program would

take the form of a stack, often a massive stack, of punched cards. These

had to be punched on a keypunch machine and fed into a card reader by

an operator. Line numbers were essential in one particular case: if someone

dropped a stack of cards and they needed to be sorted back into order.

 FORTRAN’s GOTO command was the basis for the GOTO in the original

BASIC (Kurtz 2009, 86), which was carried over into Commodore 64 BASIC.

GOTO functions in the same way the assembly language jmp does, shift-

ing the interpreter to a specific location within the program. If one were

simply interested in easily writing jmp statements, BASIC offers little ad-

vantage. The benefits of BASIC can be seen in commands such as PRINT.

What takes many steps in machine language is efficiently accomplished

BASIC {163}

by this single command that employs a clear, natural language metaphor.

 BASIC was a language specifically designed for the next computing

revolution, one that would go beyond punched cards and batch process-

ing to allow numerous users interactive access to a system simultaneously.

This revolution was time-sharing.

Dartmouth bASIC and Time-Sharing Minicomputers

In 1962, change was sweeping through Dartmouth. Late that year, in an

article that declared the isolated college was coming “out of the woods,”

Time noted that the school had built a major new arts center and that John

Kemeny, who had made full professor at age twenty-seven, had built “the

best college math department in the country.” Also in 1962, Kemeny and

his colleague Thomas Kurtz had begun developing a time-sharing comput-

er system and a new programming language to be used by all students at

Dartmouth—not just those studying math, science, or engineering. Keme-

ny and Kurtz aimed for nothing less than a computing revolution, radically

increasing access to computers and to computer programming. “While the

availability of FORTRAN extended computer usage from a handful of ex-

perts to thousands of scientific users,” Kemeny wrote, “we at Dartmouth

envisaged the possibility of millions of people writing their own computer

programs” (Kemeny 1972, 30).

 To reach millions, Kemeny and Kurtz would have to lower the exist-

ing barriers to programming, barriers that were related not only to the

esoteric aspects of programming languages, but also to the physical limits

and material nature of computing at the time. The two began working with

a team of undergraduates to develop the Dartmouth Time-Sharing System

and, with it, the BASIC programming language (figure 50.1). They consid-

ered developing a subset of FORTRAN or Algol, but found these options

unsuitable (Kurtz 2009, 79). As Kurtz told an interviewer, “we wanted . . .

to get away from the requirements that punched cards imposed on us-

ers, which was that things had to be on certain columns on the card” (81).

They saw the value of an interactive, time-sharing system for allowing users

to correct minor errors quickly rather than coming back twenty-four hours

later with a new stack of punched cards for their next scheduled batch job.

They also relaxed some of the specific requirements that were tied to us-

ing keypunch machines and cards. Oddly enough, BASIC was so relaxed

{164} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 50.1

This image illustrated John Kemeny and Thomas Kurtz’s essay “Bringing Up

BASIC” with the caption “Students at Dartmouth working with the first version of

BASIC.” Photo by Adrian N. Bouchard, courtesy of Dartmouth College Library.

Copyright Trustees of Dartmouth College.

that spaces between tokens were optional in Dartmouth’s versions of the

language. Spaces were ignored, as Kurtz explains, because “some people,

especially faculty members, couldn’t type very well” (81). This aspect of

Dartmouth BASIC was carried over onto the Commodore 64.

 BASIC was designed in other ways to help new programmers, with

“error messages that were clear and friendly” and default options that

would satisfy most users’ needs (Kemeny and Kurtz 1985, 9). “If the expert

needs something fancier,” the creators of the language declared, “let the

expert do the extra work!” (11). Kemeny and Kurtz envisioned BASIC as a

BASIC {165}

true high-level language, allowing programmers to operate without any

detailed knowledge of the specific hardware they were using. The initial

idea, at least, was that programmers need only pay attention to BASIC

instead of the computer that BASIC happened to be running on.

 DTSS and the versions of BASIC that ran on it served almost all of

the students at Dartmouth; by 1971, 90 percent of the seven most recent

classes of freshmen had received computer training. Dartmouth extend-

ed access to its system to other campuses and also inspired the creation

of other time-sharing systems with BASIC. By 1965, General Electric, on

whose computers DTSS and the original BASIC ran, was offering a com-

mercial time-sharing service that included BASIC (Waldrop 2001, 292).

Well before the microcomputer revolution of the late 1970s, other college

and university students were taking required courses in computing using

BASIC—at NYU’s business school, for instance. Even before the arrival of

home computers with built-in BASIC, the language was very widely used.

The permissive attitude of Kemeny and Kurtz led to many different imple-

mentations of BASIC for different systems. Writing in 1975, one observer

noted that “BASIC systems differ among themselves in much the same way

that the English language as we know it differs among the English-speaking

nations around the globe” (Mullish 1976, 6). There was a downside to this,

however: the very permissiveness that led to BASIC’s widespread adoption

and adaptation meant that the language, as actually implemented, wasn’t

as independent of particular hardware as Kemeny and Kurtz had planned.

 In addition to BASIC and the DTSS, there is yet another legacy from

Dartmouth that has powerfully swayed the direction of modern computing:

the almost evangelical mission to foster a more productive and creative

relationship to computing. In his 1972 book Man and the Computer, Ke-

meny defends programming and playing games and other “recreational”

uses of the computer as important, writing that such activities are relaxing

and help people to overcome their fear of computers (35). Kemeny also

describes some of the context in which BASIC programming was done

at Dartmouth: “The computation center is run in a manner analogous to

Dartmouth’s million-volume open-stack library. Just as any student may go

in and browse the library or check out any book he wishes without asking

for permission or explaining why he wants that particular book, he may

use the computation center without asking permission or explaining why

he is running a particular program” (33). Computers were for everyone (at

{166} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

CHR$ AND THE DOLLAR SIGN IN BASIC

In designing BASIC, Kemeny and Kurtz wanted to distinguish between variables

that held numeric values and variables that held strings of text. They chose to have

string variables and string functions end with a “$,” so that a string variable might

be named A$ and the function that produced one-character strings based on ASCII

values was called CHR$. They selected the dollar sign because there “were not so

many keys on a Teletype, and we needed to find one that had not yet been used for

BASIC. Of the few remaining ones, none seemed very appropriate. Then one of us

observed that $ looks like S for string” (Kemeny and Kurtz 1985, 28).

 Computers are fundamentally machines that add and multiply, so it is a curi-

ous circumstance that the Commodore 64 keyboard, like modern North American

keyboards, has a dollar sign on it but does not have a multiplication sign. Instead,

the asterisk (*), the typographical mark once used to indicate a footnote, is pressed

into service as the symbol for multiplication.

 Why would a keyboard have a dollar sign but not a multiplication sign? Even

though interactive processing (as opposed to batch processing with punched cards)

was a novelty, teletypewriters had been used as interfaces to computers long before

the 1960s. Various sorts of TTYs, teleprinters, or “printing telegraphs” were used

commercially as a means of textual communication beginning in the 1910s. These

least within the campus community) and for any purpose. BASIC was the

embodiment of this openness, which allowed for programs with no obvious

military, business, or scientific purpose—programs such as 10 PRINT—to

come about.

 It’s not surprising that Kemeny’s liberal ideas about computers and

education played some part in his achievements as the president of Dart-

mouth College, a position he served in from 1970 to 1981. Kemeny pre-

sided over Dartmouth’s conversion to a coeducational campus, removed

the “Indian” as the college’s mascot, and encouraged the recruitment of

minority students. On his final day as president, he gave a commencement

address that warned students, including those involved in the recently

founded conservative Dartmouth Review, against the impulse that “tries

to divide us by setting whites against blacks, by setting Christians against

BASIC {167}

systems were based on pre-ASCII character codes that came from telegraphy, and

were used to transmit dollar amounts much more frequently than they were used for

sending mathematical equations. Murray Code, the 1901 revision of the standard

1870 telegraph code, included two characters that allowed “shifting” into alternate

sets. A shifted “D” would become a “$” in Murray Code.

 Interestingly, the original, North American Commodore 64 keyboard sported

a pound sterling sign (£), a glyph absent from other US computers of the time. The

presence of this key no doubt pointed to Commodore’s plans to sell its computers in

the United Kingdom, although that key had a precedent in Murray Code, which also

features a pound sterling sign.

 The dollar sign is still used in some of today’s workhorse programming lan-

guages, such as Perl and PHP. In both of these, it is used to indicate a variable by

being placed at the beginning, rather than the end, of the variable name. In Perl it

specifically indicates a scalar variable, since $ looks like S for “scalar.” Despite these

varying uses, the impact of BASIC’s role as an entry-level language in the 1970s

and 1980s was such that some modern programmers, including one of this book's

authors, still pronounce “$” as “string” when reading code aloud regardless of the

character’s meaning in the language under discussion.

Jews, by setting men against women. And if it succeeds in dividing us from

our fellow beings, it will impose its evil will upon a fragmented society”

(Faison 1992). After leaving the presidency of Dartmouth, he returned to

full-time teaching. Kemeny died in 1992. Thomas Kurtz continued to teach

at Dartmouth long after he worked on BASIC, directing the Computer and

Information Systems program there from 1980 to 1988.

bASIC COMES TO ThE hOME

The computer had already become more welcoming and accessible thanks

to innovations on university and college campuses, but it wasn’t until the

computer moved into the home that the true revolution began. In popular

{168} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

lore that revolution started with a single photograph of a panel of switches

and LEDs on the cover of the January 1975 issue of Popular Electronics—

the first public look at the Altair 8800 minicomputer (figure 50.2). While

the history of BASIC at Dartmouth shows that personal computing did not

suddenly spring to life fully developed in 1974, that year does mark an

inflection point for home computing.

 Proclaiming in a headline that “THE HOME COMPUTER IS HERE,”

that issue of Popular Electronics gushes about the possibilities of the $395

Altair 8800 ($495 assembled, $1812 and $2271 in 2012 dollars, respec-

tively). The magazine claims that the computer can be used as a “sophis-

ticated intrusion alarm system,” an “automatic IC tester,” an “autopilot

for planes, boats, etc.,” a “time-share computer system,” a “brain for a

robot,” and a “printed matter-to-Braille converter for the blind,” among

other things, noting that “many of these applications can be performed

simultaneously” (Roberts and Yates 1975, 38). As it happened, even the

applications that were within the capabilities of the device were rather dif-

ficult to realize, since the system by default could only be programmed in

machine language. Furthermore, unless one happened to have a Teletype

or other terminal lying around, the programming had to be done using the

toggle switches on the front panel. The home computer may have arrived,

but most hobbyists would have no effective way of programming it. From

the outset, it was clear to many that the Altair 8800 needed a programming

language that facilitated experimentation. Popular Electronics mentions

four programming languages by way of explaining the distinction between

hardware and software (34); one of these languages was BASIC, the lan-

guage that showed the most promise to early Altair 8800 enthusiasts.

Altair bASIC and Microsoft

There were two successful efforts to develop a BASIC interpreter for the

Altair. Their varied histories have had a lasting impact on modern comput-

ing and modern culture. While this tale of two BASICs is not about the best

of BASIC and the worst of BASIC, it does highlight two extremes in soft-

ware development: one commercial, closely coordinated with hardware

manufacturers and highly tied to licensing and cost structures; the other

community based, nonprofit, and “copyleft.” The BASICs that led in these

directions were Microsoft’s Altair BASIC, the official BASIC for the platform,

BASIC {169}

licensed to MITS, the Altair’s manufacturer; and Tiny BASIC, which origi-

nated at the People’s Computer Company or PCC. The Commodore 64’s

BASIC is directly descended from Altair BASIC, by the company whose

name was later standardized as “Microsoft.” The BASIC for this system

is—although this is not visible on the startup screen—a Microsoft product.

At the same time, the 10 PRINT program participated in a context of BA-

SIC sharing and exploration that was strongly influenced by the People’s

Computer Company.

 The story of Microsoft BASIC, and of Microsoft, begins with Paul Allen

catching sight of the now-famous January 1975 issue of Popular Electron-

ics just after it hit the stands. Allen read the Altair 8800 article and raced

to show it to his friend and business partner Bill Gates, telling him, “Well

here’s our opportunity to do something with BASIC” (Wallace and Erikson

1992, 67). The two had already had some limited business success when

Gates was still in high school, with a venture called Traf-O-Data that pro-

duced hardware and software to count cars. They programmed the Intel

8008 microprocessor that powered Traf-O-Data using a simulator running

on a Washington State University mainframe.

 By 1975, Gates was at Harvard University, and he and Allen were ready

for a project with broader reach. Seeing Popular Electronics, they came up

with the idea of writing BASIC for the Altair and called Ed Roberts at MITS,

asking if he would be interested in having their BASIC for his system. Rob-

erts said he would buy the first version that worked (Wallace and Erikson

1992, 74). As Gates and Allen had done when developing their Traf-O-Data

system, they initially programmed on a university’s computer system. They

used a simulator to program the Altair 8800, a computer Gates and Allen

had never seen in person. What they were programming at this point was,

of course, a modified and minimized version of the original 1964 BASIC.

Given how often the success of personal computing is attributed to entre-

preneurial and business advances and to Microsoft in particular, it’s remark-

able that Microsoft’s first product was developed by borrowing time on

Harvard’s computer and was (as Microsoft always acknowledged) an imple-

mentation of a freely available programming language from Dartmouth.

 Gates and Allen devised the Altair BASIC project and did most of the

programming, but there was a third Altair BASIC programmer, a sort of

legendary “fifth Beatle.” This was Monte Davidoff, who wrote the floating

point routines. Gates and Allen were discussing how they needed to code

{170} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 50.2

The January 1975 issue of Popular Electronics featured the Altair 8800, which

inspired the creation of Microsoft BASIC.

BASIC {171}

these when Davidoff, a student sitting with them at the table, spoke up

and said he could write them. After talking it over with him, they enlisted

him to contribute them (Wallace and Erikson 76–77). The code of this first

Microsoft project is mainly by Gates and Allen, though, with Gates listed as

first author. Comments at the beginning of the code declare, “BILL GATES

WROTE THE RUNTIME STUFF,” which he did over a period of eight weeks

at Harvard. Gates would say years later that this 4 KB BASIC interpreter

“was the coolest program I ever wrote” (76–77).

 Allen flew to visit MITS in Albuquerque, taking along a paper tape

with Altair BASIC on it. During the plane’s descent he realized that he did

not have a way to get the Altair to read the tape and run it—a bootloader.

So he wrote one in machine language as the plane was landing. He then

went to see an actual Altair 8800 for the first time. The demo of BASIC,

written on a simulator, was a success on the machine itself, and the inter-

preter was licensed by MITS. Gates and Allen moved to New Mexico to

create new versions of BASIC for the Altair and to maintain the original

code. Microsoft was booted and running.

 Altair BASIC included alterations to Dartmouth BASIC, many of which

would have made no sense on earlier time-sharing systems but which were

helpful, even crucial, on home computers. While none of Microsoft’s chang-

es to BASIC were critical to the functioning of 10 PRINT, Gates and Allen

did create the POKE and PEEK statements, which have been widely used in

microcomputer BASIC and in programs found throughout this book.

 POKE allows a programmer to write a value to a specific memory lo-

cation. For example, POKE 53272,23 places the value 23 into address

53272, a location in memory that is mapped to a register of the VIC-II

graphics chip. In this case, POKE 53272,23 switches the Commodore 64

into lowercase mode. PEEK is POKE’s complementary statement; instead of

writing a value to memory, PEEK reads the value of a given location.

 Both statements are extremely powerful. Altair BASIC—and later, the

Microsoft BASIC used on the Commodore 64—sets no restriction on which

memory addresses can be changed with POKE. This means, as the Altair

BASIC Reference Manual warns, “Careless use of the POKE statement will

probably cause you to ‘poke’ BASIC to death; that is, the machine will

hang, and you will have to reload BASIC and will lose any program you

had typed in” (1975, 35). This process would have been particularly pain-

ful on microcomputers on which BASIC was bootloaded rather than being

{172} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

provided a part of the system’s ROM. It’s clear why earlier versions of BASIC

did not include POKE or PEEK equivalents. A user on a time-sharing mini-

computer should not have been able to write values directly to the micro-

processor or memory; such a privilege would have threatened the stability

of the entire shared system.

 From a technical and business standpoint, Altair BASIC was not an

early oddity, but rather, a Microsoft product with a strong relationship to

the company’s later flagship products. To see the connection, it’s important

to understand the nature of computing platforms and their relationship to

markets of different sorts.

 In Invisible Engines, Evans, Hagiu, and Schmalensee (2006) introduce

a theory of two-sided software platforms. In a predominantly one-sided

market—for example, a swap meet with people trading comics—there is

only one class of participant, a person interested in exchanging goods with

other people. A classic land-line telephone company also participates in a

one-sided market, because every customer is more or less the same sort

of participant, one who wants to make and receive calls. However, a credit

card company has two different classes of customer: merchants, who re-

ceive payments and need terminals; and cardholders, who have a line of

credit and make purchases.

 When Atari released the Atari VCS in 1977, it was initially a one-sided

platform. Atari made the system as well as all the games and controllers.

The only participants in the market, and users of the platform, were the

players. By the early 1980s, when Activision, Imagic, and other third-party

companies had entered the market, there was another class of participant—

one that was not paying royalties to Atari for the privilege of making games

for their console.

 Microsoft Windows is another example of a platform with at least

two sides. On one side, computers need an operating system and desktop

environment to function. This leads hardware manufacturers such as Dell

to purchase licenses to Windows and to include the software with their

systems. On the other side, computers are only valuable if there are ap-

plications written for them. Microsoft writes some of the applications for

Windows, but third-party developers write many others. The abundance of

software has a network effect that is positive for Microsoft: it encourages

users to stay with Windows. And, since Windows is pre-installed on many

computers, companies want to write applications for it.

BASIC {173}

 Of course, Windows was not the first two-sided platform, or even

Microsoft’s first. By retaining the rights to what IBM called PC-DOS, Mi-

crosoft had previously been able to license MS-DOS to other companies,

much as it would later sell OEM copies of Windows to them. And before

that, there are continuities with the company’s first product line, Microsoft

BASIC. BASIC was a programming language, not an operating system, but

the presence of BASIC allowed programs to be written on a computer

and sometimes sold. There were at least two sides to BASIC as a software

platform: the computer companies, beginning with MITS, who wanted it

on their machines; and the computer hobbyists who wanted to write (and

in many cases sell) BASIC programs. At Gates and Allen’s young company,

the success of BASIC and the essential business plan used with that family

of software products formed the basis of Microsoft’s later success licensing

MS-DOS and Windows.

Tiny bASIC and Copyleft

Even as Microsoft was securing its future as a multisided company, address-

ing both manufacturer and computer user demand, a different version of

BASIC—indeed, a different philosophy of software altogether—was brew-

ing in the San Francisco Bay area. In 1975, volunteer programmers and

the nonprofit People’s Computer Company (PCC) developed an alterna-

tive BASIC for the Altair 8800. Bob Albrecht, who had founded “probably

the world’s first completely free, walk-in, public computer center—People’s

Computer Center—in a storefront in Menlo Park, California” (Swaine 2006)

was one of many, along with Paul Allen, who had seen the Popular Elec-

tronics cover story on the MITS Altair. He discussed it with Dennis Allison,

who taught at Stanford, and Allison began to develop a specification for

a limited BASIC interpreter called Tiny BASIC. In a collaborative hobbyist

spirit, Allison’s documents were published in three parts by Albrecht in is-

sues of the PCC newsletter, a serial that had been running since October

1972. At the conclusion of this series of specifications, Allison called for

programmers to send in their implementations and offered to circulate

them to anyone who sent a self-addressed, stamped envelope.

 The first interpreter written in response to this call was by Dick Whip-

ple and John Arnold and was developed in December 1975. To dissemi-

nate it, Albrecht and Allison started a new serial, initially photocopied and

{174} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

originally intended to just run for a few issues. This was Dr. Dobb’s Journal

of Tiny BASIC Calisthenics and Orthodontia; it printed the code for the

interpreter in octal machine language, ready for hobbyists to toggle in or,

even better, key in on their Teletypes. It is an understatement to call this

publication a success. By January of 1976 the journal title was made more

general by removing the explicit mention of Tiny BASIC, an editor was

hired, and Dr. Dobb’s was launched as a newsletter offering code and ar-

ticles on computing topics. In 1985, Dr. Dobb’s further participated in the

culture of sharing and openness by publishing Richard Stallman’s “GNU

Manifesto,” a foundational document of the free software movement. The

journal ran as a print periodical until 2009, with a circulation of 120,000

shortly before that. It still exists as an online publication.

 The development of Tiny BASICs continued after Allison’s first ver-

sion. The fourth Tiny BASIC, written by Li-Chen Wang, was called Palo Alto

Tiny BASIC. It, too, was published initially in Dr. Dobb’s. The source listing

for this BASIC interpreter began:

 ;**

 ;*

 ;* TINY BASIC FOR INTEL 8080

 ;* VERSION 1.0

 ;* BY LI-CHEN WANG

 ;* 10 JUNE, 1976

 ;* @COPYLEFT

 ;* ALL WRONGS RESERVED

 ;*

 ;**

While this header does not use “copyleft” in the same sense that free soft-

ware licenses would beginning in the late 1980s, this anticopyright notice

was a jab at the closed culture of locked-up, proprietary code. Because

Wang chose to disclaim copyright and reserve only the “wrongs” of the

program, Palo Alto Tiny BASIC was able to serve as the basis for a com-

mercial BASIC: Level I BASIC for the TRS-80, the influential microcomputer

that came on the market in late 1978.

BASIC {175}

The Ethic vs. The Corporation

In Hackers: Heroes of the Computer Revolution, Steven Levy describes

the early history of home computing and the development of BASICs for

the Altair and its immediate successors as a battle between an ethic of

openness and the sort of corporate powers who were “a foe of the Hacker

Ethic” (1984, 227).

 This portrayal has helped to set up what is often remembered as the

first major clash between free software and the corporate will of Micro-

soft: Bill Gates’s “Open Letter to Hobbyists” (Gates 1976a). Published at

the beginning of 1976 in numerous newsletters, including the Altair Users’

Newsletter and that of the Homebrew Computer Club, this confrontational

letter gave Gates the opportunity to scold home computer users for the

same kind of sharing that the original BASIC at Dartmouth encouraged. In

the letter, Gates soundly declared, “As the majority of hobbyists must be

aware, most of you steal your software.” The letter spurred hundreds of re-

sponses, public and personal, causing the first major controversy in home

computing. Many see it as the start of Microsoft’s history of unfair deal-

ing—and of embracing and extending, a practice in which the company

takes existing tools and ideas and creates its own version for competitive

advantage. Decades later, in the antitrust case against Microsoft, Judge

Thomas Penfield Jackson would write that “Microsoft is a company with an

institutional disdain for both the truth and for rules of law that lesser enti-

ties must respect.” He was hardly the only one with this view by that point.

Did Microsoft’s rise to the height of corporate ruthlessness begin with this

letter to hobbyists?

 There are a few complications to the most popular version of this

early clash, just as there would be complications in considering Altair BA-

SIC as completely wrongheaded and Tiny BASIC as perfect in every way. To

begin with, neither Microsoft, nor Gates, nor Allen was the party fingered

in Levy’s book as the “foe” of the hacker ethic. That distinction belongs to

Ed Roberts, the head of MITS, who was running a business with dozens of

employees, many of whom would be furiously working at any given hour

to fulfill computer hobbyists’ orders (and their dreams of computer owner-

ship). At the beginning of 1976, “Micro-Soft” (the spelling had not been

regularized by the time of the first letter) was simply two partners, both

recent college dropouts, one a teenager and the other only slightly older.

{176} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

LINE NUMBERS AND COLONS: RESPONSES TO CHANGING HARDWARE

Microsoft has used its position as the major implementor of microcomputer BASIC

to make many changes to the language, adding and removing components that

became necessary or obsolete as hardware progressed. For example, to allow pro-

grams to be written more compactly—an important feature given the Altair’s switch

and toggle interface, which could literally be painful to programmers—Microsoft’s

Altair BASIC introduced the colon (:) to place separate statements on the same line.

Used this way, the colon allowed lines such as:

 160 R=16:PRINT"HOW MANY DECKS (1-4)";

Multiple statements on the same line were not possible with minicomputer BASICs

and the ANSI standard; Kemeny and Kurtz saw the compression of statements as

potentially confusing rather than helpful. When they released their much-revised

True BASIC for home computers in 1983, they still did not allow multistatement lines.

The colon is, however, important in 10 PRINT; this program could not be written as

a concise one-liner without it.

 Another prominent feature of 10 PRINT is also an artifact of the hardware

underlying the language. Unlike its punch card-derived predecessors, BASIC didn’t

require programmers to put anything in certain columns; yet there was a require-

ment that a number such as 10 appear at the beginning of each line. While line

numbers made branching possible by allowing GOTO and GOSUB, BASIC did not

technically need line numbers for this purpose. Labels, such as those used in preex-

isting languages like assembly, would have sufficed. The line number’s real value is

seen on a Teletype or other print terminal, or in any environment where full-screen,

nonlinear editing is not an option. Line numbers make it easy in those cases to de-

lete existing lines: simply type the line number without any further instructions, and

the line disappears. To correct a single existing line, just retype a line with the same

line number. To see what code is currently on a particular line, LIST 50 will do the

trick—although if one had written the line recently, one could also look up or literally

“scroll” back to where the line had been printed out.

 The practice of numbering program statements by multiples of five or ten is

not merely rhythmic or aesthetic (as it is in this book’s table of contents); the insertion

of new lines in a program requires that, as an early manual puts it, “the original line

BASIC {177}

numbers not be consecutive numbers” (Dartmouth College Computation Center

1964, 22). Numbering a program 10, 20, 30, and so on ensured that, between every

existing program statement, there was room for nine more. It was an acknowledg-

ment that a program is dynamic, rather than fixed and perfect. The Commodore 64

User’s Guide also advises that “it is good programming practice to number lines in

increments of 10—in case you need to insert some statements later on” (33). While

line numbers became an iconic feature of BASIC early in the personal computing

era, they also contributed to a perception among programmers that the language

is limited to simple tasks. Leaving space to add nine new lines of code between

every original line may initially seem like plenty of flexibility, but sometimes, when

programmers have a complex problem to solve, it is not enough. BASIC can still

accommodate this situation by allowing the programmer to use GOTO and GOSUB in

order to jump to as-of-yet unused numbers for a separate routine and then return to

the original program flow when complete. Unfortunately, too many subroutines can

result in “spaghetti code”—so named because the flow chart of a program becomes

so confused and self-referential that all the lines look like a plate of spaghetti, mak-

ing the program nearly unintelligible.

 In 1991 Microsoft realized that the perception of BASIC as limited to simple

programs was holding the language back, and that this perception was largely due

to a feature of the language that was no longer even necessary. Text editors that

could display and allow access to screenfuls, or windowfuls, of lines had long been

available, and line numbers were now doing more damage than good. In QBasic,

released in 1991, the company dispensed with line numbers, replacing them with

the assembly-like text labels.

