772/' /\\ AN\ \s
> /N

18 PRINT CHRES(ZB5.5+RHND{(1>>; : GOTOD 1ia

Yy

NICK MONTFORT. PATSY BAUDODIN,

JOHN BELL., IAN BOGOST, JEREMY DOUGLASS,
MARK C. MARINO, MICHAREL HMATEAS,

CASEY REAS., MARK SAMPLE, MOAH VAHTER

\
\
\
<

18 PRIHT CHE:5{285.53+RNHD{1>>; : GOTO i8

Software Studies

Matthew Fuller, Lev Manovich, and Noah Wardrip-Fruin, editors

Expressive Processing: Digital Fictions, Computer Games, and Software Studies,
Noah Wardrip-Fruin, 2009

Code/Space: Software and Everyday Life, Rob Kitchin and Martin Dodge, 2011
Programmed Visions: Software and Memory, Wendy Hui Kyong Chun, 2011

Speaking Code: Coding as Aesthetic and Political Expression, Geoff Cox and
Alex McClean, 2012

10 PRINT CHR$(205.5+RND(1)); : GOTO 10, Nick Montfort, Patsy Baudoin,
John Bell, lan Bogost, Jeremy Douglass, Mark C. Marino, Michael Mateas,
Casey Reas, Mark Sample, and Noah Vawter, 2013

18 PRINT CHR:5{2B5.5+RNHD<{1}>>; : GOTO 18

NICK MONTFORT. PATSY BAUDODIN,
JOHHN BELL, InM BOGOST,.

JEREMY DOUGLASS, MARK C. MARINO,
MICHAEL HMATEAS, CASEY REAS.

MARK SAMPLE. NODAH UVAMWTER

THE MIT FPRESS
CAMBRIDGE, MASSACHUSETTS
LONDON,. ENGLAND

Except for images with their own copyright notices, this work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike license, available
at http://creativecommons.org/licenses/by-nc-sa/3.0/ or by mail from Creative

Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

MIT Press books may be purchased at special quantity discounts for business or
sales promotional use. For information, email special_sales@mitpress.mit.edu or
write to Special Sales Department, The MIT Press, 55 Hayward Street,
Cambridge, MA 02142.

This book was designed and typeset by Casey Reas using Avenir by Adrian
Frutiger, Cé64 by Style, and TheSansMono by LucasFonts. Printed and bound in

the United States of America.

Library of Congress Cataloging-in-Publication Data

10 PRINT CHR$(205.5+RND(1)); : GOTO 10 / Nick Montfort . . . [et al.].

p. cm.—(Software studies)
Includes bibliographical references and index.
ISBN 978-0-262-01846-3 (hardcover : alk. paper)
1. BASIC (Computer program language)—History. |. Montfort, Nick.
QA76.73.B3A14 2013
005.26'2—dc23

2012015872

0 9 8 7 6 5 4 3 21

Ten authors collaborated to write this book. Rather than produce a
collection of ten separate articles, we chose a process of communal
authorship. Most of the writing was done using a wiki, although this
process differed significantly from the most famous wiki-based project,
Wikipedia. Our book was not written in public and was not editable
by the public. We benefited from comments by reviewers and from
discussions with others at conferences and in other contexts; still, the
text of the book was developed by the ten of us, working together as
one, and we bear the responsibility for what this book expresses.

All royalties from the sale of this book are being donated to
PLAYPOWER, a nonprofit organization that supports affordable,
effective, fun learning games. PLAYPOWER uses a radically affordable
TV-computer based on the 6502 processor (the same chip that was
used in the Commodore 64) as a platform for learning games in the

developing world.

ia
15
28
25
38
35
48
45
o8
29
(5]
65
Ta
TS
88
85
98
95
i68

CONTENTS

SERIES FOREMWORD0000
INTRODUCTIONccccennnnnns
REM VARIATIONS IN BASIC
MAZESccccnnnaassssnnnnnnns
REM PORTS TD OTHER PLATFORHS

REGULARITYccuussennnnnnnnns
REM VARIATIONS IM PROCESSIHNG.....
REANDOMHESS nnnnnnnns
EEM ONE-LIHNERS:c:ccu0uu
BASICccccennassssnnnnnnns
EREM A PORT TO THE aATARI VCS
THE COMMODORE 64
REM MAZE HWALKER IN BASIC
COHCLUSIDOHN:c00essssnnnnnnns
ENDcccunnnsasssssnnnnnns
THAHKS easssnnnnnnnns
HORKES CITEDc000s s nnnnns
VARIANTS OF 18 PRINT
ABOUT THE AUTHORS
INDEXcconnnsasssssnnnnnns

9

SERIES
FOREWORD

Software is deeply woven into contemporary life—economically, culturally,
creatively, politically—in manners both obvious and nearly invisible. Yet
while much is written about how software is used, and the activities that
it supports and shapes, thinking about software itself has remained largely
technical for much of its history. Increasingly, however, artists, scientists,
engineers, hackers, designers, and scholars in the humanities and social
sciences are finding that for the questions they face, and the things they
need to build, an expanded understanding of software is necessary. For
such understanding they can call upon a strand of texts in the history of
computing and new media, they can take part in the rich implicit culture of
software, and they can also take part in the development of an emerging,
fundamentally transdisciplinary, computational literacy. These provide the
foundation for software studies.

Software studies uses and develops cultural, theoretical, and practice-
oriented approaches to make critical, historical, and experimental accounts
of (and interventions via) the objects and processes of software. The field
engages and contributes to the research of computer scientists, the work
of software designers and engineers, and the creations of software artists.
It tracks how software is substantially integrated into the processes of con-
temporary culture and society, reformulating processes, ideas, institutions,
and cultural objects around their closeness to algorithmic and formal de-
scription and action. Software studies proposes histories of computational
cultures and works with the intellectual resources of computing to develop
reflexive thinking about its entanglements and possibilities. It does this
both in the scholarly modes of the humanities and social sciences and in
the software creation and research modes of computer science, the arts,
and design.

The Software Studies book series, published by the MIT Press, aims
to publish the best new work in a critical and experimental field that is
at once culturally and technically literate, reflecting the reality of today’s

software culture.

SERIES FOREHORD {XI}

10

INTRODUCTION

ONE LINE

CORE CONTRIBUTIONS

10 PRINT CHR$(205.5+RND(1)); : GOTO 10
PLAN OF THE BOOK

Figure 10.1

From left to right and top to bottom, the 10 PRINT program is typed into the

Commodore 64 and is run. Output scrolls across the screen until it is stopped.

{2} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

Computer programs process and display critical data, facilitate communi-
cation, monitor and report on sensor networks, and shoot down incoming
missiles. But computer code is not merely functional. Code is a peculiar
kind of text, written, maintained, and modified by programmers to make
a machine operate. It is a text nonetheless, with many of the properties of
more familiar documents. Code is not purely abstract and mathematical; it
has significant social, political, and aesthetic dimensions. The way in which
code connects to culture, affecting it and being influenced by it, can be
traced by examining the specifics of programs by reading the code itself
attentively.

Like a diary from the forgotten past, computer code is embedded with
stories of a program’s making, its purpose, its assumptions, and more. Ev-
ery symbol within a program can help to illuminate these stories and open
historical and critical lines of inquiry. Traditional wisdom might lead one to
believe that learning to read code is a tedious, mathematical chore. Yet in
the emerging methodologies of critical code studies, software studies, and
platform studies, computer code is approached as a cultural text reflecting
the history and social context of its creation. “Code . . . has been inscribed,
programmed, written. It is conditioned and concretely historical,” new me-
dia theorist Rita Raley notes (2006). The source code of contemporary soft-
ware is a point of entry in these fields into much larger discussions about
technology and culture. It is quite possible, however, that the code with the
most potential to incite critical interest from programmers, students, and
scholars is that from earlier eras.

This book returns to a moment, the early 1980s, by focusing on a

single line of code, a BASIC program that reads simply:

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

One line of code, set to repeat endlessly, which will run until interrupted
(figure 10.1).

Programs that function exactly like this one were printed in a variety
of sources in the early days of home computing, initially in the 1982 Com-
modore 64 User's Guide, and later online, on the Web. (The published
versions of the program are documented at the end of this book, in “Vari-
ants of 10 PRINT.”) This well-known one-liner from the 1980s was recalled

by one of the book’s authors decades later, as discussed in “A Personal

INTRODUCTION {3}

Memory of 10 PRINT” in the BASIC chapter. This program is not presented
here as valuable because of its extreme popularity or influence. Rather, it
serves as an example of an important but neglected type of programming
practice and a gateway into a deeper understanding of how computing
works in society and what the writing, reading, and execution of computer

code mean.

ONE LINE

This book is unusual in its focus on a single line of code, an extremely con-
cise BASIC program that is simply called 10 PRINT throughout. Studies of
individual, unique works abound in the humanities. Roland Barthes's 5/Z,
Samuel Beckett's Proust, Rudolf Arnheim’s Genesis of a Painting: Picasso’s
Guernica, Stuart Hall et al.'s Doing Cultural Studies: The Story of the Sony
Walkman, and Michel Foucault's Ceci n’est pas une pipe all exemplify the
sort of close readings that deepen our understanding of cultural produc-
tion, cultural phenomena, and the Western cultural tradition. While such
literary texts, paintings, and consumer electronics may seem significantly
more complex than a one-line BASIC program, undertaking a close study
of 10 PRINT as a cultural artifact can be as fruitful as close readings of
other telling cultural artifacts have been.

In many ways, this extremely intense consideration of a single line
of code stands opposed to current trends in the digital humanities, which
have been dominated by what has been variously called distant reading
(Moretti 2007), cultural analytics (Manovich 2009), or culturomics (Michel
et al. 2010). These endeavors consider massive amounts of text, images,
or data—say, millions of books published in English since 1800 or a million
Manga pages—and identify patterns and trends that would otherwise re-
main hidden. This book takes the opposite approach, operating as if under
a centrifugal force, spiraling outward from a single line of text to explore
seemingly disparate aspects of culture. Hence its approach is more along
the lines of Brian Rotman'’s Signifying Nothing (1987), which documents the
cultural importance of the symbol 0. Similarly, it turns out that in the few
characters of 10 PRINT, there is a great deal to discover regarding its texts,
contexts, and cultural importance.

By analyzing this short program from multiple viewpoints, the book

{4} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

explains how to read code deeply and shows what benefits can come from
such readings. And yet, this work seeks to avoid fetishizing code, an error
that Wendy Chun warns about (2011, 51-54), by deeply considering con-
text and the larger systems at play. Instead of discussing software merely
as an abstract formulation, this book takes a variorum approach, focusing
on a specific program that exists in different printed variants and executes
on a particular platform. Focusing on a particular single-line program fore-
grounds aspects of computer programs that humanistic inquiry has over-
looked. Specifically, this one-line program highlights that computer pro-
grams typically exist in different versions that serve as seeds for learning,
modification, and extension. Consideration of 10 PRINT offers new ways
of thinking about how professional programmers, hobbyists, and human-
ists write and read code.

The book also considers how the program engages with the cultural
imagination of the maze, provides a history of regular repetition and ran-
domness in computing, tells the story of the BASIC programming language,
and reflects on the specific design of the Commodore 64. The eponymous
program is treated as a distinct cultural artifact, but it also serves as a grain
of sand from which entire worlds become visible; as a Rosetta Stone that
yields important access to the phenomenon of creative computing and the

way computer programs exist in culture.

CORE CONTRIBUTIONS

The subject of this book—a one-line program for a thirty-year-old micro-
computer—may strike some as unusual and esoteric at best, indulgent and
perverse at worst. But this treatment of 10 PRINT was undertaken to offer
lessons for the study of digital media more broadly. If they prove persua-
sive, these arguments will have implications for the interpretation of soft-
ware of all kinds.

First, to understand code in a critical, humanistic way, the practice of
scholarship should include programming: modifications, variations, elab-
orations, and ports of the original program, for instance. The programs
written for this book sketch the range of possibilities for maze generators
within Commodore 64 BASIC and across platforms. By writing them, the

10 PRINT program is illuminated, but so, too, are some of the main plat-

INTRODUCTION {9}

CRITICAL CODE STUDIES, SOFTWARE STUDIES, PLATFORM STUDIES

Critical Code Studies (CCS) is the application of critical theory and hermeneutics to
the interpretation of computer source code, as defined by one of this book’s authors
(Marino 2006). During an online, collaborative conference, another of this book's
authors challenged the 2010 Critical Code Studies Working Group to apply these
methodologies to the one-line program that is this book’s focus (Montfort 2010). Un-
til then, a number of exemplary readings had taken up software and other encoded
objects possessing considerably more code, clear social implications (for example, a
knowledge base about terrorists), and more free space for writing of human signifi-
cance in the form of comments or variable names. Members of the working group
had demonstrated they could interpret a large program, a substantial body of code,
but could they usefully interpret a very spare program such as this one? What fol-
lowed, with some false starts, was a great deal of productive discussion, an article
in Emerging Language Practices (Marino 2010), and eventually this book, with those
who replied in the Critical Code Studies Working Group thread being invited to work
together as coauthors.

CCS is a set of methodologies for the exegesis of code. Working together
with platform studies, software studies, and media archaeology and forensics, critical
code studies uses the source code as a means of entering into discussion about the

technological object in its fullest context. CCS considers authorship, design process,

forms of home computing, as well as the many distinctions between Com-
modore 64 BASIC and contemporary programming environments.

Second, there is a fundamental relationship between the formal work-
ings of code and the cultural implications and reception of that code. The
program considered in this book is an aesthetic object that invites its authors
to learn about computation and to play with possibilities: the importance of
considering specific code in many situations. For instance, in order to fully
understand the way that redlining (financial discrimination against residents
of certain areas) functions, it might be necessary to consider the specific
code of a bank’s system to approve mortgages, not simply the appearance
of neighborhoods or the mortgage readiness of particular populations.

