
Knot physics: Deriving the fine structure constant.

C. Ellgen⇤

(Dated: April 23, 2014)

Abstract

Knot physics describes the geometry of particles and fields. From the geometry of an electron

we can construct a mathematical model relating its charge to its spin angular momentum. From

experimental data, the spin angular momentum is ~/2. Therefore the mathematical model provides

a comparison of electron charge to Planck’s constant, which gives the fine structure constant ↵.

We find that using only electromagnetic momentum to derive the fine structure constant predicts

a value for ↵�1 that is about two orders of magnitude too small. However, the equations of knot

physics imply that the electromagnetic field cusp must be compensated by a geometric field cusp.

The geometric cusp is the source of a geometric field. The geometric field has momentum that is

significantly larger than the momentum from the electromagnetic field. The angular momentum of

the two fields together predicts a fine structure constant of ↵�1 ⇡ 136.85. Compared to the actual

value of ↵�1 ⇡ 137.04, the error is 0.13%. Including the e↵ects of virtual particles may reduce the

error further.

⇤Electronic address: cellgen@gmail.com; www.knotphysics.net
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I. BACKGROUND

This paper will use the assumptions from the paper “Knot physics: Spacetime in co-

dimension 2” [1] (available at www.knotphysics.net), which is necessary background

reading. Many mathematical conventions and assumptions will be carried over from that

paper. The application of partial derivatives on embedded manifolds, in particular, may be

unfamiliar to many readers.

Mathematica documents are also available at knotphysics.net that provide mathemat-

ical modeling associated with the calculations here.

II. OVERVIEW

A. The fine structure constant

The fine structure constant is a dimensionless number ↵ defined by the relation

↵ = q

2
/(4⇡✏0~c) where q is the charge of the electron and ~ is Planck’s reduced constant

h/(2⇡). In our discussion and calculations we will use ✏0 = µ0 = c = 1. Then

↵ =
q

2

4⇡~ (1)

The charge of the electron is the fundamental unit of charge associated with every el-

ementary particle. Planck’s constant is a unit of action that appears in a wide variety of

quantum applications. The fact that the charge of every electron is the same and that every

elementary particle has a charge which is an integer multiple of electron charge is of great

physical significance, but deriving that fact is not obvious. Furthermore, the number ↵ that

determines the magnitude of the elementary charge has not previously been shown to have a

numerical formula in terms of non-physical constants. There is a very precise experimental

measurement of ↵, but there is no known theoretical calculation that produces the number

without experimental data as an input. The purpose of this paper is to show two things.

First, we show how the properties of elementary fermions in knot physics imply leptons have

unit charge. Second, we approximate the fine structure constant by applying those proper-

ties. Showing integer charge for hadrons and deriving an exact number for ↵ are subjects

for future work.
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B. Planck’s constant

Planck’s constant is a unit of action that appears in several di↵erent quantum calcula-

tions. Though it is not necessary for the purposes of this paper, it may help illuminate the

calculation to hypothesize an interpretation of Planck’s constant.

The spacetime manifold M has metric g
µ⌫

= ⇢

2
A

↵,µ

A

↵

,⌫

. Using that metric, the manifold

M is Ricci flat, R̂µ⌫ = 0. Even with that constraint, M has degrees of freedom such that

the manifold is under-constrained. Therefore, the manifold maximizes entropy. In classical

thermodynamics, a system at equilibrium has (1/2)kT of energy for each degree of freedom.

Similarly, we hypothesize that the spacetime manifold M has ~ of action for each degree of

freedom. Then M is a branched manifold and for each degree of freedom the branches are

randomly distributed with variance corresponding to Planck’s constant. For an elementary

fermion, the branches of M separate into branches with spin up and branches with spin

down. The di↵erence in angular momentum between spin up and spin down is a degree of

freedom, therefore the di↵erence in angular momentum is ~ and each spin orientation has

angular momentum of ~/2.
Regardless of the interpretation, it is known from experimental data that elementary

fermions have spin angular momentum S = ~/2. Assume we have a formula for spin angular

momentum as a function of charge squared, S(q2) = ~/2. The fine structure constant is

↵ =
q

2

4⇡~ (2)

We choose to invert the equation

↵

�1 =
4⇡~
q

2
=

8⇡S(q2)

q

2
(3)

where the experimental value of ↵

�1 is approximately ↵

�1
exp

⇡ 137.0. Deriving the fine

structure constant follows from finding the spin angular momentum as a function of charge.

C. Overview of the derivation

The derivation consists almost entirely of deriving the angular momentum as a function of

charge on the electron. The electron topology is R3#(S1⇥P

2). To find angular momentum

on the electron we first derive the Ricci flat electron geometry. Then we use that geometry
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and the Lagrangian to solve for a generic field W

µ⌫ with Lagrangian L = W

↵�

W

↵�

such

that the electron is a field source. Using the electron geometry and the field W

µ⌫ , we can

compare the field strength of W µ⌫ to its angular momentum. If we know the field strength

of all the fields on the electron compared to its electromagnetic field then we can solve for

their momenta relative to the charge. Using the sum of those momenta, we can solve for

the fine structure constant.