 That 10 PRINT includes both the colon and the line number—features that

have been added and removed from BASIC in response to hardware changes—

signals that 10 PRINT is from a particular time and related to a specific era of com-

puting caught between competing input mechanisms. Its heritage and provenance

are written right into its code.

{178} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

The company had paid other people, such as BASIC contributor Davidoff,

but would not get its first official employee until April 1976.

 Furthermore, copyright protection for computer programs, on which

Gates based his argument, was well established by 1976. While sharing of

programs certainly happened in users’ groups and other contexts, today’s

concept of free software had not been articulated at that time. Richard

Stallman started the GNU project in 1983; he published the GNU Mani-

festo and founded the Free Software Foundation in 1985, a decade after

Altair BASIC. An argument has been made that, even though the discus-

sions of this period have been overlooked, some of the ideas important

to the free software movement were first publicly stated in the columns of

magazines and newsletters in response to Gates’s letter (Driscoll 2011). But

many hobbyists were not interested in free (as in freedom) software as it is

conceptualized today; rather, they were interested in (as the editorial in the

first issue of Dr. Dobbs explained) “free and very inexpensive” software.

 In the aftermath of his first letter, Gates wrote a “Second and Final

Letter,” replying to objections raised by his readers. In it, he conceded that,

at least for certain types of programs, the free sharing of code was likely to

become the norm. He also suggested that good “compilers and interpret-

ers” (such as Microsoft’s Altair BASIC) would enable such shared software:

 In discussing software, I don’t want to leave out the most important

 aspect, vis., the exchange of those programs less complex than interpreters

 or compilers that can be written by hobbyists and shared at little or no cost.

 I think in the foreseeable future, literally thousands of such programs will be

 available through user libraries. The availability of standardized compilers

 and interpreters will have a major impact on how quickly these libraries

 develop and how useful they are. (Gates 1976b)

Gates certainly had a concept of software that would allow for it to be

sold and tightly controlled by a corporation, but he was hardly seeking to

eliminate hobbyist programming and the sharing of code. The company’s

policies did run counter to the ethic of the Homebrew Computer Club and

the People’s Computer Company in significant ways; yet Microsoft facili-

tated not only the creation of new software with its version of BASIC, but

also the exchange of programs that Gates mentioned. Through licensing

deals with computer companies, Microsoft did a great deal to bring BASIC

BASIC {179}

out of the minicomputer time-sharing environment and onto microcomput-

ers and beyond, to early adopters and enthusiast programmers. Microsoft

signaled it was not completely at odds with the PCC in Appendix M of

the original Altair BASIC manual. It lists “a few of the many texts that may

be helpful in learning BASIC,” all but one of which can be ordered from

the PCC, whose address is also provided. Five of the six books are about

BASIC specifically, but the manual also lists the radical and countercultural

Computer Lib/Dream Machines by Theodore H. Nelson (1974), an edition

of which Microsoft would itself publish in 1987.

 Ultimately, BASIC became what it was in 1982 thanks to the institu-

tion of higher education where it was first developed, the corporation that

implemented and licensed it for use on home computers (including the

Commodore 64), and, significantly, the hacker ethic of code sharing that

allowed BASIC programs—such as 10 PRINT—to circulate freely.

COMMODORE bASIC

The ability to program a computer—to use its general power in customized

ways—was a core selling point for many home computers including the

Commodore 64. Home computers were often positioned against videog-

ame systems in advertisements. Implicitly, this comparison reminded the

prospective buyer that a computer could be used to play video games;

explicitly, it pointed out that computers could be used with business and

educational software—and that they could be programmed to do much

more. This point was driven home in the many Commodore TV ads that

compared the VIC-20 to game systems, including one in which William

Shatner says “unlike games, it has a real computer keyboard” (Commo-

dore Computer Club 2010).

 That computers were programmable and that they specifically could

be programmed in BASIC were hardly afterthoughts in their development

or marketing. A Commodore 64 advertisement that was aired in Australia in

1985 provides evidence that BASIC was a central selling point (Holmes3000

2006). After the television spot showed bikini-clad women descending a

waterslide (“♪ In a world of fun and fantasy . . . ♪”) and cut to a woman hap-

pily using a Commodore 64 in a retail store (“♪ . . . and ever-changing views

. . . ♪”), it cut once again: to a screenful of BASIC, and then to depict a boy

{180} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

programming in BASIC (“♪ . . . and computer terminology . . . Commodore

and you! ♪”). The commercial suggests that computer programming was

an obvious, important, and fun use of a home computer.

 An early print ad for the Apple II that ran in Scientific American among

other publications boasted, “It’s the first personal computer with a fast ver-

sion of BASIC—the English-like programming language—permanently

built in. That means you can begin running your Apple II the first evening,

entering your own instructions and watching them work, even if you’ve had

no previous computer experience.” It was very easy for home computers

users to type in or modify a BASIC program, and the fact that the manufac-

turers encouraged such behavior in mass media advertising primed users

to partake of programming once they’d purchased a machine.

 At the opposite extreme were programs fixed in the ROM of car-

tridges, such as the cartridges of videogame systems. They were conve-

nient, and they showed that such game systems had the flexibility to work

in many different ways, but hacking cartridge code or writing one’s own

programs on a cartridge-based system was far from easy in the early 1980s.

The Commodore 64 provided the flexibility of BASIC out of the box, but—

like the TI-99/4A, among other computers—it also had a cartridge slot. By

offering BASIC along with the ability to plug in cartridges (many of which

were games), the Commodore 64 turned one of its Janus-like faces to the

generality and power of home computing and another to the convenience

and modularity of gaming.

 The Commodore 64 BASIC on which 10 PRINT runs is a Microsoft

product and a descendant of Altair BASIC. The first step for achieving this

BASIC was creating a version for the Commodore 64’s chip, the MOS 6502

processor. The Altair had used the Intel 8080, which had a different instruc-

tion set. The task of developing a version of Microsoft BASIC to work with

the MOS 6502 was undertaken in 1976 and fell mainly to Richard Weiland.

When a user types “A” in response to the startup question “MEMORY

SIZE?”, the version of Microsoft 6520 BASIC licensed to Ohio Scientific re-

plies “WRITTEN BY RICHARD W. WEILAND,” while version 1.1 for the KIM

declares “WRITTEN BY WEILAND & GATES.” The first version of Micro-

soft’s 6502 BASIC that made its way into the ROM of a shipping system, in

1977, was a version for Commodore—not for the Commodore 64, but for

the company’s first computer, the Personal Electronic Transactor or PET.

 The BASIC included with the Commodore PET was very similar to

BASIC {181}

Commodore BASIC 2 for the Commodore CBM and the BASICs included

on the VIC-20 and Commodore 64. (The version history of Commodore

BASIC is a bit complicated, as the “COMMODORE 64 BASIC V2” that ap-

pears on the top of the screen indicates the second release of BASIC V2.0;

this version was originally provided with a model of the PET 2001.) Other

aspects of Commodore computers, such as the PETSCII character set, are

similar across models as well. For these reasons, 10 PRINT will run without

modification on a Commodore PET or a VIC-20. What mainly suggests that

the program should be identified with the Commodore 64 is the presence

of 10 PRINT variants in a Commodore 64 manual, a later magazine, and

other contexts specific to the Commodore 64.

 Versions of Microsoft’s 6502 BASIC were used not only on the PET and

Commodore 64 but also on competing computers: the Apple II series and

Atari’s eight-bit computers, the Atari 400 and Atari 800. Microsoft certainly

benefited from selling the same product to multiple computer manufactur-

ers but didn’t manage to make the usual licensing deal with Commodore.

As the founder of Commodore, Jack Tramiel, explained at the Computer

History Museum at a twenty-fifth anniversary event honoring the Commo-

dore 64, Bill Gates “came to see me. He tried to sell me BASIC. And he

told me that I don’t have to give him any money. I only have to give him

$3 per unit. And I told him that I’m already married.” Tramiel told Gates he

would pay no more than a $25,000 flat fee for BASIC—an offer that Micro-

soft ultimately accepted. This was a very good deal for Commodore, since

about 12.5 million Commodore 64s were ultimately sold (Steil).

 Features of BASIC highlighted by 10 PRINT and which are fairly spe-

cific to the Commodore 64 version are seen in the RND command, dis-

cussed in the Randomness chapter, and in the PETSCII character set that

CHR$ refers to, discussed in the Commodore 64 chapter.

 Before turning to the way Commodore 64 BASIC programs circulat-

ed, it’s worth noting what the creators of Commodore 64 BASIC went on to

do. Bill Gates’s career trajectory is, of course, well known. It is indeed the

case that one of the programmers of Commodore 64 BASIC became the

richest person in the world. Paul Allen is not far behind in wealth; he left

full-time work at Microsoft in 1982. Gates and Allen are notable philanthro-

pists today. The other coder who contributed to the original Altair BASIC,

Monte Davidoff, did not strike it nearly as rich but, according to an inter-

view, was still active as a programmer in 2001, running Linux and preferring

{182} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

to program in Python (Orlowski 2001).

 The programmer of Microsoft’s 6502 BASIC, Richard Weiland, a

grade-school classmate of Gates and Allen, joined Microsoft when the

company was based in Albuquerque. He worked for Microsoft until 1988

and devoted much of his time and money from then until his death in 2006

to philanthropy. He supported the Pride Foundation (with the largest-ever

donation to LBGT rights), Stanford University (with the largest donation

that university had ever received), the Audubon Society, and the Nature

Conservancy (Heim 2008). While the dichotomy between profit-driven cor-

porations and people-powered programming is not artificial, the generos-

ity of the people behind Commodore 64 BASIC shows that those on the

corporate side aren’t without altruistic, community concerns.

ThE CIRCulATION Of bASIC PROGRAMS

From the first years of the language, BASIC programs circulated as ink on

paper. In 1964 and for many years afterward, there was no Web or even

Internet to allow for the digital exchange of programs, and it was often im-

practical to distribute software on computer-readable media such as paper

tape. From the mid-1970s through the early 1980s, BASIC was known in

print not only through manuals and textbooks that explicitly taught pro-

gramming, but also through collections of programs that appeared in mag-

azines and computer club newsletters. The printed materials that remain

today reveal insights into the practices of BASIC users and the culture that

developed among them.

Programs in Print

Computer magazines often featured BASIC programs a home user could

easily key in to his or her home computer. There was the previously men-

tioned Dr. Dobb’s, but also many others. For instance, Creative Computing

was a significant early magazine for microcomputer hobbyists. Launched

in 1974 before the debut of the Altair 8800, Creative Computing was

published until 1985 and spanned the era of BASIC’s greatest growth and

popularity.

 As Creative Computing was nearing the end of its run, other mag-

BASIC {183}

azines, many of them platform-specific, were just getting started. One

was the previously-mentioned RUN (1984–1992), a monthly magazine

published by IDG Communications, focused on the Commodore 64 and

VIC-20. RUN is particularly noteworthy in the current discussion because

a one-line variant of 10 PRINT appeared in its pages in 1984. A German

edition of RUN was published as well, and ReRUN disks made programs in

the magazine available for purchase in machine-readable format. Another

home computer magazine of this era was Compute! (1979–1994), which

began as Pet Gazette, a 1978 magazine put together by Len Lindsay about

the Commodore PET computer. In July 1983, Compute! launched a spinoff

publication, Compute!’s Gazette, for Commodore 64 and VIC-20 owners.

In the UK there were several magazines for Commodore users, including

Zzap! 64, Commodore User, and Commodore Format—suggesting that

putting the pound sterling symbol on the Commodore keyboard was a

good move after all. Interestingly, the last of these UK magazines did not

start publishing until October 1990, well into the twilight of the Commo-

dore 64. Commodore Format was not about BASIC or learning to program,

however, instead focusing on what was by 1990 nearly retro-gaming. The

magazine came with a “Powerpack” tape, offering full games and demos

for subscribers to load and run.

 While magazines were ready and regular sources of BASIC programs,

many enthusiasts also discovered code in long-form books. David H. Ahl’s

influential compilation, 101 Basic Computer Games, was first published in

1973 by the Digital Equipment Corporation (DEC). This was the first book

to collect only games in BASIC. It includes a sample run of each game and

acknowledges the programmers who contributed them. Each program’s

“computer limitations” are described so that users understand the specific

BASIC dialects and hardware that are supported, evidence that even as

early as 1973 BASIC had drifted from its creators’ goal of a platform-ag-

nostic high-level language. Hand-drawn illustrations punctuate 101 Basic

Computer Games—a rather playful presentation for a corporate publica-

tion. The game’s titles are all abbreviated so they can serve as filenames,

which at the time were limited, on some systems, to six characters. The

abbreviations are humorously cryptic, with ACEYDU standing for “Acey

Deucy Card Game”; AMAZIN for “Draw a Maze”; or POET for “Random

Poetry (Haiku).” In the preface, the educational value of playing and creat-

ing games and the need for “unguided learning” are emphasized, echoing

{184} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Kemeny’s own thoughts about the value of play on computers.

 A new edition of this book, Basic Computer Games, Microcomputer

Edition, appeared in January 1978—reflecting BASIC’s move from time-

sharing minicomputers to microcomputers. This edition’s preface begins

with a dictionary definition (from an unnamed dictionary) of the word

“game.” It then provides a cursory history of sports and games from an-

cient times to the modern age, emphasizing that games offer recreational

breaks from the “realities of life” and have other “important redeeming

virtues.” The programs in this book are meant to run on the gold stan-

dard of microcomputer BASICs: MITS Altair 8K BASIC, Rev. 4.0 (ix). The

games, no longer referred to by cryptic six-character tags, are organized by

category—e.g., Educational, Number and Letter Guessing, Sports Simula-

tion, Gambling Casino, Card and Board, and so on. While none of these

categories would easily accommodate 10 PRINT, it is notable that so many

of them rely upon a key feature of that program: randomness.

 Later in 1978, this compilation was published again by Workman Pub-

lishing under the lengthy title Basic Computer Games, Microcomputer Edi-

tion. 101 Great Games to Play on Your Home Computer. By Yourself or with

Others. Each Complete with Programming and Sample Run. Its translation

into German in 1982 (reprinted in German in 1983) shows how BASIC games,

thanks in this case to a book’s large trade publisher, made their way abroad.

 The People’s Computer Company not only published a newsletter

(figure 50.3) but also offered a book collecting BASIC games: Bob Al-

brecht’s large-format What to Do after You Hit Return came out originally

in 1975. This popular book underwent several printings from different pub-

lishers. Not once did the acronym BASIC appear on the front or back cover,

perhaps indicating that the language was so prevalent for recreational pro-

gramming that it need not be named.

 Given the growing popularity of BASIC and computers among hob-

byists, it is not surprising to see books of BASIC that go beyond games.

Promising to teach a BASIC that would work with all the various “dialects,”

the 1977 Illustrating BASIC (A Simple Programming Language), was pub-

lished by no less a scholarly authority than Cambridge University Press. In

1978 came The Little Book of BASIC Style: How to Write a Program You

Can Read, by John M. Nevison. With its allusion to the Elements of Style

by Strunk and White, this book insists that programs have human readers

and can be written with them in mind. Similar titles include the 1978 BASIC

BASIC {185}

Figure 50.3

The People’s Computer Company (PCC) Newsletter #1 in October 1972

featured a selection of BASIC programs from My Computer Likes Me.

Courtesy DigiBarn Computer Museum via the Creative Commons Attribution-

Noncommercial 3.0 License.

{186} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

with Style. Programming Proverbs and the 1979 Programming for Poets. A

Gentle Introduction Using BASIC. Lest the utilitarian function of comput-

ers become overshadowed by these more aesthetically oriented books,

there is Charles D. Sternberg’s BASIC Computer Programs for the Home

(1980), filled with programs specifically designed to satisfy “the practical

requirements of the home.” Should one of these programs not work on the

reader’s own machine, Sternberg encouraged their “modification.”

 This quick survey of BASIC books from the 1970s and early 1980s

highlights the extent to which BASIC facilitated exploration, play, modifica-

tion, and learning. It also reveals the nature of the home computing move-

ment at the time, which emphasized sharing and learning from others, often

through the medium of print. While programs in machine language occa-

sionally circulated in print, published BASIC programs such as 10 PRINT

were a different beast altogether. BASIC was legible code. It could be read

straight from the page and some sense of the program’s nature was evi-

dent before the program was ever even executed. Furthermore, as a user

typed in a program, he or she could easily alter it, sometimes mistakenly,

yet often with purpose. Sometimes the magazines and books had typos

themselves or didn’t work with a particular reader’s dialect of BASIC, and

modifying the program—debugging it—became essential. The transmis-

sion of BASIC programs in print wasn’t a flawless, smooth system, but it did

encourage engagement with code, an awareness of how code functioned,

and a realization that code could be revised and reworked, the raw material

of a programmer’s vision.

bASIC in human Memory

Not so long ago, software was primarily transmitted on physical media,

such as cassette tapes, floppy disks, and CD-ROMs. The notion that pro-

grams would routinely be published in print and typed in by users seems

alien now. But there is an even stranger way that programs, particularly

short ones such as BASIC one-liners could make their way from computer

to computer and from person to person: as memorized pieces of code, like

a software virus whose host is a human rather than a machine.

 The dream of total recall of a computer program appears in science

fiction. In Cory Doctorow’s short story “0wnz0red,” a programmer named

Murray spirals downward in terms of his life and his code quality after the

BASIC {187}

apparent death of his only friend (Doctorow 2002). When this friend re-

turns, having actually hacked his own body and mind into near-perfection,

Murray attains similarly superhuman capabilities. Among these is the ability

to precisely remember large amounts of text, including technical documen-

tation of code, which “he closed his eyes and recalled, with perfect clarity.”

Murray’s powers of recall even extend beyond human language. As the

story ends, Murray “had the laptop open and began to rekey the entire

codebase, the eidetic rush of perfect memory dispelled all his nervousness,

leaving him cool and calm as the sun set over the Mission.”

 In Doctorow’s story, the ability to memorize a large program is a su-

perpower. At the same time, the story’s treatment of the human body and

mind as machines that can be mastered by a programmer and owned (or

even 0wnz0red) by an adversary is consistent with the idea that memorizing

code is enslaving one mind’s to the machine, treating it as a storage pe-

ripheral. For many programmers, however, memorizing one-liners (not an

entire massive codebase) is both possible and useful—and pleasing, much

as memorizing a poem might be. Such memorization would hardly seem

strange in the context of what N. Katherine Hayles (2005) calls the “legacy

systems,” speech and writing, out of which code evolves (as developed in

her chapter “Speech, Writing Code: Three Worldviews”).

 In the case of home computing in the early 1980s, it could be advanta-

geous for someone to memorize a one-liner or a handful of short programs.

A memorized one-liner could be typed into a friend’s computer, initiating a

kind of two-way cultural economy; in exchange for sharing a particularly in-

teresting or visually affecting program, one earned prestige, or street cred,

a currency a teenager in the early 1980s would surely appreciate. In the late

1970s and early 1980s, many of these short programs worth memorizing

were of course in BASIC. (See the remark One-Liners for several examples.)

And because programmers typically had to memorize certain BASIC state-

ments anyway, such as ? CHR$(147)(which clears the screen), it was not

much of a leap to memorize a program that contained two statements in

that language, such as 10 PRINT CHR$(205.5+RND(1)); : GOTO 10.

 In addition to being able to show off and seem elite, there are some

strictly utilitarian reasons to memorize a short program. For example, Perl

is used for a wide variety of text-processing tasks; many who program in it

find it useful to write, recall, or adapt one-line programs that work on the

command line. For instance, to convert a file dosfile.txt with DOS-

{188} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

STUDIES OF PROGRAM MEMORIZATION

In Doctorow’s story, Murray finds it easier to remember pages of code than a string

of random characters, an idea supported by experimental research. In an effort to

better understand how people comprehend computer programs—which has rami-

fications for programmer efficiency—scientists began studying program memoriza-

tion in the mid-1970s. In 1976 Ben Shneiderman, referring to the cognitive science

literature on remembering sentences, reported a statistically significant difference

between subjects of different ability levels attempting to memorize a FORTRAN

program and a series of valid statements in scrambled order, “leading us to the

conclusion that the structure of a program facilitates comprehension and memoriza-

tion” (1976, 127).

 Ruven Brooks published a more elaborate theory of program comprehension

in 1983; 10 PRINT shows some ways in which this theory is not generally applicable.

In Brooks’s theory, a programmer reconstructs knowledge about the real-world do-

mains that the program models, developing an initially underspecified hypothesis

and refining and elaborating it “based on information extracted from the program

text and other documentation” (1983, 543). Brooks posited the useful idea that cer-

tain lines were “beacons,” indicating key program structures and operations (548).

But his theory is otherwise difficult to apply to 10 PRINT. Brooks lists seven internal

and five external “indicators for the meaning of a program,” including “Indentation

or pretty-printing” and “Flowcharts” (551). None are present in 10 PRINT. More

fundamentally, Brooks’s model is meant for programs that simulate recognizable

business processes, not computer programs in general. In fact, Brooks’s model can-

not directly apply to any creative program that lacks a real-world domain.

 Brooks’s concept of beacons was revisited in another memorization study by

Susan Widenbeck. In this 1986 study, Widenbeck found that beacon lines were re-

called more often by experienced programmers, presumably because they know

what to look for. Widenbeck also noted, “Memorizing a program is a very unusual

programming task, and it is possible that it changed the subjects’ normal program

comprehension strategies and procedures” (1986, 705). Interestingly, given the con-

temporary mantra that “code is poetry,” Widenbeck found that program memoriza-

tion was not at all like the memorization of text: “If subjects were taking a strictly

linear, or text-reading, approach to understanding the program, we would expect

the lines near the beginning of the program to be better remembered . . . this was

BASIC {189}

not the case” (707). At the same time, Widenbeck made analogies to the reading of

texts in describing how her subjects read programs: “Using beacons to understand

a program seems to be something like skimming an English text. They help to figure

out the general, high-level function, but they do not contribute to a detailed under-

standing of the code” (708).

 Shneiderman’s early acknowledgement that programs can be memorized is

significant; his result, furthermore, shows that the memorization of programs relates

to the memorization of language in some important ways (Shneiderman 1976). But

there are differences between this study’s perspective and the consideration of how

BASIC one-liners are memorized. Memorization was used as a barometer of com-

prehension, the real focus of this research. Although it seems evident from these

studies that memorization and comprehension are deeply connected, memorization

is nevertheless being considered along the way to understanding something else.

Shneiderman’s study is about the short-term memorization of programs of about

twenty lines, assigned as a task. Because short-term memory is the concern, Shnei-

derman cites Miller’s famous paper on the topic, “The magical Number Seven, Plus

or Minus Two” (Miller 1996) and discusses how his results may be consistent with the

ones in that paper.

 10 PRINT represents a category of programs that were historically memorized

but that existing theories of program memorization, formulated for longer programs

that model business processes, do not cover. The memorization of BASIC one-liners

was rather long-term, done for fun, and of course involved very short programs. This

type of memorization has certain things in common with the tasks done in these

memorization studies, but it may also relate to the way people memorize jokes,

proverbs, and other oral texts. These studies do at least show how people can re-

member key statements (beacons) and the high-level workings of a program without

memorizing it character by character. Also, the appearance of program variants that

work identically but are written differently is consistent with studies on and theories

of program memorization.

{190} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

style line endings to Unix format, a common task for many programmers,

the carriage returns (indicated \r) must be removed. This can be accom-

plished with the command perl -p -i -e's/\r\n/\n/g' dosfile.

txt which includes a very short program (between quotes) to perform the

needed substitution. With a few changes, this code can be adapted to re-

place one word with another, for instance, substituting “Commodore” for

every occurrence of “Atari”: perl -p -i -e's/Atari/Commodore/g'

manuscript.txt.

 Programmers who use such Perl one-liners do not seem to remember

them in exactly the way one memorizes lines from a play or a song. They

would generally understand how the substitution operator (s///) functions

and how command-line flags to Perl work. In other words it is knowing Perl,

not just the memorization of a string of symbols, that is important to most

uses of Perl one-liners. But the phrase “Perl pie” (a mnemonic for perl

-p -i -e) does help some to quickly recall which command-line flags are

needed in this case, and one-liners are at times as much recalled as fig-

ured out and programmed. Many common one-liners are not programmed

“from scratch” each time they are used.

 This type of non-rote memorization is the sort that BASIC program-

mers also employed in bringing 10 PRINT from one computer to another

as they showed off its output. Remembering code, like having it printed

with the occasional typo, was a “lossy” way to transmit programs. This

didn’t have purely negative effects, though. Instead of the perfect but

opaque way of transferring files via disk or download, the recall and read-

ing of programs left a space for the programmer to work and play. If the re-

called version of the program didn’t work correctly, the programmer could

think about how to change it. If it did work well, the programmer still might

think to change it, to see what else the program could do. The wiring of

these printed and memorized programs was sometimes messed up, but

they were not sealed from view in a closed black box.

lATE bASIC

The Commodore 64, Apple II, TRS-80, and other microcomputers of the

late 1970s and early 1980s featured BASIC in its heyday. Even though Ke-

meny and Kurtz focused on minicomputer BASIC, it was during this phase

BASIC {191}

of BASIC’s run that the language truly fulfilled many of their goals: ease of

use, distribution to millions of users, and availability on a wide variety of

platforms. Since that time, the use of BASIC has declined thanks to chang-

ing technology, new standards, and a reputation (deserved or not) for en-

couraging low-quality code among programmers. Modern programming

environments are indebted to BASIC in a variety of ways, however.

 The most direct lineage continues Microsoft’s history of building tools

to support the BASIC language. Compilers and development environments

supporting BASIC, including QuickBasic and QBasic, shipped with every

Microsoft operating system until Windows 2000 finally broke the chain

by moving away from an MS-DOS base. In 1991 Microsoft reenvisioned

BASIC to produce Visual Basic, a language that was intended to fulfill the

ease of use and rapid development capabilities of BASIC under the new

paradigm of window-based interfaces. Visual Basic used some syntax simi-

lar to BASIC but was designed for use with graphical development tools

and did not derive directly from earlier microcomputer BASICs. Visual

Basic itself was followed ten years later by Visual Basic .NET, a language

that again breaks from its predecessor in fundamental ways but retains the

goal of being the easy-to-learn, quick-to-use introductory programming

language on the Microsoft platform. As of 2012, Visual Basic is the seventh

most popular programming language in the world and Visual Basic .NET is

twenty-fourth (TIOBE Software BV 2012).

 On the less professional end, Microsoft’s most recent BASIC prob-

ably has the strongest relationship to 10 PRINT and to how that program

was used, modified, shared, and explored. This version of the language is

Microsoft Small BASIC, released in 2008 and available free of charge. This

is a Microsoft .NET language that is clearly aimed at students and other

beginners. It incorporates turtle graphics concepts from LOGO, inviting

play and exploration with graphics and GUI elements as well as text. To ac-

company this language, there is even a Small BASIC edition of David Ahl’s

Basic Computer Games (Kidware Software 2011).