This book explores the essentials of how a computer interprets code

{6} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

function, funding, circulation of the code, programming languages and paradigms,
and coding conventions. It involves reading code closely and with sustained and rig-
orous attention, but is not limited to the sort of close reading that is detached from
historical, biographical, and social conditions. CCS invites code-based interpretation
that invokes and elucidates contexts.

This book also employs other approaches to the interpretation of technical
objects and culture, notably software studies and platform studies. While software
studies can include the consideration and reading of code, it generally emphasizes
the investigation of processes, focusing on function, form, and cultural context at a
higher level of abstraction than any particular code. Platform studies conversely fo-
cuses on the lower computational levels, the platforms (hardware system, operating
system, virtual machines) on which code runs. Taking the design of platforms into
account helps to elucidate how concepts of computing are embodied in particular
platforms, and how this specificity influences creative production across all code and
software for a particular system. This book examines one line of code as a means of
discussing issues of software and platform.

In addition to being approaches, software studies and platform studies
also refer to two book series from MIT Press. This book is part of the Software

Studies series.

and how particular platforms relate to the code written on them. It is not
a general introduction to programming, but instead focuses on the con-
nection of code to material, historical, and cultural factors in light of the
particular way this code causes its computer to operate.

Third, code is ultimately understandable. Programs cause a computer
to operate in a particular way, and there is some reason for this operation
that is grounded in the design and material reality of the computer, the
programming language, and the particular program. This reason can be
found. The way code works is not a divine mystery or an imponderable.
Code is not like losing your keys and never knowing if they’re under the
couch or have been swept out to sea through a storm sewer. The working

of code is knowable. It definitely can be understood with adequate time

INTRODUCTION {7}

and effort. Any line of code from any program can be as thoroughly expli-
cated as the eponymous line of this book.

Finally, code is a cultural resource, not trivial and only instrumental,
but bound up in social change, aesthetic projects, and the relationship of
people to computers. Instead of being dismissed as cryptic and irrelevant
to human concerns such as art and user experience, code should be val-
ued as text with machine and human meanings, something produced and

operating within culture.

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

The pattern produced by this program is represented on the endpapers of
this book. When the program runs, the characters appear one at a time, left
to right and then top to bottom, and the image scrolls up by two lines each
time the screen is filled. It takes about fifteen seconds for the maze to fill
the screen when the program is first run; it takes a bit more than a second
for each two-line jJump to happen as the maze scrolls upward.

Before going through different perspectives on this program, it is use-
ful to consider not only the output but also the specifics of the code—what
exactly it is, a single token at a time. This will be a way to begin to look at

how much lies behind this one short line.

10

The only line number is this program is 10, which is the most conventional
starting line number in BASIC. Most of the programs in the Commodore 64
User's Guide start with line 10, a choice that was typical in other books and
magazines, not only ones for this system. Numbering lines in increments of
10, rather than simply as 1, 2, 3, . . ., allows for additional lines to be insert-
ed more easily if the need arises during program development: the lines
after the insertion point will not have to be renumbered, and references to
them (in GOTO and GOSUB commands) will not have to be changed.

The standard version of BASIC for the Commodore 64, BASIC version
2 by Microsoft, invited this sort of line numbering practice. Some exten-
sions to this BASIC later provided a RENUMBER or RENUM command that

would automatically redo the line numbering as 10, 20, 30, and so on.

i8} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

This convenience had a downside: if the line numbers were spaced out in
a meaningful way so that part of the work was done beginning at 100, an-
other segment beginning at 200, and so on, that thoughtful segmentation
would be obliterated. In any case, RENUMBER was not provided with the
version of BASIC that shipped on the Commodore 64.

One variant of this program, which was published in the Commodore-
specific magazine RUN, uses 8 as its line number. This makes this variant of
the program more concise in its textual representation, although it does not
change its function and saves only one byte of memory—for each line of
BASIC stored in RAM, two bytes are allocated for the line number, whether
it is 1 or the maximum value allowed, 63999. The only savings in memory
comes from GOTO 10 being shortened to GOTO 8. Any single digit includ-
ing 1 and even 0 could have been used instead. Line number variation
in the RUN variants attests to its arbitrariness for function, demonstrating
that 10 was a line-numbering convention, but was not required. That 8 was
both arbitrary and a specific departure from convention may then suggest
specific grist for interpretation. For a one-line program that loops forever,
it is perhaps appealing to number that line 8, the endlessly looping shape
of an infinity symbol turned upon its side. However, whether the program
is numbered 8 or 10, the use of a number greater than 0 always signals that
10 PRINT (or 8 PRINT) is, like Barthes's “work,” “a fragment of substance,”
partial with potential for more to be inserted and with the potential to be
extended (Barthes 1977, 142).

Why are typed line numbers required at all in a BASIC program? Pro-
grams written today in C, Perl, Python, Ruby, and other languages don't
use line numbers as a language construct: they aren’t necessary in BASIC
either, as demonstrated by QBasic and Visual Basic, which don’t make use
of them. If one wants a program to branch to a particular statement, the
language can simply allow a label to be attached to the target line instead
of a line number. Where line numbers particularly helped was in the act of
editing a program, particularly when using a line editor or without access to
a scrolling full-screen editor. The Commodore 64 does allow limited screen
editing when programming in BASIC: the arrow keys can be used to move
the cursor to any visible line, that line can be edited, and the new version of
the line can be saved by pressing RETURN. This is a better editing capabil-
ity than comes standard on the Apple II, but there is still no scrollback (no

ability to go back past the current beginning of the screen) in BASIC on the

INTRODUCTION {9}

Commodore 64. Line numbers provide a convenient way to get back to an
earlier part of the program and to list a particular line or range of lines. Typ-
ing a line number by itself will delete the corresponding line, if one exists in
memory. The interactive editing abilities that were based on line numbers
were well represented even in very early versions of BASIC, including the
first version of the BASIC that ran on the Dartmouth Time-Sharing System.
Line numbers thus represent not just an organizational scheme, but also an

interactive affordance developed in a particular context.

{SPACE}

The space between the line number 10 and the keyword PRINT is actually
optional, as are all of the spaces in this program. The variant line 10PRINT
CHR$(205.5+RND(1)); :GOTO10 will function exactly as the standard 10
PRINT with spaces does. The spaces are of course helpful to the person
trying to type in this line of code correctly: they make it more legible and
more understandable.

Even in this exceedingly short program, which has no variables (and
thus no variable names) and no comments, the presence of these optional
spaces indicates some concern for the people who will deal with this code,
rather than merely the machine that will process it. Spaces acknowledge
that the code is both something to be automatically translated to machine
instructions and something to be read, understood, and potentially modi-
fied and built upon by human programmers. The same acknowledgment
is seen in the way that the keywords are presented in their canonical form.
Instead of PRINT the short form ? could be used instead, and there are
Commodore-specific two-character abbreviations that allow the other key-
words to be entered quickly (e.g., GOTO can typed as G followed by SHIFT-
O.) Still, for clarity, the longer (but easier-to-read) version of these keywords

is shown in this program, as it is in printed variants.

PRINT

The statement PRINT causes its argument to be displayed on the screen.
The argument to PRINT can take a variety of forms, but here it is a string
that is in many ways like the famous string “"HELLO WORLD.” In PRINT
“HELLO WORLD” the output of the statement is simply the string literal, the

{i8} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

text between double quotes. The string in the maze-generating program is
generated by a function, and the output of each PRINT execution consists
of only a single character, but it is nevertheless a string.

Today the PRINT command is well known, as are many similarly
named print commands in many other programming languages. It is easy
to overlook that, as it is used here, PRINT does not literally “print” anything
in the way the word normally is used to indicate reproduction by marking
a medium, as with paper and ink—instead, it displays. To send output to a
printer, PRINT must be followed by # and the appropriate device number,
then a comma, and then the argument that is to be printed. By default,
without a device number, the output goes to the screen—in the case of the
Commodore 64, a television or composite video monitor.

When BASIC was first developed in 1964 at Dartmouth College, how-
ever, the physical interface was different. Remarkably, the language was
designed for college students to use in interactive sessions, so that they
would not have to submit batch jobs on punch cards as was common at
the time. However, the users and programmers at Dartmouth worked not
at screens but at print terminals, initially Teletypes. A PRINT command
that executed successfully did actually cause something to be printed. Al-
though BASIC was less than twenty years old when a version of it was made
for the Commodore 64, that version nevertheless has a residue of history,
leftover terms from before a change in the standard output technology.
Video displays replaced scrolls of paper with printed output, but the key-
word PRINT remained.

CHR$

This function takes a numeric code and returns the corresponding charac-
ter, which may be a digit, a letter, a punctuation mark, a space, or a “char-
acter graphic,” a nontypographical tile typically displayed alongside others
to create an image. The standard numerical representation of characters in
the 1980s, still in wide use today, is ASCII (the American Standard Code
for Information Interchange), a seven-bit code that represents 128 char-
acters. On the Commodore 64 and previous Commodore computers, this
representation was extended, as it often was in different ways on different
systems. In extensions to ASCII, the other 128 numbers that can be rep-

resented in eight bits are used for character graphics and other symbols.

INTRODUCTION {11}

The Commodore 64’s character set, which had been used previously on the
Commodore PET, was nicknamed PETSCII.

The complement to CHR$ is the function ASC which takes a quoted
character and returns the corresponding numeric value. A user who is curi-
ous about the numeric value of a particular character, such as the capital
letter A, can type PRINT ASC("A") and see the result, 65. A program can
also use ASC to convert a character to a numeric representation, perform
arithmetic on the number that results, and then convert the new number
back to a character using CHR$. In lowercase mode, this can be used to
shift character between uppercase and lowercase, or this sort of manipula-
tion might be used to implement a substitution cipher.

Character graphics exist as special tiles that are more graphical than
typographical, more like elements of a mosaic than like pieces of type to
be composed on a press. That is, they are mainly intended to be assem-
bled into larger graphical images rather than “typeset” or placed along-
side letters, digits, and punctuation. But these special tiles do exist in a
typographical framework: a textual system, built on top of a bitmapped
graphic display, is reused for graphical purposes. This type of abstraction
may not be a smooth, clean way of accomplishing new capabilities, but it
represents a rather typical way in which a system, adapted for a new, par-

ticular purpose, can be retrofitted to do something else.

(

CHR$ and RND are both functions, so the keyword is followed in both cases
by an argument in parentheses. CHR$ ends with the dollar sign to indicate
that it is a string function (it takes a numeric argument and returns a string),
while RND does not, since it is an arithmetic function (it takes a numeric
argument and returns a number). The parentheses here also make clear
the order of arithmetic operations. For instance, RND(1-2) is the same as
RND(-1), while RND(1)-2 is two subtracted from the whatever value is
returned by RND(1).

205.5

All math in Commodore BASIC is done on floating point numbers (num-

bers with decimal places). When an integer result is needed (as it is in the

{12} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

case of CHRS$), the conversion is done by BASIC automatically. If this value,
205.5, were to be converted into an integer directly, it would be truncated
(rounded down) to become 205. If more than .5 and less than 1 is added to
205.5, the integer result will be 206.

This means the character printed will either be the one correspond-
ing to 205 or the one corresponding to 206: ™, or #. A quirk of the Com-
modore 64 character set is that these two characters, and a run of several
character graphics, have two numeric representations. Characters 109 and
110 duplicate 205 and 206, meaning that 109.5 could replace 205.5 in this

program and the identical output would be produced.

+

This symbol indicates addition, of course. It is less obvious that this is the
addition of two floating point numbers with a floating point result; Com-
modore 64 BASIC always treats numbers as floating point values when
it does arithmetic. The first number to be added is 205.5; the second is
whatever value that RND returns, a value that will be between 0 and 1. On
the one hand, because all arithmetic is done in floating point, figuring out
a simple 2 + 2 involves more number crunching and takes longer than it
would if integer arithmetic was used. On the other hand, the universal use
of floating point math means that an easy-to-apply, one-size-fits-all math-
ematical operation is provided for the programmer by BASIC. Whether
the programmer wishes to add temperatures, prices, tomato soup cans, or
anything else, “+" will work.

The mathematical symbol “+" originated, like “&,” as an abbreviation
for “and.” As is still conventional on today’s computers, the Commodore

|u

64 has a special “plus” or addition key but does not have any way to type
a multiplication sign or a division sign. While they appear in some eight-bit
codes that extend ASCII and in Unicode, the multiplication and division
signs are absent from ASCII and from PETSCII. Instead, the asterisk (*) and
the slash, virgule, or solidus (/) are used. Given the computer's develop-
ment as a machine for the manipulation of numbers, it is curious that typo-

mxn

graphical symbols have to be borrowed from their textual uses (“*” indicat-
ing a footnote, “/” a line break or a juxtaposition of terms) and pressed
into service as mathematical symbols. But this has to do with the history

of computer input devices, which in early days included teletypewriters,

INTRODUCTION {13}

devices that were not originally made for mathematical communication.

This function returns a (more or less) random number, one which is between
0 and 1. The number returned is, more precisely, pseudorandom. While the
sequence of numbers generated has no easily discernible pattern and is
hard for a person to predict, it is actually the same sequence each time.
This is not entirely a failing; the consistent quality of this “random” output
allows other programs to be tested time and time again by a programmer
and for their output to be compared for consistency.

It is convenient that the number is always between 0 and 1; this allows
it to easily be multiplied by another value and scaled to a different range. If
one wishes to pick between two options at random, however, one can also
simply test the random value to see if it is greater than 0.5. Or, as is done
in this program, one can add 205.5 and convert to an integer so that 205 is
produced with probability 0.5 and 206 with probability 0.5.

More can be said about randomness, and much more is said in the

chapter on the topic.

1

When RND is given any positive value (such as this 1) as an argument, it pro-
duces a number using the current seed. This means that when RND(1) is
invoked immediately after startup, or before any other invocation of RND, it
will always produce the same result: 0.185564016. The next invocation will
also be the same, no matter which Commodore 64 is used or at what time,
and the next will be the same, too. Since the sequence is deterministic, the
pattern produced by the 10 PRINT program, when run before any other

invocation of RND, is a complex-looking one that is always the same.