Any charged particle has an electromagnetic field. However, Ricci flatness implies that

an electromagnetic field cusp requires a corresponding geometric cusp to preserve flatness.

The geometric cusp produces a geometric field with the same field equations as the electro-

magnetic field. To find the momentum from the geometric field, we compare the energy in

the geometric field to the energy in the electromagnetic field. The comparison is analogous

to Hooke’s law E = (1/2)kx2. The electromagnetic field F

µ⌫ has the analog of a spring

constant k

F

and spring extension x

F

. The geometric field C

µ⌫ has the analog of a spring

constant k
C

and spring extension x

C

. The spring extension of the electromagnetic field x

F

is

proportional to the radius of the P 2 in the particle topology S

1 ⇥ P

2. The spring extension

of the geometric field x

C

is proportional to the circumference of the P

2, which means that

x

C

= 4⇡x
F

. The spring constant for each field is proportional to the number of degrees of

freedom in each field. The Lagrangian is not considered a constraint when counting these

degrees of freedom. The electromagnetic field is sensitive to the change of A⌫ parallel to

the manifold, which has 4 dimensions. The electromagnetic field therefore has 4 degrees

of freedom. The geometric field is sensitive to the change of A⌫ in 5 spatial dimensions,

for 5 degrees of freedom. Therefore k

C

= (5/4)k
F

. We can then compare the energies and

find that E
C

= (1/2)k
C

x

2
C

= (1/2)(5/4)k
F

(4⇡)2x2
F

= (20⇡2)(1/2)k
F

x

2
F

= 20⇡2
E

F

. The en-

ergy, and therefore momentum, in the geometric field is 20⇡2 times larger than the energy

and momentum in the electromagnetic field. The total angular momentum is the sum of

the contributions from the geometric and electromagnetic components. From that angu-

lar momentum, we solve for the fine structure constant. The result is ↵

�1
calc

⇡ 136.85 with

0.13% error. Virtual particles may have di↵ering e↵ect on the electromagnetic field energy

compared to the geometric field energy, which may contribute error.
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III. COORDINATES

We will use the following three coordinate systems to describe particle geometry.

A. Cylindrical coordinates

The full 6 dimensions of the Minkowski space can be expressed as (t, r, z,�, x4
, x

5) using

notation that borrows from two di↵erent coordinate conventions. These coordinates will

typically be used to describe fields and geometry when t, x4, and x

5 are suppressed. In that

case the coordinates are (r, z,�).

B. Toroidal coordinates

R3 has toroidal coordinates (⌧, �,�) that relate to polar coordinates (r, z,�) as follows

r = a

sinh⌧

cosh⌧ � cos�

z = a

sin�

cosh⌧ � cos�

(4)

The sets of constant ⌧ are tori centered around a circle of radius a. At distance zero from the

circle ⌧ = 1. At infinite distance from the circle, ⌧ = 0. The sets of constant � are spheres

such that their intersection with sets of constant ⌧ are orthogonal. Close to the circle, the

coordinate � is a polar angle around the circle. Toroidal coordinates are an orthogonal

coordinate system. Their properties assist with field equations.

C. Mapping coordinates

We use a mapping from 3 dimensions to 5 dimensions to describe the electron S

1 ⇥ P

2.

The coordinates of the 3-space are toroidal coordinates (⌧, �,�) and the coordinates of the

5-space are a mix of toroidal and cartesian coordinates (⌧, �,�, x4
, x

5). Let T be the solid

torus ⌧ > 1, then we map from R3 � T to R5.

X : (⌧, �,�) ! (⌧/(1� ⌧), �,�, ⌧sin(2�), ⌧cos(2�)) (5)
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The mapping begins from R3�T , which cuts out the solid torus T where ⌧ > 1. Then it

stretches R3 � T to cover the missing torus using ⌧/(1� ⌧) and attaches each point on the

boundary of T to the point that is diametrically opposite it. Each point on the boundary

of T is mapped to a point with coordinates X(1, �,�) = (1, �,�, sin(2�), cos(2�)). This is

a torus in the 5-space that projects onto the unit circle (1, �,�) in 3 dimensions. For ⌧ = 1

and � = �0, we have X(1, �,�0), which is a circle of radius 1 that is mapped onto twice by

the boundary of T . See Fig. 1.

The mapping X produces a R3#(S1 ⇥ P

2) with amplitude 1. The geometry of the

manifold, in particular Ricci flatness, is not accurately expressed by this mapping.

σ
σ
!

ϕ

FIG. 1: On the left is R2 �D

2 with polar angle �. On the right is R3 � T in toroidal coordinates,

with a slice at � = �0. The green circle is ⌧ = 1. The mapping X identifies opposite points on the

circumference of the green circle. Using this identification of points makes R2#P

2 on the left and

R3#(S1 ⇥ P

2) on the right.

IV. ELECTRON GEOMETRY

Based on the metric g

µ⌫

= ⇢

2
A

↵,µ

A

↵

,⌫

, the manifold M is Ricci flat, R̂µ⌫ = 0. If there is

no electromagnetic field, then A

⌫ = x

⌫ and the metric is a conformal scaling ⇢

2
⌘̄

µ⌫

of the

metric ⌘̄

µ⌫

that is inherited from the Minkowski 6-space.