 BASIC has continued to be relevant in particular domains. There are

several BASICs, or BASIC-derived languages, created specifically for game

development and still in active development and use. These include Blitz

BASIC (and successor languages), DarkBASIC, and GLBasic. Those inter-

ested in physical computing projects can use a microcontroller, the BASIC

Stamp, versions of which have been manufactured by Parallax, Inc. since

{192} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

1992. This system is powered by a nine-volt battery; hobbyists can pro-

gram it in a variant language called PBASIC. A less direct descendant is

the language used to program calculators from Texas Instruments in the

1990s and 2000s. It has been given the unofficial name of TI-BASIC by

its programming community because, as in the heyday of BASIC, it is a

relatively simple interpreted language that ships with and controls a stand-

alone device.

 Other successors have continued to migrate either BASIC’s principles

or syntax to an ever-widening array of environments. Like Microsoft’s Vi-

sual Basic, True BASIC updated the BASIC language to support graphical

environments. Unlike Microsoft’s re-envisioning, however, True BASIC was

created by Kemeny and Kurtz themselves and has remained close to both

the original syntax of Dartmouth BASIC and the principle of device inde-

pendence, with compilers available for several operating systems.

 A more radical interpretation of BASIC’s legacy might include lan-

guages that have taken over its role of inviting ordinary users to become

programmers and creators. Following the release of graphical web brows-

ers like NCSA Mosaic, Netscape Navigator, and Microsoft Internet Explorer

between 1993 and 1995, that role might be assigned to HTML. Though

HTML is a markup language used for formatting, not a programming lan-

guage used for data processing and flow control, it copied BASIC’s tem-

plate of simplicity, similarity to natural language, device independence,

and transparency to become many users’ first introduction to manipulat-

ing code. Browsers have traditionally contained a “view source” command

that shows the markup behind the page being displayed, making it as ac-

cessible as if it were printed in a magazine. This markup language also was

similar to BASIC in that it led users on to more powerful languages like

Javascript, Perl, and PHP as those users sought to create more interactivity

than static HTML could provide.

 BASIC’s role as a language that introduced users to programming by

necessity in the 1980s is now being fulfilled by languages designed specifi-

cally for education, some of which are so abstracted from traditional pro-

gramming practices that they use entirely different metaphors. Scratch, an

environment developed by the MIT Media Lab in 2006 whose creators cite

1980s-era BASIC as a predecessor (Resnick et al. 2009, 62), does not even

use text as the basic unit; instead, programs are assembled by dragging

and dropping puzzle-piece graphics that fit together to build functional-

BASIC {193}

A PERSONAL MEMORY OF 10 PRINT

When one of this book’s authors, Nick Montfort, first wrote about a similarly function-

ing program, he presented this variant: 10 PRINT CHR$(109+RND(1)*2); : GOTO

10. That is the program discussed very briefly in the article “Obfuscated Code” in

Software Studies: A Lexicon, and is the same version of the program that Montfort

presented to Mark Marino’s online Critical Code Studies Workshop in 2010, where it

sparked the discussion that led to this book.

 This program is a different sequence of characters, but it does the same thing

as the 10 PRINT that forms this book’s title, for two reasons: first, 205 and 206 are

mapped to the same characters as 109 and 110; second, adding a random number

between 0 and 2 does the same thing, due to rounding, as adding .5 and then also

adding a random number between 0 and 1. The version used in the title of this book

is based on (although not identical to) two early print sources for the program, the

three-line program in the Commodore 64 User’s Guide and the one-line version

in RUN magazine. No print sources from the 1980s have been located that use

RND(1)*2 or that use character codes 109 and 110 rather than 205 and 206.

 Why did Montfort initially bring up this “corrupt” version of the program?

Simply because he reconstructed 10 PRINT from memory and looked at a chart

of PETSCII character values when he was doing so. Since 109 and 110 are lower

numerically and closer to the values for the characters A–Z, he noticed them first on

the chart and used those values.

 The discussion of this program throughout this book is based on the early print

versions. The version of the program that started the discussion, however, came

from memory.

ity. Though the appearances and mechanisms are quite different, Scratch

uses the same underlying logic and concepts as any other programming

language, so that students who use it can apply what they learn to other

languages.

 Because BASIC was a hit at a unique time in the history of comput-

ing—when microcomputers were becoming mainstream but before ex-

ecutable software distribution became widespread—there may never be

another language quite like it. The principles behind BASIC remain strong,

{194} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

though, and continue to make programming languages easier, more trans-

parent, and more freely distributed—all of which continue to encourage

new programmers to take the plunge and old programmers to experiment

with new ideas.

REM A PORT TO THE ATARI VCS {195}

55
REM A PORT

TO ThE
ATARI VCS

CODING THE CHARACTERS

BUILDING THE WALLS

COVERING THE SCREEN

BOUNDING THE MAZE

{196} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Alongside the general purpose home computers launched in 1977—the

TRS-80, the Apple II, and the Commodore PET—was another computer,

one that was hugely successful but that most people do not recognize

as a computer. This was a videogame console, the Atari Video Computer

System (VCS), which later came to be known as the Atari 2600. Unlike the

other computers, the Atari VCS was built specifically to play videogames.

It was also designed to be far less expensive: the VCS was priced at $199,

while the original Apple II cost an astounding $1,298.

 Due to its intended use, the requirement that the system sell for a

low price, and the high costs of silicon components, the Atari VCS was de-

signed in a very unusual way. Like the Apple II and the Commodore 64, the

Atari VCS used a version of the inexpensive MOS Technology 6502 micro-

processor. But in order to create moving images and sounds on an ordinary

CRT television, engineers Joe Decuir and Jay Miner designed a custom

graphics and sound chip called the Television Interface Adapter (TIA). The

TIA supported five “high resolution” movable objects: two player sprites

(movable objects that can be created once and then moved around freely),

two missiles (one for each player), and a ball. These were exactly the right

kind of movable graphics needed for the games first envisioned for the

VCS—home versions of popular Atari arcade games including Pong and

Tank. The TIA also enabled a low-resolution playfield and a changeable

background color, along with a variety of methods to vary the appearance

of each of these objects. To save money, the TIA was paired with a cheaper

variant of the 6502 and 128 bytes of RAM, an incredibly modest amount of

memory.

 Unlike the Apple II and the PET, the Atari had no on-board ROM

and no operating system, and only a fraction of the RAM of those other

1977 computers. As a result, Atari programmers had to write code that ma-

nipulated the TIA’s registers not merely on a screen-by-screen basis, but on

every single scanline of the television display. The result is one of history’s

most unusual methods of producing computer graphics (Montfort and Bo-

gost 2009, 28–30). The launch titles for the Atari VCS used this system in a

fairly straightforward way (see figure 55.1), while later titles exploited it to

produce quite different effects.

 While a number of remarkable games were designed for the Atari

VCS over its lifetime, the constraints of the system make it a particularly

difficult platform from the programmer’s perspective. Consider the chal-

REM A PORT TO THE ATARI VCS {197}

Figure 55.1

These screen captures from Combat (top) and Air-Sea Battle (below) show

the visual quality of Atari VCS games.

{198} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

lenges of porting 10 PRINT to the Atari VCS:

 1. The Atari does not have predefined character bitmaps, grids of pix-

els to represent each glyph, as the Commodore 64 does, making it neces-

sary to create the patterns corresponding to the diagonal characters from

scratch.

 2. The TIA supports only two high-resolution sprites for on-screen

display (the missiles and ball are mere dots, a pixel each). Somehow, the

Atari has to be made to produce a large, changing pattern out of just these

two 8-bit graphics registers.

 3. The Atari has no concept of a row-and-column screen display like

those found in minicomputer terminals and PCs. It was designed to play

simple videogames, not to display text and numbers. As a result, the grid-

ded layout that 10 PRINT enjoys “for free,” thanks to the Commodore 64’s

way of displaying text, must be laboriously simulated on the Atari VCS.

 4. Once the previous hurdles are overcome, the Atari sports far less

memory than the Commodore 64. The Commodore can hold all those

display character references in memory because it has the room to do so,

with 512 times as much storage as the Atari. Even if the Atari could be

made to display enough high-resolution diagonal characters per line or

per screen, the program would have to store references to those simulated

characters so that each frame of the display would appear consistent with

the preceding one.

 Designing a port of 10 PRINT for the Atari VCS is so quixotic that

it might not seem to be worth even trying. Yet just as 10 PRINT reveals

much about BASIC and the Commodore 64, so too can a study of a seem-

ingly impossible port on an incompatible platform reveal deeper levels to

10 PRINT. Figure 55.2 shows is the closest approximation of 10 PRINT

that has been achieved on the Atari VCS, the output of a port written for

this book.

CODING ThE ChARACTERS

The matter of simulating PETSCII characters in the Atari’s eight-bit graphics

registers turns out to be the least troublesome challenge of the port. With

the Commodore 64, graphical patterns that produce PETSCII characters

are stored in ROM, and references in BASIC like CHR$(205) look up and

REM A PORT TO THE ATARI VCS {199}

retrieve the corresponding data for on-screen display, in a process all but

invisible to the BASIC user. With the Atari, which has no ROM or built-in

characters, it’s necessary to “draw” the needed characters by defining a

data table in the Atari’s cartridge-based ROM. For example, the following

data could be defined:

 Diagonal

 .byte #%11000000

 .byte #%00110000

 .byte #%00001100

 .byte #%00000011

This binary data describes a left-leaning diagonal line, which would appear

colored on screen wherever each bit of each byte of the bitmap is on:

Figure 55.2

Screen capture from an Atari VCS port of 10 PRINT.

{200} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

This character looks satisfactory, but changes are necessary to eke out a

credible rendition of 10 PRINT on the Atari VCS. To understand why, it’s

important to consider the second and third challenges that were men-

tioned, the ones that are also the most troublesome.

 The fact that TIA has only two 8-bit registers for displaying sprite

graphics may come as a surprise to anyone who has played early Atari

games, since many games appear to have more than two sprites on the

screen at once. For example, Air-Sea Battle, one of the console’s launch

titles, depicts two antiaircraft guns at the bottom of the screen aimed up at

seven rows of aeronautic enemies, each of which moves horizontally (figure

55.1). How is this possible?

 The answer is strange but straightforward. It is typical to think of a

computer display as a two-dimensional surface, like a painting or a pho-

tograph. Computers usually provide a block of video memory capable of

storing enough information to create an entire screen’s worth of display

material. Typically the program resets this data during the brief moment

before the 192 horizontal lines of a NTSC television screen are rescanned,

a moment called the vertical blank. But the Atari has only 128 bytes of RAM

total, making it impossible to set up a whole screen’s worth of information

at a time.

 Instead, the Atari programmer sets up the display on a horizontal

scanline-by-scanline basis, interfacing with the TIA to change its settings

in the brief time between individual scanlines—a moment called horizontal

blank. Once a particular line or group of lines is complete, the programmer

can “reuse” the sprite registers later in the same screen, for a different pur-

pose. The technique happens so fast, especially with the lingering glow of

the television screen, that the reused sprites appear simultaneously, albeit

with some flicker. This is exactly how the final 10 PRINT port creates more

than two “diagonal” graphics on the Atari’s screen.

 But games like Air-Sea Battle still only display one or two sprites on

a single line—precisely because the TIA can display at most two player

sprites. 10 PRINT requires more than just two diagonals per row to look

anything like a maze. The Commodore 64 screen can display forty columns

of text; even half that number might be sufficient to give the sense of a

maze, as evidenced by the VIC-20 version of 10 PRINT, which runs on the

VIC-20’s twenty-two-column display and is discussed in the next chapter.

 The two-sprite limitation leads to the third challenge that was stated

REM A PORT TO THE ATARI VCS {201}

earlier: how to approximate the row-and-column display of the Commodore

64. Sprites may be reused on different horizontal sections of the television

screen, which is helpful, but some way to display more than two columns

worth of diagonals per row is needed. Three programming techniques,

ranging from simple to complex, are required to produce an approximation

of 10 PRINT’s rows and columns of maze walls.

buIlDING ThE WAllS

The simplest technique involves adjusting the sprite graphics to include

two diagonals in eight bits of space rather than just one, each using one

nybble (half-byte, or four bits). For example, this defines two left-leaning

lines that are one pixel thick:

 Diagonals

 .byte #%10001000

 .byte #%01000100

 .byte #%00100010

 .byte #%00010001

In working this way, there are four necessary permutations of two-line pat-

terns to be encoded:

It’s both easier and more efficient to store all four permutations as static

data on the cartridge ROM than to try to construct them in RAM out of

single diagonals, each one stores in half a byte—one-nybble diagonals.

{202} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

This technique doubles the number of apparent diagonals per row, but

with two sprites this still means only four diagonals—hardly a mazeworthy

number. A second technique can be applied to triple that number, turning

the individual diagonals into the walls of a maze.

 The TIA provides a way to alter the appearance of each of the sprites

automatically. These alterations include stretching the sprite to two times

or four times its normal width, or doubling or tripling the sprite at different

distances apart. In the VCS launch title Combat, many of the cartridge’s

plane game variants are accomplished simply by changing these settings

for each player.

 Stretching and multiplying the sprites is accomplished by writing spe-

cific values into special registers on the TIA chip called the Number-Size

registers. By setting both registers to “three copies, closely spaced,” it is

possible to get six total sprites to appear on a single line of the display.

Given that each sprite contains two diagonals, that’s already twelve total

simulated PETSCII characters per row. But, two problems remain: position-

ing and repetition.

COVERING ThE SCREEN

To make a computer game of the sort normally played on the Atari, a pro-

grammer might expect to be able to position a sprite on a Cartesian coor-

dinate system at a particular (x, y) position. As described earlier, the Atari

doesn’t give the programmer access to such a two-dimensional memory

space, meaning there’s no particular location where a sprite might appear

on the screen. That said, the Atari does have something like a vertical axis;

the programmer can count horizontal scanlines and choose to start or con-

tinue a sprite on a particular one.

 To position an object horizontally, the programmer must manually

“reset” the position of the object in question by strobing a register on

the TIA. When any value is written into these registers (named RESP0 and

RESP1 for the two player sprites), the TIA sets the starting horizontal posi-

tion of that object at that point in the scanline. To accomplish this strange

task, the programmer has to count the number of microprocessor cycles

that will have passed before the television’s electron gun has reached the

desired position on the screen. Called “racing the beam” by Atari pro-

REM A PORT TO THE ATARI VCS {203}

grammers, this technique is relatively straightforward and can be used to

position the two sprites next to one another, creating a sequence of six sets

of two diagonals each.

 The problem of repetition is more complex. When the TIA’s number-

size registers are set to triple a sprite, the result looks like three identical

copies of the same pattern—whatever eight-bit value had been set in the

sprite graphics register at the time the sprite was rendered to the screen.

The resulting effect will be three identical copies of one diagonal pattern,

followed by three identical copies of another diagonal pattern. This visual

regularity (figure 55.3) is a serious problem, since the maze of 10 PRINT

is so strongly characterized by its apparent randomness. It’s possible to

overcome the visual repetition in the process of increasing the number of

columns of sprites (and therefore diagonal lines) visible on a single row.

Doing so involves taking advantage of an obscure behavior in the TIA.

 When a sprite’s number-size is set to double or triple, the TIA keeps

an internal count of how many copies it has drawn. When the RESP0 or

RESP1 is strobed, that value is reset. If that strobe occurs after the first copy

is drawn but before the second has begun, the TIA’s sprite counter is reset

and it will start over, as if it hadn’t yet drawn any copies of the sprites. By

repeatedly strobing RESP0 and RESP1 in sequence, it is possible to pro-

Figure 55.3

Identical copies of the diagonal pattern provide regularity rather than randomness.

{204} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 55.5

At this stage of the software development a convincing maze is generated, but the

graphics are repeated and too regular in comparison to the original.

Figure 55.4

The Atari Television Interface Adapter wraps the characters around the screen.

As this image shows, this is a problem for a 10 PRINT port.

REM A PORT TO THE ATARI VCS {205}

duce a tight, interleaved grid of the sprites. By performing this trick over

and over again, it’s possible to easily produce a grid twelve sprites across.

 This technique has the additional benefit of reducing the appearance

of repetition, as two different sprite patterns can be interleaved. While a

repeated pattern is still visible, it’s not as obvious, and there are additional

techniques available to further reduce the repetition.

 The obstacle at this point, however, is that the screen has been set

up to render twelve columns of alternating sets of sprites, each capable of

displaying one of the four patterns of diagonals. But those twelve columns

don’t fill the whole screen. Centering them in the middle of the screen to

mimic the borders of the Commodore 64 display creates a new problem:

by the time the final sprite reset strobes have taken place, the maze “char-

acters” are so far to the right side of the screen that they begin to overlap

and wrap around on the borders (figure 55.4). This happens because the

TIA automatically wraps sprites around the sides of the screen, a valuable

technique for single-screen games like Asteroids but one that is of little use

for a visual pattern partially defined by its borders.

bOuNDING ThE MAzE

Luckily, low-resolution playfield graphics can hide the characters wrapping

around the screen. Setting another bit on a TIA register will place the play-

field in front of the sprites rather than behind it. This almost, but not quite,

solves the problem. Timing the reset strobes just right leaves the twelve

columns of sprites off center, so a small area of messy sprite junk is left at

the right side of the pattern. The solution is the ball. Even though the name

“ball” suggests a rounded image, to the TIA the “ball” is simply a square

object of a single pixel that can be turned on or off. Turned on and posi-

tioned correctly, the ball will cover the offending sprite residue.

 With all that work done, the fourth challenge remains: storing the

diagonal pattern variation in what remains of the 128 bytes of RAM and

loading the right data for each row of simulated PETSCII characters. Sur-

prisingly, this is the least troubling task of all, although it does require more

work than would be necessary on the Commodore 64. First it’s necessary

to write a random number-generation routine, since that function isn’t pro-

vided in hardware on the machine. The next step is to write a routine that

{206} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

will run the random number routine and use it to choose sets of diagonal

bitmap data to use in each row of the visible display. This could be a lot

of data, but it’s not necessary to store the bitmaps themselves, just the

sixteen-bit addresses of the ROM locations where they can be found. As it

turns out, the program only requires eleven bytes of RAM to run everything

else, leaving enough room in RAM to store twenty-nine rows worth of bit-

map data pointers for each of the two sprites.

 There is an unexpected consequence to this randomization approach.

The Atari’s random number generator has to be seeded somehow. It could

be given a fixed seed, but in order to ensure that different seeds are cho-

sen (resulting in different mazes), the program starts with a blank screen

and increments a counter each frame. The user starts the program by de-

pressing the console’s RESET switch, at which time the frame counter is

put to use as a random number seed. Every subsequent flick of the Reset

switch will reset the seed and the diagonal graphics pointer data, result-

ing in a different maze. The result looks a great deal like the output of 10

PRINT—it’s clearly identifiable as some sort of port of the program (figure

55.5). It’s even possible to make the rows scroll to mimic the Commodore

64’s screen buffer, using a byte of RAM to store a memory offset location

for the rows of bitmap data pointers.

 But notice the horizontal symmetry of the upper part of the maze—

the six diamonds spaced evenly across the top. This symmetry gives lie to

the supposed randomness of the maze. It occurs because the same sprite

data is used across the entire line of each row of the pattern. Recycling

sprite data is necessary because the sprite reset strobing technique occurs

so rapidly that it’s impossible to alter the sprite graphics in between them.

There’s yet one more programming trick invented by Atari 2600 game de-

signers that proves helpful here: flicker. Flicker is a common technique used

on the Atari to give the player the impression that more objects appear on

screen than are technically possible. It’s a simple solution: when more than

two objects need to seem to appear on a single scanline, draw some of

them on one frame and the rest on another frame. The television screen

is refreshed at 60Hz, so the result appears as a light flickering effect, like a

ghost image. The result can be distracting or even disorienting, particularly

when (as is not the case here) the objects are also moving.

 The apparent regularity of the VCS port of 10 PRINT can be reduced

by deploying the flicker technique. On odd frames, render the first six col-

REM A PORT TO THE ATARI VCS {207}

umns with one set of diagonal patterns; on even frames, render the second

six with another set of patterns. To do this, it’s necessary to duplicate the

loop that renders the screen and send the program to the correct one.

Even this seemingly simple task proves difficult, since “turning off” half the

pattern is not as easy as it sounds. It requires loading the processor’s ac-

cumulator with the value zero and setting the two sprite graphics registers

to that value at exactly the right time, before the TIA starts to render the

next one. The result is convincing, even if it still doesn’t look as random as

the Commodore 64 original.

 The technique used here is only one possible way to reproduce 10

PRINT; other methods might allow for a more random display. For exam-

ple, a common technique used in Atari games was a fairly complex routine

for a six-digit score. By taking advantage of a setting called vertical delay,

it’s possible to push one sprite graphics value into the other by writing

to the opposite register. This technique can produce six unique, closely

spaced, high-resolution graphics. By combining this technique with the

screen flickering approach discussed earlier, it might be possible to get a

maze without any apparent repetition; but the careful cycle timing required

to generate these patterns in exactly the correct place on the screen would

also disrupt the evenness of the resulting maze. Violating the expected

grid layout even slightly might make the “maze” look less mazelike.

 The difficulty of creating the 10 PRINT pattern on the Atari VCS is a

reminder that computers with similar components from similar eras were

designed to do very different things. 10 PRINT depends on the Com-

modore 64’s ability to render text in a line and screen buffer. Even though

such abilities are fundamental to computers of the 1970s and 1980s, the

Atari VCS was not designed with that usage in mind. The BASIC code

10 PRINT CHR$(205.5+RND(1)); : GOTO 10 is defined with text of 38

bytes; as is described in the next chapter, an assembly version of the pro-

gram can be accomplished in less space. But the simplest version of the

program on the Atari VCS requires 360 bytes, largely because the program

has to perform “from scratch” so many functions that in the Commodore

64 are part of the ROM.

 The very idea of creating a program like 10 PRINT depends on as-

pects of the platform and the platform’s facility for such a program—the

presence of BASIC and RND in ROM, the existence of PETSCII, the cultural

context of shared programming techniques, and of course the ability to

{208} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

program the computer in the first place, something owners of an Atari

2600 did not truly have. Reimplementing the program on the Atari VCS,

a platform both contemporaneous with the Commodore 64 and highly in-

compatible with the program that is this book’s subject, helps to show all of

the things the Commodore 64 programmer takes for granted. If the Com-

modore 64 programmer had to go to these lengths to produce the output

of 10 PRINT—from writing a random number generation routine to coerc-

ing a line-buffered display with two high-resolution objects to produce a

two-dimensional grid of graphics—it’s possible the program would never

have been written.

60
THE

COMMODORE
64

HOME COMPUTING BEYOND THE HOBBYIST

COMMODORE BUSINESS MACHINES

PETSCII

THE VIC-II CHIP

THE KERNAL

{210} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

THE COMMODORE 64 {211}

Figure 60.1

The Commodore 64 computer was released in 1982 as a followup to the

Commodore VIC-20. As the name signals, it had sixty-four kilobytes of memory.

Photo by Mark Richards, ©2007. Courtesy of Mark Richards.

{212} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

The Commodore 64 (see figure 60.1) has been hailed by Guinness World

Records as the best-selling single model of computer ever. People associ-

ated with Commodore have estimated, officially and unofficially, that 22

million or 17 million units were sold. A detailed study of Commodore 64

serial numbers has provided a better estimate, that 12.5 million Commo-

dore 64s were sold (Steil 2011), which is still enough to earn the computer

this distinction.

 Although production ended in 1994, this computer system remains

functioning and part of the popular consciousness in many ways. VICE and

many other emulators allow users to start up software editions of the Com-

modore 64 and to run software for that system on modern computers,

which is the way most people now encounter Commodore 64 software.

In 2004 Jeri Ellsworth’s C64 Direct-to-TV—a single-chip implementation

of the Commodore 64, packed into a joystick along with thirty games—

brought at least part of the Commodore experience to new users. And,

in 2011, a company necro-branded with the name Commodore USA an-

nounced that they would be making new all-in-one PCs in a case (and with

a keyboard) that is visually almost identical to that of the original Commo-

dore 64 (Olivarez-Giles 2011).

 The original Commodore 64 computer has particular features—the

PETSCII character set (figure 60.2), built-in BASIC, and the specific appear-

ance of the screen—that determine how 10 PRINT runs. At the same time,

it was one computer among many during the early 1980s that brought

forth this significant era of personal computing and, perhaps more novel,

home computing.

HOME COMpuTing bEyOnD THE HObbyisT

In the early 1980s, computers moved beyond the exclusive domain of

hackers and hobbyists and into the home, a transition led by Apple, Radio

Shack, and Commodore. In October 1984, 8.2 percent of all U.S. house-

holds reported owning a home computer. Of those households, 70 per-

cent had acquired their computer quite recently, in either 1983 or 1984

(U.S. Bureau of the Census 1988, 2). By 1989—the outer boundary of the

Commodore 64’s mainstream popularity—computer ownership had sky-

rocketed to 15 percent. Households with school-aged children were nearly

THE COMMODORE 64 {213}

Figure 60.2

The graphics characters for each key of the Commodore 64 keyboard are printed

on the side. Here, the two characters used in 10 PRINT are visible on the sides of

the N and M keys. Photo by Mark Richards, ©2007. Courtesy of Mark Richards.

twice as likely to own a computer (at 25.7 percent), while 45.6 percent of

households earning more than $75,000 annually ($138,000 in 2012 dollars)

owned computers (Kominski 1991, 1–3).

 Yet even as microcomputers became personal computers, the pros-

pect of computer ownership was closely tied to income (U.S. Bureau of the

Census 1988, 2). This trend was exacerbated when race was factored in.

Black and Hispanic families were far less likely to have a computer at home

in the 1980s, and by 1997, this gap had translated into a digital divide on-

line, in which Whites were twice as likely as Blacks and Hispanics to use the

Internet (Kominski and Newburger 1999, 12).

 Gender appears to have been less of a factor in computer use than

race or socioeconomic status was. In 1984, boys (31.9 percent) were slight-

ly more likely to use a computer than girls (28.4 percent), even at school,

but by 1989 that small gap had closed (46.5 percent and 45.5 percent)

{214} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 60.3

This 1983 advertisement for the Commodore 64 sold the system as a powerful

computer within the financial reach of middle-class families.

THE COMMODORE 64 {215}

(Kominski and Newburger 1999, table 3). The gap between adult females

and males follows a similar trend: A small divide becomes smaller in the

1980s (Ibid., table 5). However, women (29 percent in 1984) were more

likely to use a computer at work than men (21.2 percent in 1984), often

because more women worked in data entry or administrative support posi-

tions (Ibid., table 6). A more statistically significant discrepancy appears in

computer ownership by household income. Again, looking at 1984 and

1989, compare the rise in home computer ownership from 5.3 to 8 per-

cent in households earning $15,000–$20,000 with 22.4 to 31.6 percent in

households earning $50,000–$75,000 (Ibid., table 2). By 1989 the disparity

appears magnified with 43.8 percent of families owning computers in the

$75,000-plus range and only 3.7 percent in the $5,000–$9,000 range own-

ing computers (table 2).

