Numerical Optimization, Formulations, Serial and Parallel
Algorithms for Machine Learning and Network Science

Kimon Fountoulakis, Postdoctoral Fellow and coPl @UCB, ICSI

Outline of the talk

1.My backgrouna
2.Parallel methods for convex optimization
3.Variational perspective of local graph clustering

4 .Software

My background

1.PhD on numerical optimization. In particular, Newton-type methods
for signal/image processing and machine learning. Complexity of
Newton-type methods and development of provably efficient

oreconditioners for iterative solution of linear systems.

2.Three year postdoctoral tfellow at University of California Berkeley.
Experience on parallelizing optimization methods for ML and Graph
analytics (this talk). Also worked a lot on variational perspective of

local graph clustering (this talk).

Parallel methods for convex
optimization

Avoiding synchronization in first-order methods for sparse convex optimization, A.
Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney, IPDPS, 2018

% Avoiding communication in primal and dual coordinate descent methods, A. Devarakonda, J.
Demmel, K. Fountoulakis, M. Mahoney, SIAM Scientific Computing, 2018 (minor revisions)

Optimization problems

minimize Ag(x) + f(x; A, b)

o data: rows of A
plane

ogrossion 9(2) = llzllv f(2) = | Az - b]3

T @) =zl fl@) =) max(l—biA7w,0)7
1=1

- Etastonet 9(z) = o [l«]3 + (1 =)]l

J _
+ Group lasso g(7) = Z |z x,
j=1

Assumptions for this talk

Ridge Regression

1D Row Partition

Method:

minimize \||z||5 +

Single coordinate descent

DN | —

Ax — b

DO DO

Scalable results for all data layouts

1D Row Partition 2D Block Partition 1D Column Partition

* Best performance depends on dataset and algorithm

38

Methods that we can speed up

- Block coordinate descent
- Accelerated block coordinate descent
- Newton-type (first-order++) block coordinate descent

- Proximal versions of the above

An example: coordinate descent

- Sample a column of data

er : 1ndicator vector for chosen coordinate at kth iteration

Tr41 ‘= Tk + exAxy f}k = Aey,

| 1
Afk p— argmlnAmeR)\Hmk + ekAiCH% | 2|

1
e AkTAk (2)\.’BkT€k -+ (Aa:k — b)TAk)
— partial derivative

step-size
10

Or equivalently Axy 1=

What are the basic computational primitives that we need to
parallelize?

1
e AkTAk (2Aka6k —+- (Ail?‘k — b)TAk)
— partial derivative

step-size

AZEk .=

At each iteration we need to compute Iin parallel the following inner products

T
Ak—l—s Ak—l—s (Amk-l-s — b>TAk-|-S

11

How can we compute inner products in parallel?

8x1+4x5

1x4+3X06

£}] 3 ¢ A

O 3 g \ : y e A . \
~ v TS S ,

A , 8 ‘

b
]
'

Ox3+7X7 Bx2+5x8

12

How much does it cost to compute an inner product in parallel?

Log P (depth of binary tree) messages in parallel, where P is the number of
DroCessors

EFach message costs (X —|— nﬂ communication time

/ \ Transfer time per byte

Constant cost: start-up time
Number of bytes to send

One inner product cost (length of vector)/P FLOPS computational time

Running time: computational time + communication time

Summary of coordinate descent

| Pseudo-code
- Samplea ol of st

- Compute partial derivative

- Update solution

- Repeat

14

A better version of coordinate descent

1 tree reduction per “s” iterations instead of 1 tree reduction at every iteration
“s” Is a user defined parameter

However, each node of the tree performs more computations

15

Summary of results

Decrease start-up time (latency) by a factor of s

No free lunch: increase number of bytes and flops by a factor of s

| Flops are distributed| | dependence of start-up
' aCross processors - . time on number of |
” | processors

Avoid start-up costs by viewing the algorithm as a recurrence

Instead we can unroll
1
A:Uk_|_5 = (2>\£Bk_|_ST€k_|_3 -+ (A:Bk_|_3 — b)TAk_|_8)
2\ + Ak—|-3TAk-|-,s N ———
—_— partial derivative
step-size

's” Iterations back and notice that all we need to compute the direction is a
bunch of inner products which can be performed in parallel.

