Principles of Parallel Algorithm
Design

Why is Parallel Computing Hard?

Amdahl’s law — insufficient available
parallelism —

— Speedup = 1/(fraction_enhanced/speedup_enhanced + (1-fraction_enhanced))

Overhead of communication and
coordination

Portability — knowledge of underlying
architecture often required

Parallel Programming Models

Data parallel — HPF, Fortran-D, Power
C/Fortran

Shared memory - pthreads
Message passing — MPI, PVM
Global address space

Steps in the Parallelization

Decomposition into tasks

— Expose concurrency

Assignment to processes

— Balancing load and maximizing locality
Orchestration

— Name and access data

— Communicate (exchange) data

— synchronization among processes
Mapping

— Assignment of processes to processors




Basics of Parallelization

» Dependence analysis
 Synchronization

— Events

— Mutual exclusion
* Parallelism patterns

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel
iff
there are no dependences between S1 and S2
— true dependences
— anti-dependences
— output dependences
Some dependences can be removed.

Types of Dependences

* True (flow) dependence - RAW
» Anti-dependence - WAR
* Output dependence - WAW

Loop-Carried Dependence

A loop-carried dependence is a dependence
that is present only if the statements occur
in two different instances of a loop

* Otherwise, we call it a loop-independent
dependence

 Loop-carried dependences limit loop
iteration parallelization




Synchronization

 Used to enforce dependences

 Control the ordering of events on different
processors
— Events - signal(x) and wait(x)
— Fork-Join or barrier synchronization (global)
— Mutual exclusion/critical sections

Example 1: Creating Parallelism
by Enforcing Dependences
for(i=1; i<100; i++) {
afil=...;
...’= a[i-1];
}

* Loop-carried dependence, not parallelizable

Synchronization Facility

» Suppose we had a set of primitives,
signal(x) and wait(x).

 wait(x) blocks unless a signal(x) has
occurred.

* signal(x) does not block, but causes a
wait(x) to unblock, or causes a future
wait(x) not to block.

Example 1: Enforcing
Dependencies (continued)
for(i=...;i<...;i++) {

afil=...;
signal(e_a[i]);

\'/\./.z;it(e_a[i-l]);
.. =a[i-1];
}




Example 1 (continued)

Note that here it matters which iterations are
assigned to which processor.

It does not matter for correctness, but it
matters for performance.

Cyclic assignment is probably best.

Example 2: Enforcing
Dependences
for(i=0; i<100; i++) ali] = f(i);

X =9();
for( i=0; i<100; i++ ) b[i] = x + h( a[i] );

* First loop can be run in parallel.
» Middle statement is sequential.
» Second loop can be run in parallel.

Example 2 (contimued)

We will need to make parallel execution
stop after first loop and resume at the
beginning of the second loop.

Two (standard) ways of doing that:

— fork() - join()

— barrier synchronization

Fork-Join Synchronization

* fork() causes a number of processes to be
created and to be run in parallel.

* join() causes all these processes to wait until
all of them have executed a join().




Example 2 (continued)

fork();

for(i=...; i<..; i++) a[i] = f(i);

join();

X =g(a);

fork();

for(i=...;i<..;i++) b[i]=x + h(a[i]);
join();

Eliminating Dependences

* Privatization or scalar expansion
* Reduction (common pattern)

Example: Scalar Expansion or
Privatization

for (1=0; 1 <100; 1++)
T=A[l];
Al = B[I];
B[I]=T;

Loop-carried anti-dependence on T
Eliminate by converting T into an array or by
making T private to each loop iteration

Example: Scalar Expansion

for (1 =0; 1 <100; I++)
T [I]=All];
All] = BI[l];
B[] =T[I;

Loop-carried anti-dependence eliminated




Removing Dependences: Reduction (continued)

Reduction
sum = 0.0; for(i=0; i<...; i++) sum[i] = 0.0;
for( i=0; i<100; i++ ) sum += a[i]; fork();
’ ' ' for(j=...; j<...; j++ ) sum[i] += a[j];
join();
 Loop-carried dependence on sum. sum = 0.0;

. for(i=0; i<...; i++ ) sum += sum[i];
» Cannot be parallelized, but ... ( ) U]
Common pattern often with explicit support

e.g., sum =reduce (+, a, 0, 100)

CAVEAT: Operator must be commutative and associative

Decomposition Techniques Patterns of Parallelism
* Recursive  Data parallelism: all processors do the same thing
« Data on different data
— Regular
* Exploratory — Irregular
 Speculative « Task parallelism: processors do different tasks
— Task graph vs. master-slave
— Task queue

— Pipelines




Data Parallelism

« Essential idea: each processor works on a
different part of the data (usually in one or
more arrays).

 Regular or irregular data parallelism: using
linear or non-linear indexing.

» Examples: MM (regular), SOR (regular),
MD (irregular).

Matrix Multiplication

» Multiplication of two n by n matrices A and
B into a third n by n matrix C

Matrix Multiply

for(i=0; i<n; i++)
for(j=0; j<n; j++)
c[i][j] = 0.0;
for(i=0; i<n; i++)
for(j=0; j<n; j++)
for( k=0; k<n; k++)
c[il[i] += ali][kI*bIK]I0T;

Parallel Matrix Multiply

» No loop-carried dependences in i- or j-loop.
» Loop-carried dependence on k-loop.
 All i- and j-iterations can be run in parallel.




Parallel Matrix Multiply (contd.) SOR

* If we have P processors, we can give n/P SOR implements a mathematical model for
rows or columns to each processor. many natural phenomena, e.g., heat
« Or, we can divide the matrix in P squares, dissipation in a metal sheet.
and give each processor one square. Model is a partial differential equation.
Focus is on algorithm, not on derivation.
Discretized problem as in first lecture

Relaxation Algorithm Discretized Problem Statement
* For some number of iterations /* Initialization */
for each internal grid point for(i=0; i<n+1; i++) grid[i][0] = 0.0;

for(i=0; i<n+1; i++) grid[i][n+1] = 0.0;
o S for(j=0; j<n+1; j++) grid[0][j] = 1.0;
* Termination condition: for( j=0; j<n+1; j++ ) grid[n+1][j] = 0.0;

values at grid points change very little for(i=1; i<n; i++)
(we will ignore this part in our example) for(j=1; j<n; j++)
grid[i]i] = 0.0;

compute average of its four neighbors




Discretized Problem Statement

for some number of timesteps/iterations {
for (i=1; i<n; i++)
for(j=1, j<n, j++)
templi][j] = 0.25 *
(grid[i-1][j] + grid[i+1][j]
grid[i]{-1] + grid[i][j+1] );
for(i=1; i<n; i++)
for(j=1; j<n; j++)

grid[i]0] = temp[i]0T;

Parallel SOR

* No dependences between iterations of first
(1,j) loop nest.

* No dependences between iterations of
second (i,j) loop nest.

» Anti-dependence between first and second
loop nest in the same timestep.

 True dependence between second loop nest
and first loop nest of next timestep.

Parallel SOR (continued)

First (i,j) loop nest can be parallelized.
Second (i,J) loop nest can be parallelized.

We must make processors wait at the end of
each (i,j) loop nest.
Natural synchronization: fork-join.

Parallel SOR (continued)

* If we have P processors, we can give n/P
rows or columns to each processor.

 Or, we can divide the array in P squares,
and give each processor a square to
compute.