 These socioeconomic, racial, and gender disparities are part of the

context of 10 PRINT, as much as the history of textured patterns or BASIC

is. They can be seen playing out in one of the iconic Commodore 64 maga-

zine advertisements of the era (figure 60.3).

 Given how costly home computing was, Commodore shrewdly po-

sitioned its computers as economical yet more powerful than its competi-

tors’. This 1983 advertisement declares, “You can’t buy a better computer

at twice the price” as it shames Apple, Radio Shack, and IBM for pricing

their personal computers at a range only “wealthy,” “whiz-kid,” or “privi-

leged” persons could possibly afford. The difference between Commodore

and these other PCs is not measured solely in dollar amounts. The three

costlier computers are crowded into a black and white background, almost

hidden from view by the large “FOR NOBODY.” The Commodore 64 oc-

cupies the bottom half of the page, bathed in warm colors. A father and

mother watch their child explore the galaxy on the computer, suggesting

that the Commodore is a portal to a larger universe—a universe of knowl-

edge and opportunity. The family indicates a carefully targeted market.

Parents were twice as likely to purchase a computer. It is telling, too, that

this family is white and middle-class and that their child appears to be a

boy. Though the statistics suggest more gender balance in access to com-

puters, the advertisement reinforces a narrative of home computers as the

realm of boys. Doug Thomas identifies the broader “hacker demographic”

as predominantly “white, suburban boys” (2002, x), and contemporary

programming culture, from gender imbalances in undergraduate studies

{216} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

to professional spaces, suggests of the force of that legacy. As would be

typical of advertising of that era, “everybody” actually turned out to be an

extremely specific demographic.

 While the market for home computers was smaller than advertisers

acknowledged, the computers themselves spanned a range of styles and

forms that went far beyond the Apple-Commodore-TRS-80 trifecta. In ad-

dition to the more well-known brands, there were also Sinclair ZX Spec-

trums, BBC Micros, and computers from Amstrad and Acorn, all of which

originated in the United Kingdom. The Texas Instruments TI-99/4A and the

Coleco Adam were available, too. Among so many choices, advertisers

had to build the personality of not only the brands but the individual ma-

chines as well. In the world of computing since the inundation of PC clones,

it is difficult to imagine the aura produced around individual machines. Yet

today’s programmers can still recall their first Apple IIc, VIC-20, or TRS-80.

Apple alone now clings to the marketing of “different” machines, though

even their computers have Intel inside and the company tends to market

product lines rather than individual model numbers. It was a very different

landscape that saw the advent of a personal computer that wore its sixty-

four kilobytes of memory as a badge of honor. To buy a Commodore 64

was to buy capacity itself.

 This diversity meant that different manufacturers could try different

types of hardware design and burn different operating systems in ROM.

It fostered certain types of corporate exploration of the home computer

market, while also limiting the way that software could be shared—even if

that software was in the lingua franca of BASIC, given the variety of BASIC

dialects. The experience of home computing was in many ways stratified

by platform. The Apple Store was not the first example of a platform-spe-

cific retail establishment to sell computers. Many vendors would at least

specialize in a particular company’s computers; in some cases, stores were

exclusively Apple, Atari, or Commodore outfits, just as Radio Shack was

exclusively a seller of TRS computers (see figure 60.4).

 Computer owners also created and joined user groups that were spe-

cific to platforms and that met in person. As discussed in the chapter on

BASIC, they also subscribed to and read magazines that were for comput-

ers of a certain type. When Bulletin Board Systems (BBSs) came onto the

scene, some hosted the users of many different types of computer and oth-

ers, particularly those devoted to making software available for download,

THE COMMODORE 64 {217}

Figure 60.4

Local students at Bob West Computers in Brevard, NC, take turns with a

Commodore computer. Courtesy of Bob West. ©1982, Bob West.

{218} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

focused on a single platform.

 This did not mean that every computer user was paired with a single

platform. Some households had more than one computer—perhaps to

keep the work computer from being occupied by a younger member of the

family, the parents would decide to provide another computer more geared

to games and education. Even those without a computer at home might

have access to several at retail stores (which often allowed children to enjoy

extended sessions with the computers available for sale), at school, and at

friends’ houses. Given this environment for computing, even those who

were mainly Apple II users or who tooled on their Coleco Adam systems

at home might have had an opportunity to play around a bit with a Com-

modore 64. With limited time and particularly in the context of a school or

retail store, where the available software might be limited or nonexistent, it

would not have been a bad idea for a visitor to the Commodore 64 to learn

about and modify one-liners such as 10 PRINT.

COMMODORE businEss MaCHinEs

The history of the Commodore 64 begins with the Canadian company

Commodore, founded in 1958 in Toronto by Jack Tramiel. Tramiel was born

Idek Tramielski, was a Polish concentration camp survivor, and changed his

name after World War II, when he emigrated to the United States. After

serving in Korea, Tramiel worked as a typewriter repair technician, eventu-

ally opening a repair company with a business partner. Commodore was

the successor company that they formed. This new company did not repair

typewriters; it manufactured them (Bagnall 2010, xiii). Once again, the his-

tory of 10 PRINT is intertwined with earlier technologies. Personal comput-

ers were hardly a natural progression or simple next step from typewriters,

but their prominent keyboards, their use as office equipment, and their use

for typewriter-like word processing tasks all demonstrate they had affinities

with earlier devices.

 In the mid-1960s Commodore shifted its focus from manufactur-

ing typewriters to making calculators, a move driven by strictly financial

considerations. In hindsight, however, it seems to evoke the same tension

between text and numbers, between poetics and algorithms, that under-

writes the aesthetic and procedural dimensions of 10 PRINT. Caught in a

THE COMMODORE 64 {219}

price war with Texas Instruments and Japanese manufacturers in the 1970s,

Tramiel sought the cheapest calculator components he could find, eventu-

ally buying parts from MOS Technology, a semiconductor company where

many former Motorola engineers worked. While MOS Technology earned

its revenue from selling calculator chips (mostly to Commodore, its largest

customer), the company was also developing a microprocessor, the 6502.

 This chip, the 6502, is now legendary for its role in 1980s comput-

ing and videogaming. The 6502 became the central processing unit (CPU)

for the original Apple I, the Apple II, the Atari 400 and 800, the Nintendo

Entertainment System (NES), and of course, modified with an I/O port,

the Commodore 64. In a lower-cost package, the chip also powered the

Atari 2600. Yet MOS Technology never intended the chip to be used in

computers or videogame systems. The 6502 was designed as a single chip

replacement for the two- or three-chip processors found in cash registers,

appliances, and industrial machines. “If we were going to do a computer,”

Chuck Peddle, the lead engineer on the project confessed, “we would

have done something else” (Bagnall 2010, 14).

 With an eye on vertical integration and the 6502 microprocessor, Jack

Tramiel bought MOS Technology in September 1976, but not in the most

straightforward fashion. Tramiel, widely considered a ruthless businessman,

withheld payments to MOS—whether because Commodore was cash-

strapped or there was a problem with an order of chips, or both, is a matter

of speculation. Nevertheless, it meant that MOS was in turn facing a cash

shortfall. The problem was compounded by a lawsuit from Motorola over

possible intellectual property infringement (Bagnall 2010, 56). Tramiel was

able to buy MOS Technology at a bargain price—about $750,000—which

meant that Commodore gained its own chip design and production facility.

The pET

Tramiel was still intent on dominating the calculator business, however, and

it took Chuck Peddle and Commodore’s vice-president of engineering, An-

dre Sousan, to persuade him that a personal computer would in fact be the

next generation calculator, leapfrogging over Hewlett-Packard’s success-

ful programmable HP-65 calculator (Bagnall 2010, 62). Thus was born the

project that would become the eight-bit Commodore PET (figure 60.5), the

first computer under $1,000 ($3,733 in 2012 dollars) to include a monitor.

{220} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 60.5

The Commodore PET computer was released in 1977. It featured four kilobytes

of memory and a tape drive for storing and loading programs. Photo by Mark

Richards, ©2007. Courtesy of Mark Richards.

THE COMMODORE 64 {221}

The PET was particularly successful in Europe, where Commodore already

had a strong presence from its calculator business. With nearly 70 percent

of its sales in Europe through the 1970s, it is no surprise that Commodore

would include a pound sterling symbol on the keyboards of the VIC-20

and Commodore 64. The PET’s name is a sign of the times; Sousan came

up with this name to capitalize on the pet rock craze of the late 1970s,

and only afterward did Peddle suggest “Personal Electronic Transactor”

as a “backronym” that would explain the PET’s name logically (Freiberger

1982, 13).

 As discussed in the BASIC chapter, the PET was the first of Com-

modore’s computers to include BASIC in ROM, making the PET ready for

programming the moment the computer had booted up. Another legacy

of the PET that made its mark on the Commodore 64 and on 10 PRINT

is its extended graphical character set, informally dubbed PETSCII. (The

name “extends” ASCII, the standard character set for computers.) PETSCII

was largely designed for the PET by engineer Bill Seiler and Leonard Tra-

miel (Jack Tramiel’s son), who worked at the time as Commodore’s in-house

tester and debugger (Bagnall 2010, 92–93). The chief rationale for PETSCII,

which included the 128 characters of ASCII plus 128 additional graphic

characters, was to provide a simple way to produce graphical characters

such as playing card symbols. It is commonplace to observe that inno-

vations in computer graphics drive much innovation in computers—chip

speed, bus speed, memory sizes, and so on—and here is a less obvious

example. While the graphical character set of PETSCII, which features the

four suits of cards, shaded patterns, and various brackets and lines, could

hardly be said to be an innovation, it made possible early computer games

in BASIC without the need to program sprites or other animated figures.

And PETSCII made 10 PRINT possible as well, providing programmers

with the two diagonal characters found in the maze way back in 1977.

The ViC-20

While business and education were the primary markets for the PET com-

puters, its follow-up the VIC-20 was aimed squarely at the home computer

market. Released in 1980, the outside of the VIC-20 was exactly the same

physical form that the Commodore 64 would later have. (The VIC-20’s plas-

tic was lighter in color, more of an off-white instead of the Commodore

{222} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

64’s taupe.) Like both the PET and the Commodore 64, the VIC-20 was

powered by the 6502 chip and included Microsoft’s version of BASIC. The

VIC-20, however, was sold with only five KB of RAM, a tiny slice of the

Commodore 64’s sixty-four KB. The system also had a color display that

was twenty-two characters wide, powered by the forty-pin VIC chip (Vid-

eo Interface Controller). The VIC 6560 chip had been designed by MOS

Technology engineer Al Charpentier to be sold to other manufacturers like

Apple and Atari, but none were interested (Bagnall 2010, 178). Ultimately

it found its way into the VIC-20. Its shortcomings inspired the creation of a

more powerful graphics chip for the Commodore 64.

 Because the VIC-20 ran the same version of Microsoft BASIC and

included the same PETSCII character set as the PET before it and the

Commodore 64 after it, the 10 PRINT program executes flawlessly on the

VIC-20, though no published versions of the maze program intended for

the VIC-20 specifically are known to exist. If users had run 10 PRINT or a

variation on the VIC-20, they would have had a different aesthetic experi-

ence than a Commodore 64 user (figure 60.6). PETSCII was designed for

the forty-column PET; on the twenty-two-column VIC-20 the characters are

elongated, stretched as if one were watching an old 4:3 television show

on a widescreen. The maze looks almost 3D, as if seen from the isometric

point of view of Sega’s 1982 hit arcade game Zaxxon.

 Despite its modest memory, the VIC-20 was seen as a dramatic im-

provement over the PET computers, at a price that appealed to the home

market. The VIC-20 was sold in retail stores (including K-Mart) to a broader

market than previous computers had reached. It was the bestselling com-

puter of 1982 (the year when the Commodore 64 was introduced), selling

800,000 units, but then it took a back seat to the more expensive but also

much more powerful Commodore 64. While the VIC-20 was discontinued

in 1985, the Commodore 64 was sold through 1994.

 There is much to say about the Commodore 64 as one of the most

popular home computers of all time, but for the sake of clarity it is impor-

tant to focus on those elements of the Commodore 64 that come into play

in 10 PRINT, namely, its unique graphical character set, the VIC-II chip

that implements the computer’s graphic capabilities, and the ROM-based

operating system, or KERNAL.

THE COMMODORE 64 {223}

pETsCii

While the PETSCII character set was not unique to the Commodore 64, it

was an idiosyncrasy of Commodore computers; neither the Apple II nor the

TRS-80 line of computers, which competed with Commodore's computers,

offered an extended version of ASCII. A close examination of PETSCII, and

particularly its implementation on the Commodore 64, is therefore helpful

in appreciating 10 PRINT.

 The facts of PETSCII are simple: it is an extension of the 128-char-

acter ASCII (American Standard Code for Information Interchange) set; in

addition to letters, numbers, and punctuation, it contains color codes (to

turn text white, for example), screen control codes (such as RETURN or

CLR), and graphical characters (lines, curves, arrows, boxes, and shaded

patterns). These graphical characters are labeled on the PET, VIC-20, and

Commodore 64 keyboards, and are easily accessed with the Commodore

or SHIFT keys.

 These facts are well known and well documented. Less obvious are a

myriad of quirks about PETSCII on the Commodore 64. To begin with, the

name PETSCII is unofficial. Commodore only ever referred to its character

Figure 60.6

The 10 PRINT maze on the 22 × 23 screen of the VIC-20.

{224} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 60.7

Appendix F of the 1982 Commodore 64 User’s Guide lists the mapping between

numerical values and graphical symbols in PETSCII.

THE COMMODORE 64 {225}

set as ASCII; PETSCII was an informal name that came from the Commo-

dore’s users, not its engineers, that conflated PET and ASCII. The character

set’s creator, Leonard Tramiel, was not in favor of the name PETSCII, not-

ing, “I never really liked that term since it was never much of a standard”

(Bagnall 2010, 92).

The Order of pETsCii

Another uncertainty about PETSCII is the order of the characters in the

PETSCII table (figure 60.7). Very few related graphical characters are nu-

merically adjacent to each other, neighbors according to character code.

In fact, many related images (sets of corners, playing card suit symbols,

and mirror images) appear to be scattered throughout the table. A spade

is CHR$(97) while a heart is CHR$(115). The upper-right quarter of a circle

is CHR$(105) while the upper-left quarter is CHR$(117). A filled-in circle is

CHR$(113), the outline form CHR$(119).

 Why is the order of graphical characters in the PETSCII table so seem-

ingly haphazard? The answer is that arrangement was dictated by the PET

keyboard design, a hardware-driven decision. The original PET 2001 key-

board is a variant of the QWERTY arrangement, featuring the graphical

characters of PETSCII alongside the regular keyboard letters (figure 60.8).

The grid of keys became a canvas for displaying logical groupings of re-

lated symbols. Thus the four corners of a square are grouped on the keys

for O, P, L, and :. Similarly, the four arcs of a circle are found on the U, I, J,

and K keys, and the four suits of a card deck on A, S, Z, and X.

 There are times when the visual grouping on the keyboard and the

numerical character codes logically coincide, namely with alphabetically

adjacent keys on the QWERTY keyboard: F, G, and H; J, K, and L; N and M

(though the letters are reversed here); and O and P. In these four instances,

the CHR$ codes associated with each character are numerically adjacent,

as is not the case with many of the other graphical characters, which, while

adjacent on the physical keyboard, are effectively scrambled by the QWER-

TY layout before being placed in the alphabetized PETSCII index.

 Not coincidentally, 10 PRINT uses the NM pair—because it is vis-

ible on the interface, because it is elegant and concise in the code, and

because the output is surprising, given the context of mazelike computer

graphics at the time. There are other pairs of keys that share graphically

{226} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

related characters (the right angles on the O and P keys, for example), but

only NM will produce something more structural than textural, with pleas-

ing large-scale variation.

 Taking a closer look at the graphical characters on the N and M

keys—CHR$(206) and CHR$(205), respectively—reveals more details about

PETSCII. First, there are the numbers themselves. The ASCII chart included

in appendix F of the Commodore 64 User’s Guide lists the values of ╱ and

╲ as CHR$(110) and CHR$(109), yet the title of this book uses CHR$(205)

as its touchstone, and the first two published versions of the program,

in the very same Commodore 64 User’s Guide and Run magazine, also

use CHR$(205) as their base. The Commodore 64 User’s Guide notes that

“CODES 192-223 SAME AS 96-127” (Commodore 1982, 137), meaning

that 109 and 110 are exactly the same as 205 and 206. But why? Why do

early versions of the program use the upper character values (205 and 206),

especially when the PETSCII chart that appears in the manual itself only

lists the 109 and 110 values?

 A likely explanation can be found in the way the Commodore 64 re-

sponds to PRINT ASC("X"), a technique used to determine the ASCII

character code of any printable character. If a user were seeking the char-

acter code of a graphic symbol she saw on her keyboard, say, the heart on

Figure 60.8

The PET 2001 keyboard had PETSCII graphics symbols printed on the front of the

corresponding keys. The graphics were arranged spatially on the keyboard. For

example, notice the arrangement ╱ and ╲, side by side on the N and M keys.

THE COMMODORE 64 {227}

Figure 60.9

PETSCII character 206 (left) goes edge to edge within the grid, while character

47 (right), the forward slash, leaves space on the top and bottom for better spacing

when used within a block of text.

the S key, or more to the point, the diagonal line on the N key, she could

type PRINT ASC("/") and the computer would respond with “206.” So,

a possible implication of 205/206 being used in 10 PRINT is that users

were more likely to experiment with the keyboard in front of them than to

look up codes in the back of the manual. Through the ASC function, BA-

SIC became a self-contained pedagogical instrument itself, making outside

manuals and guides less necessary.

The shape of pETsCii

There is yet more to discover about the two graphical characters that

appear in 10 PRINT. Like all PETSCII characters, the two characters are

plotted out on an 8 × 8 matrix of pixels. Whereas regular alphanumerical

characters are generally confined to a 7 × 7 portion of the matrix, leaving

a single-pixel “border” between characters, many of the graphical char-

acters extend to the edge of their 8 × 8 grid. Consider the close-up of

CHR$(206) in figure 60.9. Its distinct features become apparent when

compared to the typographical symbol that most closely resembles it, the

forward slash, or CHR$(47).

 CHR$(206) is three pixels wide in its body and terminates on either

{228} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

end in a point, a thinning of the line that accounts for the divot that ap-

pears whenever two of the same characters are connected in the 10 PRINT

maze. The CHR$(47) slash, meanwhile, is a uniform two pixels wide. The

difference between the graphical character and the typographical symbol

is a mere one pixel along some of the edges, but it is significant. The shape

of CHR$(206)—as well as the shape of its mirror image, CHR$(205)—is

essential to the texture of the maze.

THE ViC-ii CHip

While the PETSCII character set remained the same from the PET to the

VIC-20 and through to the Commodore 64, the means of displaying those

characters—the chip controlling the graphics—changed dramatically over

time. Despite its name, the 6567 (NTSC)/6569 (PAL) VIC-II graphics chip

was not merely an improvement upon the VIC chip in the VIC-20. It was a

complete redesign, led by Charpentier, the MOS engineer behind the first

VIC. Home videogame systems, particularly Mattel’s Intellivision, were the

chief inspirations of the designers at MOS, who set out to create the most

advanced graphics chip on the market (Bagnall 2010, 318).

 The specifications of the final version of the chip were impressive for

the time: three different forty-column text modes, two bitmap modes of

320 × 200 pixels each, eight hardware-driven sprites, hardware-supported

screen scrolling, and a sixteen-color palette (Bauer 1996). The influence

of videogames can clearly be seen in the VIC-II’s built-in side and vertical

scrolling (by seven pixels at a time) and the VIC-II’s handling of sprites. Far

more sophisticated than the sprites in the Atari 2600, the VIC-II sprites are

24 × 21 pixels and can be multicolored. The VIC-II chip can detect colli-

sions between sprites; it can also detect when sprites have collided with

other graphical data on the screen or individually specified raster lines (the

horizontal scan lines on the CRT or television screen).

Text on the ViC-ii

Despite its advanced sprite handling, though, the text modes of the VIC-

II chip are the most relevant to 10 PRINT. The text or character-based

modes occupy one kilobyte of screen memory, and consist of forty columns

THE COMMODORE 64 {229}

and twenty-five rows of characters, namely 1,000 characters in total. As 10

PRINT writes the maze across the screen, row by row, it plots one of its two

PETSCII characters in each space on the 40 × 25 grid, and just for a fraction

of a second, 1,000 characters do fill the entire screen—in what might be

considered an illusory consummation of the maze—before the text scrolls

upward, leaving two more twenty-five-character rows to fill.

 This point is key to understanding the dynamic between the aesthetic

quality of the maze and the computer process by which it is plotted. While

the code for 10 PRINT specifies one of two characters to display on the

screen, it says nothing about where on the screen the chosen character

should appear. That placement is defined by the VIC-II chip. More specifi-

cally, the placement of either CHR$(205) or CHR$(206) depends on the

Commodore 64’s screen memory map. To the user, the screen appears

as a 40 × 25 grid, but to the VIC-II graphics chip, the screen is a series of

memory slots, or locations. The first slot, 1024, is at grid location 0,0 and

pixel location 0,0. Memory location 1025 maps to the space after this, to

the right, and so on. Any character value that is stored in a memory slot will

be displayed at the corresponding screen position. The large border that

surrounds the maze is not addressable by the VIC-II; the thirty-two pixel

borders on the left and right and thirty-five pixel borders on the top and

bottom were created in consideration of the wide variation within cath-

ode ray tube televisions of the era. The CRT screen of different televisions

framed the pixels differently, making only a subset of pixels in the center

reliable for display. Running 10 PRINT in a software emulator, of course,

eliminates the need for such a border, though the Commodore 64’s KER-

NAL nevertheless draws it.

 The VIC-II also defines the way 10 PRINT scrolls upward across the

screen. The maze is programmed to loop endlessly, so there must be a

contingency available for when the cursor has filled the entire screen grid

with characters and there is no next row. In addition to wrapping text au-

tomatically, the VIC-II also automatically scrolls the contents of the screen

when the cursor is on the bottom row and attempts to move down. Though

the screen appears to scroll up two lines after hitting the last character slot

on the screen, from the Commodore 64’s perspective only one line is ad-

vanced; the Commodore 64’s physical screen is forty characters wide, but

its logical screen width is eighty characters. While the continual scrolling

might seem to be intuitive, it is not necessarily the only way it could have

{230} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

been done. A different environment could simply stop the program when

the cursor reaches the last location on the screen, or return the cursor to

the first row of the first column and begin again, overwriting the characters

that had already appeared on the screen.

Designing new Characters

An intriguing feature of the VIC-II is its ability to use RAM-programmable

characters instead of the PETSCII characters permanently stored in the

character generator ROM. The Commodore 64 Programmer’s Reference

Guide explains how the VIC-II can be pointed to a location in RAM to use

as a new character set, giving users control over “an almost infinite set of

symbols” (Commodore 1982, 104). It is possible, therefore, to modify 10

PRINT, substituting alternate CHR$(205) and CHR$(206) characters for

the default PETSCII ones. Recall that the stroke of both of these characters

is three pixels wide. What might a single-pixel diagonal line look like as the

fundamental building block of the maze?

 With the VIC-II, that question can be answered. Using the POKE com-

mand, a program can create and store two new bitmaps into the locations

of characters 205 and 206:

 5 PRINT CHR$(142)

 10 POKE 52,48:POKE 56,48:CLR

 20 POKE 56334,PEEK(56334) AND 254

 30 POKE 1, PEEK(1) AND 251

 40 FOR I = 0 TO 511:POKE I+12288,PEEK(I+53248):NEXT

 50 POKE 1, PEEK(1) OR 4

 60 POKE 56334,PEEK(56334) OR 1

 70 FOR I = 0 TO 7:POKE I+12904,2^I:NEXT

 80 FOR I = 0 TO 7:POKE I+12912,2^(7-I):NEXT

 90 POKE 53272,(PEEK(53272) AND 240) + 12

 100 PRINT CHR$(205.5+RND(1)); : GOTO 100

This program causes diagonal lines a single pixel thick to be substituted for

the standard PETSCII characters. (The two characters are written to mem-

ory in lines 70 and 80.) After this is done, 10 PRINT (or in this new form,

100 PRINT) produces a maze that is remarkably similar but that neverthe-

THE COMMODORE 64 {231}

THE SID CHIP

While the features of the Commodore 64 that made 10 PRINT possible are chiefly

BASIC, PETSCII, and the VIC-II graphics chip, it would be a disservice to the Com-

modore 64 to ignore another component that made the computer such a critical

and popular success: the MOS Technology 6581 Sound Interface Device (SID) chip.

Designed by Bob Yannes, the SID chip was a remarkable advance for its time. A

three-voice synthesizer with variable pitch, amplitude, and harmonic tone controls,

the SID made the Commodore a formidable music maker and game machine. With

the SID, programmers could easily specify waveforms such as sawtooth or noise, as

well as independently manage the attack, decay, sustain, and release times of the

three oscillators (providing the three different voices) in the chip. Furthermore, the

three voices could be used in conjunction with each other to create complex melo-

dies, harmonies, and rhythms.

 What is most interesting about the SID chip for the purposes of 10 PRINT is

that the third oscillator—the only of the three oscillators whose output can be fed

back into the CPU—can be used for number generation. Poking SID memory loca-

tion 54299 produces numbers from 0 to 255, while the waveform controls the se-

quence of those numbers. For example, a triangle waveform yields a cycling through

every number from 0 to 255 and back down to 0, the rate controlled by the oscil-

lator’s frequency setting (Nelson 1987, 24). More relevant to 10 PRINT is that the

noise waveform produces random numbers, with the rate of the random number

generation determined by the frequency of voice 3. Thus, even though the SID

plays no part in 10 PRINT, it could have a role in a similar program, and does, as

evidenced by the assembly program “threadbare” that is discussed later.

less has a noticeably different appearance (see figure 60.10). The maze

seems to have a sketched or stitched quality. The points on the ends of the

original characters 205 and 206 are gone, so the computer screen’s grid of

characters is not accentuated by them. While the different lines can evoke

drawing (as of a maze on paper) and craft, their more continuous nature

and the greater difference between figure and ground makes the resulting

output appear even more mazelike to many viewers.

{232} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

THE KERnaL

The various components of the Commodore 64 discussed in this book—

the RND function, BASIC, PETSCII, the VIC-II chip—are all held together

by the machine’s KERNAL, its underlying operating system. A misspelling

of the word “kernel” that has stuck ever since it first appeared on draft

documentation for the VIC-20 (Bagnall 2010, 330), the KERNAL controls all

input, output, and memory management of the Commodore 64. Any key-

board input, any screen output, any interaction at all with the computer’s

RAM or ROM is governed by the rules of the KERNAL. It is the brainstem

of the machine, its core, its always-present, unyielding, and unchangeable

center. Residing in the last eight KB of the Commodore 64’s ROM ($E000–

$FFFF), the KERNAL is made up of a series of input and output routines,

which can be found on the “Jump Table.” Any command issued to the

computer in BASIC (such as the 10 PRINT program) is “translated” by the

BASIC interpreter into a language that the CPU can understand, namely

assembly language, which calls routines in the Jump Table.

