Numerical Optimization, Formulations, Serial and Parallel Algorithms for Machine Learning and Network Science Kimon Fountoulakis, Postdoctoral Fellow and coPl @UCB, ICSI #### Outline of the talk - 1. My background - 2. Parallel methods for convex optimization - 3. Variational perspective of local graph clustering - 4.Software ## My background 1.PhD on numerical optimization. In particular, Newton-type methods for signal/image processing and machine learning. Complexity of Newton-type methods and development of provably efficient preconditioners for iterative solution of linear systems. 2. Three year postdoctoral fellow at University of California Berkeley. Experience on parallelizing optimization methods for ML and Graph analytics (**this talk**). Also worked a lot on variational perspective of local graph clustering (**this talk**). # Parallel methods for convex optimization Avoiding synchronization in first-order methods for sparse convex optimization, A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney, IPDPS, 2018 Avoiding communication in primal and dual coordinate descent methods, A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney, SIAM Scientific Computing, 2018 (minor revisions) #### Optimization problems minimize $$\lambda g(x) + f(x; A, b)$$ *Sparse $$g(x) = \|x\|_1 \quad f(x) = \|Ax - b\|_2^2$$ regression • Sparse $$g(x) = \|x\|_1 \quad f(x) = \sum_{i=1}^m \max(1 - b_i A_i^T x, 0)^2$$ • Elastic net $$g(x) = \frac{\eta}{2} \|x\|_2^2 + (1-\eta) \|x\|_1$$ • Group lasso $$g(x) = \sum_{j=1}^J \|x_j\|_{K_j}$$ #### Assumptions for this talk Ridge Regression minimize $$\lambda ||x||_2^2 + \frac{1}{2}||Ax - b||_2^2$$ 1D Row Partition A Method: Single coordinate descent #### Scalable results for all data layouts ^{*} Best performance depends on dataset and algorithm Methods that we can speed up - Block coordinate descent - Accelerated block coordinate descent - Newton-type (first-order++) block coordinate descent - Proximal versions of the above #### An example: coordinate descent e_k : indicator vector for chosen coordinate at kth iteration $$oldsymbol{x_{k+1}} := oldsymbol{x_k} + e_k \Delta x_k \qquad \qquad oldsymbol{A_k} := \operatorname{Ae_k} \ \Delta x_k := \operatorname{argmin}_{\Delta x \in \mathbb{R}} \lambda \| oldsymbol{x_k} + e_k \Delta x \|_2^2 + \frac{1}{2} \| oldsymbol{Ax_k} + oldsymbol{A_k \Delta x} - oldsymbol{b} \|_2^2$$ Or equivalently $$\Delta x_{\pmb{k}} := -\underbrace{\frac{1}{2\lambda + {\pmb{A}_{\pmb{k}}}^T {\pmb{A}_{\pmb{k}}}}}_{\text{step-size}} \underbrace{\frac{(2\lambda {\pmb{x}_{\pmb{k}}}^T {\pmb{e}_{\pmb{k}}} + ({\pmb{A}} {\pmb{x}_{\pmb{k}}} - {\pmb{b}})^T {\pmb{A}_{\pmb{k}}})}_{\text{partial derivative}}$$ What are the basic computational primitives that we need to parallelize? $$\Delta x_{k} := -\underbrace{\frac{1}{2\lambda + A_{k}^{T} A_{k}}}_{\text{Step-size}} \underbrace{\frac{(2\lambda x_{k}^{T} e_{k} + (A x_{k} - b)^{T} A_{k})}{\text{partial derivative}}}_{\text{partial derivative}}$$ At each iteration we need to compute in parallel the following inner products $$\mathbf{A_{k+s}}^T \mathbf{A_{k+s}} \qquad (\mathbf{A}\mathbf{x_{k+s}} - \mathbf{b})^T \mathbf{A_{k+s}}$$ #### How can we compute inner products in parallel? #### How much does it cost to compute an inner product in parallel? Log P (depth of binary tree) messages in parallel, where P is the number of processors One inner product cost (length of vector)/P FLOPS computational time Running