The electron topology is R3#(S1 ⇥ P

2). We solve for the conformal scaling ⇢ and the

geometry of the electron that makes it Ricci flat, R̂µ⌫ = 0. Then we show how to achieve

Ricci flatness on the electron with an electromagnetic field.
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A. Quantum branch weight ⇢ and branching

The metric on the manifold is g
µ⌫

= ⇢

2
A

↵,µ

A

↵

,⌫

, which is scaled by the conformal weight ⇢.

The weight w = (�det(g))1/2 ⇡ ⇢

4 is a conserved branch weight for the branches associated

with the sum-over-histories of quantum mechanics. For the calculations in this paper we

only need to consider a single branch. Because the field strengths all scale with ⇢ in the

same way, we can assume that ⇢ converges to a background value of one, lim
r!1⇢(r) = 1.

B. Ricci flatness with no electromagnetic field

1. Flatness in 2 dimensions

To flatten R3#(S1 ⇥ P

2) we begin by finding Ricci flat solutions for R2#P

2, the 2

dimensional case. Cut R2#P

2 so that it has a circular boundary. Call the manifold with

boundary M2. Then we find the Gaussian curvature using the Gauss-Bonnet theorem.

Z

M2

RdA+

Z

@M2

k

g

ds = 2⇡�(M2) (6)

From Ricci flatness, R = 0 on M2. The Euler characteristic is �(P 2) = 1. Therefore the

Euler characteristic of M2 (equivalent to P

2 � D

2) is �(M2) = 0. Therefore the geodesic

curvature k
g

= 0 at every radius. Therefore the circumference is constant at every radius, the

manifold has the same geometry as a cylinder. In the degenerate case that the amplitude of

the P

2 goes to zero, M2 approaches a flat disk and the weight ⇢ compensates the geometry

by ⇢ = b/r, for some constant b. If we increase the amplitude of the P

2 geometry, the

manifold remains Ricci flat if the circumference weighted by ⇢ remains constant for every

radius, C⇢ = k.

This solution is similar to the general solution for Ricci flatness on 2-dimensional planes.

In 2 dimensions, for any harmonic function , if the metric ⌘̄

µ⌫

is Ricci flat then the met-

ric e

2
⌘̄

µ⌫

is also Ricci flat. For multiple source points p

i

there is a harmonic function

(x) =
P

i

� ln(d(p
i

, x)) where d(p
i

, x) is the distance from p

i

to x. Then ⇢ = e

 and ⇢

2
⌘̄

µ⌫

is a Ricci flat metric. We can replace any of those points p

i

by a degenerate P

2. To ex-

pand the geometry of the P

2, we again compensate by reducing the weight ⇢ such that the

circumference is conserved.
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We consider the case of R2 with natural metric ⌘̄
µ⌫

= diag(1, 1). We use this plane as the

slice � = 0,� = ⇡ through R3#(S1 ⇥ P

2), but completely suppress the third dimension for

the moment. In this slice there is a P

2 at the point p1 = (1, 0) and at the point p2 = (�1, 0).

We begin by finding the harmonic function (x) =
P

i

� ln(d(p
i

, x)) and then ⇢ = e

. Now

we use the metric ⇢

2
⌘̄

µ⌫

with degenerate P

2 at each of the points p
i

. Then we expand the

geometry of the P

2 as desired, compensating the geometry by reducing ⇢ as needed.

2. Flatness in 2+1 dimensions

Now we introduce the time dimension. The inherited metric for a flat manifold

is ⌘̄

µ⌫

= diag(1,�1,�1). Introducing P

2 ⇥ R on the manifold at p1 = (t, 1, 0) and

p2 = (t,�1, 0), we can scale the metric as above to get ⇢

2
⌘̄

µ⌫

. However, the volume

in 3 dimensions scales by ⇢

3 and we find that the time dimension makes the confor-

mal scaling no longer Ricci flat. To compensate the time dimension, we use symmetry

and motion. Rather than beginning with initial metric ⌘̄

µ⌫

= diag(1,�1,�1), we have

the manifold move such that (1 � �

2)1/2 = 1/� = 1/⇢. Then the inherited metric is

⌘̄

µ⌫

= diag(1/�2
,�1,�1) = diag(1/⇢2,�1,�1). Including the scaling by ⇢

2 we have the

metric ⇢

2
⌘̄

µ⌫

which is Ricci flat. Again, the geometry of the P

2 can be expanded and ⇢ is

reduced to compensate. Now that ⇢ is linked to motion through ⇢ = �, we see that reducing

⇢ reduces the velocity. In particular, a P

2 that is fully expanded to ⇢ = 1 has no motion.

3. Flatness in 3+1 dimensions

Introducing the third spatial dimension, we use polar coordinates (t, r, z,�) on the flat

4-manifold. For the R3#(S1 ⇥ P

2), we have a degenerate S

1 ⇥ P

2 such that there is a

degenerate P

2 in each constant � slice at r = 1. We have a harmonic function  whose

source is the degenerate S

1 ⇥ P

2. There is a weight ⇢ = e

. By symmetry of the system,

this is like solving the 2-dimensional case if the manifold measure is weighted by rd�. To

keep the geometry Ricci flat, we must use motion to reduce distance in both the � and t

direction by 1/⇢. Then the conformal factor ⇢ returns those distances to ⇢(1/⇢)rd� = rd�

and ⇢(1/⇢)dt = dt respectively. The volume of the manifold is dV/� therefore � = ⇢

2.