5
Using a semicolon after a string in a PRINT statement causes the next
string to be printed immediately after the previous one, without a newline

or any spaces between them. Other options include the use of a comma,

which moves to the next tab stop (10 spaces), or the use of no symbol at

{14} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

all, which causes a new line to be printed and advances printing to the next
line. Although this use of the semicolon for output formatting was not orig-
inal to BASIC, the semicolon was introduced very early on at Dartmouth, in
version 2, a minor update that had only one other change. The semicolon
here is enough to show that not only short computer programs like this

one, but also the languages in which they are written, change over time.

The colon separates two BASIC statements that could have been placed
on different lines. In a program like this on the original Dartmouth version
of BASIC, each statement would have to be on its own line, since, to keep
programs clear and uncluttered, only a single statement per line is allowed.
The colon was introduced by Microsoft, the leading developer of micro-
computer BASIC interpreters, as one of several moves to allow more code

to be packed onto home computers.

GOTO

This is an unconditional branch to the line indicated—the program’s only
line, line 10. The GOTO keyword and line number function here to return
control to an earlier point, causing the first statement to be executed end-
lessly, or at least until the program is interrupted, either by a user pressing
the STOP key or by shutting off the power.

GOTO, although not original to BASIC, came to be very strongly asso-
ciated with BASIC. A denunciation of GOTO is possibly the most-discussed
document in the history of programming languages; this letter (discussed
in the “Regularity” chapter) plays an important part in the move from un-
structured high-level languages such as BASIC to structured languages
such as ALGOL, Pascal, Ada, and today’s object-oriented programming
languages, which incorporate the control structures and principles of these

languages.
RUN

Once a BASIC program is entered into the Commodore 64, it is set into

motion, executed, by the RUN command. Until RUN is typed, the program

INTRODUCTION {15}

lies dormant, full of potential but inert. RUN is therefore an essential token
yet is not itself part of the program. RUN is what is needed to actualize the
program.

In a similar fashion, describing the purpose of each of the twelve to-
kens in 10 PRINT does address the underlying complexity of the program.
A token-by-token explanation is like a clumsy translation from BASIC into
English, naively hewing to a literal interpretation of every single character.
Translation can happen this way, of course, but it glosses over nuance,
ambiguity, and most important, the cultural, computational, and historical
depth hidden within this one line of code. Plumbing those depths is pre-
cisely the goal of the rest of this book. The rest of this book is the RUN to
the introduction here. So, as the Commodore 64 says . . .

READY.

PLAN OF THE BOOK

The more general discussions in this book are organized in five chapters
and a conclusion. Preceding each of the five chapters and before the con-
clusion are six “Remarks.” These are more specific discussions of particular
computer programs directly related to 10 PRINT; they are programs that
the authors have found or (in the spirit of early Commodore 64 BASIC
programmers, who were encouraged to modify, port, and elaborate code
and who often did so) ones that the authors have developed to shed light
on how 10 PRINT works. These remarks are indicated with “"REM” to refer
to the BASIC statement of that name, one that allows programmers to use
a line of a program to write a remark or comment, such as 55 REM START
OF MAIN LOOP.

The first chapter, Mazes, offers the cultural context for reading a maze
pattern in 1982. The chapter plumbs cultural and scientific associations
with the maze and some of the history of mazes in computing as well.
Regularity, the second chapter, considers the aspects of 10 PRINT that
repeat in space, in time, and in the program’s flow of control. The aesthetic
and computational nature of repetition is discussed as well as the interplay
between regularity and randomness. The third chapter, Randomness, of-
fers a look at cultural uses and understandings of randomness and chance,

as they are generated in games, by artists, and in simulations. It aims to

{i6} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

show that behind a simple, commonly used capability of the computer lie
numerous historical associations and uses, from the playful to the extraor-
dinarily violent. BASIC, the fourth chapter, explains the origins of BASIC
and describes how this language came to home computing. The ways in
which short BASIC programs were circulated is also discussed. The fifth
chapter, The Commodore 64, delves into the computer’s history, exploring
the machine on which 10 PRINT runs. The most relevant technical topics,
including the PETSCII character set, the VIC-Il video chip, and the KERNAL
(the Commodore 64's operating system, stored in 8K of ROM) are also dis-
cussed. This chapter situates 10 PRINT in the context of its platform and
that platform’s rich cultural contexts.

The remarks reflect on a series of slight variations in the original BA-
SIC program, all of which are also in Commodore 64 BASIC; on ports of 10
PRINT to different languages and computers; on several ports and elabo-
rations of 10 PRINT on the Processing platform; on a collection of one-lin-
ers, including some Commodore 64 BASIC one-liners found in early 1980s
print sources; on an Atari VCS port of the program; and on some greatly
elaborated versions of the program in Commodore 64 BASIC. The last re-
mark includes elaborations that generate stable full-screen mazes, allow a
user to navigate a symbol around those mazes, and test those generated
mazes for solubility.

One line of code gives rise here to an assemblage of readings by ten
authors, offering a hint of what the future could hold—should personal

computers once again invite novice programmers to RUN.

INTRODUCTION {17}

15

REM
VARIATIONS
IN BASIC

EMULATING THE COMMODORE 64
UNBALANCED

WEAVE

CORNERS

CORNERS AND DIAGONALS

FOUR WALLS

TWO WALLS

POKE

RANDOM SOUNDS

Even small changes to the 10 PRINT code can have a significant impact
on the visual output and the pattern produced. The output of 10 PRINT
has a unique visual appeal that can be understood in terms of design (a
diagonal vs. an orthogonal composition, for instance), and in terms of how
it plays against the contextual expectations of the historical period when
it emerged (all-text BASIC programs on the one hand and graphical soft-
ware, particularly videogames, on the other).

To understand more about this, it's possible not only to read the pro-
gram the way one might go over a poem or other literary text, but also to
modify the program and see what happens, as the Commodore 64 User’s
Guide and RUN magazine explicitly invite programmers to do. Writing
code can be a method of reading it more closely, as was recognized de-
cades ago. The text accompanying the first two printed variants suggested
modifying the distribution of characters (in Commodore 64 User's Guide)
and adding code to cause random color changes (in the magazine RUN).
This section shows the results of doing the first of these, explores what hap-
pens if other PETSCII characters are chosen for display, and finally gives a
one-line variation that uses POKE to directly write to screen memory.

As tweaking the program will show, 10 PRINT is a kind of optimal so-
lution that is uniquely elegant in its design space, that of the Commodore
64 BASIC one-line maze generator. Any similar attempt is both less concise
(it requires more code) and less expressive (it resembles a maze less or
produces a less interesting visual pattern). In fact, the concision of the code
and the expressiveness of the image are tightly related. They arise out
of a unique set of constraints and interactions, particularly the interaction
between the desire to constrain the program code to a single line and the

sequence of adjacent characters in the PETSCII table.

EMULATING THE COMMODORE 64

The Commodore 64 was an extremely popular computer; many millions
of units were sold and many remain in working condition. It is still possible
to cheaply acquire a Commodore 64, hook it to a television, and operate
it as users of the 1980s did. When one's goal is to provide a classroom
of students with access to the platform, however, or when one wishes to

be able to play with and program for the Commodore 64 in many differ-

{28} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

ent locations on one’s own contemporary notebook computer, there is a
more practical alternative to finding, setting up, and starting up the classic
taupe unit.

This alternative is a Commodore 64 emulator, a software version of
the computer that runs on contemporary hardware and functions in the
way the original Commodore 64 did. In 1983, a Commodore 64 could be
purchased for $600. Today, for those who already have Internet-connected
computers, it costs nothing to download and use an emulator. Emulators
have been disparaged as inadequate attempts to mimic computers; while
they do not capture the material aspects of older computers, they need
not be considered as poor substitutes. Instead, an emulator can be usefully
conceptualized as an edition of a computer.

When developers produce a program, such as the free software emu-
lator VICE, that operates like a Commodore 64, it can be considered as
a software edition of the Commodore 64. It isn't an official or authorized
edition—only being a product of Commodore would allow for that. (There
are official, authorized emulators for some systems, but VICE and many of
the most frequently used emulators are not official.) An emulator like this is
an attempt—more or less successful—to produce a system that functions
like a Commodore 64. The development of an emulator typically takes a
great deal of effort and can be extremely effective, as it is in the case of
VICE. Thinking of this as an edition of the system seems to be a useful way
to frame emulation, as it allows users to compare editions and usefully un-
derstand differences and similarities. Some emulators (like some editions)
may be better for teaching, for casual reading or play, or for research and
study. Instead of dismissing the emulator as useless because it isn't the
original hardware, it makes more sense to consider how it works and what
it affords, to look at what sort of edition it is.

The BASIC programs printed in this chapter can be run on a Com-
modore 64 emulator. The reader is encouraged to download an emulator,
run the programs, and imagine how various differences between emulation
and the original hardware influence the experience. For instance, the mod-
ern PC keyboard does not have the Commodore 64 graphics characters
printed on the keys, and mapping the Commodore 64 keys to a mod-
ern keyboard layout is not straightforward. Graphically, a composite video
monitor or television display attached to a Commodore 64 do not function

exactly like a modern LED flat panel; the pixels drawn by an emulator are

REM VARIATIONS IN BASIC {21}

Figure 15.1
10 PRINT CHR$(205.25+RND(1)); : GOTO 10

Figure 15.2
10 PRINT CHR$(198.5+RND(1)); : GOTO 10

{22% 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

overly crisp when compared to those seen on an early display. An emulator
lets the user to save the current state of memory, registers, and so on more
easily than BASIC programs can be saved to and loaded from disk on the

hardware Commodore 64.

UNBALANCED

The Commodore 64 User's Guide encourages users to modify its version
of 10 PRINT in this way: “If you'd like to experiment with this program, try
changing 205.5 by adding or subtracting a couple tenths from it. This will
give either character a greater chance of being selected” (1982, 53).
Figure 15.1 shows the effect of changing the “.5" to “.25.” As one
diagonal predominates, the perceived architecture of the maze tends to
long corridors along that direction. More extreme variations, such as go-
ing to or beyond 0.95 or below 0.05, present what looks like a regular
diagonal pattern with a very few lines going the other way, as if they were

occasional defects.

WEAVE

There are no other adjacent characters in the PETSCII data set that, when
substituted for the diagonal ™, and #, will result in the construction of a tra-
ditional orthogonal maze, one that is aligned to the vertical and horizontal
axes of the screen. Using vertical and horizontal bars, for example, results
in a disconnected weave (figure 15.2), while solid and empty squares result
in a pattern similar to rough static.

Though the result certainly does not suggest a maze as strongly, this
"Weave" version of the program is not without visual interest. The output
imparts a three-dimensional impression, as if someone had woven bands

of material over and under one another.

REM VARIATIONS IN BASIC {23}

CORNERS

The Commodore 64 PETSCII character set includes corner characters, such
as 204 and 207, which correspond to lower-left and upper-right corner
pieces. Randomly selecting either 204 or 207, as is done in this program,
produces an image similar to a honeycomb. Diagonal mazes are particu-
larly efficient ones to produce on a Cartesian grid. If a diagonal line is used,
four characters can meet at the corners, whereas only two meet along an
edge when tiles touch left-to-right or top-to-bottom. This pattern (see fig-
ure 15.3) does not offer as many meeting points, but has some of its own

interesting visual properties.

CORNERS AND DIAGONALS

A simplification of the program above involves dropping the INT function,
so that the program chooses at random between other characters in addi-
tion to 204 and 207, the two corners; this “Corners and Diagonals” version
can also choose the two characters in between. These characters are, of
course, 205 and 206, which are the ™, and # characters that are invoked by
10 PRINT. The result (see figure 15.4) does not have the clear structure of
the 10 PRINT maze and its pathways run for shorter stretches, appearing
to be blocked more frequently. Nevertheless, the pattern that is produced

is somewhat compelling in its confusion of elements.

FOUR WALLS

A reasonably intuitive method of constructing a maze-grid is to fill in one
edge of each square on a sheet of graph paper. That is, when considering
any specific square, fill in the top, right, bottom, or left to form a “wall,”
then move to the next square and repeat. The four characters in this pro-
gram correspond to a top-wall, bottom-wall, left-wall or right-wall. Such
characters exist in PETSCII in both “thick” and “thin” variants; the ones
used in figure 15.5 are the thick ones. Such a process is unfortunately less
elegant, as these characters are not (in either variety) placed adjacent to

one another in the PETSCII character set—for instance, the ones used here

{24} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

Figure 15.3
10 PRINT CHR$(204+(INT(RND(1)+.5)*3)); : GOTO 10

Figure 15.4
10 PRINT CHR$(204+(RND(1)+.5)*3); : GOTO 10

REM VARIATIONS IN BASIC {25}

Figure 15.5
10 PRINT CHR$(181+(INT(RND(1)+.5)*3)+(INT(RND(1)+.5))); : GOTO 10

Figure 15.6
10 PRINT CHR$(181+(INT(RND(1)+.5)*3)); : GOTO 10

{26} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

are 181, 182, 184, and 185—and so cannot be addressed with a single
base value plus an offset, as was done in the previous program.

The image that emerges is indeed mazelike, but this image, like the
underlying code, lacks simplicity and elegance. Since top and bottom and
left and right lines can be printed up against each other, a variation in the
thickness of the walls appears—a noticable but potentially distracting im-

plication of messiness and texture.

TWO WALLS

The selection of characters 181 and 184, a thick left line and thick top line
(figure 15.6), provides the best approximation of the classic orthogonal
maze that is seen in arcade, console, and computer games. Producing it
is still less elegant than selecting between 205 and 206 as PETSCII values.
The characters used are not adjacent, so some trick, such as this one in-
volving the use of INT, must be used to select one of the two at random.
The resulting output is less visually interesting. It is a maze, but is both less
formally dynamic (being aligned to the screen) and less contextually unex-

pected (being typical of familiar game mazes).