time: computational time + communication time #### Summary of coordinate descent Pseudo-code - Sample a column of data 1 tree reduction per iteration - Compute partial derivative - Update solution - Repeat A better version of coordinate descent 1 tree reduction per "s" iterations instead of 1 tree reduction at every iteration "s" is a user defined parameter However, each node of the tree performs more computations #### Summary of results Decrease start-up time (latency) by a factor of s No free lunch: increase number of bytes and flops by a factor of s Flops are distributed across processors Logarithmic dependence of start-up time on number of processors #### Avoid start-up costs by viewing the algorithm as a recurrence Instead we can unroll $$\Delta x_{k+s} := -\underbrace{\frac{1}{2\lambda + A_{k+s}^T A_{k+s}}}_{\text{step-size}} \underbrace{(2\lambda x_{k+s}^T e_{k+s} + (Ax_{k+s} - b)^T A_{k+s})}_{\text{partial derivative}}$$ "s" iterations back and notice that all we need to compute the direction is a bunch of inner products which can be performed in **parallel**. "s" chosen columns #### Store all pairs of inner products in an s x s covar. matrix #### Avoid start-up costs by viewing the algorithm as a recurrence Instead we can unroll $$\Delta x_{k+s} := -\underbrace{\frac{1}{2\lambda + A_{k+s}^T A_{k+s}}}_{\text{step-size}} \underbrace{\frac{(2\lambda x_{k+s}^T e_{k+s} + (Ax_{k+s} - b)^T A_{k+s})}{\text{partial derivative}}}_{\text{partial derivative}}$$ "s" iterations back and notice that all we need to compute the direction is a bunch of inner products which can be performed in **parallel**. #### A better algorithm: communication avoiding coordinate descent Pseudo-code 1 tree reduction per s iterations - Compute in parallel anticipated computations for the next "s" iterations - Redundantly store the result in all processors - Each processor independently computes the next "s" iterations - Repeat #### Running time in Big-O for coordinate descent No free lunch: Exchange FLOPS and bandwidth for latency $$\gamma \times \left(s \frac{Hfm}{P}\right) + \alpha \times \left(\frac{H\log P}{s}\right) + \beta \times sH\log P$$ s>1: communication avoiding coordinate descent s=1: coordinate descent $$lpha$$ Time per message $\,P\,$ Number of cores $\,m$ Features $$eta$$ Time per word $f=nnz(A)/mn$ n Samples #### Optimal parameter "s" $$s = \sqrt{\frac{\alpha P \log P}{\gamma f m + \beta P \log P}}$$ lpha Time per message P Number of cores m Features β Time per word $f=nnz(A)/mn \quad \mathcal{n} \text{ Samples}$ γ Time per FLOP H Number of iterations -Let's assume A is very sparse, i.e., γfm is very small, then $$s \approx \sqrt{\frac{\alpha}{\beta}}$$ Cori or Edison $$= \mathcal{O}\left(\sqrt{\frac{10^{-6}}{10^{-10}}}\right) = 100$$ #### Preliminary experiments Summary of (LIBSVM) datasets | Name | #Features | #Data points | Density of non-
zeros | |---------|-----------|--------------|--------------------------| | url | 3,231,961 | 2,396,130 | 0.0036% | | epsilon | 2,000 | 400,000 | 100% | | news20 | 62,021 | 15,935 | 0.13% | | covtype | 54 | 581,012 | 22% | C++ using the Message Passing Interface (MPI). Intel MKL library for sparse and dense BLAS routines. All methods were tested on a Cray XC30. #### Convergence of re-organized algorithms Convergence rate remains the same in exact arithmetic Empirically stable convergence: no divergence between methods #### Scalability performance #### "The more