The metric is ⇢2⌘̄
µ⌫

, where ⌘̄

µ⌫

is the inherited metric and includes the motion. Then this
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metric is Ricci flat. Again, the P

2 geometry can be expanded and ⇢ compensates such that

circumference is conserved. Likewise, as ⇢ reduces, � = ⇢

2 implies that the motion also

reduces. If the manifold has the S

1 ⇥ P

2 fully expanded such that ⇢ = 1 then the S

1 ⇥ P

2

is at rest.

d!

FIG. 2: On the left is R2 with degenerate P

2 at (-1,0) and (1,0). The harmonic function  is

(x) =
P

i

� ln(d(p
i

, x)). On the right is a d� slice from R3 with corresponding harmonic function

 such that each point is weighted by rd�.

In 3 spatial dimensions, if the distance from the particle is d, then lim

d!1 = 1/d.

Therefore lim

d!1e

 = lim

d!1e

1/d = 1. This is in contrast to the 2-dimensional solution

where  scales like � ln(r) and ⇢ tends to zero at infinite distance. Therefore, in 3 dimensions

it makes sense to say that at infinite distance ⇢ = 1 and � = ⇢

2 = 1.

C. Fields on the particle

Assume a Lagrangian of the form L = ⇢

4
Y

↵,�

Y

↵,�

on the spacetime manifold with electron

topology R3#(S1⇥P

2). The ⇢4 term is the quantum branch weight and Y

↵,� is an example

field. We would like to describe the field Y

↵,� relative to a more manageable field on flat

space. From the previous discussion, Ricci flatness requires � = ⇢

2. The ⇢-weighted volume

is ⇢

4
/� = ⇢

2. Therefore the Lagrangian is L = (⇢4/�)Y ↵,�

Y

↵,�

= ⇢

2
Y

↵,�

Y

↵,�

= ⇢Y

↵,�

⇢Y

↵,�

With a source term j

↵, the field equation is

r
µ

@(⇢Y ↵,�

⇢Y

↵,�

)

@(⇢Y ,µ

↵

)
= r

µ

(⇢Y ↵,µ) = j

↵ (7)

Let W ⌫µ be a field on flat 3-dimensional space. Assume a source current j⌫ on the ⇢ cusp
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of the electron and the charge density j

0 is equal to the current density j

�. Using cylindrical

coordinates, j⌫ = t̂ + �̂ on the unit circle corresponding to the ⇢ cusp of the electron and

j

⌫ = 0 everywhere else. Then we define W

⌫µ such that the field goes to zero at infinite

distance lim

r!1W

⌫µ = 0 and

@

µ

W

⌫µ = j

⌫ (8)

The W

⌫µ field is invariant in �. To find the divergence @

µ

W

⌫µ we can find the integral

of the outward facing normal over the boundary of an infintesimal di↵erential element. Dis-

tances in that di↵erential element are increased in the r and z direction by the conformal

scale ⇢. However, in the � direction the conformal length change is negated by the Lorentz

contraction of rotational motion. Performing the integral over the boundary of an infinites-

imal volume, the lengths in r and z are scaled by ⇢. If we scale W

⌫µ to (1/⇢)W ⌫µ then we

recover the zero covariant divergence property r
µ

((1/⇢)W ⌫µ) = 0 for the conformal metric.

This gives a solution to our equation r
µ

(⇢Y ↵,µ) = j

↵, which is ⇢Y ⌫,µ = (1/⇢)W ⌫µ, or

Y

⌫,µ = (1/⇢2)W ⌫µ (9)

Beginning from the electromagnetism Lagrangian L

F

= ⇢

4
F

↵�

F

↵�

we conclude that the

electromagnetic field is F µ⌫ = k

1/2
F

(1/⇢2)W ⌫µ and the Lagrangian is L = k

F

W

↵�

W

↵�

up to

multiplication by a scalar k
F

.

The Lagrangian, including the geometric term, is

L = ⇢

4((1/2)F ↵�

F

↵�

�R) (10)

with scalar curvature R. We note that this is scalar curvature R relative to ⌘̄

µ⌫ and not R̂

relative to g

µ⌫ . A field generated by the R term in the Lagrangian also propagates and has

momentum. We show in the next section how the electromagnetic field produces a geometric

field.

D. Ricci flatness with weak field at the cusp

For convenience of coordinates we will assume in this section that the calculations are

performed at a point on the S

1 ⇥ P

2 where the S

1 fiber is in the x2 direction. This allows

us to describe the magnetic field using derivatives of A2.
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The electromagnetic field F

µ⌫ comes to maximum at a cusp, which is also the cusp

of the quantum branch weight ⇢. Even at the cusp, the geometry must be Ricci

flat, in local coordinates @

�

@

�

g

µ⌫ = 0. For the terms on the diagonal, g

jj

, we have

@

�

@

�

g

jj

= @

�

@

�(A
↵,j

A

↵

,j

) = 0. The electric field A

0,j comes to a cusp. To preserve flat-

ness, the magnetic field A

2,j = A

0,j in a neighborhood of the cusp. Then F

↵�

F

↵�

= 0 at the

cusp and the current j⌫ has j0 = j

2 6= 0 and j

3 = j

4 = 0.