POKE

A similar maze pattern can be drawn by directly placing characters in video
memory using the POKE command, which writes directly to memory—
screen memory, in this case, which is mapped to the decimal addresses
1024-2024 (see figure 15.7). The 1024+RND(1)*1000 selects a random
number in this range as the first argument to POKE, pointing that command
at some specific location on the screen. The 77.5+RND(1) selects # or
™,. It should seem odd that after using 205.5 (and thus the values 205 and
206) to refer to these two characters, this program refers to them using the
values 77 and 78. It is, indeed, odd. This difference is due to the PETSCII
codes for characters not corresponding to their screen codes—each char-
acter has a different address for PRINTing and for POKEing into screen
memory. This rather esoteric feature of the Commodore 64 is discussed in
the final chapter of this book, The Commodore 64.

REM VARIATIONS IN BASIC {27}

Figure 15.7
10 POKE 1024+RND(1)*1000,77.5+RND(1) : GOTO 10

This “POKE” program works by randomly selecting one of the one
thousand positions on the screen, randomly selecting the screen code for
or™,, and placing that code in that memory location. Then, of course,
it uses GOTO 10 to loop back to the beginning and do everything again.
While the steady-state output is a full screen of characters changing one
at time, the program overwrites the existing contents of the screen slowly,

filling in the maze pattern at random.

{28} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

RANDOM SOUNDS

Finally, consider this considerably more complex program, an audio ana-
logue of 10 PRINT. It plays a sequence of tones chosen from a distribution
of two, both of which have the same timbre that approximates that of a
piano. The selection is done using the same pseudorandom pattern that
10 PRINT uses, thanks to the invocation of RND(1) in line 30:

10 S=54272 : POKE S+24,15 : POKE S+5,190 : POKE S+6,248
20 A(0)=17 : A(1)=37 : A(2)=21 : A(3)=76

30 Q=INT(.5+RND(1)) : POKE S+1,A(Q*2) : POKE S,A(Q*2+1)
40 POKE S+4,17 : FOR T=1 TO 75 : NEXT

50 POKE S+4,16 : FOR T=1 TO 150 : NEXT

60 GOTO 30

In Commodore 64 BASIC, one can point into a table of PETSCII
characters by simply using 205 and 206 as indices. But there is no similar
built-in way to index into a table of notes. After setting up the sound chip
in line 10, this program builds such a table using the array A in line 20.
Furthermore, the sound chip requires two POKE commands—the ones on
line 30—to change the note frequency. Although this is because the chip
is extremely accurate in its pitch control, it does make for longer and more
involved programs.

This book does not cover arrays (which are not part of the canoni-
cal 10 PRINT) in any detail; it would move the discussion quite far afield
to explain exactly what is happening in each invocation of POKE in this
program. Suffice it to say that POKE is being used to set the sound chip’s
registers, causing the Commodore 64 to emit musical sounds in a stright-
forward way—the standard way one would produce music in BASIC. The
invocations of POKE are not simply storing values in memory for later use,
nor are they placing values in screen memory, as in the previous example—
yet all of this is necessary to move from a randomized generator of block
graphics to a randomized generator of tones. This program shows how
much easier it is for Commodore 64 BASIC to work on graphic, rather than

musical, elements.

REM VARIATIONS IN BASIC {29}

20
MAZES

WHAT IS A MAZE?

MYTH, RITUAL, AND ALLEGORY
THE LABORATORY MAZE

THE COMPUTERIZED MAZE
ENTERING THE MAZE

What is the pattern produced by 10 PRINT? The 1982 Commodore 64
User’s Guide says the program uses the two graphical characters “for the
maze” (53). And the programmer who submitted the one-line version in
the magazine RUN also described it as “drawing a continuous maze” (13).
Surely, the program would be less interesting if framed as “Random Pat-
tern of Lines.” But if it is a maze, what kind of maze is it and what cultural
associations does that evoke?

An adult seeing a maze appear on the screen, after a young program-
mer has typed in and run 10 PRINT, could easily trivialize and dismiss it as
simply a childish amusement. It is easy to overlook the cultural resonance
and historical depth of the maze, which could be seen as nothing more
than a flat, empty, puzzle-book diversion. The same dismissal can be lev-
eled against short, recreational BASIC programs, which can seem trivial
and of no importance. This chapter rejects that view and looks deeper into
the maze—in part, to look deeper into 10 PRINT and the surrounding cul-
ture of creative, exploratory computing.

The maze synthesizes the program’s output as a visual trope that
evokes a long history of meaningful mazes. Mazes can be visual renderings,
textual artifacts, horticultural expanses, and architectural spaces. Situated
as amusing puzzles, places of terror, behavioral proving grounds, or invi-
tations to contemplative meanderings, in the West the maze's meanings
date back to the legend of Theseus and the Minotaur in the labyrinth of
Knossos, a bewildering and life-threatening space. In more recent times,
mazes have served as spaces for playful movement and as commonplace
diversions in puzzle books. Sometimes, mazes are abstract mathematical
objects or scientific tools for studying animal behavior. And in computer
games, the maze takes on an archetypal, structural frame for adventure,
chase, and combat. A full cultural history of mazes throughout the centu-
ries is outside of the scope of this book (for in-depth historical accounts
of mazes, see Doob 1990, Kern 2000, and Matthews 1922). Instead, this
chapter highlights the mazes throughout history that Commodore 64 users
in the 1980s would have been likely to associate with the output they saw
after running 10 PRINT.

{32} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

WHAT IS A MAZE?

A maze can mean a structure, a network of connected passages that con-
tains a navigable route as well as dead ends and backtracks. Or, a maze can
have a more abstract meaning: a complex network of paths with or with-
out a solution. In popular use, the meaning of the term “maze” has been
stretched to cover intellectual puzzles, tangled legal code, and confusing,
labyrinthine situations. 10 PRINT's output can thus evoke a rich collection
of associations by means of a simple yet resonant figure.

10 PRINT meets some of the criteria that William Henry Matthews
establishes for mazes in his Mazes and Labyrinths (1922): they are “works of
artifice,” not “'labyrinths’ of nature, such as forests, caverns, and so forth”;
they are endowed with “an element of purposefulness in the design” (182).
They also betray “a certain degree of complexity” (183). Finally, he requires
“communication” among the maze's component parts and between its “in-
terior and exterior” (183).

This short program is, indeed, a complex work of artifice. However,
ironically, the compelling and captivating quality of 10 PRINT arises from
the lack of an obvious, purposeful designer. Someone wrote the line of
code, certainly, but the specific person who was the author was not named.
The purposefulness of the design arises from a set of accidents, including
the BASIC RND function and the appearance of the two diagonal line char-
acters, elements that were themselves created anonymously. Furthermore,
in 10 PRINT, communication among the component parts is established
by accident, from gaps that appear between slashes. Overall, the construc-
tion of 10 PRINT's maze is considerably more muddled than Matthews'
criteria would seem to demand.

As material, architectural structures, mazes have a finite size. But there
is no limit to how long 10 PRINT can be left running. As an endless produc-
tion, 10 PRINT suggests the form of a maze, but it does not always offer a
path or solution. As such, the program exists in between the two definitions
of maze: a physical structure on the one hand and an intricate confusion on
the other.

Mazes typically offer at least one path; the key structural difference
is whether they offer more than one—whether they are unicursal or mul-
ticursal. A unicursal maze offers a single path along which walkers pro-

ceed, never making a choice about where to turn. A multicursal maze, by

MAZES {33}

MAZE VS. LABYRINTH

The terms “maze” and “labyrinth” are generally synonyms in colloquial English. Still,
many scholars and historians have argued over the distinction between these two
terms. In the most popular proposed distinction, “labyrinth” refers only to single-
path (unicursal) structures, while “maze” refers only to branching-path (multicursal)
structures.

In this book, the terms “maze” and “labyrinth” are not used to distinguish two
different categories of structure or image. Instead, the two terms indicate a single

conceptual category, with this book primarily using the term “maze” for both.

contrast, invites wrong turns, has dead ends, and may even have multiple
paths to the exit or center.

In unicursal mazes, the navigable space is bounded and a single path is
set; users have no directional decisions to make, save to follow the meander-
ings of the path, leaving their attention, mind, or emotions free to wander or
focus elsewhere, while continuing to the end at the center of the maze or to
a unique exit. The unicursal maze sometimes allegorizes temporality, offer-
ing a spiritual and contemplative space to the walker. Unicursal mazes can
be traversed repeatedly and ritualistically for peace and spiritual comfort. In
unicursal hedge mazes the hedges often limit one’s vision to an immediate
and foreshortened horizon, suggesting enclosure and protection.

Multicursal mazes, by contrast, ask to be solved. Instead of following
the unicursal maze's predetermined path, visitors to a multicursal maze run
the risk of getting lost as they attempt to find the exit.

The 10 PRINT program itself (not its output) can be seen as a unicur-
sal maze. When inputting this program, beginning programmers follow a
series of characters, copying them from manual or magazine to computer
terminal. The program starts as a puzzle for those who have some under-
standing but not complete knowledge of BASIC and the Commodore 64.
Once the code has been typed and executed and the programmer wit-
nesses the maze, there is no returning to a naive view of this line of code—
it is impossible to read the line without imagining its output. With some

study, it becomes clear how the program produces this output: the single

{34} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

path through this short but initially tangled program is revealed.

Yet the program’s output also suggests a multicursal maze, because
the patterm can apparently be traversed, or at least attempted, in several
ways. Even though the maze generates itself anew line by line, it does so
slowly, and at any given point a single screen can be interpreted and one
can consider whether a solution is possible. To do so does require that the
viewer make some assumptions about where the maze starts and ends as
well as about other matters. (An exploration of this process appears in the
remark Maze Walker in BASIC). In any case, the invitation to see this as a

multicursal maze is clear to many.

MYTH, RITUAL, AND ALLEGORY

The novice programmers of the Commodore 64, particularly those who
were young, would have no doubt been enticed by the depiction of maz-
es as sites for adventure. Mazelike environments, printed in modules and
drawn by hand, were a part of Dungeons & Dragons, the popular role-
playing game that began in the mid-1970s. Dungeon masters in that game
plotted spaces, commonly on graph paper, full of monsters and fiends that
were inspired by several fantastic and legendary sources, including the
myths of ancient Rome and Greece.

The most famous ancient maze of myth is the labyrinth of Knossos,
Crete, in which Theseus encounters the Minotaur, a horrifying hybrid, the
cursed offspring of Minos's wife and a bull (Minos + tauros). Like a basement
or attic in Gothic literature (see Gilbert and Gubar 2000), the Knossos laby-
rinth is the hiding place for a defective, dangerous family member. Theseus
arrives at Knossos and wins the affection of the king's daughter Ariadne,
who offeres him a means of returning from the labyrinth after he enters it
to defeat the Minotaur. She suggests he tie a string to the entrance and
unravel it as he proceeds through the maze so that he can follow it back to
the entrance. Thanks to Ariadne’s thread, Theseus successfully makes his
way through the maze, slays the Minotaur, and escapes. The allegory here
invokes the danger of illicit desire; it also shows that those who hold tight
to a predetermined path can succeed.

The Knossos maze is best understood in terms of Theseus's narrative

path through it, not as the space of the labyrinth itself. This transforma-

MAZES {35}

Figure 20.1
The central labyrinth and maze patterns of Amiens Cathedral were built in the

thirteenth century. Courtesy of Stephen Murray. ©1991, Stephen Murray.

{36} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

tion from multicursal, unknowable confusion to a marked and bounded
pathway reflects the mastery of any system, from challenging, mysterious,
threatening, and deadly to easy, known, mapped, and tamed. This original
labyrinthine myth underscores the reality of many puzzles: when the solu-
tion is known, the puzzle seems simpler if not trivial. Rather than the fan-
tasy of a warrior moving freely through an open map, the tale of Theseus
teaches that success comes from adhering to a string, a particularly useful
analogy in the unforgiving corridors of programming syntax.

The morphing of the maze from complex to simple (or at least un-
derstandable) is part of the Commodore 64 user’s ideal encounter with 10
PRINT, but the user is more like the creator of a maze than its explorer.
Daedalus, the architect of the labyrinth at Knossos, holds a place of honor
as puzzle maker supreme. Daedalus understands that planning, intention-
ality, and construction are integral characteristics of the mystique of the
maze. 10 PRINT thus channels Daedalus more than Theseus: the program
is a blueprint for a maze, not just a structure or image that appears without
any history or trace of its making. And at the same time, 10 PRINT itself
takes the role of maze creator: the programmer may be the maze’s archi-
tect, but the program is its builder.

The associations evoked by 10 PRINT may begin with the Minotaur’s
maze, but they continue through history, adding to the complex symbology
and sacred rites of Christian churches and then rising in the turf and hedges
of the countryside. Mazes take on religious import on the floors of cathe-
drals and basilicas. Among the largest and most famous church labyrinths is
at Chartres, France, built circa 1200 CE. It is a walkable, eleven-circuit laby-
rinth ornamented around its outer ring with lunations (Kern 2000, 153), and
has been an object of endless speculation, from rumors of treasure buried
under its center to theories about its functioning as a lunar calculator.

Church mazes are usually meant to be walked or crawled on the path
to penance. The names of these include Labyrinth of Sin, The Path to Re-
demption, and The Path to Jerusalem. These pathways symbolized paths
to Christian salvation, relating a Paschal instead of a Minoan mystery. In-
terestingly, the path of the meanderings in the labyrinths at the cathedrals
at Chartres and at Amiens are exactly the same, even though the former is
circular and the latter octagonal, as seen in figure 20.1 (Wright 2001, 60).