“s” chosen columns Store all pairs of inner products in an s x s covar. matrix

17

Avoid start-up costs by viewing the algorithm as a recurrence

Instead we can unroll
1
A:Uk_|_5 = (2)\£Bk_|_ST€k_|_3 -+ (AZBk_|_S — b)TAk_|_8)
2\ + Ak-|-3TAk-|-,s S—————— ———————————
—_— partial derivative
step-size

's” Iterations back and notice that all we need to compute the direction is a
bunch of inner products which can be performed in parallel.

| ',' ' residual at step k

Partial i
gradient at step k |

A better algorithm: communication av0|d|ng coordinate descent

1 tree reduction per s |

| Pseudo-code |

iterations |

- Compute in parallel anticipated computations ¢
for the next “s” iterations

- Redundantly store the result
In all processors

iterations

- Each processor independently computes the next “s

- Repeat

19

Running time in Big-O for coordinate descent

No free lunch: Exchange FLOPS and bandwidth for latency

H H log P
v X | s l{im + o X °S + 8 x sH log P
S

s=1: coordinate descent S>1: communication avoiding coordinate descent

(X Time per message [P Number of cores 71l Features

6 Time per word f — TLTLZ(A)/TYLTL T) Samples

“Y Time per FLOP H Number of iterations

20

Optimal parameter “s”

B o P log P
-\ vfm+ BPlog P
(X Time per message P Number of cores Trl Features

6 Time per word f=mnnz(A)/mn T samples
“Y Time per FLOP H Number of iterations

-Let’s assume A is very sparse, i.e., yim is very small, then

v Corl oerIEGdlson
S = — 0(\/1010)100

b

21

Preliminary experiments

Summary of (LIBSVM) datasets

Name #Features #Data points Density of non-
Zeros
url 3,231,961 2,396,130 0.0036%
epsilon 2,000 400,000 100%
news20 62,021 15,935 0.13%
covtype 54 581,012 22%

C++ using the Message Passing Interface (MPI). Intel MKL library for sparse and
dense BLAS routines. All methods were tested on a Cray XC30.

Convergence of re-organized algorithms

Convergence rate remains the same in exact arithmetic
Empirically stable convergence: no divergence between methods

O Qurs

—
o)

\\ —Baseline|

—N
T | T T

Objective function
o
O

0 100 200 300
Iterations

Scalabllity performance

173

S N
—h
N

Running Time (sec)

39

~
o

“The more processors the better”
The gap between CA and non-CA increases w.r.t. #processors

Performance scaling: url

-e- B Il
.”v. Oul S
*
.
5
5
5
5
«
L J
5
5
L 2
L2
5
5
5
.
.
5
5
5
5
L 4
r'y
«
N
5
5
5
5
5
5
«
°
5
5
L 2
L2
5
5
5
I
5
e
e
‘e
5
5
.
5
5
.
5
5
5
5
5
G
5
G
G
G
.
G
G
-
-
-
.
-
-
-
-
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e
tv
| | |

Processors (P)

24

Running Time (sec)

o2
N

w P

~

Performance scaling: epsilon

B Il
.”v. Oul S
e,
L
4
4
..
L 4
L
L Z
L]
L]
L]
— L4
L4
L Z
L]
L]
L]
L]
L]
4
L4
L4
L]
L]
L]
4
4
4
4
L4
L4
4
4
4
4
O.
4
L
L
L Z
*
L4
0.
L 4
4
L4
L4
L4
L4
L4
L4
L 4
4
L4
L4
L 4
L 4
L4
0.
L 4
4
L4
L4
L4
L 4
L4
L4
L4
O.
L4
L4
4
L4
4
L4
4
4
L4
L4
L4
L 4
L4
L4
4
| | ;

Processors (P)

Scalabllity performance

“The more processors the better”
The gap between CA and non-CA increases w.r.t. #processors

Performance scaling: news20 Performance scaling: covtype
- Baseline > Baseline
/\366)\ 'V'OUI’S . . 1.5 ¢ 'V“'OUFS i
§ 507 x § 1.07 ¢ X
; ; 0.9 :
= 22.21 V. _ &
= | T —
o | T @))
e =
c . . (-
é 12.8 Vo é 033} V.
o6 | T v 0°3. 0 e F R
192 384 /68 /68 1536 3072
Processors (P) Processors (P)