The electric field also a↵ects the component g0⌫ = ⇢

2
A

↵,0
A

,⌫

↵

. To preserve @

�

@

�

g

µ⌫ = 0

we have the geometric components of gµ⌫ compensate the electric field components.

g

0⌫ = ⇢

2
A

↵,0
A

,⌫

↵

= ⇢

2(A0,0
A

,⌫

0 +
X

↵ 6=0

A

↵,0
A

,⌫

↵

) (11)

We have A

0,0 = 1. Therefore the other terms have divergence equal to @

�

@

�

A

0,⌫ . Their

divergence is the same as the electric charge j

0.

The magnetic field has a cusp with the same location and magnitude as the electric field.

We write out the components for the relationship between magnetic field and geometry as

g

2⌫ = ⇢

2
A

↵,2
A

,⌫

↵

= ⇢

2(A2,2
A

,⌫

2 +
X

↵ 6=2

A

↵,2
A

,⌫

↵

) (12)

We have A

2,2 = 1. Therefore the other terms have divergence equal to @

�

@

�

A

2,⌫ . Their curl

is the same as the current j2.

Ricci flatness on a S

1 ⇥ P

2 requires that � = ⇢

2, which implies waves that circulate

around the S1⇥P

2 as in Fig. 3. If the particle is charged then equations 11 and 12 indicate

that A↵,⌫ must be non-zero, the waves advance in phase approaching the particle cusp, as in

Fig. 4. In this way, the geometric e↵ect of the electromagnetic fields from A

0,µ and A

2,µ is

negated by the particle geometry to make the Ricci curvature flat at the cusp, @�

@

�

g

µ⌫ = 0.

In particular @�

@

�

g

0⌫ = 0 and @

�

@

�

g

2⌫ = 0. See Fig. 5

The geometric cusp that is required to flatten the electromagnetic field is the source for a

geometric field. The field equation for that geometric field comes from the scalar curvature

term R in the Lagrangian. We describe the geometric field in more detail in the next section.

V. GEOMETRIC ENERGY AND MOMENTUM

The Lagrangian is the entropy of the manifold. The manifold is Ricci flat relative to the

metric g

µ⌫

, meaning R̂

µ⌫ = 0. The geometry of the manifold is underconstrained by this
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FIG. 3: A neutral S1 ⇥ P

2 with angular momentum has transverse waves that rotate around the

particle. The transverse waves have periodic change in the x

4 and x

5 displacement. This is a

� = 0 slice through a S

1 ⇥ P

2. The light blue lines are lines of constant phase in the x

4 and x

5

coordinates with rotation as indicated by the arrows.

FIG. 4: If the S

1 ⇥ P

2 is charged then the electromagnetic field comes to a cusp on the purple

circle. The cusp interferes with Ricci flatness. The geometry must compensate to restore R̂µ⌫ = 0.

To do this, the rotating waves on the particle change phase based on the distance to the cusp.

Depending on the sign of the particle charge, the phase either moves forward (as on the left) or

backward (as on the right).

flatness, it can wrinkle. Reducing the entropy by pulling the manifold requires force and

energy. In the weak field limit, the force and energy are analogous to Hooke’s law with

F = �kx and E = (1/2)kx2. The scalar curvature relative to the metric ⌘̄

µ⌫

is R. The

entropy of geometric fields is maximized when R is minimized. The Lagrangian of geometric

fields is L = �R.
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x x x

t t t

FIG. 5: To see how geometry compensates the electric field, we take a slice of the S

1 ⇥ P

2, on the

left, in one spatial dimension (as indicated by the arrow) and the time dimension. The light blue

lines are lines of constant phase of the waves rotating around the particle. The dark blue lines are

lines of constant A0. Crossing more light blue lines indicates traveling a greater distance, the path

has greater change in x

4 and x

5. Crossing more dark blue lines indicates traveling a shorter distance

by the metric g

µ⌫

= ⇢

2
A

↵,µ

A

,⌫

↵

because change of A0 reduces the e↵ective distance traveled. The

number of lines crossed by the arrows indicates the e↵ect on g0⌫ . If only the electric field contributed

to the metric, then g0⌫ would change at the cusp in a way that would not be Ricci flat, @
�

@

�

g0⌫ 6= 0.

To compensate, the geometry produces an equal but opposite change in g0⌫ to restore Ricci flatness.

A. Geometric Fields

When it is necessary to distinguish between the geometric field of gravity and the geo-

metric field that results from the charge cusp, we will refer to the charge-generated field as

the geometric charge field.

The geometric charge field on the charged S

1⇥P

2 is distinct from the gravitational field.

The source for the geometric charge field is the geometric cusp that matches the charge cusp.