 The KERNAL is intended to make machine language coding easier,

Figure 60.10

10 PRINT with the two standard characters replaced with custom-designed,

single-pixel lines.

THE COMMODORE 64 {233}

providing a stable set of instructions and registers a programmer can ad-

dress. Yet as enabling as the KERNAL may be, it is also structuring and

limiting, the basis of the Commodore 64.

a View from assembly Language

Writing a maze-generation program in BASIC leaves the programmer free

from concerns about memory management, keyboard interrupts, screen

outputs, and so on. All those things are provided. This is not the case when

talking to the machine using a “low-level” language. In fact, Friedrich Kit-

tler (1995) has famously argued that high-level languages essentially ob-

scure the operations of the hardware. Skipping the BASIC interpreter or

any other high-level language means the programmer must manipulate the

microprocessor, memory, inputs, and outputs directly. Machine language

itself exemplifies low-level programming, but since a machine language

program is nothing but a series of numbers, it is not a very suitable lan-

guage for humans. Low-level programming is typically done in assembly

language instead. In assembly, the programmer provides instructions spe-

cific to the microprocessor, for example to load a value from a particular

memory location into a particular processor register, or to perform a math-

ematical operation upon a memory location. In assembly, the programmer

need not recall the numerical equivalents of such instructions, but only

human-readable mnemonics for them—which are stored in the Commo-

dore 64’s KERNAL.

 Recall that the microprocessor at the heart of the Commodore 64 is a

modified 6502 chip. While it is not necessary to know everything about the

6502 to appreciate either the Commodore 64 or 10 PRINT, it’s worth not-

ing that the chip essentially has three functions: it moves values between

memory and one of three microprocessor registers (named X, Y, and Ac-

cumulator, abbreviated A); it executes mathematical operations on values

in the accumulator; and it changes the address at which program execu-

tion takes place. The first type of operation is for loading or storing data

(for example, the assignment N = 1 in BASIC), the second type is a typical

mathematical operation (say, + or − in BASIC), and the third corresponds

to jumps and subroutine calls (analogous to GOTO and GOSUB in BASIC).

 Like every BASIC program, 10 PRINT is high-level. It relies on ab-

stracted operations like PRINT and RND to perform complex tasks that

{234} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

would require considerably greater effort to accomplish at a low level.

For this reason, it is useful to compare the BASIC version of 10 PRINT

on the Commodore 64 with its equivalent in 6502 assembly. Doing so

will help clarify what features of the program are unique to its BASIC

implementation.

 10 PRINT seems to be a “native” BASIC program, meaning it was

originally written in BASIC for the Commodore 64, not first rendered in

assembly and then reimplemented in BASIC. No canonical assembly pro-

gram is known to exist. As with literary translation or artistic adaptation,

there are multiple ways to recast a computer program from one language

into another, even on a relatively simple system like the Commodore 64,

and even with a relatively simple program like 10 PRINT. Along the way to

developing a production for the demoscene party @party, in June 2010, an

assembly port of 10 PRINT called “threadbare” was created.

 *= $1000 ; starting memory location

 lda #$80 ; set this value in:

 sta $d40f ; the noise speed hi SID register

 sta $d412 ; and the noise waveform SID register

 loop ; label for loop location

 lda $d41b ; load a random value

 and #1 ; lose all but the low bit

 adc #$6d ; value of "\" PETSCII

 jsr $ffd2 ; output character via KERNAL routine

 bne loop ; repeat

This short program may look arcane, even to someone familiar with BASIC.

Yet it can be explained without too much difficulty, step by step, by follow-

ing each instruction in the order in which it is processed.

*= $1000

This line tells the Commodore 64 where to put the program in memory, so

that it can be run by the user. In this case, hexadecimal $1000 equals deci-

mal 4,096, meaning the user can enter SYS 4096 at the READY prompt to

execute this program.

THE COMMODORE 64 {235}

lda #$80

This instruction has two parts, not counting the comment: The opcode

lda and the operand $80. All instructions have at least an opcode—an op-

eration code that corresponds to something the 6502 processor can carry

out. Not all opcodes need take an operand, although all the ones in this

program do. Some of these operands are a single byte long, some are two

bytes long.

 lda is the opcode for load into the accumulator, and when used with

it loads the numeric value of the operand. In other cases in this program,

lda and the corresponding opcode sta (store from the accumulator) use

the operand as an address. Here, no lookup occurs; the immediate hexa-

decimal value $80 (decimal 128) is placed into the 6502’s accumulator.

sta $d40f

sta $d412

These two instructions store the value held in the accumulator (sta) in two

different memory locations. The operand is used as an address, to look up

a location in memory. These memory locations are mapped to registers of

the SID, the Commodore 64’s sound chip.

loop

While all other lines of this program are indented, the “loop” line is flush

left. This is not a mere typographical convention. The assembler treats lines

that begin with whitespace as instructions and lines that do not as labels,

which designate positions in the program. When the assembler encounters

a label such as “loop,” it turns the label into a memory address that cor-

responds with the current position in the program. Then, on another pass

through the source code, the assembler replaces references to the label

with the correct sixteen-bit address. This label does not appear directly as

machine code in the assembled program; the address of this location is,

instead, used later, at the very end of the program.

lda $d41b

Once the SID registers have been initialized, every time the program loads

a value from the memory address $d41b, a new eight-bit random value

will be provided. This instruction does one such load, bringing a random

number into the accumulator.

{236} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

and #1

The two diagonal-line characters are neighbors on the PETSCII chart, their

values differing by one. Only one bit of randomness is needed to select

one or the other. Generating a random number from the SID chip provides

a much larger eight-bit number, which varies between 0 and 255. In order

to change this number into a single bit—either a zero or a one—this in-

struction shears off all but the last bit by ANDing it with the decimal value

1. For example, here the binary number 10101011 (171 in decimal) is re-

duced to 00000001:

 %10101011

 AND %00000001

 =============

 %00000001

After this instruction, the accumulator will contain either the value 1 (as in

the example above) or 0 (if the last bit of the original value was 0).

adc #$6d

The value obtained in the previous step (0 or 1) is added in this step to the

hexadecimal value $6d (decimal 109), which corresponds to the PETSCII

character used in the canonical BASIC 10 PRINT. Note that though adc

stands for add with carry, this instruction won’t ever perform a carry. This

addition will result in either 109 or 110. The value $cd (decimal 205) could

have been used instead, as this character is the same as 109.

jsr $ffd2

All that’s left is to output the character, either 109 or 110, to the screen.

This instruction jumps to a subroutine (jsr) at memory location $ffd2. That

routine, known as CHROUT and part of the KERNAL, takes care of putting

the character on the screen at the current cursor location.

bne loop

Until this point is reached, the program will have output only a single char-

acter. The goal, of course, is a program that prints characters continuous-

ly until the user interrupts it. This instruction branches back to the label

“loop” earlier in the program, from which point execution will continue by

THE COMMODORE 64 {237}

getting a new random value. The bne instruction is actually “branch if not

equal,” which will check to see if the processor’s zero flag is set, and if not,

it will complete the branch. In the case of the current program, the zero flag

will never be set, so the branch will always be taken.

 It would have been more straightforward to use the jump (jmp) in-

struction, assembly’s equivalent of GOTO. However, bne was used because

it results in a completed program that is one byte smaller. Because jmp can

move the program counter to any location, it requires a sixteen-bit address

as an operand. In contrast, bne can change the flow of the program to a

location at most 128 bytes earlier or 128 bytes later; its operand is an eight-

bit offset relative to the location of the instruction.

 The completed assembly version of 10 PRINT elucidates several fea-

tures of the program from the low-level perspective of the platform. Most

crucially, the high-level abstractions of the BASIC program prove to be

just as abstracted in the low-level assembly rendition. There are two such

abstractions of note in the original, PRINT and RND, which constitute the

majority of the program’s computational work. Carrying out either one in

assembly by coding them “from scratch” would be a more arduous task.

Consider this common routine for generating a pseudorandom eight-bit

number in 6502 assembly:

 Rand8

 lda random ; get seed

 asl ; shift byte

 bcc Rand8.no_eor ; branch if flag not set

 eor #$CF ; otherwise literal $CF

 Rand8.no_eor

 sta random ; save next seed

Each assembly instruction (lda, asl, etc.) uses a single byte in the pro-

gram, and in this case those instructions that have operands (random,

#$CF) have one-byte operands. This results in a routine nine bytes in size,

or 25 percent of the space needed for the entire 10 PRINT program in

BASIC (given that each character of BASIC takes up a byte).

 While the MOS Technology 6502 processor requires this nine-byte

subroutine to generate a random number, the Commodore 64 itself does

not, due to a combination of seemingly unrelated affordances of its KER-

{238} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

NAL and hardware. It’s a simple matter with the Commodore 64 to use a

random function, which although obviously used in BASIC, is found not in

the BASIC ROM, but in the eight kilobytes of the Commodore 64 KERNAL,

at address $e097. The assembly programmer can jump to that subrou-

tine with jsr $e097, which will have the same effect as using RND(1) in

BASIC.

 A more unusual approach to random number generation—and the

one that is taken in “threadbare”—involves the Commodore 64 sound

chip, the SID (see sidebar). Apart from its sonic functions, the SID has the

ability to generate random values. To do so, the programmer selects the

noise waveform on the SID’s third oscillator and sets that voice’s frequency

to a nonzero value. Setting a higher frequency value will cause the noise

values to change more rapidly, yielding a greater variety of random num-

bers. The first three instructions of the preceding assembly program ac-

complish these settings:

 lda #$80 ; set this value in:

 sta $d40f ; the noise speed hi SID register

 sta $d412 ; and the noise waveform SID register

After this code has run, the program can get a new eight-bit random num-

ber by reading from memory location $d41b. While the code looks a little

messier than does a simple call to RND in BASIC, the result is equally ab-

stract from the programmer’s perspective—it is simply abstracted to a dif-

ferent place, namely the SID chip instead of the KERNAL. This method

of producing pseudorandom values is unusual, but certainly not unheard

of. It is even documented in the Commodore 64 Programmer’s Reference

Guide (Commodore 1982, 202). Interestingly, this substitute for BASIC's

RND(1) or the KERNAL’s jsr $e097 renders “threadbare” unusable on

the VIC-20. That Commodore 64 predecessor did not include a SID chip,

meaning it lacked this means of generating pseudorandom numbers. This

incompatibility highlights the differences between a high-level language

like BASIC, which will run 10 PRINT on any of Commodore’s computers,

and a low-level language like assembly, which relies much more heavily on

the specifics of the machine.

 Drawing a character to the screen is an equally complex task that can

prove challenging in 6502 assembly on the Commodore 64. 10 PRINT

THE COMMODORE 64 {239}

places every character in the maze after the previous cursor position, mak-

ing the maze appear to lay itself out column by column, row by row. To re-

produce this behavior manually in 6502 assembly, the programmer would

seem to have considerable work: determining the start of a screen, paus-

ing, moving ahead one more position on the screen, repeating until the

screen is filled, and then implementing a scrolling mechanism.

 But as with the SID random number solution, the Commodore 64’s

KERNAL provides a much simpler solution. One subroutine of the KERNAL

sends the PETSCII character value currently in the 6502 processor’s accu-

mulator to the current output device (the screen by default). That subrou-

tine, CHROUT, lives at memory address $ffd2, and it can be executed in

assembly by jumping to that address. This is precisely what “threadbare”

does, after loading a random value and manipulating it to ensure that it will

be one of the two slash characters that comprise the maze:

 jsr $ffd2 ; output character via kernal routine

The output of the assembly program is essentially identical to that of 10

PRINT, although the program runs a bit more quickly because the micro-

processor is receiving machine instructions directly, rather than as transla-

tions of BASIC statements. “threadbare” is shorter than its BASIC cousin

(twenty-two bytes for the assembly version, compared to thirty-six bytes,

or characters, for the BASIC program). While “threadbare” is clearly more

esoteric and less human-readable than its BASIC predecessor, its imple-

mentation reveals that the abstraction that makes the emergent elegance

of 10 PRINT’s output possible in such a small set of instructions is not en-

tirely a feature of the BASIC interpreter, but also depends on the underly-

ing hardware and operating system of the Commodore 64.

 Though 10 PRINT is an example of a robust one-liner that can be re-

implemented in other languages and platforms, it is a program deeply tied

to the material specifications of the Commodore 64, a bestselling personal

computer that played a pivotal role in establishing a place for computers

and programming in certain users’ homes. While discussion in this book

has so far focused on the code of 10 PRINT and its effects, this chapter

reveals the imbrication of code and platform and ways in which specific

code can become a means of discussing the platform and its affordances.

{240} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

“THREAD,” A TINY DEMOSCENE PRODUCTION

The demoscene is a programmer subculture centered on the design and manipula-

tion of real-time audiovisual software. The origins of demoscene can be found in

the cracking of eight-bit software for systems such as the Apple II, Commodore 64,

and ZX Spectrum in order to remove copy protection. The individual or groups who

cracked a particular piece of software would distribute the modified program with

a signature of some sort (text-based or graphical) that displayed as the program

loaded. Over time, these signatures began to include animated effects with sound.

Eventually, productions growing from these additions were released apart from com-

mercial software and called intros or (if they were more elaborate) demos. The hall-

mark of the demoscene is its emphasis on technical achievement and pushing the

limits of earlier hardware systems. The demoscene also maintains interest in techni-

cally excellent systems from decades past, such as the Commodore 64: more than a

hundred demos were programmed for the system in 2011 and music is continually

being written for the system as well.

 A demoscene production that was developed along with “threadbare” is a

program called “thread”; it adds a progression through random colors to the draw-

ing of the maze. This program, which is only thirty-one bytes long, shows some of

the ways that a short assembly program can be extended. It takes advantage of

some features of assembly, such as easy access to the zero page, which would have

been much more difficult to incorporate in BASIC.

 In “thread,” the loop in the earlier program is elaborated in this way:

 flourish

 tay

 lda ($f9),y ; load color

 sta $0286 ; set char color

 lda $d41b ; random

 and #1 ; lose all but low bit

 adc #$6d ; value of one diag

 ; now either left or right diag

 jsr $ffd2 ; output character

 inx

THE COMMODORE 64 {241}

 bne flourish ; do 256 times...

 inc $f9 ; shift to new region

10 PRINT was not intended to be a demo; it was not created within the demoscene,

or with competition of any kind in mind. Nevertheless, the program’s abstract, full-

screen graphics bear similarity to the animated effects that characterize demoscene

productions. While those features could be attributed to the canonical, BASIC ver-

sion of 10 PRINT, “thread” adds a simple form of color-cycling. The method by

which this small alteration in the program’s visual output is accomplished likewise

embraces the spirit of the demoscene. While the color shift appears dramatic (at

least in the context of a simple thirty-one-byte program like this one), it is created by

two assembly instructions totaling five bytes:

 lda ($f9),y ; load color

 sta $0286 ; set char color

This portion of the program loads an arbitrary value from memory and stores it in

the memory location that sets the character color. While far simpler than some of the

feats of demoscene programs, this small act is suggestive of the competitive nature

of the subculture: an attempt to produce impressive results with limited resources.

 Another feature of “thread” distinguishes it from the BASIC rendition of 10

PRINT: it was written in a different social context. BASIC programming on home

computers like the Commodore 64 almost always involved sharing, often through

magazines and face-to-face computer club meetings. But demos are often written

in the context of demoparties, events that hundreds of people may attend and that

typically last several days. Participants program, socialize, share tricks, collaborate

on programs, and watch and vote on the output of productions. “thread” was pro-

duced at a small-scale party of this sort.

 Within the demoscene, it is a typical pastime to try to compress similar pro-

grams into less and space. Indeed, “thread” was created in the hopes of reduc-

ing the program to thirty-two bytes or below—bit-boundaries or powers of two

offer popular ways to set goals for demos. There is a whole category for thirty-

two byte demos on the demoscene community website pouet.net. The version of

{242} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

“thread” above just makes the cut: it is thirty-one bytes—small by any reasonable

measure. But subsequent to the appearance of “thread” and “threadbare,” other

members of the C64 demoscene community went on to fashion even smaller ver-

sions that produce the same output as 10 PRINT in an impressive eighteen bytes.

This was accomplished in the program “Thread Up,” written in February 2012 by

4-Mat of the demoscene groups Ate Bit and Orb: <http://noname.c64.org/csdb/

release/?id=106005>. A follow-up a few days later, in March, by Wisdom of Crescent

is called “Thread Down” and squeezed the same essential effect into sixteen bytes,

half our original limit: <http://noname.c64.org/csdb/release/?id=106044>. The ob-

vious question: can you make a smaller version?

65
REM MaZE

WaLKER
in basiC

FIXING THE MAZE

WALKING THE MAZE

TOUCHING THE MAZE

TESTING THE MAZE

{244} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

10 PRINT can be appreciated purely for its visual qualities—its regular

asymmetry, its determined ranging over and across the screen, and even its

colors, two shades of blue that can be pleasing. But 10 PRINT can also be

interpreted as a maze, a labyrinth with routes and potentially with a solu-

tion. One might even wander through the maze, tracing a path with one's

eyes, a finger, or some computational procedure.

 What would such a computational procedure, and a program that

supports its use, look like?

 To see the answer, this section uses a software studies approach, writ-

ing programs to interpret other programs. It takes this approach to the

extreme and builds a large program, using 10 PRINT as the starting point.

Just as literary scholars study a text by generating more texts, it is produc-

tive to study software by coding new software. In this particular case, it’s

possible to develop a series of hermeneutic probes in Commodore BA-

SIC—probes of increasing complexity, programs that transform 10 PRINT’s

output into a stable, navigable, and testable maze.

Fixing THE MaZE

The first step in this process is to freeze the pattern so that it can be con-

templated as a fixed maze. 10 PRINT, of course, produces an endlessly

scrolling sequence of two symbols, an animated effect lost in the static

images shown in this book. For at most an instant—after the screen has

filled and the lower-right character has been drawn, but before the pattern

has scrolled up to make room for the next line—is there ever a rectangular

maze pattern filling the entire screen within the border.

 To draw a stable rectangular maze pattern, 10 PRINT must be modi-

fied to draw a finite number of symbols, rather than an infinite sequence.

As described in the chapter Regularity, the program must use a bounded

rather than unbounded loop, placing characters on the screen a set num-

ber of times. To fill the forty columns and twenty-five rows, 1,000 characters

must be drawn (40 × 25 = 1000).

 This task can be accomplished using the FOR . . . NEXT construct

discussed in the Regularity chapter. Here is a program that uses PRINT to

output exactly 1,000 characters:

REM MAZE WALKER IN BASIC {245}

 10 FOR I=1 to 1000

 20 PRINT CHR$(205.5 + RND(1));

 30 NEXT I

As might be expected from observation of 10 PRINT, the screen scrolls up

when the last character is printed; in this case, there are four lines at the

bottom that lack the maze pattern. Furthermore, once the program ends,

the “READY.” prompt appears with a blinking cursor stationed after it.

 Trying to avoid this nonmaze text, one could add 40 GOTO 40 at the

end of the program. This would create a continuous loop that did nothing

but keep the program from terminating. This valiant attempt fails; “READY.”

and the blinking cursor are avoided, but a two-line gap still appears at the

bottom of the screen. Changing “1000” in line 10 to “999” moves the pro-

gram closer to the goal; everything but the lower-right character is drawn,

and there are no blank lines at the bottom. But the program is still one

character away from completely filling the screen with the maze.

 As discussed in the chapter The Commodore 64, PRINT invokes the

operating system’s CHROUT routine with its automatic scrolling and eighty-

character logical lines. When the one-thousandth character is printed (at

the eightieth character of the last logical line on the display), the screen

scrolls up by two physical (forty-character) lines to make room for the next

eighty-character logical line. To generate a complete screen of a stable

maze, it is necessary to use a mechanism other than the virtual Teletype

provided by PRINT and the CHROUT routine it invokes.

 To create a fixed screen-sized maze, a program can directly place

PETSCII character codes into the computer’s video memory. Rather than

iterating from one to 1,000, the FOR loop must iterate though the 1,000

characters as locations in video memory, which begin at memory location

1024 and end 1,000 characters later at 2023. Because these invocations

of POKE rely on memory locations rather than character codes, this modi-

fied program must also refer the correct screen codes for the diagonal-line

characters (77 and 78), rather than the 205 and 206 values that are the

PETSCII codes used in the CHR$ statement. This same use of 77 and 78 was

seen in the POKE variation near the end of the Variations in BASIC remark.

 10 FOR I=1024 TO 2023

 20 POKE I,77.5+RND(1)

{246} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 30 NEXT I

 40 GOTO 40

One final nicety can be added: a standard statement at the beginning to

clear the screen, PRINT CHR$(147);. This is not strictly necessary for this

program, since the full screen will be overwritten one way or the other with

a maze, but it makes the initial unfolding of the maze look a bit neater. It

actually helps in the next step and in future programs, because this state-

ment also restores color memory, cleaning up the traces of previous walks

of the maze.

WaLKing THE MaZE

Now that code has been developed to draw a stable full-screen maze pat-

tern, work can begin on a program that treats this pattern as a maze and

“walks” it, moving through it with respect for the “walls” set up by the two

characters. The first step is to determine a location within the maze. View-

ers will often interpret the lighter slanting characters as thin walls and the

dark blue background as the floor, although the opposite interpretation is

possible. The program discussed here considers the light, thinner lines to

be walls.

 The first step in operationalizing this view of the maze—that is, in cre-

ating a computational system that functions in a way that is consistent with

this interpretation—involves defining what it means to occupy a location

within the maze. How can a “walker” be placed at a particular point in the

maze?

 The challenge is that the visual distinction between walls and floor

is not explicitly represented in the program. A close-up of the maze pat-

tern, with black outlines around the individual characters, each of which

is plotted out on an 8 × 8 matrix, shows these distinctions. The dark blue

is the background of characters, but positions within the dark blue “cor-

ridor” have no unique character locations. Dark-blue and light-blue areas

of the screen are distinguished at the level of individual pixels, but in the

graphics mode used, it is only possible to manipulate the larger 8 × 8 pixel

characters:

REM MAZE WALKER IN BASIC {247}

Designating a particular screen location (such as the highlighted location in

maze below) would identify one of the slanting characters (a wall segment),

but would not identify which side of the wall is currently occupied:

Given a diagonal wall location, it’s possible to imagine someone approach-

ing that wall from above, below, left, or right—that is, along a particular

course or heading. The walker, in this view, would ricochet off the wall along

particular headings. Approaching a right-leaning diagonal from above or

from the left implicitly indicates that the walker is in the corridor segment

above the wall, while approaching from below or from the right suggests

the walker is in the corridor segment below the wall. These relationships

are reversed for the left-leaning diagonals. In this view, in addition to a par-

ticular X, Y location, a third piece of information—a heading, or particular

direction of movement—can be used to uniquely identify the maze loca-

tion and where the walker will go next:

?
?

{248} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Given an initial location and a heading, the walker moves through the maze

in a sort of drunken (or very determined) walk, not unlike the first run of

Claude Shannon’s Theseus mouse through its maze of relays and switches.

In the case of the “Maze Walker” program here, the walker encounters and

bounces off the walls in the manner depicted:

The BASIC code for “Maze Walker” is as follows:

10 REM PRODUCE A STABLE MAZE

20 PRINT CHR$(147)

30 FOR I=1024 TO 2023

40 POKE I,77.5+RND(1)

50 NEXT I

100 REM SET INITIAL X AND Y WALKER LOCATION AND DIRECTION

110 REM DIRECTION IS EITHER 0 LEFT, 1 RIGHT, 2 UP, 3 DOWN

120 X=INT(RND(0) * 39) : XOLD=-1

130 Y=INT(RND(0) * 24) : YOLD=-1

140 DIR=INT(RND(0) * 3)

REM MAZE WALKER IN BASIC {249}

150 WOLD=-1

160 GOSUB 500

200 REM START WALKING MAZE USING RULES FOR BOUNCING OFF WALLS

210 REM COMPUTE NEW LOCATION BASED ON INITIAL DIRECTION

220 IF DIR=0 THEN X=X - 1 : GOTO 270

230 IF DIR=1 THEN X=X + 1 : GOTO 270

240 IF DIR=2 THEN Y=Y - 1 : GOTO 270

250 IF DIR=3 THEN Y=Y + 1

260 REM DETERMINE IF THE WALKER IS OFF THE SCREEN

270 IF X >= 0 AND X <= 39 AND Y >= 0 AND Y <= 24 THEN GOTO 300

280 GOSUB 600 : GOSUB 650

290 GOTO 10

300 REM BOUNCE OFF WALL AS FUNCTION OF DIRECTION

310 REM 77 IS \, 78 IS /

320 WALL=PEEK(1024 + X + (Y * 40))

330 IF WALL=78 THEN GOTO 380

340 IF DIR=0 THEN DIR=2 : GOTO 420

350 IF DIR=1 THEN DIR=3 : GOTO 420

360 IF DIR=2 THEN DIR=0 : GOTO 420

370 IF DIR=3 THEN DIR=1 : GOTO 420

380 IF DIR=0 THEN DIR=3 : GOTO 420

390 IF DIR=1 THEN DIR=2 : GOTO 420

400 IF DIR=2 THEN DIR=1 : GOTO 420

410 IF DIR=3 THEN DIR=0

420 GOTO 160

500 REM DRAW WALKER, RESTORING PREVIOUS WALL CHARACTER

510 GOSUB 600

520 XOLD=X : YOLD=Y

530 M=1024 + X + (Y * 40)

540 WOLD=PEEK(M)

550 C=55296 + X + (Y * 40)

560 POKE C, 1 : POKE M, 87

570 GOSUB 650

{250} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

580 RETURN

600 REM RESTORE WALL AT PREVIOUS WALKER LOCATION

610 IF XOLD=-1 THEN GOTO 630

620 POKE 1024 + XOLD + (YOLD * 40), WOLD

630 RETURN

650 REM PAUSE FOR 500 LOOPS

660 FOR I=1 TO 500 : NEXT I

670 RETURN

Because it is written in BASIC, the code to “Maze Walker” is fairly legible,

even if it is significantly longer than BASIC programs discussed so far. A

line-by-line explication will highlight the process by which “Maze Walker”

walks the maze. The program begins with lines 20 through 50, filling the

screen with a random maze as described in the last section.

 Line 120 initializes a random horizontal (X) location between 0 and 39,

representing the forty columns across the screen. The range 0 to 39 is used

instead of 1 to 40 because this X value indexes a location in video memory;

counting from 0 more directly corresponds to memory locations.