10 PRINT retains a dimension of spiritual mystery. The program

certainly doesn’t seem to be part of any religious practice, but as code,

MAZES {37}

DANCING A COMPLEX STRUCTURE

Mazes are usually imagined as architectural, material, and fixed, but cultures have
long noticed that they can correspond directly to a human activity, dance. In The
lliad, Homer credits Daedalus both with a dance floor and a labyrinth. Kern specu-
lates that the labyrinth was a choros, which has the double meaning of dance and
dance surface. Given that no labyrinthine buildings survive in Crete, the depictions
of labyrinths on coins may indicate the path of a dance—particularly since maze
dances have survived. Theseus meets the Minotaur in a Minoan maze, but he and
his men immortalize that adventure in dance on the way back. As Matthews explains,
"On the island of Delos they performed a peculiar dance called the Geranos, or
‘Crane Dane,” in which they went through the motions of threading the Labyrinth,
and . . . this dance was perpetuated by the natives of that island until fairly recently”
(1922, 19). These dances have continued to be performed elsewhere, and numer-
ous other labyrinthine dances are known, some with military purposes and some
tied to rites of spring. Martha Graham adapted the motifs of the Cretan maze story
in “Errand into a Maze"” (1949), where it is Ariadne who is trapped by the Minotaur.
After contemplating her escape from the labyrinth—represented by a rope on the
floor—"she breaks her pattern and breaks her tormentor. The maze of rope reflects
the maze of her mind and the maze of the myth” (Zlokower 2005).

The dancer’s relationship to the maze is analogous to that of the amateur
learning BASIC. As the novice programmer prepares to face the Minotaur machine,
a single line of code serves as a clue leading to safety. As with the maze dance, it
is in tracing this labyrinth by typing and running 10 PRINT that the very corridors
are created.

The maze dance has not been completely forgotten in digital media. It may
seem odd to think of Dance Dance Revolution as a maze game, but its arrows do
show a labyrinthine path that the dancer, standing in place, is supposed to navigate.
Missing a step is allowed, but the perfect performance will be as ritualized a motion
through space as a Pac-Man pattern. Looking beyond the arcade, Diana Slattery
has created a work called The Maze Game that brings together the maze as a site
of meaningful dance. In her digital work and companion novel, moving through a
lethal maze takes grace and literacy, since the maze is constructed out of glyphs from
Slattery’s created visual language “glide.” Slattery’s work stands at the intersection

of dance, maze, and narrative, showing a new connection.

{38} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

10 PRINT taps into the mazelike mystery that visual symbols and glyphs
evoke: to type in a program from a manual is to follow the twisted line
from code to output and back again. The programmer follows the single
path of the code from ignorance to knowledge, a pilgrim’s path. 10 PRINT
may not help programmers attain salvation, but it does offer an accessible
means by which novice programmers can trace the steps of writing code to
be initiated into the mysteries of a magic box, the personal computer.

As with a rosary and the Stations of the Cross, the Christian labyrinth is
unicursal. None included dead ends or choice points until the fifteenth cen-
tury, when multicursal aberrations appeared, as Helmut Birkhan explains,
as a “symptom of the secularization of the labyrinth idea” (quoted in Kern
2000, 146). With this secular turn, the maze becomes a space of leisure as
well as ritual, and is lined with hedges, marked by rocks, and surrounded by
grooves. Church-like mazes and mazes that invite a ritual attitude surfaced
throughout Europe, although several of these were more related to pagan
rites of spring than to Christianity. In A Midsummer Night’s Dream, the fa-

erie queen Titania ponders the ghostly outlines of abandoned turf mazes:

The nine men’s morris is fill'd up with mud,
And the quaint mazes in the wanton green

For lack of tread are undistinguishable. (2.1.98-100)

As more and more pagan and secular mazes emerged alongside church
and other labyrinth traditions, they retained some of their profound, sacred
nature while also offering puzzle play and leisure.

Hedge mazes and 10 PRINT possess affinities that their material
differences obscure. Hedge mazes need to be planned and plotted, but
unlike most other mazes, they must grow in order to fulfill that plan. 10
PRINT's maze does as well, albeit in a different way than bushes do: once
seeded, the computer-generated maze grows without tending, growing
until the viewer interrupts it.

Hedge mazes offer decoration in a garden, but as leisure devices in-
stead of religious rituals, they also offer exhilaration and vertigo when they
are “run.” Writing of a famous half-mile hedge maze at Hampton Court
Palace near London, Matthews describes it as an “undiluted delight” to
“scores of hundred of children, not to mention a fair sprinkling of their

elders” (1922, 129). This way of encountering the maze was carried into

MAZES {39}

video games such as Doom (1993) and Pac-Man (1980). 10 PRINT's con-
tinuously cascading display echoes the playful zigzagging of children gam-
boling through the hedges.

THE LABORATORY MAZE

The maze traveler has had many manifestations: the brave warrior facing
obstacles, the penitent disciple undertaking a divine ritual, the Elizabethan
child experiencing vertiginous pleasure. But no discussion of the cultural
touchstones of mazes (and their resonances for maze creators) would be
complete without that humbler maze walker, or crawler, the laboratory rat.
In the context of psychological testing, the rat's encounter with the maze
does not prove bravery, piety, or ingenuity so much as it reduces human
agency and learning to behavioral conditioning.

The first maze constructed for rats by researchers was built in the
late 1890s—but it was not originally used for testing the creatures. Wil-
lard Small of Clark University built a maze environment to allow rats to eat
and exercise when they weren't taking part in experiments. Small wanted
the environment to simulate the burrows that rats inhabit in nature, but
he modeled the first laboratory rat maze after the Hampton Court Palace
maze (Lemov 2005, 25). The restorative maze is quite consonant with the
purposes for which the Hampton Court Palace maze was built, although
Small was attending to the constitution of rodents rather than royals.

John B. Watson used maze environments for more familiar research
purposes: to determine whether rats could make their way through a maze
under different experimental conditions. After his rats had learned their
way through a maze, Watson blinded or otherwise maimed the creatures
to deprive them of different senses. His work attracted public attention,
and he was denounced in a New York Times editorial as a torturer. Watson,
however, was sure of his behavioral science agenda, and he concluded
that the same principles of operant conditioning that apply to rats apply
to people as well. By 1916 he had moved on to experiments with infants.
In one famous experiment he conditioned a baby, “Little Albert,” to fear a
furry white rat and furry white things in general (Buckley 1989).

The use of mazes in experiments with rats increased greatly during

the 1920s. Behaviorism, the perspective that all animal and human actions

{48} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

are behaviors, is now mainly associated with another American scientist,
B. F. Skinner. His operant conditioning chamber, also known as the Skinner
box, is another famous environment for laboratory animals that was built
decades after Watson’s mazes saw their first use. While Skinner's name is
better known today, Watson’s maze remains emblematic—and similar envi-
ronments are still used for experiments today.

In 1959, one of the earliest computer programs written for fun—an
example of “recreational computing”—depicted an experimenter’s maze.
The program, perhaps the first computer program to draw a maze of any
sort, was written for the TX-0 at MIT by Douglas T. Ross and John E. Ward.
The TX-0 was an experimental computer that provided one of the first op-
portunities for people to program when not working on an official project.
It also allowed programmers to work on the machine interactively, much
as Commodore 64 programmers later would, rather than submitting batch
jobs in the form of decks of punched cards. In the program that became
known as “Mouse in the Maze,” a mouse moves through a maze, eating
cheese. The mouse could also consume martinis, which cause it to become
disoriented and degrade its performance. In this case, the environment
implemented was not the hedge maze of diversion and fun, but a more
staid experimenter’s maze. This essentially serious maze was then made
playful with the addition of an amusing alcoholic reward and the simulation
of appropriate behavior.

10 PRINT picks up on aspects of “Mouse in the Maze.” Its output is a
regular arrangement of “walls” in a grid—akin to the display of that earlier
program and similar to the arrangement of the stereotypical laboratory
maze. “Mouse in the Maze” does not present the compelling creation of an
inspired Daedalus, but a behaviorist experiment. This maze is a challenge
to intelligence—not, however, a romantic, riddling intelligence, but a clas-
sically conditioned, animal kind. It also brings in the idea of the scientist,
who may be indifferent to the struggles of the creatures lost in the maze.

But who is the user at the interface of 10 PRINT, the scientist or the
rodent? When 10 PRINT runs, it may generate its maze relentlessly, but it
does not trap the user like a rat. Instead, given the top-down view and the
lack of a user-controlled maze walker, the computer presents the program-
mer with the point of view of the maze designer, offering in a sense to
collaborate with the user in creating a new design. Amid the playful and re-

ligious connotations of the maze are those things the experimenter’s maze

MAZES {41}

Figure 20.2

Information theory pioneer Claude Shannon pictured ca. 1950 with his mechani-

cal mouse Theseus and its magnetic metal maze. Courtesy and copyright MIT

Museum.

18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

hints at: that the computer is a scientific instrument, and the walker of the

maze might be not a Greek hero but a small creature driven by hunger.

THE COMPUTERIZED MAZE

In the early 1950s the mathematician and engineer Claude Shannon de-
signed a mechanical mouse (see figure 20.2) that appears to solve the
same kind of maze a real mouse might be expected to navigate in one of
Watson's behavioral experiments. Shannon, a foundational figure in mod-
ern computing, named the mouse Theseus, collapsing the mythological
hero and his noble plight into a mere contraption guided by a mechanized
system. Although featured in both Time and Life (“Mouse with a Memory”
1952; "Better Mouse” 1952), Theseus itself was not a sophisticated piece
of artificial intelligence. It was simply a wooden mouse on wheels with a
bar magnet inside and copper-wire whiskers. The true magic of this mouse
resides underneath the maze, in a system of electronic relays that switch
positions when the mouse’s whiskers touch corresponding walls in the
maze above. The first time through a maze, Theseus blunders randomly,
propelled by its magnet, flipping the relays underneath whenever it en-
countered a passage. The next time, Theseus navigates the maze perfectly,
thanks to the relays underneath, which record the correct route.

This means of negotiating the twisting passages of Shannon’s maze
was not mere novelty. As Time explained in 1952, Theseus is “useful in
studying telephone switching systems, which are very like labyrinths.” In-
deed, George Dyson argues that Theseus inspired the RAND Corporation
engineer Paul Baran’s "adaptive message block switching”—the precursor
to what is now known as packet switching, the protocol that defines the
way data flows on the Internet (Dyson 1997, 150).

Aside from its significance to network computing, Theseus serves as
a vivid example of an early connection between mazes and computers.
Furthermore, Theseus shares a procedural resonance with 10 PRINT. The-
seus “learns” through repetition, or looping, the fundamental process that
is used to draw the 10 PRINT maze. And like a computer program, the
mouse in Shannon's maze is only the surface-level signifier of much deeper
processes. Theseus in fact is not only dumb but, by itself, inert. The “brain”

of Theseus lies in the relays hidden underneath the surface of the maze,

MAZES {43}

much in the same way the on-screen design of 10 PRINT is generated by
a piece of code, initially not very clear, which depends upon an invisible,
low-level call to a pseudorandom number generator.

Computers did not completely change the cultural idea of the maze,
but they did provide new ways to represent, generate, solve, and play in
mazes. And, as computers came into the home and became widely ac-
cessible, they helped to bring mazes into daily life once again. In part,
this happened thanks to the work of early computer scientists who wrote
programs to generate mazes. But many popular mazes were not as com-
putationally sophisticated. They were, however, integrated cleverly into
enjoyable computer games that reached a mass audience.

It is useful to group these computer mazes by the point of view they
offer to their interactors. There are first-person mazes, partially represented
on a screen, which show the wall or passageway directly in front of the maze
walker. There are also second-person mazes, textually represented, in which
the maze walker is the “you” to whom the traversal of the maze is narrated.
And, there are third-person mazes, sometimes fully represented mazes, in
which the maze walker maintains a large-scale or omniscient view.

A significant early maze program is Maze, which presents a 3D view
of a maze in which a player can see (and shoot) opponents. This program
was created in 1973 at the NASA Ames Research Center by Steve Col-
ley and Howard Palmer and later made into a multiplayer game by Greg
Thompson. In 1974 the program was then expanded at MIT; Dave Lebling
wrote a server that provided text messaging and supported up to eight
players or robots. The same program was later ported to the Xerox Alto as
Maze War.

The Maze environment was created for entertainment, but it was re-
ally little more than a convoluted battlefield—not a space to be explored
or solved and certainly nothing like the entirely nonviolent English hedge
maze. Other terrifying maze environments became a staple of early home
computer mazes, and some contained a Minotaur-like threat. 3D Monster
Maze was an early example, developed in 1981 and released the following
year on the Sinclair ZX81. The game uses character graphics and features a
randomly generated 16 x 16 maze with a Tyrannosaurus Rex.

Although 3D mazes with some more exploratory aspects were offered
in the Ultima, Wizardry, and Bard’s Tale series, the maze is more a frighten-

ing site for combat than a playful place of discovery in many first-person

{44} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

games. This can be seen as early as 1984 in the Commodore 64 game Skull,
which allows the player to search for treasure and sends threatening skulls
into the maze as opponents. Wolfenstein 3D (1992) and Doom (1993) make
this perspective on a mazelike environment even more fearsome. Sound
design, darkness, and the use of conventions from horror films that give the
effect of seeing without peripheral vision all contribute to this effect. The
first-person maze, in addition to connecting players to the perspective and
to some extent the subjective experience of their maze-bound characters,
is likely to inspire close and constant attention.

Many of the earliest computer-presented mazes are not visual; they
are described textually, narrated to the player from a second-person per-
spective. Second-person mazes of a sort are found in early text-based
games such as Hunt the Wumpus, a 1973 BASIC program by Gregory Yob.
Hunt the Wumpus departs from the standard grid-based BASIC game by
providing a playing field of a different topology, a dodecahedron. The
player stalks and is stalked by a formidable opponent, much as the dino-
saur later pursues the player of 3D Monster Maze.