25

Speed up breakdown

Large communication speedup until bandwidth takes a hit
Computation is maintained due to local cache-efficient (BLAS-3)

computations
Speedup: url Speedup: epsilon
1056 [5ctom 1 | L -
—¢total ; - | >¢&total
9.67 IO c%ranmunication LA 10.94 -3 C%ranmunication /@\
8.99 r|./A\ computation @ . computation R
——speedup = 1 i \ | —speedup = 1 i s _
........ Best s = 64 , \ o 833 .- Best § = 64 Q Q\
S 6.72 S D
® 5.89 | K>
@ Sk
@? 389 | o---0
e T ¢
2.03Q" H———¢ a&)\(
1 :
N X o N0 PP QY 2 I > »{b (g?/ @b‘,@@@
Recurrence unrolling parameter (s) Recurrence unrolling parameter (s)

20

Speed up breakdown

Large communication speedup until bandwidth takes a hit
Computation is maintained due to local cache-efficient (BLAS-3)

computations
Speedup: news20 6 04 Speedup: covtiype o
S¢total 6.53 | [>¢total Ratal s
- icati %
42 R " L 587 2 o >
——speedup = 1 O \ ——speedup = 1 !
3.45 ... Bests = 16 o° o] e Best s = 32
= S
D
Q 3.2
N 2.56
1 1.66
1
Recurrence unrolling parameter (s) Recurrence unrolling parameter (s)

27

Variational perspective on local
graph clustering

“An optimization approach to locally-biased graph algorithms”, K. Fountoulakis,
D. Gleich, M. Mahoney Proceedings IEEE, 2016

“Variational perspective on local graph clustering”, K.Fountoulakis, F. Khorasani, J. Shun,
X. Cheng, M. Mahoney, Math. Prog. B., 2017

“Capacity Releasing Diffusion for Speed and Locality”’, D. Wang, K. Fountoulakis,
M. Mahoney, S. Rao, ICML 2017

“Parallel Local Graph Clustering”, J. Shun, K. Fountoulakis, F. Khorasani,
M. Mahoney, VLDB, 2016

Past and present studies focus on global trends of the data

US-Senate data: Community structure in time-
dependent, multiscale, and multiplex networks,
Science, 328(no. 5980):876-878, 2010

17389 1865 2008

The American civil war ended Iin 1865

But, most real data have rich local structure

Data: The MIPS mammalian protein-protein interaction database. Bioinformatics, 21(6).832-834, 2005

And can be very complex

Color denotes similar
function

e ° '?
. . ,‘:"- ' -".'
" SO A
@0 LS ;4
% o e
‘ . ; :"' ‘ "'.
m‘g ™ . oo
. " - &.
'y ®
ﬁ x'| b *
-
0‘.
[]
-
.
»

Data: The MIPS mammalian protein-protein interaction database. Bioinformatics, 21(6).832-834, 2005

Outline

1.Local graph clustering, definition, examples
2.Example of a state-of-the-art method
3.Variational model

4.Proximal gradient descent

What is local graph clustering and why is it useful?

-Definition: find set of nodes A given a seed node in set B
-Set A has good precision/recall w.r.t set B
-The running time depends on A instead of the whole graph

-Scalable to graphs with billions of edges

-ldeal for finding small clusters and small neighborhoods

FacebooK soclal network: colour denotes class year

Data: Facebook John Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012

Global spectral: finds 20% of the graph

Data: Facebook John Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012

|_ocal graph clustering: finds 3% of the graph

Data: Facebook John Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012

| ocal graph clustering: finds 17% of the graph

Data: Facebook John Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012

Approximate Personalized PageRank

Algorithm idea: iteratively spread probability mass around the graph.

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

Approximate Personalized PageRank

Algorithm idea: iteratively spread probability mass around the graph.