 The variable OLDX holds the previous X coordinate of the walker. Ini-

tially, since a new X coordinate has just been initialized, there is no old val-

ue—so the X coordinate is set to an invalid value, −1. A common technique

when dealing with a variable that can take a range of values, this method

allows the variable to be easily tested to determine whether it has a valid

value yet. Similarly, line 130 initializes a random Y coordinate between 0

and 24 (for the twenty-five rows on the screen), and initializes OLDY, the

previous Y location, to −1, since there is no previous Y coordinate.

 Line 140 sets the initial heading to a number between 0 and 3; the

program will interpret 0 as left, 1 as right, 2 as up, and 3 as down. WOLD,

initialized in line 150, stores the value of the screen code at the given loca-

tion. The program “remembers” the location, so that the maze wall can be

redrawn after the walker has passed.

 Line 160 jumps to a subroutine at line 500. This program has three

subroutines: one to draw the current location of the walker, changing the

color of walls that have been bumped into; one to redraw the wall after

the walker has passed; and one that simply pauses (using a loop that does

REM MAZE WALKER IN BASIC {251}

nothing) so that the walker’s movement is not too fast. The GOSUB at line

160 jumps to the first draw subroutine, pinpointing the initial location of

the walker.

 Lines 220 through 250 determine the next position of the walker (as

an X, Y coordinate) by referring to the walker’s heading. Leftward move-

ments decrease the X value, rightward movements increase it; upward

movements decrease the Y value, downward movements increase it. For

the Y values, this change is the opposite of the standard Cartesian grid, in

which the 0,0 coordinates rest in the lower left-hand corner. Screen coordi-

nates commonly begin in the upper left-hand corner, just as CRT monitors

scan the screen from left to right and top to bottom.

 Lines 270 through 290 define what happens if the walker runs off the

edge of the screen. Line 270 uses an conditional statement, an IF . . .

THEN statement, to test whether the walker has a legal position on the

screen; if it does, the program jumps to line 300, where a new heading for

the walker is determined. Otherwise, two subroutines are called. These re-

store the wall at the walker’s last location and wait for a short span of time.

Line 290 then jumps back to the beginning of the program, drawing a new

maze and re-initializing the walker at a random location.

 Lines 320 through 410 determine the new heading of the walker us-

ing the current location’s wall segment and the current heading. Line 320

uses the PEEK command to see what is in video memory—what character

is stored at the current location. In this line, the 2D grid of the screen is

rolled up into one-dimensional video memory. Screen location 0,0 in the

upper left-hand corner corresponds to the first location in video memory,

1024. Each line of forty characters corresponds to a range of forty memory

locations, with each group of forty following each other successively in

memory. So multiplying the vertical Y coordinate by forty, and adding the

horizontal X coordinate, yields the appropriate location in video memory.

 Each of the four headings resolves into one of four new headings for

a right-leaning diagonal character and one of four new headings for a left-

leaning diagonal character. The eight IF . . . THEN statements at lines

340 to 410 handle each of these eight cases. The IF . . . THEN at line 330

jumps to the second group of four IF . . . THEN statements for a right-

leaning diagonal character, allowing program execution to fall through to

the first group of IF . . . THEN statements for the other character. The

GOTO statements at the end of each line jump over the rest of the IF . . .

{252} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

THEN statements once the correct new heading has been set.

 Line 420 is the last line of the main loop. It loops back to start the

process of drawing the walker at its current location, and updating location

and heading, all over again.

 The subroutine at line 500 draws the walker at its current location and

redraws the wall in the location that it just left. At the beginning, in line

510, there is a call to the subroutine at line 600, placing the correct wall

character in the old position of the walker. Then, the subroutine saves the

current X, Y to the old location XOLD, YOLD. Line 540 computes the loca-

tion in video memory (M) for the current X, Y location. This memory location

is used twice: on line 530 to save the current character at this location, and

in the second POKE on line 560 to change this character to a new character

representing the walker. It would be ideal to use a character that shows the

walker standing next to the wall, but there is no character in the standard

character set that combines a diagonal line with a shape next to it. It is

possible to define custom characters for the four combinations of walls

with walkers, but this program uses the built-in character with screen code

87 to represent the walker. This has the disadvantage that from a static

screen shot that walker’s exact maze location is visually ambiguous. While

watching the walker move as the program executes, however, the location

is discernible from the pattern of movement.

 Line 550 computes the memory location in color memory given the

X, Y screen location. There are 1,000 bytes of color memory, as with video

memory. The effect of values in color memory on the display depends on

the graphics mode. In character mode (used in 10 PRINT and in this pro-

gram), each location in color memory stores a color code that tells the

system what color should be used to draw the character indicated by the

screen code in the corresponding location in video memory. The first POKE

on line 560 stores a color code of 1, which draws the corresponding screen

code using the foreground color white. Finally, line 570 makes a nested call

to the subroutine at 650, which adds a delay to the maze walker, making it

easier to observe the details of the walker’s movement.

 The subroutine at line 600 redraws the wall character from the maze

walker’s previous location. Without this subroutine, the walker would leave

a trail behind it, slowly replacing the walls of the maze. The IF . . . THEN

at line 610 tests whether the previous location is a valid location, which it

is not on the first call, when XOLD is initialized to −1. Although the wall is

REM MAZE WALKER IN BASIC {253}

restored as the walker passes by, the color code in color memory is not

restored. This means that the redrawn wall will appear in white, leaving a

trail of white walls to mark the walker’s passage.

 Finally, the subroutine at line 650 adds a delay between each step

through the maze. The FOR loop contains no statements before the NEXT;

it simply counts to 500. To increase or decrease the delay time, this value

can be increased or decreased.

 There are a number of observations to make about the 10 PRINT

maze, the representational properties of BASIC, and the Commodore 64

environment based on the development of “Maze Walker.” First, it takes

considerable effort to transform the visual perception of a maze with walls

and a floor into a practical functioning model of this perception. Decisions

must be made about what it means to hold a location in the maze and to

move through it. This program sharpens the somewhat vague visual per-

ception of “mazeness” into a highly detailed understanding of the local

structure of the maze.

 Second, the representation of movement requires repeatedly draw-

ing and erasing a shape (the representation of the walker), with the need to

remember what lies “under” the shape so that the occluded object can be

correctly redrawn. This basic principle of continuously drawing and erasing

static snapshots to produce the illusion of movement is a fundamental fea-

ture of modern media, seen in everything from the latest Pixar movie to the

latest blockbuster Xbox game. The related principle of collision with virtual

objects, when combined with the representation of movement, defines

graphical logic, a representational trope that underlies the computer’s abil-

ity to represent virtual spaces. In the compressed form of “Maze Walker,”

there are specific lines that encode the concept of collision with walls: lines

320 through 410.

 Finally, the ability to observe walks through the maze brings clarity to

the structure of the 10 PRINT maze. A typical (stabilized) 10 PRINT maze

consists of loops of various lengths that are interspersed with runs connect-

ing two locations on the edge of the maze. The pattern therefore consists

of multiple, intertwined unicursal mazes; once embarked on a particular

path from edge to edge, there are no choices to make. A 10 PRINT maze

might be considered multicursal if there is a choice of where to enter the

maze from one of the outside “openings,” but once such a choice is made,

the path will lead irrevocably to its paired entrance or exit.

{254} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

TOuCHing THE MaZE

While “Maze Walker” allows the user to watch a computer “other” navi-

gate the maze, a program can turn this spectacle into an interactive envi-

ronment. Here, computation acts as a prosthesis, or extension of the user’s

sense of touch, presenting the user with solid walls that constrain navigation.

10 REM PRODUCE A STABLE MAZE

20 PRINT CHR$(147)

30 FOR I=1024 TO 2023

40 POKE I,77.5+RND(1)

50 NEXT I

100 REM SET INITIAL X AND Y WALKER LOCATION AND DIRECTION

110 REM DIRECTION IS EITHER 0 LEFT, 1 RIGHT, 2 UP, 3 DOWN

120 X=INT(RND(0) * 39) : XOLD=-1

130 Y=INT(RND(0) * 24) : YOLD=-1

140 DIR=INT(RND(0) * 3)

150 WALL=-1

160 GOSUB 500

200 REM WAIT FOR LEGAL MOVE GIVEN LOCATION AND DIRECTION

210 GET A$: IF A$="" GOTO 210

220 IF A$=" " THEN GOSUB 600 : GOTO 120 : REM HYPERSPACE

230 REM 77=\, 78=/ 0 LEFT, 1 RIGHT, 2 UP, 3 DOWN

240 IF WALL=78 THEN GOTO 310

245 REM UP

250 IF (DIR=0 OR DIR=3) AND ASC(A$)=145 THEN DIR=2 : GOTO 400

255 REM RIGHT

260 IF (DIR=0 OR DIR=3) AND ASC(A$)=29 THEN DIR=1 : GOTO 400

265 REM DOWN

270 IF (DIR=1 OR DIR=2) AND ASC(A$)=17 THEN DIR=3 : GOTO 400

285 REM LEFT

290 IF (DIR=1 OR DIR=2) AND ASC(A$)=157 THEN DIR=0 : GOTO 400

300 GOTO 200

310 REM DOWN

REM MAZE WALKER IN BASIC {255}

320 IF (DIR=0 OR DIR=2) AND ASC(A$)=17 THEN DIR=3 : GOTO 400

330 REM RIGHT

340 IF (DIR=0 OR DIR=2) AND ASC(A$)=29 THEN DIR=1 : GOTO 400

350 REM UP

360 IF (DIR=1 OR DIR=3) AND ASC(A$)=145 THEN DIR=2 : GOTO 400

370 REM LEFT

380 IF (DIR=1 OR DIR=3) AND ASC(A$)=157 THEN DIR=0 : GOTO 400

390 GOTO 200

400 IF DIR=0 THEN X=X - 1 : GOTO 450

410 IF DIR=1 THEN X=X + 1 : GOTO 450

420 IF DIR=2 THEN Y=Y - 1 : GOTO 450

430 IF DIR=3 THEN Y=Y + 1

450 REM DETERMINE IF THE WALKER IS OFF THE SCREEN

460 IF X >= 0 AND X <= 39 AND Y >= 0 AND Y <= 24 THEN GOTO 160

470 GOSUB 600

480 GOTO 10

500 REM DRAW WALKER, RESTORING PREVIOUS WALL CHARACTER

510 GOSUB 600

520 XOLD=X : YOLD=Y

530 M=1024 + X + (Y * 40)

540 WALL=PEEK(M)

550 C=55296 + X + (Y * 40)

560 POKE C, 1 : POKE M, 87

570 RETURN

600 REM RESTORE WALL AT PREVIOUS WALKER LOCATION

610 IF XOLD=-1 THEN GOTO 630

620 POKE 1024 + XOLD + (YOLD * 40), WALL

630 RETURN

{256} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

The change between this and the previous walker is found in lines 200

through 390. These lines replace the code that changed the walker’s head-

ing given the current heading and the wall type. Now the program reads the

keyboard, looking for arrow keys. The user can use the arrow keys to move

backward and forward along the current path as allowed by the wall at the

current location and the current heading. Line 210 uses the GET statement

to read a character from the keyboard. If no key has been pressed, GET

returns the empty string. The IF . . . GOTO in the second statement on

line 210 loops continuously until a key has been pressed.

 Line 220 tests whether the spacebar has been pressed. If so, the sub-

routine at line 600 that redraws the wall at the current walker location is

called, and the program jumps to 120, initializing the current location and

heading to new random values. This allows the user to jump to a new lo-

cation after exploring the current path to the edge of the screen, or after

completing a loop.

 Line 240 selects between the four different cases for ╲ and ╱. Con-

sider the cases for ╲, when WALL is 77. If the current heading is left or

down, the walker is on the left side of the slash. The valid headings to move

are right and up. If the current heading is right or up, the walker is on the

right side of the slash. The valid headings to move are left or down. Now

consider the cases for ╱, when WALL is 78. If the current heading is left or

up, then the walker is on the right side of the slash. The valid headings to

move are down or right. If the current heading is right or down, the walker

is on the left side of the slash. The valid headings to move are up or left.

 The eight IF . . . THEN statements from 250 through 380 handle

these eight cases, checking whether the user has hit an arrow key corre-

sponding to a valid heading given the current heading. If a key other than

space or an arrow key is hit, or if the arrow key is not valid given the current

wall and heading, control will fall through to 300 or 390, and the program

will loop back to 200 to continue scanning the keyboard. Thus, the walker

only moves when the user pushes an arrow key in a valid heading, enforc-

ing the “solidity” of the walls and responding only to valid input.

 The interactive maze walker allows the user to trace a finger along the

maze pattern, kinesthetically experiencing the ricocheting movement em-

ployed by the maze walker. The ability to jump randomly about the maze

allows the user to explore many paths in the same maze, observing how

the various loops and trails intertwine.

REM MAZE WALKER IN BASIC {257}

TEsTing THE MaZE

What would it mean for the 10 PRINT maze to have a solution? Given that

the only choice to be made is outside the maze, in choosing an entry point,

one definition of a solution would be a path that leads all the way from one

side of the maze to the other. Solving the maze would, in this case, consist

of choosing the right entry point to make it all the way to the other side.

 This question of solutions is just one example of the more general

question of determining maze properties. One could as easily be inter-

ested in mazes that have really long loops, or as many loops as possible,

or as many side-to-side paths as possible, or lots of really short paths, and

so forth. Is it possible to computationally recognize such properties, so that

the design space of 10 PRINT mazes can be explored and mazes can be

generated with specific properties?

 The perhaps-surprising answer is yes. Computer science offers a gen-

eral approach to such problems called generate and test. It is based on

the observation that, while directly generating a solution to a problem is

generally difficult, recognizing whether a proposed solution is in fact a so-

lution is easy. Therefore, to solve problems, or to generate artifacts with

desired properties, one approach is to use a relatively simple generator

to generate candidates and then test them to see if they have the desired

property. For 10 PRINT, this means generating random maze patterns (as

explored throughout this book), and then testing them to see if they have

the desired property. In the explorations that led to this book, the authors

wrote programs as a method for better understanding 10 PRINT. The gen-

erate and test paradigm provides a framework for extending this practice

by writing programs to analyze the output of 10 PRINT.

 To illustrate this approach, here is a program that looks for mazes with

solutions, that is, with a path from one side to the other. While searching for

a path, the program systematically tries every left-hand and upper entrance

into the maze, testing whether this passage goes through to the other side.

As paths are searched, walls are changed to white. If a solution is found, the

maze is redrawn in its original color with just the solution path redrawn in

white, to allow the user to behold the maze with a solution in its purity, be-

fore randomly generating a new maze to test. If every path is explored with

no solution found, a new maze is generated and the search begins anew.

{258} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

10 DIM B1(3),B2(3) : REM 'BOUNCE' ARRAYS

20 B1(0)=2 : B1(1)=3 : B1(2)=0 : B1(3)=1

30 B2(0)=3 : B2(1)=2 : B2(2)=1 : B2(3)=0

40 REM PRODUCE A STABLE MAZE

50 PRINT CHR$(147)

60 FOR I=1024 TO 2023

70 POKE I,77.5+RND(1)

80 NEXT I

90 REM TEST: SOLUTIONS MUST BE PATHS ACROSS WIDTH OR HEIGHT

100 FOR S=0 TO 24

110 X=-1 : Y=S : DIR=1 : XOLD=-1 : YOLD=-1 : WOLD=-1

120 SX=X : SY=Y: SD=DIR

130 GOSUB 410 : GOSUB 520

140 IF X > 39 THEN GOTO 290 : REM FOUND A SOLUTION

150 IF X < 0 OR Y < 0 OR Y > 24 THEN GOTO 180

160 GOSUB 610

170 GOTO 130

180 GOSUB 710 : NEXT S

190 FOR S=0 TO 39

200 X=S : Y=-1 : DIR=3 : XOLD=-1 : YOLD=-1 : WOLD=-1

210 SX=X : SY=Y : SD=DIR

220 GOSUB 410 : GOSUB 520

230 IF Y > 24 THEN GOTO 290 : REM FOUND A SOLUTION

240 IF X < 0 OR Y < 0 OR X > 39 THEN GOTO 270

250 GOSUB 610

260 GOTO 220

270 GOSUB 710 : NEXT S

280 GOTO 50

290 FOR I=55296 TO 56295 : POKE I,14 : NEXT I

300 X=SX : Y=SY : XOLD=-1 : YOLD=-1 : WOLD=-1 : DIR=SD

310 GOSUB 410 : GOSUB 520 : GOSUB 610

320 REM DETERMINE IF WE’RE OFF THE SCREEN

330 IF X >= 0 AND X <= 39 AND Y >= 0 AND Y <= 24 THEN GOTO 360

340 GOSUB 710 : GOSUB 800

350 GOTO 50

REM MAZE WALKER IN BASIC {259}

360 GOTO 310

400 REM COMPUTE NEW LOCATION BASED ON INITIAL DIRECTION

410 IF DIR=0 THEN X=X - 1 : GOTO 450

420 IF DIR=1 THEN X=X + 1 : GOTO 450

430 IF DIR=2 THEN Y=Y - 1 : GOTO 450

440 IF DIR=3 THEN Y=Y + 1

450 RETURN

500 REM BOUNCE OFF CURRENT WALL AS FUNCTION OF DIRECTION

510 REM 77=\, 78=/

520 WALL=PEEK(1024 + X + (Y * 40))

530 IF WALL=77 THEN DIR=B1(DIR) : GOTO 550

540 IF WALL=78 THEN DIR=B2(DIR)

550 RETURN

600 REM DRAW WALKER, RESTORING PREVIOUS WALL CHARACTER

610 GOSUB 710

620 XOLD=X : YOLD=Y : I=X + (Y * 40)

630 M=1024 + I

640 WOLD=PEEK(M)

650 C=55296 + I

660 POKE C, 1 : POKE M, 87

670 RETURN

700 REM RESTORE WALL AT PREVIOUS WALKER LOCATION

710 IF XOLD=-1 THEN GOTO 730

720 POKE 1024 + XOLD + (YOLD * 40), WOLD

730 RETURN

800 FOR I=1 TO 2000 : NEXT I

810 RETURN

The two biggest differences from the initial “Maze Walker” are the line

blocks 100–180 and 190–270. Lines 100–180 systematically set the initial

position to a character on the left-most side of the maze, and the heading

to right. A solution is detected if the walker runs out the right-hand side of

{260} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

the maze. Lines 190–270 systematically set the initial position to a charac-

ter on the top of the maze, and the heading to down (entering the maze).

A solution is detected if the walker runs out the bottom of the maze. Figure

65.1 provides an example of a maze with no solutions and an example of a

maze that has a solution.

Figure 65.1

“Maze Walker” can determine whether a maze has solution (top) or not (bottom).

70
COnCLusiOn

{262} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

10 PRINT has generated far more than a pattern that resembles an unend-

ing scrolling maze. It has generated talks, posts, papers, online conversa-

tion, demoscene productions, and now this book. But its most important

product may be the countless programmers inspired by its concision, en-

ticed by its output, and intrigued by its clever manipulation of two very

simple symbols.

 While 10 PRINT is a very particular, historically located object of

study, it is not completely unique, precious, or rare. Whether or not new

Commodore 64 owners realized it, a version of the program was included

with every new computer, making it one of the most commonplace pieces

of code of the era. There is no evidence to suggest that it was considered

the best BASIC program, or even the best one-line BASIC program, for the

Commodore 64. Rather, 10 PRINT is emblematic of the creative deluge of

BASIC programming in and around the early 1980s. Many programmers at

this time were home computer users who, in the years when the personal

computer was just emerging as a household technology, seized on pro-

gramming as a means of play, learning, and expression.

 Yet, as this book has indicated, 10 PRINT resonates. It is more com-

pelling than many similar Commodore 64 programs, works better than ran-

dom-maze-generating programs on other platforms did, and can be varied

and expanded in interesting and powerful ways. Still, it is only one example

of how computers are used to explore computation and to create beautiful

artifacts. 10 PRINT was selected as the focus of this book not because the

program sits at the summit of all possible one-liners in any language and

for any platform, but because the program can lead the way to appreciat-

ing code and the contexts in which it emerges, circulates, and operates.

 Reading this one-liner also demonstrates that programming is cultur-

ally situated just as computers are culturally situated, which means that the

study of code should be no more ahistorical than the study of any cultural

text. When computer programs are written, they are written using keywords

that bear remnants of the history of textual and other technologies, and

they are written in programming languages with complex pasts and cul-

tural dimensions, and they lie in the intersection of dozens of other social

and material practices. Behind the ordinary features of a program—a call

to produce random numbers, a printing mechanism, a repeating loop—lie

ghostly associations with distant and forgotten forms of cultural activity

and production whose voices echo from somewhere inside the labyrinth of

CONCLUSION {263}

material history accumulated in a particular technology.

 Code is not only a conventional semiotic system. At its essence, code

also functions. Code runs. Code does something. Code executes on the

computer and has operational semantics. But code means things to people

as well, both implicitly and explicitly. What this book has done for a single

line of code can be done for much larger programs as well, for programs of

many other sorts. While other programs and other categories of program

have been discussed in this book, the focus on a single short program has

been productive rather than restricting. We hope this will encourage the

detailed analysis of other short programs and suggest that it is worthwhile

to focus on important subroutines, functions, and procedures within larger

systems of code.

 Looking at each token, each character, of a program is a helpful start,

but only a foundation for the understanding of how code works for individ-

uals and in society. It can show not only why a particular program functions

the way it does but also what lies behind the computers and programs that

are essential to the current world. In considering the PRINT keyword and

the way it is used in 10 PRINT, it is possible to see that PRINT invokes the

CHROUT routine in the Commodore 64’s KERNAL, that it provides the abil-

ity to append text at the current position (using “;”) and to automatically

scroll the screen upward when necessary. This particular behavior is a con-

venience in many cases and contributes to the visual effect of 10 PRINT. At

the same time, 10 PRINT is a reminder of the history of computer output

devices and of BASIC itself being developed on upward-scrolling Teletypes

that literally printed.

 To understand 10 PRINT, it helps to identify the program as a one-

liner and to note that it produces a seemingly random maze. Yet, a study

of the code itself shows much more about BASIC, the Commodore 64,

and the program itself than does a high-level categorization and descrip-

tion of function. This is true even though this code does not contain the

easiest hooks for traditional interpretation, such as comments or variable

names. 10 PRINT shows that much can be learned about a program with-

out knowing much of anything about its conditions of creation or intended

purpose—or indeed, without it even having an intended purpose.

 Today, some people who do not mainly identify as “programmers”

nevertheless do program computers; they harness the ability of these ma-

chines to do provocative work. This is the case with designers who use

{264} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Processing, for instance, and with some who work in HTML, CSS, and

JavaScript to create interesting programs on the Web. But the widespread

access to programming that was provided by early microcomputers does

not exist in the same form today as it did in the 1970s and 1980s. When

people turn on today’s computers, they do not see a “READY” prompt that

allows the user to immediately enter a BASIC program.

 The science fiction author David Brin wrote a few years ago on

Salon.com about the difficulty of getting any form of BASIC running. He

reported that he and his son “searched for a simple and straightforward

way to get the introductory programming language BASIC to run on either

my Mac or my PC,” but could find none (Brin 2006). There are BASICs avail-

able now, including Microsoft Small Basic, explicitly intended to embrace

the spirit of the original language. But in the early twenty-first century, such

tools are still somewhat esoteric specialty items, not standard features of

every home computer that make themselves available upon startup.

 For popular programming, the early 1980s were certainly a special

time. Computers were more difficult to use in some ways. The Commodore

64 required its users to issue complex commands to read a disk and run a

program from it. But programming was easier. Over the past two decades,

academic and industrial research labs have attempted to invent or apply

simple programming tools for educational purposes, to teach anyone how

to program at a rudimentary level. On the one hand, this book reminds us

that a straightforward way for people to program their computers—either

in BASIC or another simple language—is indeed possible, since it has al-

ready been achieved. But on the other hand, it also accentuates the many

significant differences in the way computers are designed and used today

compared to the heyday of the Commodore 64, differences that help ex-

plain why researchers can’t simply recommend that interested parties buy

an inexpensive home computer, turn it on, and experiment with it.

 Computer programs can be representational; they can depict worldly

things and ideas, and they can resonate with related figures, images, and

designs. In the case of 10 PRINT, the program’s mazelike output is not a

neutral pattern, but one wrapped up in numerous contradictory Western

ideas about the notion of a maze. Whether a program’s representations are

incidental or very deliberate, they have a meaning within culture. The cul-

tural history of the maze demonstrates that there are more and less obvious

associations with this type of structure, some wrapped up with the history

CONCLUSION {265}

of science in the twentieth century and others emerging from computing

itself. Although a program’s output is only one of its aspects, a reading of

code should certainly take into account what a program does and what

texts, images, and sounds it produces.

 While 10 PRINT is a text, it exists in the material context of com-

puting. It was printed (in different versions) first in a spiral-bound manual

and later in a glossy magazine. It ran on a particular taupe unit, the Com-

modore 64, the components of which were influenced by economic cir-

cumstance and the physical possibilities of chip design and selection. The

BASIC programming language in which 10 PRINT is written was shaped

by the sharing of programs in print and in human memory, and by the spe-

cific technical aspects of the Altair 8800 and the Dartmouth Time-Sharing

System. Our discussion of 10 PRINT has tried to account for these relevant

material qualities while also attending to the formal, computational nature

of the code—what it does—and how that interacts with material, historical,

and other cultural aspects of the program.

 All programs are written in particular settings (a corporate office, a

computer clubhouse, a university, a coffeehouse) and are influenced by the

means by which they are written. Whenever code is considered, it is worth-

while to investigate how it was written and what material factors came into

play as it was transmitted, shared, and elaborated. As with the Teletypes that

preceded computers like the Commodore 64 and the laptops that eventu-

ally replaced them, the physical makeup, cost, contexts of use, and physical

form of computers have significant effects on how they are put to use.

 People tend to imagine computer programs as largely static, frozen

masses of code. To the extent that this view is valid at all, it makes sense

only within a small slice of computing history. It is true, for instance, that

the retail market for shrink-wrapped software and the sale of videogames

on cartridges tend to support the view that a program is a particular, stable

sequence of code and nothing else.

 Of course, this era has passed. Software of all sorts, including vid-

eogames, is distributed on systems that can and frequently do patch and

update programs. Download a mobile phone app or even a Playstation

3 game that is initially free of advertisements and, after running an up-

date, the program can start downloading and displaying ads while it runs.

People now think little of modifications of their software, even those that

are intrusive and annoying. At the same time, today’s operating systems

{266} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

are easily patched online to prevent security problems and to add new

features, bringing benefits to users.

 The view of programs as static is even less tenable when one consid-

ers the writing, running, and distribution of programs throughout the his-

tory of computing. Custom software written for businesses has long been

maintained and updated—for half a century. The BASIC programs people

keyed in from magazines invited users to modify them. In educational and

software development settings programs have typically been converted to

other programs by elaboration and modification.