Textually described mazes developed into their most complex and
confusing configurations in text-based adventure games of the sort now
called interactive fiction. The genre began with the groundbreaking Ad-
venture, written by Will Crowther for the PDP-10 in 1976 and later expand-
ed by Don Woods into a full-fledged underground adventure. Basing the
game in part on his own caving experience in the Mammoth Cave system,
Crowther includes a ten-room maze introduced with “YOU ARE IN A MAZE
OF TWISTY LITTLE PASSAGES, ALL ALIKE.” "YOU" works to connect the
player to the character in the maze, although in a different way than first-
person 3D games do. For one thing, that pronoun sometimes is explicitly
used to address the operator of the program rather than to indicate the
main character, as when Adventure outputs “IF YOU PREFER, SIMPLY TYPE
W RATHER THAN WEST.”

From Hunt the Wumpus through Adventure, another notable differ-
ence is that second-person mazes are typically turn-based rather offering
real-time play. They also are embedded in a broader context of simu-
lated spaces. Sometimes these are confusing ones that, even if they are
not called mazes, require that players map them on paper. In any case,
they usually invite different forms of systematic, high-level thinking that al-

lows the environment to be figured or puzzled out. The player’s activity is

MAZES {45}

thoughtful and paced at the player’s discretion rather than being based on
twitch reflexes.

When players draw maps of the mazes in Adventure, Zork, or other
interactive fictions, they transform textually represented second-person
mazes into visually represented third-person mazes. Such maps convey a
sense of mastery of the maze even though a third-person perspective on a
maze does not guarantee its safety or solubility.

Shannon’s Mouse in the Maze offered an early glimpse of the third-
person computer maze, but this form truly erupted in the Unites States less
than two years before the release of the Commodore 64, in October 1980.
This is when the original Pac-Man arcade game arrived from Japan. In
Japan, the genre of games inspired by Pac-Man is called “dot-eat” games
(kv bkA—b), butin the United States such games are called maze or maze
chase games.

Pac-Man cannot thread his way through the environment to find an
exit—except for the tunnel that links the left and right side of the screen
together. The playing field may be better described as being littered with
obstacles rather than as being “a maze” in the sense that church labyrinths
and hedge mazes are usually understood. Nevertheless, the playing field
was called a maze from the beginning. The New York Times called Pac-
Man “a circle with a big mouth that eats up dots in a maze while other big
mouths try to eat it up” (Latham 1981), while Newsweek mentioned the
“maddening Pac-Man maze” (Langway 1981). The puzzle the game poses
to the voracious Pac-Man is not to get out of the maze, but to run through
all of it while avoiding the pursing monsters.

Pac-Man’s maze is aligned to the axes of the display: the paths are
either horizontal or vertical. But just as the tanks in Tank (1974) and the
player’s ship in Asteroids (1979) can turn and fire in many different direc-
tions, it is possible to represent a maze that is not “orthogonal” in this
way: 10 PRINT provides a very simple alternative, a diagonal maze. Third-
person videogame mazes, in contrast, are almost always aligned as in Pac-
Man, even those that predate the dot eater.

Magnavox's infamous K. C. Munchkin (1981) is something of a Pac-
Man knock-off that was itself knocked off shelves by a famous court ruling,
Atari v. Philips. To players today, the game looks like just another maze
game. With doors that open and close, only twelve dots on the screen, and

other notable differences, it now seems impossible to confuse with Pac-

{46} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

Man. The two games are similar in that they both feature mazes that are
orthogonally aligned. But among K. C. Munchkin's differences are that it
allows players to take on the role of Daedalus, designing their own levels.

Other videogame mazes, and games with mazy environments, quick-
ly made their way into the home, too. The game bundled with the classic
cartridge-based Atari VCS in 1977 was Combat, which brought the convo-
luted battlefields of Tank into the home. Soon after, that console featured
Maze Craze (1978), which allows players to compete in several different
challenges in maze environments that were automatically generated.

All of these games treat the screen display as a single complete visual
unit, like the board of a board game. The continuously scrolling maze of 10
PRINT at least suggests a maze that is larger than the screen, even if one
cannot navigate around to see what is offscreen. Another interesting con-
trast to the single-screen maze is a close-up design that puts the playerin a
larger-scale maze, seen in the 1979 Atari VCS game Adventure (see figure
20.3). This console game is loosely based on the interactive fiction work of
the same name, and features a hero who can collect treasure despite the
efforts of three dragons. Unlike Pac-Man, in which the player can guide
Pac-Man out a warp gate on one side of the screen and see him enter
on the other side, Adventure contains numerous topologically impossible
warps that are always hidden from view and can only be deduced. Instead
of an overview map of the total maze, each screen is a closeup of simple
paths, often emphasizing discontinuous fragments of other paths that can't
easily be reached.

Diagonal orientation of the sort produced by 10 PRINT did have a
place in the design of early mazelike games. It emerged through isomet-
ric video games that introduced diagonal motion at the same time they
challenged the picture plane through the pseudo-3D effect of isometric
perspective. Two isometric games came to arcades in 1982: Q*bert, a
completion/avoidance platformer on an isometric pyramid, and Zaxxon,
an obstacle-racer emphasizing pseudo-3D elements. Neither is particu-
larly mazelike compared to later isometric games from years after the first
version of 10 PRINT. Ant Attack (1983) and Marble Madness (1984) are
examples of games with more convoluted obstacle courses on fields that

were larger than the screen.

MAZES {47}

Figure 20.3
Adventure (1979) for the Atari VCS featured a maze to navigate while fighting

dragons and searching for keys to enter castles.

{48} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

ENTERING THE MAZE

While 10 PRINT seems to be a noninteractive 2D third-person maze, its
single line of code produces an unusual twist on this form of maze, shifting
it to a different axis than is traditionally used. This is accomplished by the
simple selection of two diagonal character graphics. That design element
introduces another complexity: even though the maze is built from left to
right and down the screen, the walls and paths do not follow this axis of
construction.

In the mid-1980s, it would be impossible for most users to consider
a maze-generating computer program without thinking of the many com-
puter games that take place in mazes. But, for many, the maze would also
be associated with different types of terror, contemplation, experimenta-
tion, and play. Would the user be Theseus or Daedalus? The scientist or the
rat? Pac-Man or Zaxxon? And would programming be meditating, dancing,
escaping, solving, or architecting a maze? This richness seems to be part of
what encouraged new Commodore 64 programmers to “enter the maze”
by entering this program on their computer, to work at solving and under-
standing this code only to revise, extend, and reimagine it in their own
programs.

Considering 10 PRINT in light of the cultural history of mazes situates
the program’s output in a space of symbolic meanings and design princi-
ples—the many ways in which something can be seen as mazelike or de-
signed to be mazelike. This view sheds light on the specific ways in which
10 PRINT both echoes and alters earlier notions of a maze. The output is
not unicursal, after the fashion of early labyrinths, nor is it marked for tra-
versal with clear entrances and exits, as in a meditative or hedge maze, nor
is its system of paths continuous and fully explorable, as in a laboratory run
for rats. Instead, 10 PRINT produces something of the visual complexity
of later mazes, but this complexity does not address a particular purpose,
and instead emerges out of an absolute simplicity of design. If 10 PRINT is
a maze in a new and different way, this difference is based in deep similar-
ity to the precursors it resembles, in particular, the way that all mazes arise
out of shared principles of regularity on the one hand and randomness on
the other.

MAZES {49}

25

REM PORTS
TO OTHER
PLATFORMS

APPLESOFT BASIC AND TANDY COLOR BASIC
PERL AND JAVASCRIPT: MODERN ONE-LINERS
PATH: MAZE AS PERVERSE PROGRAM

WHAT PORTING REVEALS

Adapting a program from one hardware system to another is “porting,” a
term derived from the Classical Latin portare—to carry or bear, not unlike
the carrying across (trans + |atus) of translation. A port is borne from one
platform to another, and the bearer is the programmer, who must gather
up the details of the original and find places for them amid the particulars
of the destination, attempting to identify and preserve the program’s es-
sential properties. The translator faces these same sorts of problems when
encountering a text, and such problems are particularly acute when the
text is a poem. Where does the poetry of the poem lie? In its rhythm? Its
rhyme? Its diction? Its constraints? Its meanings? Which of these must be
carried over from one language to another in order to produce the most
faithful translation?

In Nineteen Ways of Looking at Wang Wei, a study of the act and art
of translation, Eliot Weinberger (1987) reads nineteen versions of a four-
line, 1,200-year-old poem by the Chinese master Wang Wei, attentive to
the way translators have reinterpreted the poem over the centuries, even
as they attempted to be faithful to the original. With a single word, a trans-
lator may create a perspective unseen in Wei's original, radically shift the
mood of the poem, or transform it into complete tripe. Many times these
changes come about as the translator tries to improve the original in some
way. Yet translation, Weinberger writes, “is dependent on the dissolution
of the translator’s ego: an absolute humility toward the text” (17).

The programmer who ports faces similar challenges. What must be
preserved when a program is carried across to a new platform: The pro-
gram’s interface? Its usability? Its gameplay? Its aesthetic design? The
underlying algorithm? The effects of the constraints of the original? And
should the programmer try to improve the original? The ethos of adapta-
tion will vary from project to project and programmer to programmer; what
a programmer chooses to prioritize will help to determine the qualities of
the final port and its relationship to the original program.

In this remark, a number of ports—translations—are presented. These
are ports from Commodore 64 BASIC to other platforms and languages,
developed specifically for this book. Other ports can be found elsewhere in
this book. By striving to design accurate adaptations, and to capture quali-
ties of the original code as well as the output, nuances of the original that
might otherwise be overlooked can be revealed. Just as the variations of

10 PRINT in the previous remark illustrate the consequences of choosing

{52} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

one particular set of parameters among the many that were possible on the
Commodore 64, ports of 10 PRINT can highlight the constraints and af-
fordances of individual platforms. The ports provide a tightly focused com-
parison of the Commodore 64 to other systems, emphasizing the unique

suitability of the Commodore 64 for this particular program.

APPLESOFT BASIC AND TANDY COLOR BASIC

Applesoft BASIC is one of two standard BASIC implementations for the
Apple II; Applesoft is the one that supports floating point math and seems
very similar to Commodore 64 BASIC. The Apple Il family of computers
was of the same era and uses the same processor as did the Commodore
64, the MOS 6502. Applesoft BASIC, like Commodore 64 BASIC, was writ-
ten by Microsoft and based on its 6502 BASIC, a version (as discussed
in the chapter on BASIC) that derives from Microsoft’s Altair BASIC. The
Apple Il computers and the Commodore 64 were really quite alike, almost
as if they were siblings separated by corporate circumstance.

This makes the Apple Il a good starting point for a series of 10 PRINT
ports. The same BASIC statements and keywords can be used in a version
for this computer, and the same sort of scrolling will push the maze continu-
ally up the screen.

On the Apple I, however, the slash and backslash characters must
serve as the maze walls, since the PETSCII diagonal-line characters are not
available. The codes for those Apple Il characters are not adjacent; they
have the ASCII values 47 and 92. This means that a more elaborate expres-
sion for the selection of a character must be used. The first step is selecting
the value O or 1. This first selection is accomplished in INT(RND(1)*2),
which in the inner expression produces a floating point number that is at
least O and less than 2, such as 0.492332 or 1.987772; then, using INT, this
value is truncated to either O or 1. The next step is to multiply that value by
45 and add 47 so that either 47 or 92 results. This is a reasonably simple
way to make this selection, but, as with certain Commodore 64 BASIC vari-
ants, the code that is needed is more elaborate and less pleasing than in
the canonical 10 PRINT:

10 PRINT CHR$(47+(INT(RND(1)*2)*45)); : GOTO 10

REM PORTS TO OTHER PLATFORMS {53}

Figure 25.1
Screen capture from the Apple Il port of 10 PRINT.

T T T T T T
T R T R N N T
T N R A T R N
B T R T R R N T
R T T T R T A T NN
M e e S S S
R T T e N A A A AT i
R T T T N
T T e R R A A T TR
At e N S S S R
R T T N i A ATy
T T R R R R R A T
T N R R T N A N
L e T R R A A T
T R R T R R R A At dh A Ay
AR T TR T T A

Figure 25.2
Screen capture from the TRS-80 Color Computer port of 10 PRINT.

{54} 18 PRINT CHRS5(285.5+RNDC{1i>>; : GOTO i@

The output of the program is less satisfying, too (figure 25.1). Although the
“/" and “\" characters on Apple Il computers are exactly diagonal, they
do not span the entire square that bounds a character. This means that the
“walls” do not meet either horizontally or vertically. Each Apple Il character
is five pixels wide and seven pixels tall, so the perfect diagonals of the slash
and backslash have a pixel of empty space at the top and another at the
bottom. In any case, Apple Il characters cannot be drawn directly against
one another, as all characters on the system are printed with a one-pixel-
wide space on either side of them and a one-pixel space below.

This space between characters is even more evident in the port of
10 PRINT to another competitor of the Commodore 64 in the 1980s—
the TRS-80 Color Computer (or “CoCo"), sold through Radio Shack. If the
Apple Il was the Commodore 64's sibling, raised by another corporation,
then the Color Computer, with the Motorola 6809 and a different version
of Microsoft BASIC, was the eccentric cousin. Just as with Applesoft BASIC,
the Color BASIC port of 10 PRINT requires the use of ASCII characters 47

and 92; one significant change, however, must be made to the program:
10 PRINT CHR$(47+INT(RND(0)*2)*45),' :GOTO 10

Note the change from RND(1) to RND(@). This revision is due to the Color
Computer's implementation of RND, which diverges quite a bit from that
in other BASICs. In a move to make the RND command more intuitive, the
TRS-80 chooses a random number between 1 and the argument, X. So
RND(6) chooses a random number between 1 and 6. RND(1) in Color BA-
SIC will only ever choose the number 1, making for a decidedly nonrandom
pattern. RND(0), however, selects a floating point number between 0 and
1, which, multiplied by 2, can serve as the numerical basis for the random
pattern. The execution of the program reveals, though, that randomness
is not the only essential element of 10 PRINT (figure 25.2). Even when
compared to the Apple Il, the TRS-80's text display is poorly suited for the
transformation of typographical symbols into graphical patterns. The Color
Computer's slash and backslash characters each occupy a 5 x 7 region on
a larger grid of 8 x 12, leaving so much space between the characters that
they can never resolve themselves into the suggestion of a connected pat-

tern, much less a maze.