processors the better" The gap between CA and non-CA increases w.r.t. #processors #### Scalability performance #### "The more processors the better" The gap between CA and non-CA increases w.r.t. #processors #### Speed up breakdown # Large communication speedup until bandwidth takes a hit Computation is maintained due to local cache-efficient (BLAS-3) computations #### Speed up breakdown Large communication speedup until bandwidth takes a hit Computation is maintained due to local cache-efficient (BLAS-3) computations # Variational perspective on local graph clustering "An optimization approach to locally-biased graph algorithms", K. Fountoulakis, D. Gleich, M. Mahoney Proceedings IEEE, 2016 "Variational perspective on local graph clustering", K.Fountoulakis, F. Khorasani, J. Shun, X. Cheng, M. Mahoney, Math. Prog. B., 2017 "Capacity Releasing Diffusion for Speed and Locality", D. Wang, K. Fountoulakis, M. Mahoney, S. Rao, ICML 2017 "Parallel Local Graph Clustering", J. Shun, K. Fountoulakis, F. Khorasani, M. Mahoney, VLDB, 2016 #### Past and present studies focus on global trends of the data The American civil war ended in 1865 #### But, most real data have rich local structure Data: The MIPS mammalian protein-protein interaction database. Bioinformatics, 21(6):832-834, 2005 And can be very complex Data: The MIPS mammalian protein-protein interaction database. *Bioinformatics*, 21(6):832-834, 2005 #### Outline - 1.Local graph clustering, definition, examples - 2. Example of a state-of-the-art method - 3. Variational model - 4. Proximal gradient descent #### What is local graph clustering and why is it useful? - -Definition: find set of nodes A given a seed node in set B - -Set A has good precision/recall w.r.t set B - -The running time depends on A instead of the whole graph - -Scalable to graphs with billions of edges -Ideal for finding small clusters and small neighborhoods #### Facebook social network: colour denotes class year ### Global spectral: finds 20% of the graph ### Local graph clustering: finds 3% of the graph ## Local graph clustering: finds 17% of the graph Algorithm idea: iteratively spread probability mass around the graph. Algorithm idea: iteratively spread probability mass around the graph. $\alpha = 0.1$ Algorithm idea: iteratively spread probability mass around the graph. $\alpha = 0.1$ Algorithm idea: iteratively spread probability mass around the graph. $\alpha = 0.1$ Algorithm idea: iteratively spread probability mass around the graph until $$\max_{i} \frac{r_i}{d_i} \leq \rho \alpha$$ - p: termination parameter - d_i: number of edges of node i #### Variational model of APPR **Observation:** The optimality conditions of an I1-regularized convex problem imply the termination condition of APPR. minimize $$\frac{1-\alpha}{2} ||Bx||_2^2 + \alpha ||H(\mathbf{1}-x)||_2^2 + \alpha ||Zx||_2^2 + \rho \alpha ||Dx||_1$$ #### where - B: is the incidence matrix - D: Degree matrix - H = diag(initial prob. dist. over nodes) - -Z=D-H - a: teleportation parameter - p: l1-reg. hyper-parameter ## Termination conditions vs optimality conditions Termination criteria of Approximate Personalized PageRank $$\max_{i} \frac{r_i}{d_i} \le \rho \alpha$$ Optimality conditions of the variational model $$\frac{r_i}{d_i} = \rho \alpha, \ x_i \neq 0$$ $$\frac{r_i}{d_i} \leq \rho \alpha, \ x_i = 0$$ ## Properties of the variational problem -Theorem: The volume of the optimal solution is bounded by 1/p -Theorem: Same combinatorial theoretical guarantees for local graph clustering -Crucial: The model decouples the output from the algorithm. ## Proximal gradient descent for local graph clustering $$f(x) := \frac{1 - \alpha}{2} \|Bx\|_2^2 + \alpha \|H(\mathbf{1} - x)\|_2^2 + \alpha \|Zx\|_2^2 \qquad g(x) := \rho \alpha \|Dx\|_1$$ Proximal gradient descent $$x_{k+1} := \operatorname{argmin} g(x) + \underbrace{f(x_k) + \langle \nabla f(x_k), x - x_k \rangle}_{\text{first-order Taylor approximation}} + \underbrace{\frac{1}{2} \|x - x_k\|_2^2}_{\text{upper bound on the approximation error}}$$ Requires careful implementation to avoid excessive running time - -Need to maintain a set of non-zero nodes - -Update x and gradient only for non-zero nodes and their neighbors at each iteration ## Theorem: non-decreasing non-zero nodes ## Worst-case running times Weighted graphs Unweighted graphs Prox. grad. $$\mathcal{O}\left(\frac{(|\mathcal{S}_*| + \widehat{\operatorname{vol}}(\mathcal{S}_*))}{\mu} \log\left(\frac{2}{\epsilon^2 \rho^2 \alpha^2 \min_j d_j}\right)\right) \quad \mathcal{O}\left(\frac{2}{\rho \mu} \log\left(\frac{2}{\epsilon^2 \rho^2 \alpha^2 \min_j d_j}\right)\right).$$ $$\mathcal{O}\left(\frac{2}{\rho\mu}\log\left(\frac{2}{\epsilon^2\rho^2\alpha^2\min_j d_j}\right)\right).$$ **APPR** $$\frac{1}{\alpha\rho}$$ $$\mu := \alpha + \frac{1 - \alpha}{4} \lambda_{min}(\mathcal{L}_{\mathcal{S}_*})$$ $\mathcal{L}_{\mathcal{S}_*}$: sub-matrix of normalized Laplacian ## Open problem: is accelerated prox. grad. a local algorithm? Gradient descent running time $$\mathcal{O}\left(\frac{(|\mathcal{S}_*| + \widehat{\text{vol}}(\mathcal{S}_*))}{\mu} \log\left(\frac{2}{\epsilon^2 \rho^2 \alpha^2 \min_j d_j}\right)\right)$$ Accel. gradient descent $$\mathcal{O}\left(\frac{\operatorname{vol}(\mathcal{G})}{\sqrt{\mu}}\log\left(\frac{2}{\epsilon^2\rho^2\alpha^2\min_j d_j}\right)\right)$$ $$\mathcal{O}\left(\frac{|\mathcal{S}_*| + \operatorname{vol}(\mathcal{S}_*)}{\sqrt{\mu}} \log\left(\frac{2}{\epsilon^2 \rho^2 \alpha^2 \min_j d_j}\right)\right)$$ ## Software ## LocalGraphClustering on GitHub - -Written in Python with C++ routines when required - -Graph analytics on 100 million edges graph on a 16GB RAM laptop - -Demonstrations on social and bioinformatics networks - -8 Python notebooks with numerous examples and graph visualizations - -Video presentations - -12 methods and pipelines - -pdNCG: primal-dual Newton Conjugate Gradients - -MFIPMCS: Matrix-free Interior Point Method for Compressed Sensing - -Trillion: Scalable instance generator for 11-regularized least-square problems - -FCD: Flexible Coordinate Descent * Can be found at Edinburgh Research Group in Optimization repo and my personal website # Thank you! ## Other work during my PhD "A flexible coordinate descent method", K. Fountoulakis, R. Tappenden, Computational Optimization and Applications, 2018 "Performance of first- and second-order methods for I1-regularized least squares problems", K. Fountoulakis, J. Gondzio, Computational Optimization and Applications, 2016 "A second-order method for strongly-convex I1-regularization", K. Fountoulakis, J. Gondzio, Mathematical Programming, 2016 "A preconditioner for a primal-dual Newton conjugate gradients method for compressed sensing problems", I. Dassios, K. Fountoulakis, J. Gondzio, Mathematical Programming, 2015 "Matrix-free interior point method for compressed sensing problems", K. Fountoulakis, J. Gondzio, P. Zhlobich, Mathematical