The source for the gravitational field is the energy-momentum tensor. The geometric charge

field does not alter geodesics to produce a gravitational force and it is not additive across

multiple particles. The gravitational field is mostly determined by ⌘̄

00,⌫ , which is separate

from the fields A

↵,⌫ that result from the geometric cusp. However, the gravitational field

and the geometric charge field are generated by the same Lagrangian and therefore follow

the same field equation. The gravitational field for a steadily rotating mass has a gravito-

electromagnetic field with components E

g

and B

g

, analogous to the electric and magnetic

fields of electromagnetism, that result from the field equation of gravitation. Application of

the same field equation to the geometric charge field produces field components E
gc

and B

gc
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whose source is the geometric cusp and also obey the same field equations as the electric

and magnetic field, respectively. We compose the fields E
gc

and B

gc

into a single field C

µ⌫ .

Then the field equation requires that C

µ⌫ = k

1/2
C

(1/⇢2)W µ⌫ , using the field W

µ⌫ defined

in section IVC and a scalar multiple k

C

. This is proportional to the electromagnetic field

F

µ⌫ = k

1/2
F

(1/⇢2)W µ⌫ . To compare the momenta of the geometric charge field and the

electromagnetic field, we examine the field coupling at the cusp.

B. Field coupling at the cusp

Flatness R̂µ⌫ = 0 constrains the shape of the manifold, but because of particle topology

the geometry is under-constrained. To see this, use the mapping of the particle

X : (⌧, �,�) ! (⌧/(1� ⌧), �,�, ⌧sin(2�), ⌧cos(2�)) (13)

There are continuous variations of the mapping X and A

↵ that preserve the metric g

µ⌫

therefore the variations also preserve R̂

µ⌫ = 0. Describing the entropy of the particle’s

shape is a complicated procedure. However, we can assume that a particle with no field has

some maximally entropic geometry and a particle with a field has some other maximally

entropic geometry. Comparing the two geometries gives the change in entropy that results

from a weak field. If there is no field, then the derivative A

↵,⌫ is non-zero leading up to

the geometric cusp and the variation of A

↵ produces some non-zero P

2 ampliude. The

variation in A

↵ has entropy. If there is charge then Ricci flatness requires that A

↵,0
A

,⌫

↵

compensate A

0,0
A

,⌫

0 . This forces change of the A

↵ geometry as in Fig. 4. By forcing A

↵

to change in the direction of the S

1 fiber, the e↵ective radius h(⌧) of the P

2 must change

by the corresponding amount, which is A0,µ. This a↵ects the circumference of the P 2 by an

amount that is proportional to the relation between P

2 circumference and the amplitude at

the cusp, C = 4⇡h(⌧). Entropy from geometry obeys Hooke’s Law S = (1/2)kx2. Therefore

the entropy varies as S = (1/2)k(4⇡h(⌧))2 with displacement x = 4⇡h(⌧). This is larger

than the displacement of the A0,µ field by a factor of 4⇡ and has a larger impact on entropy

by a factor of (4⇡)2 = 16⇡2.
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C. Degrees of freedom

Both the electromagnetic field and geometric field are derivatives of A⌫ . To compare

the microstates in electromagnetism and geometry, we compare the number of degrees of

freedom that are part of the electromagnetic field and the geometric field. The field F

µ⌫ is

determined by derivatives in directions parallel to the manifold M . This gives variation of

A

⌫ in 4 directions, for 4 degrees of freedom. There are 6 total directions that the potential

A

⌫ can vary in C

µ⌫ . However, the constraint @

⌫

A

⌫ = �2 constrains one direction, with-

out loss of generality we can assume constraint of A0. This leaves a total of 5 degrees of

freedom. Therefore, the ratio of degrees of freedom in the geometric field compared to the

electromagnetic field is 5/4.

D. Geometric fields summary

A charged particle has an electromagnetic field with a source of divergence that is a field

cusp. The field cusp alone does not satisfy Ricci flatness. To make the metric Ricci flat, the

geometry compensates the field at the cusp. This produces a field E

gc

satisfying the same

field equations as the electric field E and a field B

gc

satisfying the same field equations as the

magnetic field B. The two fields E
gc

and B

gc

combine into a single tensor Cµ⌫ . The relative

magnitude of the momentum from C

µ⌫ compared to F

µ⌫ comes from the relative e↵ect on

entropy. The field C

µ⌫ has a displacement that is 4⇡ times larger than the corresponding

displacement in F

µ⌫ , which increases the momentum by a factor of 16⇡2. The field C

µ⌫ has

5 degrees of freedom and F

µ⌫ has 4 degrees of freedom. Therefore the geometric field has

momentum that is (5/4)16⇡2 = 20⇡2 times larger than the electromagnetic field momentum.