Transfer alpha (10%) mass from r to x

-
~§

e =0 r=0.45

x=0, r=0.45

The other 90% of the mass is distributed evenly
to neighbors of A

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

0.1

Approximate Personalized PageRank

Algorithm idea: iteratively spread probability mass around the graph.

x=0.1, r=0.2025

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

0.1

Approximate Personalized PageRank

Algorithm idea: iteratively spread probability mass around the graph.

x=0.1, r=0.3982

x=0,r=0.1957

x=0.045, r=0.1957

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

Approximate Personalized PageRank

Algorithm idea: iteratively spread probability mass around the graph
until

I
max — < p&

i d.

- p: termination parameter
- d_I: number of edges of node |

Variational model of APPR

Observation: The optimality conditions of an [1-regularized
convex problem imply the termination condition of APPR.

... 1—a
minimize — |Bz||5 + || H(1 — 2)||5 + af| Zx||5 + pa|| Dz

where

- B: Is the Incidence matrix

- D: Degree matrix - A teleportation parameter
- H = diag(initial prob. dist. over nodes) - 0: I1-reg. hyper-parameter

-/ =D -H

Termination conditions vs optimality conditions

Termination criteria of Approximate Personalized PageRank
Iy
max — < po

i d

Optimality conditions of the variational model
Iy

I
— < (Y, $Z:O
g = F

Properties of the variational problem

-Theorem: The volume of the optimal solution is bounded by 1/p

-Theorem: Same combinatorial theoretical guarantees for local
graph clustering

-Crucial: The model decouples the output from the algorithm.

Proximal gradient descent for local graph clustering

1l — «

f(@) = — =Bz + ol HA - 2)|3 + ol Zz]3 g(x) := parl| D]y

Proximal gradient descent

T := argmin g(x) +

first-order Taylor approximation

Fa) + (Vi) —z) + gl
%/_/ a/_/

upper bound on the
approximation error

Requires careful implementation to avoid excessive running time

-Need to maintain a se

each Iteration

Ol

- Of NON-zero nodes
-Update x and gradient

y for non-zero nodes and their neighbors at

Theorem: non-decreasing non-zero nodes

1500 |

1000

Number of nonzeros

500

— Proximal Gradient
— Optimal number of non-zeros

0 | |

0 200 400 600 800 1000 1200 1400 1600 1800
lterations

Worst-case running times

Welighted graphns Unweighted graphs

(18] +vol(5.)) (2) 2 .
O lo .
Prox. grad. (10 5 e2p?a® min, d, O (PM 10g (62,02042 min; d;)) |

1
X o

APPR

Amin (ﬁg*) Ls. :sub-matrix of normalized Laplacian

Open problem: is accelerated prox. grad. a local algorithm?

Number of nonzeros

1600

1400

1200

1000

800

600

400

200

— Accelerated prox. grad. |
— Proximal Gradient

|
200

|
400

I I I I I
600 800 1000 1200 1400 1600 1800
lterations

Gradient descent running time

(1S, | + vol(S.)) 2
|
O ([0S e2p?a? min; d;

Accel. gradient descent
vol(G) X (2))
O(VI 108 €2p?a® min; d;

I

O(I5*|+vol(5*)1og(2))
VI e“p - min; d;

Software

LocalGraphClustering on GitHub &0

-Written in Python with C++ routines when required
-Graph analytics on 100 million edges graph on a 16GB RAM laptop
-Demonstrations on social and bioinformatics networks

-8 Python notebooks with numerous examples and graph visualizations

-Video presentations

-12 methods and pipelines

‘\ MATLAB

-PdNCG: primal-dual Newton Conjugate Gradients
-MFIPMCS: Matrix-free Interior Point Method for Compressed Sensing
-Trillion: Scalable instance generator for [1-regularized least-square problems

-FCD: Flexible Coordinate Descent

* Can be found at Edinburgh Research Group in Optimization repo
and my personal website

Thank you!

