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Principles of Parallel Algorithm 
Design

Why is Parallel Computing Hard?

• Amdahl’s law – insufficient available 
parallelism –

– Speedup = 1/(fraction_enhanced/speedup_enhanced + (1-fraction_enhanced))

• Overhead of communication and 
coordination

• Portability – knowledge of underlying 
architecture often required

Parallel Programming Models

• Data parallel – HPF, Fortran-D, Power 
C/Fortran 

• Shared memory - pthreads
• Message passing – MPI, PVM
• Global address space

Steps in the Parallelization

• Decomposition into tasks
– Expose concurrency

• Assignment to processes
– Balancing load and maximizing locality

• Orchestration 
– Name and access data
– Communicate (exchange) data
– synchronization among processes

• Mapping
– Assignment of processes to processors
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Basics of Parallelization

• Dependence analysis
• Synchronization

– Events
– Mutual exclusion

• Parallelism patterns

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel
iff

there are no dependences between S1 and S2
– true dependences
– anti-dependences
– output dependences

Some dependences can be removed.

Types of Dependences

• True (flow) dependence – RAW
• Anti-dependence – WAR
• Output dependence – WAW

Loop-Carried Dependence

• A loop-carried dependence is a dependence 
that is present only if the statements occur 
in two different instances of a loop

• Otherwise, we call it a loop-independent 
dependence

• Loop-carried dependences limit loop 
iteration parallelization
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Synchronization

• Used to enforce dependences
• Control the ordering of events on different 

processors
– Events – signal(x) and wait(x)
– Fork-Join or barrier synchronization (global)
– Mutual exclusion/critical sections

Example 1: Creating Parallelism 
by Enforcing Dependences

for( i=1; i<100; i++ ) {
a[i] = …;
…;
… = a[i-1];

}

• Loop-carried dependence, not parallelizable

Synchronization Facility

• Suppose we had a set of primitives, 
signal(x) and wait(x).

• wait(x) blocks unless a signal(x) has 
occurred.

• signal(x) does not block, but causes a 
wait(x) to unblock, or causes a future 
wait(x) not to block.

Example 1: Enforcing 
Dependencies (continued)

for( i=...; i<...; i++ ) {
a[i] = …;
signal(e_a[i]);
…;
wait(e_a[i-1]);
… = a[i-1];

}
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Example 1 (continued)

• Note that here it matters which iterations are 
assigned to which processor.

• It does not matter for correctness, but it 
matters for performance.

• Cyclic assignment is probably best.

Example 2: Enforcing 
Dependences

for( i=0; i<100; i++ ) a[i] = f(i);
x = g(a);
for( i=0; i<100; i++ ) b[i] = x + h( a[i] );

• First loop can be run in parallel.
• Middle statement is sequential.
• Second loop can be run in parallel.

Example 2 (contimued)

• We will need to make parallel execution 
stop after first loop and resume at the 
beginning of the second loop.

• Two (standard) ways of doing that:
– fork() - join()
– barrier synchronization

Fork-Join Synchronization

• fork() causes a number of processes to be 
created and to be run in parallel.

• join() causes all these processes to wait until 
all of them have executed a join().



5

Example 2 (continued)

fork();
for( i=...; i<...; i++ ) a[i] = f(i);
join();
x = g(a);
fork();
for( i=...; i<...; i++ ) b[i] = x + h( a[i] );
join();

Eliminating Dependences

• Privatization or scalar expansion
• Reduction (common pattern)

Example: Scalar Expansion or 
Privatization

for (I = 0; I < 100; I++)
T = A[I];
A[I] = B[I];
B[I] = T;

Loop-carried anti-dependence on T
Eliminate by converting T into an array or by 
making T private to each loop iteration

Example: Scalar Expansion

for (I = 0; I < 100; I++)
T [I]= A[I];
A[I] = B[I];
B[I] = T[I];

Loop-carried anti-dependence eliminated
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Removing Dependences: 
Reduction

sum = 0.0;
for( i=0; i<100; i++ ) sum += a[i];

• Loop-carried dependence on sum.
• Cannot be parallelized, but ...