REM PORTS TO OTHER PLATFORMS {595}

While the Apple Il and Color Computer had many interesting BASIC
programs written for them and shares features with the Commodore 64,
the way these computers handle text display means that neither can host a
one-line BASIC version of 10 PRINT that is as satisfying as the Commodore

version.

PERL AND JAVASCRIPT: MODERN ONE-LINERS

Perl and JavaScript programs were devised that are parts of 10 PRINT and
output the ASClII slash and backslash characters. The JavaScript program is
chiefly interesting because it presents a graphical, or typographical, prob-
lem that is even worse than the ones seen on the Apple Il and the Tandy
Color Computer. The default font on a Web page, viewed in a graphical
user interface browser, is proportional—different letterforms have differ-
ent widths. While slash and backslash are the same width, differences in
kerning mean that the pair “/\" is wider than either "//" or “\\". So the two
symbols do not line up in a grid, and the result is even less like a maze.

A first version of the Perl one-liner follows; it's shown in figure 25.3:

while (print int(rand(2)) ? "/" : "\\") {}

The “\" character (the backslash) is used in combination with another char-
acter in Perl to print special characters such as the newline, which is indi-
cated as "\n". (The same is true in JavaScript.) Because of this, it is neces-
sary to use “\\" to print a single backslash character. This Perl port uses the
while construct to create an infinite loop. The condition of this loop prints
either "/" or “\" at random. The print statement, which should always
succeed, will return a value of 1, corresponding to true—so the loop will al-
ways continue. The body of the while loop is empty; nothing else except
printing a character needs to be done, and that is already accomplished
within the condition. The resulting output is similar to that of the Apple
Il program: random slashes are produced that line up in a grid but don't
meet horizontally or vertically.

There are a few ways to tweak this code to make it more like 10
PRINT in form and to have it produce output that is more like 10 PRINT's.

First, the somewhat obscure but more GOTO-like redo statement can be

{36} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

0 T

OSSN INOONNONS LTINS OSSO EINDN L ONS TN NN A
PNSINONONNONI LIS EPOONNNNIN DN DN DN TP
ANV AN AV A A Y AV AN A Y Y Yy AV PP AV AV FANAVAVAVARVIAVAR VI FAVAV)
R A R R Y Y R N R R N N AV FANAVAVARVI
PNNINONNNNNST NS LTINS PN DN LI TN TN IS ST NG T INS
E Y R N ANV ANV A VAV AV b AV AN VAN AV P ANV P AR VALL VAR VAN
L AN N N A N Y AV Y Y Y Ny Y AN AVARRVA VAV AR VARY)
TRV IRV D AV AN ANV AVAVARV ANV AV o ANV ANV AV AV AVAVARLVAVIAVAN
R R N Y Ry N Y AV ANV ANV P AV VAN
RN N N N A A RNV N Y Y AV VAN
AV AV AV AVAVFrAVANRR RNV AR VAV AV AV AN ANV AV ARV AR VARV VAR
R R N R R A AN NV AV ANV AN VANV ANV AV AV AR VAVAR VAN
AR R N AN AV AN AN AV AV ARV Y N AN AN A NV ANV VIV FAVARR VAR VAVIARRVAVAN
E Y Y ANV AV A AV FFANAVE ANV ANV AN VARR VAV AVARVAVAVARY IV
ANV AV ANV AV AV ANV AR VY ANV AN AN P AVANAA VI AVARRR VIV FAVARLAN
VE T FAVAVARRVARV AV FANVAV S S FANSVAVIAVI TV VANV AVIARRRRR ARV AN VAR VARS R VI AVAVAVIAN
WA OO S ONONS O OO TT NN SN P ING S
FEEEEONS NS OO INTONSET OIS DN SN IO LN TN PO
R A A A A RV Y R N AT AN A VAV AR VAVAVAR AR VAN
LN NSNS LTINS ONNNNON SIS ST I DN OO L EPONNNN
Ry Ry R A ANV AV AV AV ARV AV AV ANV AV AV FANAAR VAV AVAVIALAN
R Y Y AN NV RV Y N N AN PP ANV PP ANVAVI VAR VAN
E Y A ANV A RNV Y R Y Y A AV F AN VARV FAVIAVARRVIARVIAVY)
PZANVAVANVZARAVARRRRAVAVANRRRARY, |

I

0

'y
v

A

Figure 25.3
Screen capture of the ASCII Perl port of 10 PRINT, which uses the slash and

backslash to approximate the diagonal lines.

Figure 25.4

Screen capture of the Unicode Perl port of 10 PRINT, which uses characters

9585 and 9586 to better approximate the PETSCII characters.

REM PORTS TO OTHER PLATFORMS

{97}

used, causing the program to loop back to the beginning of its code block,
which is enclosed in curly braces, “{" and “}". Second, the Unicode char-
acters 9585 and 9586 can be used to build the maze. These characters are
the two diagonal lines, similar to the PETSCII characters on the Commo-
dore 64, and like those characters they are also adjacent. This means that
a trick similar to 205.5+RND (1) can be used to randomly select between
them—in this case, 9585.5+rand. That expression is used as an argu-
ment to Perl’s chr function, just as the original BASIC program wraps it
in the CHR$ function. Finally, to avoid the production of error messages, a
statement needs to be included that tells Perl it can output characters in
Unicode. That statement could go outside or inside the loop; the program
just runs slightly slower, which is probably desirable, if it is placed inside

and executed each time:
{binmode STDOUT, "utf8";print chr(9585.5+rand);redo}

While the original 10 PRINT produces a maze with gaps or thin connec-
tions at each grid point, this maze (see figure 25.4) has what look like over-
laps at each of these junctures. Nevertheless, the use of Unicode’s similar

characters does a great deal to enhance the appearance of the output.

PATH: MAZE AS PERVERSE PROGRAM

While computer users may think of programming languages as relatively
straightforward instruments used to produce increasingly complex or effi-
cient tools and experiences, 10 PRINT begins to show that code itself can
have aesthetic features.

Some programmers choose to reject—at least for a while—the values
of clarity and efficiency in programming in favor of other values. While
some of the techniques such programmers use rely on the exploitation of

|u

conventions in existing, “normal” programming languages, others involve
the invention of entirely new languages with their own aesthetic properties.
These “weird languages” (sometimes also called “esoteric languages”) test
the limits of programming language design and comment on program-
ming languages themselves. One them is the unusual-looking language

called PATH.

{58} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

The sort of weird languages Michael Mateas and Nick Montfort (2005)
dub “minimalist” comment on the space of computation itself. As they
put it, “Minimalist languages strive to achieve universality while provid-
ing the smallest number of language constructs possible. Such languages
also often strive for syntactic minimalism, making the textual representa-
tion of programs minimal as well.” The archetypical minimalist language
is Brainfuck, which provides seven commands, each corresponding to a
single character of punctuation.

Another style of weird language eschews the usual organization into
lines of code and uses a two-dimensional space to hold a program’s instruc-
tions. One such language is Piet, whose source code resembles abstract
paintings (like those by its namesake, Piet Mondrian). Another is Befunge,
which uses typographical symbols including “<,” "v,” and “A" to direct
program flow.

PATH is a weird language that borrows from the conventions of Brain-
fuck and Befunge, offering a syntactically constrained language whose
control flow takes place in a two-dimensional space. PATH has a natural
connection to 10 PRINT because the language uses the slash and back-
slash characters to control program flow. These symbols are reflectors in
PATH. As the program counter travels around in 2D space, it bounces off
the reflectors in the intuitive way.

In addition to “/" and “\,” PATH uses "v,” "A,” "<,” and ">" to
move the flow conditionally, down, up, left, and right, if the current mem-
ory location is nonzero. Memory locations are arrayed on an infinite tape
Turing style, and the program can increment and decrement the current
memory focus.

Given PATH’s strong typographical similarity to the output of 10
PRINT, it is possible to implement a port of 10 PRINT in PATH—a program
that generates labyrinths by endlessly walking a labyrinth (figure 25.5).

When the program is run, the result is similar to figure 25.3. Confus-
ing? The point of such a program, and such a programming language, is
to confuse and amuse, of course. Without understanding the details of
how this program works, one can still appreciate an intriguing property it
has. The output of 10 PRINT in PATH is itself a PATH program. This new
program doesn’t do anything very interesting; it simply moves the program
counter around without producing any output. Still, it demonstrates a gen-

eral idea: that programs are texts, and there is nothing to keep people from

REM PORTS TO OTHER PLATFORMS {59}

117
\ERRDBREDBENDES LR AR DI B D I

/ /
\3 \
/ /
\3} \
/ /
\ \
/ s /
!
/
VAER I VAER IR VAER IR /-0
NFIIIIIVINLU NG (VLU N (v LU N (v LY N
« < « «
[R O A S A R VAR S B ¥
/ /
VAER SN VAER AN VAER SN AER I
NV U N (v (N (v N (v (N v 1\
« « « ¢ \-/

\} ~+{/ \} ~+{/ \1} {7 \} ~e{/

/Al v iy /
AR LLLL
I+ \ I+ { \
MU MU
N v I A (NN v LA 500 0550 BN VAR CECCECCCCaRA NN VAR
/- / /-1 /
MO M
\NBnmm s/ \omnnn e/
/ /
1+ {{ \ 1+ {{{ \
MO MO
N3 v INBN A W il v VIR Y A{{{{{en v\
/- « / /- (L /
MU MU
N amnnn s/ AN 22333300 I

/ /

7+ ({{{ \ 7+ {({{{ \
MU MU

A\ BN v I & Y N IV NN Y {{{{{{{iliien N\
/- ({{{ / /- (L /
MU MU

\oannn s/ AN 2323333)

/ /
1+ {{HLL \ 7+ (I \
MU MU

N v NN Y Y e n\ v B v A {{{{{{{{{{iiiiie n v
/- / /- {0 /
MU M

AN 230330 B ANR2223333 3 Bl

/

N v I . N (T
AW22330033) IRl

Figure 25.5

The PATH port of 10 PRINT, an actual computer program written in an

intentionally perverse programming language.

{68} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

writing programs (such as the much less perverse compilers and interpret-
ers that are in continual use) that accept programs as input and produce

programs as output.

WHAT PORTING REVEALS

Porting a program is always an act of translation and adaptation. As such,
porting reveals what in a program is particular to its source context, sug-
gests many potential approaches to what is essential about the program,
and explores how that essence may be portable to a specific target con-
text. Each port is unique, whether to a related platform, to a modern script-
ing language, or even to a weird, minimalist language. Each involves differ-
ent constraints, and once realized each offers different insights. Sometimes
these insights are into the platform itself, such as when different imple-
mentations of randomness require a change in how a value is used or a
calculation is done. At other times, the new insights may be into the syntax
of a particular language, which may afford more or less elegant ways of
expressing the same process. Other insights may point to the permeable
boundaries between a program and its platform environment, as when
the graphic qualities of a particular character are vital to a particular visual
effect. Porting to radically different languages can also challenge deeper
paradigmatic assumptions about a program’s form and function, including
how and why output is produced and whether it (in turn) becomes input
of some kind. Taken together, the combined insights of many ports may
produce a new, different understanding of the original source. Inhabiting
the native ecosystem of its platform, articulated in the mother tongue of
its language, ports clarify the original source by showing the many ways it
might have been other than what it is. Notably, many of these insights are
not available through token-by-token analysis of code. They require closely
considered reading, writing, and execution of code.

Other ports of 10 PRINT are discussed in detail later in this book.
Three of these, discussed in the remark Variations in Processing, are ver-
sions of the program that elaborate on the original and are written in the
system Processing. Two others ports are in assembly language, written at
the lower level of machine instructions and requiring things to be imple-

mented that are taken for granted in other ports. The first of these, also

REM PORTS TO OTHER PLATFORMS {61}

discussed in a remark, is for a system without character graphics or, in-
deed, without typographical characters at all: the Atari VCS. Finally, the last
chapter introduces and explicates a Commodore 64 assembly version of
10 PRINT to show some of the differences between BASIC and assembly
programming and to reveal more about the nature of the Commodore 64.
These explorations all interrogate the canonical 10 PRINT program, asking
what it means to try to write the same program differently or to try to make

a program on another platform the same.

{62} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

30

REGULARITY

REPETITION IN SPACE

THE GRID IN MODERN ART
THE COMPUTER SCREEN
REPETITION IN TIME
REPETITION IN PROCESS
PERFORMING THE LOOP

Permission was only granted to include

this image in the print edition.

Figure 30.1

Vera Molnar, Untitled (Quatre éléments distribués au hasard). Collage on
cardboard, 1959, 75 x 75 cm. Paris, Centre Pompidou-CNAC-MNAM. © bpk |
CNAC-MNAM | Georges Meguerditchian.

In 1959 artist Vera Molnar created Untitled (Quatre éléments distribués
au hasard), a collage similar to 10 PRINT (figure 30.1). A variant of the
10 PRINT program shipped with the first Commodore 64s in 1982 (figure
30.2). And in 1987, Cyril Stanley Smith more or less recreated 10 PRINT's
output from a reduced, random arrangement of Truchet tiles (figure 30.3).
How did the same essential mazelike pattern come to appear in all of these

different contexts in the twentieth century?

{64} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

Figure 30.2

Random maze program from the Commodore 64 User’s Guide, 1982.

Figure 30.3
Truchet's four tiles placed in random orientations by Cyril Stanley Smith
in 1987. The solid coloring was removed to show the formal connection to

the 10 PRINT pattern.