Other work during my PhD

“A flexible coordinate descent method”, K. Fountoulakis, R. Tappenden, Computational
Optimization and Applications, 2018

é “Performance of first- and second-order methods for I1-regularized least squares
problems”, K. Fountoulakis, J. Gondzio, Computational Optimization and Applications, 2016

“A second-order method for strongly-convex I1-regularization”, K. Fountoulakis, J. Gondzio,
Mathematical Programming, 2016

% “A preconditioner for a primal-dual Newton conjugate gradients method for compressed
Sensing problems”, |. Dassios, K. Fountoulakis, J. Gondzio, Mathematical Programming, 2015

“Matrix-free interior point method for compressed sensing problems”, K. Fountoulakis, J.
Gondzio, P. Zhlobich, Mathematical Programming Computation, 2014

Newton-type methods for image processing

]
minimize || Va1 + 5[Az - bl|3

Matrix—-vector products per CG/PCG call

Unpreconditioned CG |-~ S e U SRR o
5 Preconditioned CG

10° F———— — — — P RIPI P LI RPN S

10% of measurements 20% of measurements 30% of measurements

10 é A é é 16 12 1# 16 1é 26 22
Number of CG/PCG call
Spread of k(M)/MP'1M) per call of CG/PCG
° M)
40% of measurements 50% of measurements 60% of measurements

s|l| o AMPTM)|

MDe

°
2 | | | ‘ | | e o o
W g e e '
° 0
oo
MEEEEEIRIINRILL |

magnitude of A(M)/A(P~'M)

2 4 6 8 10 12 14 16 18 20 22
number of CG/PCG call

Parallel local graph clustering methods in shared memory

-Why shared memory? Currently the largest publicly available graphs can be
stored In computers with shared memory

-We parallelize 4 local spectral methods + rounding
1. Approximate PageRank (as demonstrated in previous slides)
2.Nibble
3.Deterministic HeatKernel Approximate PageRank
4.Randomized HeatKernel Approximate PageRank

5.5Sweep cut rounding algorithm

Based on

Parallel Local Graph Clustering, J. Shun, K. Fountoulakis, F. Khorasani,
M. Mahoney, VLDB, 2016

Overview of results

-3-10x faster than serial version

-Parallelization allowed us to solve problems of billions of nodes and edges.

An example: Parallel Approximate Personalized PageRank

-Serial version: picks a node from candidates to distribute mass to its neighbors
-Parallel: pick all nodes from candidates and distribute mass simultaneously

-Asymptotic work (FLOPS) remains the same
-But work Is parallelized
-We pay a small communication cost among cores

Data

Input graph Num. vertices Num. edges

soc-JL 4,847,571 42,851,237
"""""""""""" citPatents | 6009555 16518947
"""""""""""""""" comLd | 4036538 34681189
 com-Orkut | 3072627 117,185,083
"""""""""""""""""" Twitter | 41652231 1,202513046
" Friendster | 124836180 806,607,135
© Yahoo | 1413511391 6434561035

Performance

Num. vertices processed (normalized) Num. iterations (normalized)
1.8 -
16 % Sequential
14 “Parallel g 4
12 0.01
| .
ol 0.001
06 l
0.4 - 0.0001
I'I 11l
0 0.00001

O
0(' \0 6\ O& /\4‘\ 0069 _\é\

2 QP O

&

-Slightly more work for the parallel version
-Number of iterations is significantly less

Performance

Self-relative speedup on 40 cores Speedup on 40 cores relative to
our optimized sequential code

25 25

20

-3-16x speed up
-Speedup is limited by small active set in some iterations and memory eftects

Future directions: short term

-DARPA D3M (and HIVE) funds the project on graph analytics.

-Expand variational perspective to flow methods

-Prove that accelerated gradient descent has local running time

-Speed up existing pipelines using local graph clustering

-A tutorial on global and local graph methods

Future directions: long term

-My objective: make local analysis of data useful tor downstream applications
sclentists

- Target major applications, social network analysis, bioinformatics and
medical sciences

- Target data-science and machine learning venues, i.e., KDD, ICML, NIPS

-Make the software as easy as possible for the 99% case

Graph analytics on graphs with more than a billion nodes

Friendster, 124M nodes, 1.8B edges Yahoo, 1.4B nodes, 6.4B edges
10Y \ \ \ \ 10Y \ \ \ \ \
s 107! - 8107
g Qg) 10-3
g 10'2] ‘g 10—4
S SE
103 \ \ \ \ 10 \ \ \ \
100 108 102 10° 10* 10° 100 10! 102 10° 10* 10°
Cluster size Cluster size

-O(10°) approximate PPR problems were solved in parallel for each plot,

-Agrees with conclusions of [Leskovec et al. 2008], i.e., good clusters tend to be small.