 10 PRINT is not just a line of code; it defines a space of possible

variations (some of which were explored in the remark Variations in BA-

SIC), possible ports (see the remark Ports to Other Platforms and other

ports throughout the book), and possible elaborations (such as the one

described in the remark Maze Walker in BASIC). 10 PRINT can simply be

run, but it can also be considered as an instant in the process of program-

ming, a process that can lead to a better understanding of and relationship

with computation, in addition to leading to other aesthetically interesting

and differently functioning programs. This book has tried to establish 10

PRINT not just as a program, but also as part of the process of learning

about and developing programs—something that can be said about al-

most any code.

 Since programs are dynamic, and some of them explicitly invite modi-

fication, and since modifying programs is a way to better understand them,

the platform, and computing generally, why not modify a program as part

of a scholarly investigation of the program? This is one approach taken in

this book. The variations, ports, and elaborations in this volume set some

of the qualities of the canonical 10 PRINT into relief in an interesting and

informative way.

 To see what is special about different platforms, and how platforms

differ from one another, we have produced ports of 10 PRINT during our

investigation of it and the writing of this book. Porting a specific program

makes for a very different and more revealing comparison than does simply

lining up the technical specs of the two systems for side-by-side compari-

son. It shows what specific qualities of a platform are important for particu-

lar effects and for the functioning of particular programs. Similarly, devel-

oping variations allows programmers to explore the space of possibility

within a platform. In all of these cases, programming is not a dry technical

CONCLUSION {267}

exercise but an exploration of aesthetic, material, and formal qualities.

 Whether one is studying a videogame, some other aesthetic object,

or code that runs a voting machine or defines a climate change model,

writing programs can help us comprehend the code and its cultural rel-

evance. In the case of large systems, it could be unwieldy to re-implement

and modify the entire program. This approach, however, is being tried with

the story generator MINSTREL (Tearse, Mateas, and Wardrip-Fruin 2010),

explicitly for the purpose of better understanding that influential system

and how it tells stories. It is possible to reimplement and modify important

routines, functions, and procedures, to grasp more firmly what a program

does as opposed to what it could have been written to do. Analyzing the

code by interacting with it, revising it, and porting it is one of the main criti-

cal activities this book contributes to critical code studies and related fields

in digital media.

 Early on, a variant of 10 PRINT was presented to novice readers to

hint at the tremendous potential of the computer using a simple but el-

egant technique. This book is meant to serve a similar function. Through its

many approaches to a one-line program, the book is meant to unlock the

potential for analyzing digital objects and culture through code.

CONCLUSION {269}

75
EnD

80
THanKs

{272} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

THANKS {273}

We wish to thank those at the MIT Press who supported this radical and

challenging project—particularly Doug Sery, who saw the potential of the

project from the beginning and worked with the team of authors to help

them complete it. We also thank Katie Helke Dokshina, the anonymous

reviewers who offered their consideration and advice, and Noah Wardrip-

Fruin, who worked with us as an editor of the Software Studies series.

Finally, thanks go to Kathy Caruso for seeing the book through into print.

 Many programs are considered in this book. Some of these we found,

some we wrote ourselves. A few programs are in a different category: they

were prompted by this book project, but programmers who were not au-

thors of the book worked on them. Our thanks to Ben Fry for the second

Processing port that was discussed, to Stéphane Hockenhull for collaborat-

ing with two of the authors on “threadbare” and “thread,” and to Warren

Sack for his Perl and Javascript ports, the first ports discussed in the book

and the ones that introduced us to the idea of porting 10 PRINT as a way

of better understanding it.

85
WORKs

CiTED

{276} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Ahl, David. 1973. 101 BASIC Computer Games. Maynard, MA: Digital

 Equipment Corporation.

Ahl, David. 1978. BASIC Computer Games: Microcomputer Edition.

 Morristown, NJ: Creative Computing Press.

Altair BASIC Reference Manual. 1975. Albuquerque, NM: MITS.

Atari Inc. v. North American Philips Consumer Electronics Corp.,

 672 F.2d 607 (7th Cir.) (full-text), cert. denied, 459 U.S. 880 (1982).

Bagnall, Brian. 2010. Commodore: A Company on the Edge. Winnipeg, Canada:

 Variant Press.

Barthes, Roland. 1977. “From Work to Text.” Image, Music, Text. Trans. Stephen

 Heath. London: Fontana.

 http://evans-experientialism.freewebspace.com/barthes05.htm

Bauer, Christian. 1996. “The MOS 6567/6569 Video Controller (VIC-II) and Its

 Application in the Commodore 64.” cebix.net. August 28.

 http://www.cebix.net/VIC-Article.txt

Benjamin, Walter. 1999. The Arcades Project. Ed. Rolf Tiedemann. Trans.

 Howard Eiland and Kevin McLaughlin. Cambridge, MA: Belknap-Harvard

 University Press.

Bennett, Deborah. 1998. Randomness. Cambridge, MA: Harvard University Press.

Bergin, Thomas J., ed. 2000. Fifty Years of Army Computing. Aberdeen, MD:

 U.S. Army Research Laboratory.

“Better Mouse: A Robot Rodent Masters Mazes.” 1952. Life 32, no. 4 (July 28):

 45–46.

Bogost, Ian. 2010. Comment on “Program Your Apple II! Why Not Program

 Today?” Computing Education Blog. February 20.

 http://computinged.wordpress.com/2010/02/20/program-your

 -apple-ii-why-not-program-today/

Brandon, Ruth. 1999. Surreal Lives: The Surrealists 1917–1945. London: Macmillan.

Brecht, George. 1966. Chance Imagery. A Great Bear Pamphlet. New York:

 Something Else Press.

Brett, Guy, and Marc Nash. 2000. Force Fields: An Essay on the Kinetic.

 Barcelona: Actar.

Brin, David. 2006. “Why Johnny Can’t Code.” Salon.com. September 14.

 http://www.salon.com/2006/09/14/basic_2/

Brooks, Ruven. 1983. “Towards a Theory of the Comprehension of Computer

 Programs.” International Journal of Man-Machine Studies 18: 543–554.

Buckley, Kerry W. 1989. Mechanical Man: John Broadus Watson and the

WORKS CITED {277}

 Beginnings of Behaviorism. New York: Guilford Press.

Burroughs, William S. 2003. “The Cut-Up Method of Brion Gysin.” In The New

 Media Reader, ed. Noah Wardrip-Fruin and Nick Montfort, 90–91.

 Cambridge, MA: MIT Press.

Cabanne, Pierre. 1971. Dialogues with Marcel Duchamp. New York: Viking.

Cage, John. 1966. Silence. Cambridge, MA: MIT Press.

Caillois, Roger. 2003. Man, Play, and Games. Trans. Meyer Barash. New York:

 The Free Press.

Campbell-Kelly, Martin, and William Aspray. 1996. Computer: A History of The

 Information Machine. New York: Basic Books.

Chun, Wendy. 2011. Programmed Visions: Software and Memory. Cambridge, MA:

 MIT Press.

Commodore. 1982. Commodore 64 Programmer’s Reference Guide. Wayne, PA;

 Indianapolis, IN: Commodore Business Machines. Distributed by Howard W.

 Sams & Co.

Commodore. 1982. Commodore 64 User’s Guide. Wayne, PA; Indianapolis, IN:

 Commodore Business Machines. Distributed by Howard W. Sams & Co.

Commodore Computer Club. 2010. “Video: Commodore VIC-20 Ad with William

 Shatner.” November 17. http://www.commodorecomputerclub.com/video

 -commodore-vic-20-ad-with-william-shatner/

da Cruz, Frank. 2011. “Programming the ENIAC.” Columbia University Computing

 History. January 25, updated April 2, 2012.

 http://www.columbia.edu/acis/history/eniac.html

Dartmouth College Computation Center. 1964. BASIC. October 1.

 http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf.

Davenport, Nancy. 2002. “Artist Questionnaire: 21 Responses.” October 100:

 65–67.

Doctorow, Cory. 2002. “0wnz0red.” Salon.com. August 28.

 http://www.salon.com/2002/08/28/0wnz0red/

Doob, Penelope Reed. 1990. The Idea of the Labyrinth: from Classical Antiquity

 through the Middle Ages. Ithaca and London: Cornell University Press.

Doüat, Dominique. 1722. Methode pour faire une infinité de desseins differens

 avec des carreaux mi-partis de deux couleurs par une ligne diagonale: ou

 observations du Père Dominique Doüat Religieux Carmes de la Province

 de Toulouse sur un memoire inséré dans l’Histoire de l’Académie Royale

 des Sciences de Paris l’année 1704, présenté par le Reverend Sebastien

 Truchet, religieux du même ordre, Académicien honoraire. Paris: Chez

{278} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 Florentin de Laulne . . . Claude Jombert . . . [et] André Cailleau.

Dreiser, Theodore. 1981. Sister Carrie. New York: Penguin.

Driscoll, Kevin. 2010. “Critical Code Studies 2010.” Driscollwiki. July 23.

 http://kevindriscoll.org/wiki/Critical_code_studies_2010

Driscoll, Kevin. 2011. “Revisiting Bill Gates’ ‘Open Letter to Hobbyists.’”

 Media in Transition 7, MIT, Cambridge, MA, May 14.

Duchamp, Marcel. 1975 Salt Seller: The Essential Writings of Marcel Duchamp. Ed.

 Michel Sanouillet and Elmer Peterson. London: Thames and Hudson.

Dyson, George. 1997. Darwin among the Machines: The Evolution of Global

 Intelligence. Reading, MA: Addison-Wesley.

Essinger, James. 2004. Jacquard’s Web: How a Hand-Loom Led to the Birth of the

 Information Age. Oxford: Oxford University Press.

Evans, Davis S., Andrei Hagiu, and Richard Schmalensee. 2006. Invisible Engines:

 How Software Platforms Drive Innovation and Transform Industries.

 Cambridge, MA: MIT Press.

Fabre, Gladys, and Doris Wintgens Hotte, eds. 2009.Constructing a New World,

 Van Doesburg & The International Avant-Garde. London: Tate Publishing.

Faison, Seth. 1992. “John Kemeny, 66, Computer Pioneer and Educator.”

 The New York Times. December 27. http://www.nytimes.com/1992/12/27/us/

 john-kemeny-66-computer-pioneer-and-educator.html

Foltin, Martin. 2011. “Automated Maze Generation and Human Interactions.”

 Master’s thesis. http://is.muni.cz/th/143508/fi_m/thesis.pdf

Freiberger, Paul. 1982. “Commodore Founder Tramiel: PETs for World Market.”

 InfoWorld 4, no. 16 (April 26): 13.

Fuchs, Martin. 2011. Written Images. Rendered February 9. Book number 182/230,

 page 161.

Fuegi, John, and Jo Francis. 2003. “Lovelace & Babbage and the Creation of the

 1843 ‘Notes.’” IEEE Annals of the History of Computing 25, no. 4

 (October–December): 16–26.

Gates, Bill. 1976a. “An Open Letter To Hobbyists.” Homebrew Computer Club

 Newsletter 2, no. 1 (January): 2.

Gates, Bill. 1976b. “A Second and Final Letter.” Computer Notes 1, no. 11

 (April): 5.

Gerdes, Paul. 1998. Women, Art and Geometry in Southern Africa. Trenton, NJ:

 Africa World Press.

Gere, Charlie. 2006. "Genealogy of the Computer Screen." Visual Communication

 5, no. 2 (June): 141–152.

WORKS CITED {279}

Gerstner, Karl. 1964/2009. “Designing Programmes.” Graphic Design Theory:

 Readings from the Field, ed. Helen Armstrong, 58–61. Princeton, NJ:

 Princeton Architectural Press.

Gilbert, Sandra, and Susan Gubar. 2000. The Madwoman in the Attic: The Woman

 Writer and the Nineteenth-Century Literary Imagination. 2nd ed. New Haven,

 CT: Yale University Press.

Gombrich, E. H. 1994. The Sense of Order: A Study in the Psychology of

 Decorative Art. 2nd ed. Oxford: Phaidon Press.

Green Jr., Bert F., J. E. Keith Smith, and Laura Klem. 1959. “Empirical Tests of

 an Additive Random Number Generator.” Journal of the ACM (JACM) 6,

 no. 4: 527–537.

Hayles, N. Katherine. 2005. “Speech, Writing, Code: Three Worldviews.” In My

 Mother Was a Computer: Digital Subjects and Literary Texts, 39–61.

 Chicago: University of Chicago Press.

Heim, Kristi. 2008. “Seattle Man Who Helped Launch Microsoft Left $65M for Gay

 Rights.” Seattle Times. February 24. http://seattletimes.nwsource.com/html/

 localnews/2004197961_weiland24.html

Holmes3000. 2006. “Commodore 64 Commercial (1985).” YouTube. May 31.

 http://www.youtube.com/watch?v=D_f3uIzEIxo

Huang, Xiu Wu, Cheryl Kolak Dudek, Lydia Sharman, and Fred E Szabo. 2005.

 “From Form to Content: Using Shape Grammars for Image Visualization.”

 Proceedings of the Ninth International Conference on Information

 Visualisation, London, July 6–8.

Hubbard, Paul L. 1987. “$3B2 Checking Monitor Resolution.” “Magic” section,

 RUN 39 (March): 10, 12.

Inacio da Silva, Cicero. 2008. “Software Arte,” slide 17. SlideShare. November 18.

 http://www.slideshare.net/cicerosilva/software-arte-presentation

Kemeny, John G. 1972. Man and the Computer. New York: Simon & Schuster.

Kemeny, John G., and Thomas E. Kurtz. 1985. Back to BASIC: The History,

 Corruption, and Future of the Language. Boston: Addison-Wesley.

Kern, Hermann. 2000. Through the Labyrinth: Designs and Meanings over 5,000

 Years. Trans. [from German] Abigail H. Clay with Sandra Burns Thomson and

 Kathrin A. Velder. Munich and New York: Prestel.

Kidd, David. 2011. Backstrip.net. April 8. http://backstrip.net/post/4432566244/

 ive-been-tooling-around-with-street-making

Kidware Software, LLC. 2011. “Small Basic Computer Games: New 2010 Small

 Basic Edition.” http://computerscienceforkids.com/SmallBasicComputer

{280} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 Games.aspx

Kittler, Friedrich. 1995. “There Is No Software.” CTheory. http://www.ctheory.net/

 articles.aspx?id=74

Knuth, Donald E. 1969. The Art of Computer Programming, vol. 2. Reading, MA:

 Addison-Wesley.

Kominski, Robert. 1991. “Computer Use in the United States: 1989.” U.S. Bureau

 of the Census Current Population Reports, Series P-23, No. 171. U.S.

 Government Printing Office, Washington, DC.

Kominski, Robert, and Eric Newburger. 1999. “Access Denied: Changes in

 Computer Ownership and Use: 1984–1997.” American Sociological

 Association, Chicago, Illinois, August 6–10.

Krauss, Rosalind. 1979. “Grids.” October 9 (Summer): 50–64.

Krueger, Dan A. 1984. “Trick $93.” “Magic” section, RUN 7 (July): 13–14.

Krumins, Peteris. 2009–2011. “Perl One-Liners Explained.” http://www.catonmat.

 net/series/perl-one-liners-explained

Kurtz, Thomas E. 2009. “‘BASIC’ [Interview].” In Masterminds of Programming:

 Conversations with the Creators of Major Programming Languages, ed.

 Federico Biancuzzi and Shane Warden, 79–100. Sebastopol, CA: O’Reilly

 Media.

Langway, Lynn. 1981. “Invasion of the Video Creatures.” Newsweek, November 16.

Latham, Aaron. 1981. “Video Games Star War.” The New York Times, October 25,

 Late City Final edition, sec. 6.

Lemov, Rebecca. 2005. World as Laboratory: Experiments with Mice, Mazes, and

 Men. New York: Hill and Wang.

Levy, Steven. 1984. Hackers: Heroes of the Computer Revolution. New York: Dell.

Lipton, Richard J., and Lawrence Snyder. 1977. “On the Power of Applicative

 Languages.” Research Report 94, Department of Computer Science, Yale

 University.

Lord Ronin. 2008. “In the Beginning Part 8.” Commodore Free Magazine.

 September. http://commodorecomputerclub.co.uk/view

 .php?art=commodore_free_23&loc=magazine

Lutz, Theo. 1959/2005. “Stochastic Texts.” Trans. Helen MacCormac,

 “Stochastische Texte.” Augenblick 4, no. 1: 3–9. http://www.stuttgarter

 -schule.de/lutz_schule_en.htm

Mac Low, Jackson. 2009. Thing of Beauty: New and Selected Works. Ed. Anne

 Tardos. Berkeley: University of California Press.

Malaby, Thomas M. 2003. Gambling Life: Dealing in Contingency in a Greek City.

WORKS CITED {281}

 Urbana: University of Illinois Press.

Malone, Meredith. 2009. Chance Aesthetics. St. Louis, MO: Mildred Lane Kemper

 Art Museum.

Manovich, Lev. 2009. “Cultural Analytics.” Software Studies Initiative. June 20,

 updated September 2011. http://lab.softwarestudies.com/2008/09/

 cultural-analytics.html

Marino, Mark C. 2006. “Critical Code Studies.” Electronic book review. December 4.

 http://www.electronicbookreview.com/thread/electropoetics/codology

Marino, Mark C. 2010. “The ppg256 Perl Primer: The Poetry of Techneculture.”

 Emerging Language Practices, no. 1. (Fall).

 http://epc.buffalo.edu/ezines/elp/issue-1/ppg256.php

Mateas, Michael, and Nick Montfort. 2005. “A Box, Darkly: Obfuscation, Weird

 Languages, and Code Aesthetics.” In Proceedings of the 2005 Digital Arts

 and Culture Conference, 144–153. Denmark: IT University of Copenhagen.

Matthews, William Henry. 1922. Mazes and Labyrinths: A General Account of Their

 History and Developments. New York: Longmans, Green.

McDonnell, Eugene E. 1988. “Life: Nasty, Brutish, and Short.” APL’88 Conference

 Proceedings, 242–247. Sydney, Australia, February 15.

Menabrea, L. F. 1842. “Sketch of the Analytical Engine Invented by Charles

 Babbage.” Trans. and notes by Ada Augusta, Countess of Lovelace. From

 Bibliothèque Universelle de Genève 82 (October 1842). Web edition, 2006.

 http://www.fourmilab.ch/babbage/sketch.html

Michel, Jean-Baptiste, et al. 2010. “Quantitative Analysis of Culture Using Millions

 of Digitized Books.” Science 331, no. 6014: 176–182. Published online

 December 16. doi: 10.1126/science.1199644. http://www.sciencemag.org/

 content/early/2010/12/15/science.1199644.abstract

Miller, George A. 1956. “The Magical Number Seven, Plus or Minus Two.”

 Psychological Review 63 (2): 81–97. doi:10.1037/h0043158.

Mohr, Manfred. 2007. Manfred Mohr: Broken Symmetry. Ed. Wulf Herzogenrath,

 Barbara Nierhoff, and Ingmar Lähnemann. Bremen: Kunsthalle Bremen.

Montfort, Nick. 2004. “Continuous Paper: The Early Materiality and Workings of

 Electronic Literature.” Modern Language Association (MLA) Convention,

 Philadelphia, December 28.

Montfort, Nick. 2008. “Obfuscated Code.” In Software Studies: A Lexicon, ed.

 Matthew Fuller, 193–199. Cambridge, MA: MIT Press.

Montfort, Nick. 2009. “The ppg256 Series of Minimal Poetry Generators.”

 Proceedings of the Digital Arts and Culture Conference, 2009.

{282} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

 UC Irvine, December 14. http://escholarship.org/uc/item/4v2465kn

Montfort, Nick. 2010. “Random Mazes.” Code Critiques. Critical Code Studies

 Working Group. February 5. Unpublished online discussion.

Montfort, Nick. 2010. “@party: Weaving thread.” Post Position. June 20.

 http://nickm.com/post/2010/06/party-weaving-thread/

Montfort, Nick. 2010. “Colloquium Past, Conference to Come in Mexico.” Post

 Position. November 17. http://nickm.com/post/2010/11/colloquium-past-

 conference-to-come-in-mexico/

Montfort, Nick. 2011. “10 PRINT Talks Galore.” Post Position. January 26.

 http://nickm.com/post/2011/01/10-print-talks-galore/

Montfort, Nick, and Ian Bogost. 2009. Racing the Beam: The Atari Video Computer

 System. Cambridge, MA: MIT Press.

Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mary

 Flanagan, Mark Marino, Michael Mateas, Casey Reas, Warren Sack, Mark

 Sample, and Noah Vawter. 2010. “Studying Software by Porting and

 Reimplementation: A BASIC Case.” Presented by Nick Montfort, Jeremy

 Douglass, and Casey Reas. Critical Code Studies Conference, University of

 Southern California. July 23. http://thoughtmesh.net/publish/382.php

Moretti, Franco. 2007. Graphs, Maps, Trees: Abstract Models for Literary History.

 New York: Verso.

Motherwell, Robert, and Jack D. Flam. 1989. The Dada Painters and Poets: An

 Anthology. Cambridge, MA: Harvard University Press.

“Mouse with a Memory.” 1952. Time 59, no. 20 (May 19).

Mullish, Henry. 1976. A Basic Approach to BASIC. New York: John Wiley & Sons.

MuppetMan et al. 2010. “Maze Code” discussion thread, Commodore 64 (C64)

 Forum, Lemon64.com. August 12–16.

 http://www.lemon64.com/forum/viewtopic.php?t=34879&sid=9526

 087188346ea3450fe0568566466b

Nake, Frieder. 2008. Personal communication, via email, with Casey Reas.

 August 18.

Nelson, Philip I. 1987. “Exploring the SID Chip.” Compute! Gazette (August):

 22–24.

noknojon. 2011. Bleepingcomputer.com. February 17, 8:01 p.m.

 http://www.bleepingcomputer.com/forums/topic380106.html/

 page__p__2138153#entry2138153

Noll, Michael A. 1962. “Patterns by 7090.” Bell Telephone Laboratories Technical

 Memorandum, MM-1234-14, August 28.

WORKS CITED {283}

Noll, Michael A. 1970. “Art Ex Machina.” IEEE Student Journal 8, no. 4: 10–14.

Olivarez-Giles, Nathan. 2011. “Commodore 64 Is Back, With the Same Ol’ Look

 But Modern Insides.” Los Angeles Times. April 7. http://latimesblogs.latimes.

 com/technology/2011/04/commodore-64-is-back-with-hdmi-out-intel-atom-

 chip-blu-ray.html

Orlowski, Andrew. 2001. “Microsoft Altair BASIC Legend Talks about Linux, CPRM

 and That Very Frightening Photo: A Very Rare Interview with Monte David

 off.” The Register. May 11. http://www.theregister.co.uk/2001/05/11/

 microsoft_altair_basic_legend_talks/

“Out of the Woods.” 1962. Time 80, no. 21 (November 23)

 http://www.time.com/time/magazine/article/0,9171,829487-1,00.html

Pearson, Lisa. 2011. It Is Almost That: A Collection of Image+Text Work by Women

 Artists & Writers. Los Angeles: Siglio Press.

Pfeiffer, John E. 1962. The Thinking Machine. Philadelphia, PA: Lippincott.

Raley, Rita. 2006. “Code.surface || Code.depth.” Dichtung-Digital 36.

 http://www.dichtung-digital.org/2006/1-Raley.htm

RAND Corporation. 1955. A Million Random Digits with 100,000 Normal Deviates.

 http://www.rand.org/pubs/monograph_reports/MR1418/index2.html

“random, n., adv., and adj.” 2011. OED Online. June. Oxford University Press.

 [Subscription-only electronic resource.]

Rapp, Larson. 1985. “$1C1 April Fool’s Program.” “Magic” section, RUN 16

 (April): 8.

Reas, Casey. 2010. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10. Twitter. July 25.

 https://twitter.com/ - !/REAS/status/19475597776

Reinfurt, David. 2009. “Six Prototypes for a Screensaver: A Retroactive History.”

 Thinking for a Living, http//www.thinkingforaliving.org/archives/5465 (part 1)

 http://www.thinkingforaliving.org/archives/5466 (part 2).

Resnick, Mitchel, Brian Silverman, Yasmin Kafai, John Maloney, Andrés Monroy-

 Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner,

 Eric Rosenbaum, and Jay Silver. 2009. “Scratch: Programming for All.”

 Communications of the ACM 52, no. 11: 60–67. Scratch Documentation Site,

 MIT, Cambridge, MA.

 http://web.media.mit.edu/~mres/papers/Scratch-CACM-final.pdf

Rettberg, Jill Walker. 2011. “10 PRINT CHR$(205.5+RND(1)); : GOTO 10.”

 Flickr. February 9. http://www.flickr.com/photos/lij/5431033237/

Roberts, H. Edward, and William Yates. 1975. “Altair 8800 Minicomputer.”

 Popular Electronics 7, no. 1 (January): 33–38.

{284} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Rose, Barbara. 1991. Art-as-Art, The Selected Writings of Ad Reinhardt. Berkeley:

 University of California Press.

Rotenberg, A. 1960. “A New Pseudorandom Number Generator.” Journal of the

 ACM (JACM) 7, no. 1: 75–77.

Rotman, Brian. 1987. Signifying Nothing: The Semiotics of Zero. Palo Alto, CA:

 Stanford University Press.

Salen, Katie, and Eric Zimmerman. 2004. Rules of Play: Game Design

 Fundamentals. Cambridge, MA: MIT Press.

Selfridge, R. G. 1977. “Fun and Games, Good and Bad, with APL.” In ACM-SE 15

 Proceedings of the 15th Annual Southeast Regional Conference, 238–244.

 New York: ACM.

Shneiderman, Ben. 1976. “Exploratory Experiments in Programmer Behavior.”

 International Journal of Computer and Information Sciences 5, no. 2:

 123–143.

Singer, Susanna, ed. 1984. Sol LeWitt Wall Drawings 1968–1984. Amsterdam:

 Stedelijk Museum.

Smith, Adam. 2010. “the infamous c64 maze generator.” Flickr. October 6.

 http://www.flickr.com/photos/rndmcnlly/5058442151/

Smith, Cyril Stanley, and Pauline Boucher. 1987. “The Tiling Patterns of Sebastien

 Truchet and the Topology of Structural Hierarchy.” Leonardo 20, no. 4:

 373–385.

Steil, Michael. 2011. “How Many Commodore 64 Computers Were Really Sold?”

 pagetable.com. February 1. http://www.pagetable.com/?p=547

Strachey, Christopher. 1954. “The ‘Thinking’ Machine.” Encounter 3, no. 4

 (October): 25–31.

Swaine, Michael. 2006. “Dr. Dobb’s Journal @ 30.” Dr. Dobb’s: The World of

 Software Development. January 1.

 http://drdobbs.com/architecture-and-design/184406378

Tearse, Brandon, Michael Mateas, and Noah Wardrip-Fruin. 2010. “MINSTREL

 Remixed: A Rational Reconstruction.” In INT3 ’10: Proceedings of the

 Intelligent Narrative Technologies III Workshop, 1–7. New York: ACM.

th0ma5w. 2011. “10 PRINT CHR$(205.5+RND(1)); : GOTO 10.” YouTube. July 23.