Reduction (continued)
for( i=0; i<...; i++ ) sum[i] = 0.0;
fork();
for( j=…; j<…; j++ ) sum[i] += a[j];
join();
sum = 0.0;
for( i=0; i<...; i++ ) sum += sum[i];

Common pattern often with explicit support
e.g.,  sum = reduce (+, a, 0, 100)
CAVEAT: Operator must be commutative and associative

Decomposition Techniques

• Recursive
• Data
• Exploratory
• Speculative

Patterns of Parallelism

• Data parallelism: all processors do the same thing 
on different data
– Regular 
– Irregular

• Task parallelism: processors do different tasks
– Task graph vs. master-slave
– Task queue
– Pipelines
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Data Parallelism

• Essential idea: each processor works on a 
different part of the data (usually in one or 
more arrays).

• Regular or irregular data parallelism: using 
linear or non-linear indexing.

• Examples: MM (regular), SOR (regular), 
MD (irregular).

Matrix Multiplication

• Multiplication of two n by n matrices A and 
B into a third n by n matrix C

Matrix Multiply

for( i=0; i<n; i++ )
for( j=0; j<n; j++ )

c[i][j] = 0.0;
for( i=0; i<n; i++ )

for( j=0; j<n; j++ )
for( k=0; k<n; k++ )

c[i][j] += a[i][k]*b[k][j];

Parallel Matrix Multiply

• No loop-carried dependences in i- or j-loop.
• Loop-carried dependence on k-loop.
• All i- and j-iterations can be run in parallel.
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Parallel Matrix Multiply (contd.)

• If we have P processors, we can give n/P 
rows or columns to each processor.

• Or, we can divide the matrix in P squares, 
and give each processor one square.

SOR

• SOR implements a mathematical model for 
many natural phenomena, e.g., heat 
dissipation in a metal sheet.

• Model is a partial differential equation.
• Focus is on algorithm, not on derivation.
• Discretized problem as in first lecture

Relaxation Algorithm

• For some number of iterations
for each internal grid point

compute average of its four neighbors
• Termination condition:

values at grid points change very little
(we will ignore this part in our example)

Discretized Problem Statement

/* Initialization */
for( i=0; i<n+1; i++ ) grid[i][0] = 0.0;
for( i=0; i<n+1; i++ ) grid[i][n+1] = 0.0;
for( j=0; j<n+1; j++ ) grid[0][j] = 1.0;
for( j=0; j<n+1; j++ ) grid[n+1][j] = 0.0;

for( i=1; i<n; i++ )
for( j=1; j<n; j++ )

grid[i][j] = 0.0;
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Discretized Problem Statement

for some number of timesteps/iterations {
for (i=1; i<n; i++ )

for( j=1, j<n, j++ )
temp[i][j] = 0.25 *

( grid[i-1][j] + grid[i+1][j]
grid[i][j-1] + grid[i][j+1] );

for( i=1; i<n; i++ )
for( j=1; j<n; j++ )

grid[i][j] = temp[i][j];
}

Parallel SOR

• No dependences between iterations of first 
(i,j) loop nest.

• No dependences between iterations of 
second (i,j) loop nest.

• Anti-dependence between first and second 
loop nest in the same timestep.

• True dependence between second loop nest 
and first loop nest of next timestep.

Parallel SOR (continued)

• First (i,j) loop nest can be parallelized.
• Second (i,j) loop nest can be parallelized.
• We must make processors wait at the end of 

each (i,j) loop nest.
• Natural synchronization: fork-join.

Parallel SOR (continued)

• If we have P processors, we can give n/P 
rows or columns to each processor.

• Or, we can divide the array in P squares, 
and give each processor a square to 
compute.