Programming Computation, 2014 ## Newton-type methods for image processing minimize $$\lambda \|\nabla x\|_1 + \frac{1}{2} \|Ax - b\|_2^2$$ ## Parallel local graph clustering methods in shared memory -Why shared memory? Currently the largest publicly available graphs can be stored in computers with shared memory - -We parallelize 4 local spectral methods + rounding - 1. Approximate PageRank (as demonstrated in previous slides) - 2. Nibble - 3. Deterministic HeatKernel Approximate PageRank - 4.Randomized HeatKernel Approximate PageRank - 5. Sweep cut rounding algorithm Based on Parallel Local Graph Clustering, J. Shun, K. Fountoulakis, F. Khorasani, M. Mahoney, VLDB, 2016 #### Overview of results -3-16x faster than serial version -Parallelization allowed us to solve problems of billions of nodes and edges. ## An example: Parallel Approximate Personalized PageRank - -Serial version: picks a node from candidates to distribute mass to its neighbors - -Parallel: pick all nodes from candidates and distribute mass simultaneously - -Asymptotic work (FLOPS) remains the same - -But work is parallelized - -We pay a small communication cost among cores ## Data | Input graph | Num. vertices | Num. edges | |-------------|---------------|---------------| | soc-JL | 4,847,571 | 42,851,237 | | cit-Patents | 6,009,555 | 16,518,947 | | com-LJ | 4,036,538 | 34,681,189 | | com-Orkut | 3,072,627 | 117,185,083 | | Twitter | 41,652,231 | 1,202,513,046 | | Friendster | 124,836,180 | 1,806,607,135 | | Yahoo | 1,413,511,391 | 6,434,561,035 | ### Performance - -Slightly more work for the parallel version - -Number of iterations is significantly less #### Performance - -3-16x speed up - -Speedup is limited by small active set in some iterations and memory effects #### Future directions: short term -DARPA D3M (and HIVE) funds the project on graph analytics. -Expand variational perspective to flow methods -Prove that accelerated gradient descent has local running time -Speed up existing pipelines using local graph clustering -A tutorial on global and local graph methods ## Future directions: long term - -My objective: make local analysis of data useful for downstream applications scientists - -Target major applications, social network analysis, bioinformatics and medical sciences - -Target data-science and machine learning venues, i.e., KDD, ICML, NIPS -Make the software as easy as possible for the 99% case ### Graph analytics on graphs with more than a billion nodes - O(105) approximate PPR problems were solved in parallel for each plot, - -Agrees with conclusions of [Leskovec et al. 2008], i.e., good clusters tend to be small. ### Trade-offs and existing approaches ## Current approach: choose an algorithm based on computation and communication trade-off ## Trade-offs and existing approaches What happens if there is no algorithm with the required trade-off? We need to wait until a mathematician comes up with a solution ## Our approach Take existing algorithms and make them communication avoiding ## Outline of the approach and results Re-organize it to make it communication avoiding Load balanced processors Scalability to 1000+ of processors or more #### **Algorithm 1** Block Coordinate Descent (BCD) Algorithm - 1: Input: $X \in \mathbb{R}^{d \times n}, y \in \mathbb{R}^n, H > 1, w_0 \in \mathbb{R}^d, b \in \mathbb{Z}_+ \text{ s.t. } b \leq d$ - 2: **for** $h = 1, 2, \dots, H$ **do** - choose $\{i_m \in [d] | m = 1, 2, \dots, b\}$ uniformly at random without replacement - $\mathbb{I}_h = [e_{i_1}, e_{i_2}, \cdots, e_{i_h}]$ - $w_h = w_{h-1} + \mathbb{I}_h \Delta w_h$ - $z_h = z_{h-1} + X^T \mathbb{I}_h \Delta w_h$ - 9: Output w_H Communication for parallel computation of all required inner products (every outer iteration) > No communication for inner loop # $\Gamma_h = \frac{1}{n} \mathbb{I}_h^T X X^T \mathbb{I}_h + \lambda \mathbb{I}_h^T \mathbb{I}_h$ $\Delta w_h = \Gamma_h^{-1} \left(-\lambda \mathbb{I}_h^T w_{h-1} - \frac{1}{n} \mathbb{I}_h^T X z_{h-1} + \frac{1}{n} \mathbb{I}_h^T X y \right)$ Communication for parallel computation of Gram matrix (every iteration) Algorithm 2 Communication-Avoiding Block Coordinate Descent (CA-BCD) Algorithm ``` 1: Input: X \in \mathbb{R}^{d \times n}, y \in \mathbb{R}^n, H > 1, w_0 \in \mathbb{R}^d, b \in \mathbb{Z}_+ s.t. b \leq d ``` - 2: **for** $k = 0, 1, \dots, \frac{H}{\epsilon}$ **do** - for $j = 1, 2, \dots, s$ do - choose $\{i_m \in [d] | m = 1, 2, \dots, b\}$ uniformly at random without replacement 5: $$\mathbb{I}_{sk+j} = [e_{i_1}, e_{i_2}, \cdots, e_{i_k}]$$ - 5: $\mathbb{I}_{sk+j} = [e_{i_1}, e_{i_2}, \cdots, e_{i_b}]$ 6: $\det Y = \left[\mathbb{I}_{sk+1}, \mathbb{I}_{sk+2}, \cdots, \mathbb{I}_{sk+s}\right]^T X.$ 7: compute the Gram matrix, $G = \frac{1}{n}YY^T + \lambda I.$ - for $j = 1, 2, \dots, s$ do - Γ_{sk+j} are the $b \times b$ diagonal blocks of G. 0: $$\Delta w_{sk+j} = \Gamma_{sk+j}^{-1} \left(-\lambda \mathbb{I}_{sk+j}^T w_{sk} - \lambda \sum_{t=1}^{j-1} \left(\mathbb{I}_{sk+j}^T \mathbb{I}_{sk+t} \Delta w_{sk+t} \right) - \frac{1}{n} \mathbb{I}_{sk+j}^T X z_{sk} \right)$$ $$-\frac{1}{n}\sum_{t=1}^{j-1} \left(\mathbb{I}_{sk+j}^T X X^T \mathbb{I}_{sk+t} \Delta w_{sk+t} \right) + \frac{1}{n} \mathbb{I}_{sk+j}^T X y \right)$$ - $w_{sk+j} = w_{sk+j-1} + \mathbb{I}_{\underline{sk+j}} \Delta w_{sk+j}$ - $z_{sk+j} = z_{sk+j-1} + X^T \mathbb{I}_{sk+j} \Delta w_{sk+j}$ - 13: Output w_H ## Why communication matters Definition and architectural trends Modelling communication Useful communication primitives ### Definition Communication is data movement. Courtesy: Schwartz #### Architectural trends Processor speed << Communication speed Gap is growing Need for faster optimization algorithms with less communication requirements ## Modelling communication **Hardware Parameters** **Algorithm Parameters** #### Running Time = Computation time + Communication time ## Communication primitives Array of size **n** with **P** processors. MPI_Allreduce Courtesy: Kendall Cost of one MPI_Allreduce | Number of words | Number of Messages | |-----------------|--------------------| | O(log P) | O(log P) | Thakur, et. al. 2005 ## An example: coordinate descent - Repeat How all these are related to numerical optimization? -First-order methods are often preferred in the serial setting due to fast convergence to low accuracy solutions -However, in the parallel setting first-order methods can be communication bound depending on the number of cores and the network architecture -Each iteration is usually very inexpensive but the algorithm needs many iteration to converge and each iteration requires a communication round ### Avoid start-up costs by viewing the algorithm as a recurrence Compute in parallel with one communication round all quantities that are needed for the next "s" iterations Compute "s" directions Redundantly on all processors No communication required