E. Energy and momentum on the electron

For a Lagrangian L = (⇢4/�)W↵�

W

↵�

the energy momentum tensor is

T

µ⌫ =
⇣
⇢

4

�

⌘⇣
�W

↵µ

W

⌫

↵

+ (1/4)⌘̄µ⌫W↵�

W

↵�

⌘
(14)

On an embedded manifold the term ⌘̄

µ⌫

W

↵�

W

↵�

can have momentum if there are trans-

verse waves. The transverse waves have velocity ⌘̄

0⌫ that transports energy of the form

⌘̄

0⌫
W

↵�

W

↵�

. However, Lagrangian optimization and energy conservation imply that the
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e↵ect on T

µ⌫ is equivalent whether the field is of the form �W

↵µ

W

⌫

↵

or ⌘̄µ⌫W ↵�

W

↵�

. For

that reason we calculate as if all field momentum is of the form W

↵µ

W

⌫

↵

.

The spin angular momentum of a particle is S =
R
~r⇥T

0µ
dV where r is the displacement

vector from the axis of rotation. To find the momentum we use the approximation

T

0µ = �F

↵µ

F

0
↵

� C

↵µ

C

0
↵

(15)

where C

↵µ

C

0
↵

= (5/4)16⇡2
F

↵µ

F

0
↵

. The total momentum is therefore

T

0µ = �F

↵µ

F

0
↵

� (5/4)16⇡2
F

↵µ

F

0
↵

= �(1 + 20⇡2)F ↵µ

F

0
↵

(16)

Using the field W

µ⌫ defined in section IVC, we have

T

0µ = �k

F

(1 + 20⇡2)(1/⇢4)W ↵µ

W

0
↵

(17)

VI. MATHEMATICAL MODEL

The mathematical model is available as a MathematicaTM notebook file on

www.knotphysics.net. The mathematical model generates ⇢ and the field W

µ⌫ and then

integrates the angular momentum r ⇥ p to get the spin angular momentum S using the

formula

S =

Z
rT

0µ
dV =

Z
r(1 + 20⇡2)F ↵µ

F

0
↵

dV =

Z
r(1 + 20⇡2)(1/⇢4)k

F

W

↵µ

W

0
↵

dV (18)

The metric volume dV is scaled by ⇢

4 and is Lorentz contracted by � = (1/⇢)2. Comparing

to the flat volume dV

f

, we have dV = ⇢

2
dV

f

. Therefore

S =

Z
r(1 + 20⇡2)(1/⇢4)k

F

W

↵µ

W

0
↵

dV =

Z
r(1 + 20⇡2)(1/⇢4)k

F

W

↵µ

W

0
↵

(⇢2dV
f

) (19)

S =

Z
r(1 + 20⇡2)(1/⇢2)k

F

W

↵µ

W

0
↵

dV

f

(20)

A. Inputs and calculations

We describe the inputs and calculations done in the MathematicaTM notebook. We use

polar coordinates (r, z, phi) and toroidal coordinates (tau, sigma, phi) for the mathematical

model. All calculations are done in the (r,z) plane, which is also the (tau, sigma) plane, and

extended to � by symmetry.
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The following is a list of the functions and inputs in the mathematical model. All functions

use toroidal coordinate inputs. The vector valued functions produce vectors that are in

toroidal coordinates. Because toroidal coordinates are orthogonal, the cross product E ⇥B

gives the same result whether it is calculated in toroidal coordinates or Cartesian coordinates.

• radius: the S

1 radius of the particle. An input. Can be any positive value.

• charge: the particle charge. An input. Can be any non-zero value.

• rco(tau,sigma,phi)= the value of the r coordinate in cylindrical coordinates. This

is necessary to calculate angular momentum r ⇥ p

• dVtor(tau,sigma)=the volume measure dV
f

using toroidal coordinates. This is used

to calculate the integral of angular momentum in toroidal coordinates.

• harmonic(tau,sigma)=a harmonic function whose source is the circle tau=1

• rho(tau,sigma)=the conformal factor ⇢ of quantum branch weight w = ⇢

4

• DivField(tau,sigma)=a vector field that has zero curl and divergence that is zero

everywhere except tau=1

• ScaledDivField(tau,sigma)= a scaling of DivField so that the divergence is equal

to the charge. On flat space, this would be the electric field.

• StokesCurrent(tau,sigma)=a function to assist the calculation of CurlField.

• CurlField(tau,sigma)=a vector field that has zero divergence and curl is zero ev-

erywhere except tau=1.

• ScaledCurlField(tau,sigma)=a scaling of CurlField so that the curl is equal to the

current. On flat space, this would be the magnetic field.

We then use ScaledDivField and ScaledCurlField as components of the flat

space field tensor k

1/2
F

W

µ⌫ . The product k

F

W

↵µ

W

0
↵

is the cross product of

ScaledDivField and ScaledCurlField. Then the spin angular momentum is

S =
R
r(1 + 20⇡2)(1/⇢2)k

F

W

↵µ

W

0
↵

dV

f

, using the above calculated functions. The inverse

fine structure constant estimate is ↵�1 = (8⇡S)(1/q2).
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B. Momentum calculations

The calculation for ↵�1 is approximately ↵

�1
calc

= 136.854 compared to the experimental

value ↵�1
exp

= 137.036. The error is �0.18 and the percent error is 0.13%. The calculation was

performed, in part, by comparison of the entropy in electromagnetic fields to the entropy

in geometry. That entropy comparison follows from comparing the way that fields a↵ect

the microstates of electromagnetism and geometry. However, the microstates that were con-

sidered all had flat topology. The microstates associated with virtual fermions were not

counted. For example, the electric field a↵ects the microstates of virtual electron/positron

pairs by increasing the probability that pair production will put the charged particles in op-

posite alignment to the field. That reduces the entropy of the particle pairs. To increase the

accuracy of the calculation, one would need to develop additional methods of accounting for

the e↵ect on entropy from electromagnetic and geometric fields. Comparing those entropic

e↵ects would then give a comparison relative to particle charge.