REGULARITY {63}

The repetitions of the 10 PRINT process are connected to two cat-
egories of artistic tradition and to the flow of control in computer pro-
grams. The first tradition within the arts is in the domain of craft, particu-
larly pattern-based crafts such as needlework and ornamental design. The
second is the creation of complex patterns using repeated procedures and
a small number of elements. In this way, the aesthetic of 10 PRINT parallels
experiments in painting, sculpture, sound composition, video art, perfor-
mance, experimental animation, and dance. In both cases, these artistic
practices owe their success to factors that also make 10 PRINT compel-
ling: the continual repetition of a simple rhythmic procedure or rule across
a regular space or time signature creating a complex and stimulating ge-
stalt. In its minimalist and constructivist strains the world of art confronts
the constraints and regularity of the techné of programming, which makes
room for a formal definition of a repeating process that a computer can
carry out. In all of its newfangled (for the 1980s) sophistication, 10 PRINT
ties the computer to the homespun tradition of handicraft: stitching, sew-
ing, and weaving.

This intersection of design craft, art, and computation is not acci-
dental, for 10 PRINT is a demonstration of the generative qualities of re-
peated procedure. 10 PRINT was written and published at a time when
the art world was turning to explore the constraints and possibilities of the
systematization of creativity in an age of Taylorism and Fordism, of which
the computational machine is itself an expression. Situating 10 PRINT not
only within twentieth-century art, but also in the larger traditions of formal
experimentation and craft culture can help to explain how the personal
computer is a site of procedural craft.

This chapter explores the first of two formal aspects of the 10 PRINT
program that give it its compelling visual power. This chapter focuses on
regularity, while the next one deals with randomness. Although the pattern
of 10 PRINT cannot be established at a glance, the program is nothing
if not regular. It works regularly in space, time, and process—and each of
these aspects of regularity is examined in the discussion that follows. Spa-
tial regularity is considered, beginning with tilings, continuing through the
history of the grid, and ending with a discussion of the computer screen.
Artistic repetition in time, particularly in music and performance, is consid-
ered next. Then, repeating processes and the programming constructs that

support them are discussed.

{66} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

REPETITION IN SPACE

In a classic, provocative text, The Sense of Order, E. H. Gombrich (1994)
wrestles with the tensions between pleasing repetition and uninteresting
redundancy. As he reflects on pavement designs he notes the pleasure in
encountering one whose pattern cannot be fully grasped. Gombrich ex-
plains this desire for variation or complexity in terms of the information
theory emerging at the time, which posits that information increases in step
with unpredictability (9). He goes on to speculate that the viewer exam-
ines patterns by trying to anticipate what comes next. “Delight,” he writes,
“lies somewhere between boredom and confusion” (9). Consider, again,
the Labyrinth at Chartres as one such balance of the two.

10 PRINT no doubt offers similar delights, thanks to its creation of a
complex pattern from a simple random alternation. As Gombrich later ar-
gues, the greatest novelties computers bring to visual design and variation
are not only their ability “to follow any complex rule of organization but
also to introduce an exactly calculated dose of randomness” (1994, 94). In
this view, computers prove to be entrancing weavers, and the design of 10
PRINT, as a work of pattern rather than paths, may be less like the work of
Daedalus than that of Arachne.

Patterns are inextricably tied to a process of repetition. This notion is
clearly demonstrated in Gombrich’s commentary on “the hierarchical prin-
ciple” by which units are “grouped to form larger units, which in turn can
easily fit together into larger wholes” (1994, 8), or a gestalt. The sum of the
pattern then is the result of a process. This interrelationship of pattern, per-
ceived whole, and process becomes clear in his discussion of paving and
of various methods for selecting stones. By extension, visual design relies
on the process of repeating patterns across space, even if these patterns
are not drawn as individual units. The regulated backdrop or foundation of
these orderly patterns in Euclidean space is the grid.

The grid provides a framework within which human intuition and in-
vention can operate and that it can subvert. Within the chaos of nature,
regular patterns provide a contrast and promise of order. From early pat-
terns on pottery to geometric mosaics in Roman baths, people have long
used grids to enhance their lives with decoration. In Islamic culture, the fo-
cus on mathematics and prohibition on representational images led to the

most advanced grid systems of the time, used to decorate buildings and

REGULARITY {67}

religious texts. Grids have also long been used as the basis for architecture
and urban planning. For example, it is impossible to imagine New York,
the one-time city of the future, without the regular grid of upper Manhat-
tan. (Broadway breaks this grid in ways that form many of the city's most
notable public spaces.) The grid is also the basis for our most intellectual
play, from chess to go, whether the design submits to or reacts against it.
The grid has proved essential to the design of computers from the
grid of vacuum tubes on the ENIAC (1946) to the latest server farms that
feed data to the Internet. A new era of more reliable computing was
spawned in the 1950s by a grid of ferrite rings called core memory (figure
30.4). This technology works by addressing each ring on the grid to set its
charge to clockwise or counterclockwise to store one bit of information.
Because the information is stored as a magnetic force, it maintains its state
with or without power. The grid is an essential geometry of computation.
The two-dimensional regularity of the grid is essential to the impact
of 10 PRINT, as removing a single character from the program reveals. Tak-
ing out the semicolon that indicates that each character should be drawn
immediately to the right of the previous one, the symbol that wraps the
program’s output continually rightward across the screen, makes the im-

portance of the grid clear (see figure 30.5):

10 PRINT CHR$(205.5+RND(1)) : GOTO 10

As a column of diagonal lines, the output does not form a maze and the
vibrant pattern that encourages our eyes to dance across the screen is
not established (figure 30.5). The essential process of 10 PRINT in time
is a single, zero-dimensional coin flip to pick one of two characters; when
this recurs in time, it becomes a one-dimensional stream of diagonal lines
that either flows quickly down the left side (if the semicolon is omitted) or
moves right to wrap around to the next position below the current line and
to the left. The visual interest of this program results from wrapping this

one-dimensional stream of tiles into the two-dimensional grid.

Truchet Tiles

Imagine the diagonal character graphics in 10 PRINT are painted on a set

of square ceramic tiles, of the sort used for flooring. Each tile is painted

{68} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

NS
',‘r
B S
b
- L)
3 y
7
) p|
4 _k f
‘ -J %_J P
—1———“_'— u

Figure 30.4

Magnetic core memory.

REGULARITY {69}

Figure 30.5

This screen capture from the 10 PRINT variation without the semicolon

shows the importance of the two-dimensional grid as a defining characteristic

of the program.

with a black diagonal line dividing two white triangles. A tile can be rotated
in two orientations, so that the diagonal line appears to be a backslash or
a forward slash. Now imagine painting one of the two triangles black. Each
tile can now be rotated in four different orientations, like a black arrow
pointing at each of four corners. Repeatedly placing tiles down in the same
orientation will create a pattern (figure 30.6). Two tiles can be placed next
to each other to create one of sixteen unique formations, and laying down
any such pair repeatedly will again produce patterns. Indeed, any unique
grouping of tiles (whether 2 x 1, 4 x 4, etc.) can serve as a building block
for larger regularity.

Now, imagine a whole floor or tapestry covered with a regular pattern
of these repeating tiles. This thought exercise suggests the power of the
Truchet tile, so named because the Dominican priest Sebastien Truchet first
described what he called the “fecundity of these combinations” in 1704,
after experimenting with some ceramic tiles he came across at a building
site for a chateau near Orléans (Smith and Boucher 1987, 374).

Matching a single Truchet tile with another, and another, and another,

{70} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

and so on, a designer is able to create an incredible array of patterns. The
interplay between the direction of each tile and the varying repetition of
black and white—of positive and negative—produces symmetrical designs
that can range from grid-like patterns to mesmerizing, almost three-dimen-
sional illusions. Unlike earlier, Islamic patterns or Celtic designs, which both
relied on multiple-sized shapes, the Truchet tile uses only a single size and
a single shape (Smith and Boucher 1987, 378). In his original 1704 essay,
Truchet provides examples of thirty different patterns, barely evoking the
aesthetic possibilities of his tiles, though he notes that he “found too great
a number to report them all” (374). Truchet's work would be the inspiration
for a later book, Dotiat's modestly named Methode pour faire une infinite
de desseins differents . . . [Method for Making an Infinity of Different De-
signs . . .] which in turn had a considerable impact on eighteenth-century
European art (373).

Yet all of Truchet’s and Doliat’s examples are regular patterns, sym-
metrical and repetitive. The historian of science Cyril Stanley Smith ob-
served in 1987 that even more compelling designs can be generated from
Truchet tiles if dissymmetries are introduced. What happens when the reg-
ularity of a Truchet pattern is interrupted by randomness? Smith provides
one example, a block of Truchet tiles arranged at random (figure 30.3).
The lattice of the basic grid is still visible, but randomness has made its
mark, leaving imperfections that disrupt any nascent pattern. Unlike the
symmetrical examples Truchet and Dolat give, there is no resolution to the
structure. The center cannot hold, and neither can the margins. Smith next
pushes the limits of the Truchet tiles’ regularity by omitting solid coloring
from the tiles, leaving only the black diagonal line. The four possible orien-
tations of any given tile are then reduced to two.

These modified Truchet tiles generate a design that looks unmis-
takably like the output of 10 PRINT, a program published a half decade
before Smith and Boucher's article. The grid still remains—indicating the
edges of each tile—but the diagonals no longer seem to bound positive or
negative space. Instead, they appear to be the walls of a maze, twisty little
passages, all different. In this Truchet tile-produced artifact the dynamic
between regularity and its opposite come into play, suggesting that regu-
larity is not an aspect of design that exists in isolation, but rather can only
be defined by exceptions to it, by those moments when the regular be-

comes irregular. Rather than celebrating that 10 PRINT “scooped” Smith,

REGULARITY {71}

N
A
A
N
A
A
A
A

4
]
4
]
4
V]
4
]

A NN N
A Y YN

AN NN NN "N N4
A
N

4
AV 4
407 4
Vy 44
407 4
AV 4
407 4
V44
407 4
AV 4
APV 4

V9 9994
V9 9994
V9 9994
VY U994
V9 9994
V9 9994
V9 9994
VO 9994
V9 9994
VY VY4

V99994
Ve & & & &
AN SN NY
b 999N
VG V4
Ve & & & &
xrhvwwNn
b 999N
VY V4
Ve & & & &
AN SN NY
AN AN NN

redfe&ed
NN NN Y
e e€&d
b 999N SY N
redef&€&.d
NN NN Y
e e€&d
b 999N SY N
redef&€&.d
NN NN Y
e e€&d
A AN AN

e f&d
AN NN
r&r &V & 404
A YA YN
redeffe&ed
AN NN
r&r &V &4
A YUY
Ve &€&d
AN NN
r&r &V & 404
A U) Y Y\ N N

VNV AV 4

VALY AY AN
FdV OV 4N

VAY AN
FdV 4L
AV 44V 4
AV AV 4

AV AV AV
AV AV AVL

L9
B9
IR

V'V
soadsad
sasdaas
soadsad
sasdaas
sodsad
AAalaA A ad

Figure 30.6

1704.

Patterns from Sébastien Truchet's “Mémoire sur les combinaisons,”

Each 12 x 12 pattern redrawn above is constructed from smaller patterns using

one tile design, half black and half white cut across the diagonal.

: GOTOD i@

18 PRINT CHRS$(2835.5+RHNDC(1)>>;

{72}

I T
IR IS

T I RIS

IN

NN
%

@@@\

NN
77

@@@@@@

N\

>

K

K

ZI[[INZI INZI[IN\gZ
NIZNlIlZ\IZ

Z[INZZl NN

Figure 30.8

Examples of stitchwork from The Square Pattern technique from The Young Ladies’

journal Complete guide to the work-table.

it seems appropriate to note that there are several ways up the mountain—
or into the maze—of this particular random and regular pattern; one was
discovered at Commodore, another by taking a mathematical perspective

on tiling patterns and their aesthetics.

Textiles and Craft

The experiments of Truchet and Dodiat did not introduce the idea of creat-
ing patterns out of simple variations on shapes. Such practice is common-
place across many forms of design, particularly in the realm of ornament,
where both regular and irregular patterns have long been created. Franz
Boas documented compelling examples of theme and variation of Peru-
vian weavers, for example (cited in Gombrich 1994, 72). The Kuba of Zaire
create patterns of a complexity that has puzzled electrical engineers, pat-
terns with the mazelike passageways of 10 PRINT and yet of a far greater
intricacy (Huang et al. 2005). Or consider the murals of the Sotho women
of South Africa, decorative geometric murals known as litema (figure 30.7).
This technique, documented as early as 1861, involves assembling net-

works of squares made of painted mud and etched with fingers and sticks

{74} 18 PRINT CHRS$(285.5+RND<{1i>>; : GOTO i@

(Gerdes 1998, 87-90). In fact, the decorative arts have long held this secret
to 10 PRINT. Such techniques are detailed in the examples of fancy work
in the 1885 The Young Ladies’ journal Complete guide to the work-table
(figure 30.8). The examples therein demonstrate the orthogonal basis for
stitchwork that is evocative of the grid of the computer screen.

The hundreds of techniques define patterns ranging from simple
grids to complex emergent patterns. As Mark Marino argues elsewhere
(2010), these pattern books and instructive texts, primarily aimed at young
women, provided models of fundamental processes similar to the role of
the computer manuals and magazines such as RUN. Many of the tech-
niques result from a repeated process with instructions, similar to that indi-
cated by a computer program. For example, the Square Pattern technique
(figure 30.8) in the Fancy Netting chapter is defined as a pair of operations

that are repeated:
No. 6.— SQUARE PATTERN

For this pattern:—
1st Row: Work one plain row.
2nd Row: One ordinary stitch, and twist the thread twice round for the

large square. Repeat to the end of the row.

The first and second rows are repeated alternately. Arrange the stitches

so that a long stitch always comes under a short stitch.

Such examples demonstrate that while the systematic theorization of pat-
terns such as the one produced by 10 PRINT may emerge periodically, the
production of those patterns is deeply woven into the traditions of deco-
rative craft. The fundamental role of shared techniques for process and
pattern place computer programming squarely in the realm of techné, ar-
tistic craft. As in the Commodore 64 User's Manual, this text promotes the
execution of a set of instructions collected as a technique. On the surface,
the parallels between teaching needlecraft and programming are striking.
The programmers, however, are