 “As demonstrated by Casey Reas at the Eyeo Festival, June 2011,

 Minneapolis, Minnesota, a random maze generation program in one line

 of Commodore 64 Basic.”

 http://www.youtube.com/watch?v=m9joBLOZVEo

Thomas, Douglas. 2002. Hacker Culture. Minneapolis: University of

WORKS CITED {285}

 Minnesota Press.

TIOBE Software BV. 2012. “TIOBE Programming Community Index for January

 2012.” TIOBE Software. January 8.

 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Tribble, David. 2005. "Go To Statement Considered Harmful: A Retrospective."

 david.tribble.com. Revision 1.1, November 27.

 http://david.tribble.com/text/goto.html

U.S. Bureau of the Census. 1988. “Who Uses a Computer?” Statistical Brief SB-2-

 88. U.S. Government Printing Office, Washington, DC.

von Neumann, John. 1961. “Various Techniques Used in Connection with Random

 Digits.” In Collected Works: Design of Computers, Theory of Automata and

 Numerical Analysis, vol. 5, ed. A. H. Taub, 768–769. Oxford: Pergamon Press.

Waldrop, M. Mitchell. 2001. The Dream Machine: J.C.R. Licklider and the

 Revolution That Made Computing Personal. New York: Viking.

Wallace, James, and Jim Erickson. 1992. Hard Drive: Bill Gates and the Making of

 the Microsoft Empire. New York: Wiley.

Wardrip-Fruin, Noah. 2005. “Christopher Strachey: The First Digital Artist?” Grand

 Text Auto blog. August 1.

 http://grandtextauto.org/2005/08/01/christopher-strachey-first-digital-artist/

Weinberger, Eliot, and Octavio Paz. 1987. Nineteen Ways of Looking at Wang Wei:

 How a Chinese Poem Is Translated. Mount Kisco, NY: Moyer Bell.

Widenbeck, Susan. 1986. “Beacons in Computer Program Comprehension.”

 International Journal of Man–Machine Studies 25: 697–709.

Wright, Craig M. 2001. The Maze and the Warrior: Symbols in Architecture,

 Theology and Music. Cambridge, MA: Harvard University Press.

Zelevansky, Lynn. 2004. Beyond Geometry: Experiments in Form, 1940s–1970s.

 Cambridge, MA: MIT Press.

Zemanek, H. 1976. “Computer Prehistory and History in Central Europe.” In

 AFIPS’76 Proceedings of the June 7–10, 1976, National Computer

 Conference and Exposition, 15–20. New York: ACM.

Zlokower, Roberta. 2005. “Martha Graham Dance Company: Errand into the

 Maze, El Penitente, Sueno, Sketches from Chronicle.” Roberta on the

 Arts. April 17. http://www.robertaonthearts.com/dance/Martha%20

 Graham%20Dance%20Company%20Errand%20into%20the%20Maze,

 %20El%20Penitente,%20Sueno,%20Sketches%20from%20Chronicle.html

90
VaRianTs OF

10 pRinT

{288} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

While the specific line of code 10 PRINT CHR$(205.5+RND(1)); :

GOTO 10 is the focus of this book, and has been treated as canonical, this

program is not a simple transcription of some authoritative version. The

authors of this book developed this variant of the program in an attempt

to represent many of the common features of a BASIC one-liner and to

embody aspects of the earliest two variants that we found. Variants of this

maze-generating code have appeared in print and other contexts over the

course of the Commodore 64’s commercial lifetime and beyond. Some of

these variants are addressed in the chapters and remarks; others are listed

only here. The following variants of 10 PRINT may differ in length, line

numbering, and character codes used, but they are all meant to produce

the same output. These are all the variants the authors are aware of as of

May 2012, with full bibliographic information for each known appearance

of each of them.

VaRianT 1982

10 PRINT "[CLR/HOME]"

20 PRINT CHR$(205.5 + RND(1));

40 GOTO 20

Commodore, Inc. 1982. Commodore 64 User’s Guide. Wayne, PA and

 Indianapolis, IN: Commodore Business Machines. Distributed by

 Howard W. Sams & Co. p. 53.

VaRianT 1984

8 PRINT CHR$(205.5 + RND(8)); : GOTO 8

Krueger, Dan A. 1984. “Trick $93.” “Magic” section, RUN 7 (July): 13–14.

VARIANTS OF 10 PRINT {289}

Figure 90.1

A three-line variant of 10 PRINT in the Commodore 64 User's Guide, 1982.

{290} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Figure 90.2

A one-line variant of 10 PRINT (upper left) in the "Magic" section of RUN 7,

July 1984.

VARIANTS OF 10 PRINT {291}

VaRianT 2008a

10 PRINT CHR$(109+RND(1)*2); : GOTO 10

Montfort, Nick. 2008. “Obfuscated Code.” In Software Studies: A

 Lexicon, ed. Matthew Fuller. 193–199. Cambridge, MA: MIT Press.

Inacio da Silva, Cicero. 2008. “Software Arte,” slide 17. SlideShare.

 November 18.

 http://www.slideshare.net/cicerosilva/software-arte-presentation

Marino, Mark C. 2010. “The ppg256 Perl Primer: The Poetry of Techne

 culture.” Emerging Language Practices, no. 1 (Fall).

 http://epc.buffalo.edu/ezines/elp/issue-1/ppg256.php

VaRianT 2008b

10 ?"<CLEAR/HOME>"

20 ? CHR$(205.5)+RND(1))

40 GOTO20

Lord Ronin. 2008. “In the Beginning Part 8.” Commodore Free

 Magazine, September. http://commodorecomputerclub.co.uk/view.

 php?art=commodore_free_23&loc=magazine

Entering and running this program as it appears above will cause it to ter-

minate abnormally with the message “?TYPE MISMATCH ERROR IN 20.”

The immediate culprit is the extra right parenthesis that appears after

“205.5.” However, even if this superfluous character is removed, the pro-

gram will not work as intended, because the semicolon that should appear

at the end of line 20 is missing. The intention for this program to function

like the others listed here is clear from the discussion in the surrounding

article, however.

{292} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

VaRianT 2010a

10 PRINT CHR$(109+RND(0)*2);:GOTO 10

Bogost, Ian. 2010. Comment on “Program Your Apple II! Why Not

 Program Today?” Computing Education Blog. February 20.

 http://computinged.wordpress.com/2010/02/20/program-your-

 apple-ii-why-not-program-today/

VaRianT 2010b

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Montfort, Nick. 2010. “@party: Weaving thread.” Post Position. June 20.

 http://nickm.com/post/2010/06/party-weaving-thread/

Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass,

 Mary Flanagan, Mark Marino, Michael Mateas, Casey Reas, Warren

 Sack, Mark Sample, and Noah Vawter. 2010. “Studying Software by

 Porting and Reimplementation: A BASIC Case.” Presented by Nick

 Montfort, Jeremy Douglass, and Casey Reas. Critical Code Studies

 Conference, University of Southern California. July 23.

 http://thoughtmesh.net/publish/382.php

Driscoll, Kevin. 2010. “Critical Code Studies 2010.” Driscollwiki. July 23.

 http://kevindriscoll.org/wiki/Critical_code_studies_2010

Reas, Casey. 2010. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10. Twitter.

 July 25. https://twitter.com/ - !/REAS/status/19475597776

Montfort, Nick. 2010. “Colloquium Past, Conference to Come in Mexico.”

 Post Position. November 17. http://nickm.com/post/2010/11/collo

 quium-past-conference-to-come-in-mexico/

Montfort, Nick. 2011. “10 PRINT Talks Galore.” Post Position. January 26.

 http://nickm.com/post/2011/01/10-print-talks-galore/

Rettberg, Jill Walker. 2011. “10 PRINT CHR$(205.5+RND(1)); : GOTO 10.”

 Flickr, February 9. http://www.flickr.com/photos/lij/5431033237/

Kidd, David. 2011. Backstrip.net. April 8. http://backstrip.net/post/

 4432566244/ive-been-tooling-around-with-street-making

th0ma5w. 2011. “10 PRINT CHR$(205.5+RND(1)); : GOTO 10.” YouTube.

VARIANTS OF 10 PRINT {293}

 July 23. “As demonstrated by Casey Reas at the Eyeo Festival, June

 2011, Minneapolis, Minnesota, a random maze generation program

 in one line of Commodore 64 Basic.”

 http://www.youtube.com/watch?v=m9joBLOZVEo

VaRianTs 2010C–F

1 printchr$(205.5+rnd(1));:goto1

1 ?chr$(205.5+rnd(1));:run

1?chr$(205.5+rnd(1));:rU

0?cH(205.5+rN(1));:gO

MuppetMan et al. 2010. “Maze Code” discussion thread, Commodore

 64 (C64) Forum, Lemon64.com. August 12–16.

 http://www.lemon64.com/forum/viewtopic.php?t=34879&sid=9526

 087188346ea3450fe0568566466b

VaRianT 2010g

10 print chr$(205.5 + Rnd(1));

20 goto 10

Smith, Adam. 2010. “the infamous c64 maze generator.” Flickr.

 October 6. http://www.flickr.com/photos/rndmcnlly/5058442151/

VaRianT 2011a

10 PRINT CHR$(205.5+RND(1)) GOTO 10

Fuchs, Martin. 2011. Written Images. Rendered February 9.

 Book number 182/230, page 161.

{294} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

This is printed as the title of Casey Reas’s contribution to this volume, seven

pages of white, blue, and black images generated with a Processing pro-

gram that is inspired by 10 PRINT. The semicolon and colon, which are

necessary for the program’s proper functioning and its validity as BASIC,

were removed in error during editing in this limited-edition book. This title

is also presented this way on page 1 of Written Images, in the table of

contents.

VaRianT 2011b

10 PRINT "(It indicates that here you press Shift and

CLR/Home Keys" I found my 7 key has Home on it -)" note

the " marks at start and end

20 PRINT CHR$(205.5+RND(1))

30 PRINT GOTO 20

noknojon. 2011. Bleepingcomputer.com. February 17, 8:01 p.m.

 http://www.bleepingcomputer.com/forums/topic380106.html/

 page__p__2138153#entry2138153

Entering and running this program as it appears above will cause it to

terminate abnormally with the message “? SYNTAX ERROR IN 30.” Two

changes need to be made for this code to function as intended: a semico-

lon should be added at the end of line 20 and “PRINT” should be removed

from line 30.

 In addition, this text indicates that one should hold SHIFT and then

press the CLR/HOME key. This causes the screen to be cleared when the

program is run and it moves printing of characters to the upper left. If CLR/

HOME is pressed without holding SHIFT, as the 1982 and 2008b variants

seem to suggest one should do, the printing of characters will move to the

upper left but the display will not be cleared, so the maze will move down-

ward to cover whatever is already on the screen.

95
abOuT

THE
auTHORs

{296} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Nick Montfort is associate professor of digital media at MIT. He co-edited

The New Media Reader, co-authored Racing the Beam, and wrote Twisty

Little Passages and the book of poems Riddle & Bind.

Patsy Baudoin is the MIT Libraries liaison to the MIT Media Lab and the

visual arts, film studies, and foreign languages and literatures librarian

at MIT.

John Bell is assistant professor of Innovative Communication Design at

the University of Maine and senior researcher at Still Water for Network

Art and Culture.

Ian Bogost is associate professor in the School of Literature,

Communication, and Culture at the Georgia Institute of Technology

and founding partner, Persuasive Games LLC. He is an author of Unit

Operations, Persuasive Games, Newsgames, How to Do Things with

Video Games, and Alien Phenomenology.

Jeremy Douglass is assistant professor of English at the University of

California, Santa Barbara.

Michael Mateas is an associate professor of computer science at the

University of California, Santa Cruz whose research focus is AI-based art

and entertainment.

ABOUT THE AUTHORS {297}

Mark C. Marino is an associate professor (teaching) of writing at the

University of Southern California where he directs the Humanities and

Critical Code Studies Lab. In 2010 he hosted the online Critical Code

Studies Working Group, where the first extensive discussion of the 10

PRINT program occurred.

Casey Reas is an artist and professor of Design Media Arts at the Univer-

sity of California, Los Angeles; with Ben Fry, he initiated the open source

programming platform Processing. He is an author of Processing: A

Programming Handbook for Visual Designers and Artists; Form+Code in

Design, Art, and Architecture; and Process Compendium 2004–2010.

Mark L. Sample is associate professor of English at George Mason

University, where he teaches and researches contemporary literature

and new media.

Noah Vawter earned his PhD at the MIT Media Lab. He is a sound artist

and invented Ambient Addition, 1-bit groovebox, and other musical

instruments.

100
inDEx

{300} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Note: The appearance of “f” after a page number (e.g. 48f) indicates that the

reference is to a figure on the specified page.

“0wnz0red,” 186–187

3D Monster Maze, 44, 45

6502 (MOS Technology processor), iv, 53, 180–182, 196, 219, 222, 233–235

Acconci, Vito, 99, 101

Adventure (Atari VCS game), 47, 48f

Adventure (interactive fiction), 45–47, 86

After Dark (screensavers), 82–83

Ahl, David, 183, 191

Air-Sea Battle, 197f, 200

Algol, 15, 158, 163

Allen, Paul, 169, 171, 173, 175, 181–182

Allison, Dennis, 173–174

April Fool’s program, 149, 151

Arcade games, 38, 46, 47, 85, 141, 196, 222

Arnheim, Rudolf, 4

Art, 66, 71, 78–85, 88–89, 103, 124–127, 135–139, 142. See also specific artists

 and works

 computational 135–139, 142

 craft traditions, 66, 74–78, 95, 231

 dance, 38, 66, 101, 102f

 minimalism, 66, 78, 89, 103

 painting, 4, 59, 66, 79–80, 84, 127

 performance, 89, 99, 101, 126

ASC (BASIC function), 12, 289f

ASCII, 13, 53

Assembly language, 151, 161–162, 176–177, 195–208, 233–242

Asterisk (*), 13, 166

Asteroids, 46, 205

Atari VCS, 47–48, 85–86, 172, 195–208

Babbage, Charles, 159–160

Barthes, Roland, 4, 9

BASIC, 8–16, 19–29, 53–55, 90–98, 100, 120, 131, 157–194, 264. See also specific

INDEX {301}

 BASIC keywords

 6502 BASIC, 53, 180–182

 Altair BASIC, 53, 158, 168–173, 175, 176, 178–182, 184

 Applesoft BASIC, 53–55

 Apple II BASICs, 53

 Commodore 64 BASIC version 2, 5–6, 8–16, 19–29, 53, 142–144, 148–151,

 153–155, 179–182, 230–232, 243–260,

 Dartmouth BASIC, 86, 163–167

 History of, 8–16, 157–194

 PBASIC, 191–192

 QBasic, 9, 177, 191

 QuickBASIC, 191

 Small BASIC, 191

 TI-BASIC, 192

 Tiny BASIC, 173–175

 True BASIC, 94, 192

 Visual Basic, 191

 Visual Basic .NET, 191

Beckett, Samuel, 4

Beginner’s All-Purpose Symbolic Instruction Code. See BASIC

Benjamin, Walter, 121, 123

Branch, 15, 34, 90–98, 132–133, 160–161, 176. See also GOTO (BASIC command);

 jmp (assembly opcode)

Breton, André, 125

“BURROW” (BASIC program), 149, 150f

Byron, Ada, Countess of Lovelace, 159–161

Cage, John, 126–127

Cambridge University, 161, 184

CAPTCHA, 140

Character codes. See ASCII; Murray code; PETSCII

CHROUT (KERNAL routine), 98, 236, 239, 245, 263

Charpentier, Al, 222, 228

Childs, Lucinda, 101, 102f

CHR$ (BASIC function), 12, 58, 149, 166–167, 225, 245

Chun, Wendy, 5

COBOL, 96, 162

{302} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Code (computer programs), 3–17, 20, 52–53, 90–98, 159–166, 182–190, 262–267

 circulation in print, 148–151, 182–186

 cultural significance, xi, 3–8, 165–166, 174, 262–263, 264–267

 memorizing, 186–190, 193

 modifying, 19–29, 97–98, 186, 218, 230–232, 240, 265–267

 porting, 5, 51–62, 105–118, 195–208, 233–239, 266–267

 reading, 3–5, 6–7, 8–16, 19, 61–62, 167, 184, 186, 188–189, 262–267

Coin-op games. See Arcade games

Colon (:), 15, 90, 176–177

Combat (Atari VCS game), 47, 197f, 202

Commodore 64, 179–182, 209–242. See also specific aspects, components,

 and publications, including 6502 (MOS Technology processor); BASIC;

 Commodore 64 User’s Guide; SID; VIC-II; RUN (magazine)

 advertising, 179–180, 214f, 215–216

 demoscene and, 240

Commodore 64 Programmer’s Reference Guide, 153, 231, 239

Commodore 64 User’s Guide, 3, 8, 20, 23, 32, 65f, 83,146,177,193, 224f, 226, 289f

Commodore PET, 12, 85, 148–149, 180–181, 183, 196, 219–221

Compute!, 183

Computer games, 44–48. See also specific computer games

Creative Computing, 182

Critical code studies, 3, 6–7, 193, 267

Cultural analytics, 4

Culturomics, 4

Dance, 38, 66, 85, 101, 103

 Dance (performance), 101, 102f, 103

Dartmouth College, 10, 11, 86, 158, 163–167

DEC (Digital Equipment Corporation), 183

Decuir, Joe, 196

Digital humanities, 4

Dijkstra, Edsger W., 93–94, 96–97, 133

Distant reading, 4

Doctorow, Cory, 186–187

Dollar sign ($), 12, 166–167

Doom, 45

Doüat, Dominique, 71, 74, 79

INDEX {303}

Dr. Dobb’s Journal of Tiny BASIC Calisthenics and Orthodontia, 174, 178, 182

Duchamp, Marcel, 82, 126

 Precision Objects, 82

 Rotoreliefs, 82–83

 Three Standard Stoppages, 125

Dungeons & Dragons, 35, 120

EDSAC, 161

Ellsworth, Jeri, 212

Emulators, 21, 23, 145, 212, 229

 Commodore 64, 20–23

 VICE, 21, 212

ENIAC, 68, 160

Floating point arithmetic, 12–13, 53, 55, 169

FOR (BASIC loop), 96, 100

FORTRAN, 96, 134, 158, 162–163, 188

Foucault, Michel, 4

Fry, Ben, 106, 277

Gabo, Naum, 88

Gates, Bill, 169, 171, 173, 175, 178, 180–182. See also Microsoft

 “Open Letter to Hobbyists,” 175, 178

General Electric, 165

Gerstner, Karl, 84

Glass, Philip, 101, 102f

“GNU Manifesto,” 174, 178

Gombrich, E. H., 67, 74, 87

GOSUB (BASIC command), 8, 92, 176–177, 233, 251

GOTO (BASIC command), 8, 10, 15, 92–95, 162, 176–177, 233, 237

 considered harmful, 93–94

 origin in FORTRAN, 162

Grid, 45, 56, 67–81, 84–87, 101–103, 127, 132–133, 251

Gullar, Ferreira, 79

Hall, Stuart, 4

Harvard, 169, 171

{304} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Hockenhull, Stéphane, 273

Home computers. See Commodore 64 and other specific home computers

Homebrew Computer Club, 175, 178

Hunt the Wumpus, 45

IBM, 96, 135, 148, 162, 173, 215

Interactive fiction, 45–46, 86

Jacquard, Joseph-Marie, 76

 Jacquard Loom, 76

JavaScript, 56–58, 131, 192, 264, 273

jmp (assembly opcode), 92, 94, 161–162, 237

Jump. See Branch

Kemeny, John G., 96, 158, 163–167, 176, 184, 190, 192

KERNAL, 98, 151, 232–239, 245, 263

Klee, Paul, 79, 80

Knossos. See Mazes

Knuth, Donald, 131, 133

Krumins, Peteris, 152

Kruskal, Joseph, 133

Kurtz, Thomas E., 158, 163–167, 176, 190, 192

Labyrinths. See Mazes

LeWitt, Sol, 81, 101, 102

Line numbers, 8–10, 15, 100, 162, 176–177

LOGO, 191

Loop, 9, 28, 43, 56, 58, 78, 81–82, 89–101, 118, 145, 149, 235–236,

 244–245, 253, 256

Lutz, Theo, 134

Machine language, 91, 158, 160–161, 168, 171, 174, 186, 233

Maeda, John, 106

Malaby, Thomas, 123, 124

Manchester University, 134

Manovich, Lev, 4

Maze (computer game), 44

INDEX {305}

Maze Craze, 47

Mazes, 32–49

 3D, 44–45, 47, 82–83, 222

 Cathedral at Amiens, 36f, 37

 Cathedral at Chartres, 37, 67

 computerized, 43–48

 graphing, 132–133

 Hampton Court Palace, 39–40

 hedge, 34, 37, 39–41, 44, 46, 49, 132

 Knossos (Crete), 32, 35, 37, 38

 laboratory, 40–43, 49

 vs. labyrinths, 32–34, 39, 43, 46, 49, 59, 67, 132, 246, 266

 multicursal, 33–35, 37, 39, 132, 253

 unicursal, 33–35, 39, 49, 253

Maze War. See Maze (computer game)

Microsoft, 15, 53, 55, 150, 159, 168–169, 170f, 171–173, 175–179, 180–182,

 191–192, 222

Million Random Digits, A, 127–128, 129f, 134

Miner, Jay, 196

Minimalism, 59, 61, 66, 78, 89, 103

Minotaur, 32, 35, 37–38, 44, 84

MIT, 7, 41, 44, 106, 128, 133, 192

MITS (Micro Instrumentation and Telemetry Systems), 158, 169, 171, 173, 175, 184

Mohr, Manfred, 136, 138, 139

Molnar, François, 80

Molnar, Vera, 64, 80

Mondrian, Piet, 59, 79, 80

Morellet, François, 78, 127

Moretti, Franco, 4

Morse, Harrison, 133

MOS Technology, 196, 219, 231, 237

Ms. Pac-Man, 141, 144

Multiplication sign (×), 13, 166

Murray code, 167

Nake, Frieder, 135–136

Nees, Georg, 135

{306} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Noll, A. Michael 135–136

Nintendo, 84, 219

One-liner, 4–5, 53–58, 97, 100, 114f, 147–155, 162, 176, 186–190, 218

“Ownz0red.” See “0wnz0red”

Pac-Man, 38, 39–40, 46–47, 141

Parenthesis, 12, 291

PATH, 58–61

Patterns, 67, 74–75

 Celtic, 71

 grid (see Grid)

 Islamic, 67, 71

 litema, 73f, 74–75

 maze (see Mazes)

 textile, 74–78

 Truchet, 68, 70–72, 74

Peddle, Chuck, 219, 221

People’s Computer Center, 173

People’s Computer Company (PCC), 169, 173, 178, 184, 185f

Perl, 9, 56–58, 113, 131, 152, 155, 166, 187, 190, 193, 273

Perlin, Ken, 139

PETSCII, 221, 223, 224f, 225–228

 vs. Apple II characters, 55

 vs. ASCII, 13, 53

 diagonals, 23, 24, 27–28, 68

PHP, 166, 193

Platform studies, 3, 6–7

Popular Electronics, 168–169, 170f, 173

Precision Objects, 82

Prim, Robert Clay, 133

PRINT (BASIC command), 10–11, 98, 121, 239, 245, 263

Processing, 17, 61, 91, 105–118, 264

Programming and programmers, 3–7, 10, 11, 20, 34–35, 41, 52, 58, 75–76, 97,

 133, 152–154, 159–162, 164f, 164–165, 169–170, 173–174, 176–177,

 186–190, 217f, 241, 264–265

Programming languages, 159–194. See also specific programming languages

INDEX {307}

Python, 131, 182

Raley, Rita, 3

RAND Corporation, 43, 127–128, 129f

Randomness, 119–146. See also RND (BASIC function)

 in art, literature, and music, 124–128, 133–139, 142, 146

 vs. chance, 121–124

 in computing, 128–146

 etymology of, 120

 in games, 121–124, 184

 vs. pseudorandomness, 14, 29, 44, 120, 130–131, 141–142, 144–146,

 237–238

Regularity

 spatial (see Grid; Patterns)

 temporal (see Loop)

Reinhardt, Ad, 78

Repetition. See Regularity

RND (BASIC function), 12, 13, 14, 29, 55, 120–121, 142–145, 151, 237–238

Roberts, Ed, 169, 175

Ross, Douglas, 41, 133

Rotoreliefs, 82–83

RUN (magazine), 9, 20, 3, 74, 148–9, 150f, 151,183, 192, 226, 290f

Sack, Warren, 273

SAGA II, 133

Shneiderman, Ben, 188

Scratch, 192–194

Screensavers, 82–84

Scrolling, 228–229, 239, 244, 263

Semicolon (;), 14–15, 68, 70f, 291

Shannon, Claude, 42f, 43, 46, 248

SID (Sound Interface Device chip), 231, 235

Skull (computer game), 45

Smith, Cyril Stanley, 64, 65f, 71

Software studies, xi, 3, 6–7

Sousan, Andre, 219, 221

Space (typographical), 10, 111, 163–164

{308} 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Spacewar, 87

Sprite, 196, 198–207, 221, 228

Stallman, Richard, 174, 178

Step Piece, 99, 101

Strachey, Christopher, 133–134

String (data type), 10–11, 12, 98, 166–167

Tank (computer game), 46–47, 196

Teletypewriter, 11, 13–14, 86, 166, 168, 174, 176, 263, 265

Tennis for Two, 87

Text games. See Interactive fiction

Theseus

 Claude Shannon’s mouse, 42–44, 248

 Greek myth, 32, 35–38, 49, 84

“thread” (assembly program), 240–242

“threadbare” (assembly program), 64, 234–239

Three Standard Stoppages, 125

TIA (Television Interface Adapter chip), 196, 198–207

Time-sharing, 158, 162–165

Tramiel, Jack, 181, 218–219, 221, 225

Tramiel, Leonard, 221, 225

Translation, 52, 61, 234

TRS-80 Color Computer, 54f, 55–56

Truchet, Sébastien, 65f, 68–72, 74

TX-0, 41, 133

Tzara, Tristan, 125

University of Pennsylvania, 160

Van Doesburg, Theo, 79

Variants, 3, 5, 10, 20, 124, 181, 287–294

Variations on a program, 5–6, 17, 19–29, 105–118, 142, 245–262, 268

VIC-20, 179, 181, 183, 200, 211f, 216, 221–222, 223f, 228, 232, 238

VIC-II (Video Interface Chip II), 155, 171, 222, 228–232

von Neumann, John, 131

Washington State University, 169

INDEX {309}

Wolfenstein 3D, 45

Wozniak, Steve, 85

Yorke, Thom, 125

	10PRINT_001_11
	10PRINT_002_11
	10PRINT_003_11