VII. PARTICLE DYNAMICS

A. Hadrons

Linked S

1 ⇥ P

2 are quarks. Hadrons consist of multiple linked S

1 ⇥ P

2. Each hadron

preserves Ricci flatness. With multiple linked S

1 ⇥ P

2, this may require relative motion of

the quarks to compensate the geometric e↵ects of their topology. If the quantum branch

weight ⇢ comes to a single cusp, then there is a single time-invariant Ricci flat solution for

⇢. In that case, the metric is isometric to the solution for the electron, to within a scaling of

the particle radius. The electromagnetic and geometric fields on the particle therefore also

scale in the same way. To show that quarks can have charges of magnitude 1/3 and 2/3

requires showing that the field cusp associated with @

�

@

�

g

0⌫ = @

�

@

�(A0,0
A

,⌫

0 ) can separate

according to dimension on each quark. For example, a particular quark might have geometry

corresponding to divergence @2
@2 but no other direction, giving it a charge of 1/3. Naturally,

this is impossible for an individual S1 ⇥ P

2. However, the quarks cannot be separated and

it is possible that their masses equilibrate according to this type of geometry.
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B. Particle radii

Knot physics models particles as knots in the spacetime manifold. The knots have geome-

try with non-zero radii. The geometry helps to explain, for example, spin angular momentum

and charge. Collisions between particles can give estimates of their charge radii. When par-

ticles collide, the distance at which the force between the particles is no longer 1/r2 is the

distance at which one can assume there is a geometric component to the interaction. With

hadrons, the collision data implies a particle with non-zero radius. The electron appears to

be nearly point-like in collisions. To explain the di↵erence, we use Ricci flatness to show

how electrons and other particles behave at rest and during collisions.

1. Lepton charge radius

For multiple electrons, the quantum branch weight ⇢ is not additive, it is multiplicative.

To find the quantum branch weight for multiple electrons, we use harmonic functions 
i

(x),

each associated with a particular electron. Then the quantum branch weight for a single

electron, as above, is ⇢(x) = e

i(x). The quantum branch weight for multiple electrons is

⇢(x) = exp(
X

i



i

(x)) (21)

As two electrons approach each other, their charge is conserved and ⇢ scales multiplicatively.

The result is that the radius of each electron shrinks. As the distance between electrons

goes to zero, the radius of each electron also goes to zero. A similar e↵ect occurs for any

charged lepton.

2. Hadron charge radius

Hadrons consist of multiple linked charged S

1 ⇥ P

2. The proximity of the S

1 ⇥ P

2

has the same e↵ect as for multiple electrons; the quantum branch weight scales as

⇢(x) = exp(
P

i



i

(x)). If the quarks are closer to each, then ⇢ is larger and therefore the S1

radius of each quark is less. The relative motion of the quarks introduces relativistic terms to

the Ricci flatness equation that may also a↵ect the S

1 radius. Introducing another particle

by collision would have less relative e↵ect on the apparent charge radius for a hadron than
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for a charged lepton.

C. Higher generations and the Koide formula

The fine structure constant compares charge to spin angular momentum. Spin angular

momentum is a degree of freedom, which means it has one ~ of action. Because of the

relationship between charge and angular momentum, there is a relationship between charge

and ~. This relationship holds for all elementary fermions and, in modified form, for quarks.

The quantum phase frequency is another degree of freedom and it also has one ~ of action,

of form E = ~!. An elementary fermion has a topology given by the mapping

X : (⌧, �,�) ! (⌧/(1� ⌧), �,�, ⌧sin(2� + n�), ⌧cos(2� + n�)) (22)

where n determines the generation. Including the time component introduces the � rotation

frequency !

X : (⌧, �,�) ! (⌧/(1� ⌧), �,�, ⌧sin(2� + n�+ !t), ⌧cos(2� + n�+ !t)) (23)

From the time derivatives dX/dt we see that rotation from the phase frequency is equivalent

to rotation in � because of the term n�. Therefore, the angular momentum and the phase

frequency ! are related through n. Angular momentum is fixed at ~/2, but the energy

E = ~! can change. Because the geometries of the particle generations are related in a

simple way, it is possible that their masses would also be related in a simple way. The Koide

formula relates the three lepton masses m
e

, m
µ

, and m

⌧

by the following formula

m

e

+m

µ

+m

⌧

(m1/2
e

+m

1/2
µ

+m

1/2
⌧

)2
⇡ 2/3 (24)

The formula is accurate to within the experimental accuracy for the particle masses. It may

be that the formula is not random and that the geometry of particle generations could be

used to derive the relationship between particle masses.

[1] C. Ellgen www.knotphysics.net Knot physics: Spacetime in co-dimension 2
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