Trade-offs and existing approaches

Newton

g

[

3

¥ .
e 4

[
o

Some
® algorithm

Computation

Coordinate
Descent

AR
o

—— S Ao -
.

Communication

69

. Current approach: |
'choose an algorithm based
on computation and

communication trade-off

Trade-offs and existing approaches

. Newton
O
<
©
= Some
= .
S ® algorithm
@)
O .
Coordinate
Descent
®
Communication

60

Our approach

. Newton

@
= O
= v’#. Some
S *% ® .
= algorithm
=
S

® Coordinate
Ve, . Descent
g 8 » .‘
Communication

67

Outline of the approach and results

Choose your favorite algorithm

Re-organize it to make it communication avoiding

R AT

AT

Load balanced processors

Scalability to 1000+ of processors or more

63

Algorithm 1 Block Coordinate Descent (BCD) Algorithm

1: Input: X e R*" y e R*, I >1, wg e R, beZ, st. b<d
2: for h=1,2,--- ,H do

3: choose {i,, € [d]m =1,2,...,b} uniformly at random without replacement

4: I = lei,, €y, - s €4, - | |

5. Tp= LITXXTL, + AIZT, Commtlmlca.tlon for parallel computation of Gram matrix

6: Awy, =T," (=A\Tw,_; — 217X z,_, + L1TXy) [(every iteration)

7 wy = wy 1 + [Awy,

8: 2n = z2n—1 + X1, Awy, Algorithm 2 Communication-Avoiding Block Coordinate Descent (CA-BCD) Algo-
9: Output wy rithm

1: Input: X e R¥>*" ycR*, H>1, wg eRY beZ, st. b<d
2: for k=0,1,--- ,% do
3: for =1,2,--- ,5do

Communication for parallel 4: choose {i,, € [d|/m = 1,2,...,b} uniformly at random without replacement
computation of all required 5: Lok+j = leirs €izs o 5 €3
. T
inner products 6: let Y = [Lopi1,Lspros o Lopys] X
(every outer iteration) 7: compute the Gram matrix, GG = %YYT + A1
8: for y=1,2,--- ,s5do
9: ['sk4+; are the b x b diagonal blocks of G.
| | 10: A’wsk+J = Ps_k—i—] (’\Hsk—i—] Wek — A Z (skt sk+tAwsk'+t) ——ll[zk_*_JXZsk
No communication
for inner loop —L5- (SHJXXTHskHAwsHt) HZH]Xy)
11: Wek4j = Wsk4j—1 + Lskt j AWsk 4
12: Zsk+j — “sk4j—1 + XT]Isk—{—jA'wsk—l—j

13: Outpgéc e 4

Why communication matters

Definition and architectural trends
Modelling communication

Useful communication primitives

Definition

Communication is data movement.

Sequential Parallel (Distributed-Memory)

1

Courtesy:
Schwartz

Architectural trends

Processor speed << Communication speed
Gap is growing

Need for faster optimization algorithms with less communication requirements

Modelling communication -
Hardware Parameters

Running Time = Computation time + Communication time

/

(time per flop) x

(time per word) X + (time per message) x
Latency (or start-up time)

Bandwidth of algorithm of hardware

Communication primitives

Array of size n with P processors.

Cost of one MPI Allreduce

MPI|_Allreduce

OEHN)ERIC)EE(G)EZ

MPI_SUM

(b () felid] (2) beia] (2) el

Number of words

Number of Messages

O(log P)

O(log P)

Courtesy:
Kendall

Thakur, et. al. 2005

An example: coordinate descent

| Pseudo-code |

- Sample a column of data AiTresidual

- Compute partial derivative

- Update solution

- Repeat

I4S

How all these are related to numerical optimization?

-First-order methods are often preferred in the serial setting due
to fast convergence to low accuracy solutions

-However, in the parallel setting first-order methods can be
communication bound depending on the number of cores and the
network architecture

-Each iteration is usually very inexpensive but the algorithm needs
many iteration to converge and each iteration requires a
communication round

Avoid start-up costs by viewing the algorithm as a recurrence

s X s covar. matrix gradient at step k

Compute “s” directions

Redundantly on all processors j,

No communication required |

i Compute in parallel with one |
. communication round all |
- quantities that are needed for |
| the next “s” iterations |

77

