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In this article one builds a class of recursive sets, one establishes 
properties of these sets and one proposes applications. This article widens 
some results of [1]. 
 

1) Definitions, properties. 
One calls recursive sets the sets of elements which are built in a recursive manner: 

let T  be a set of elements and fi  for i  between 1  and s , of operations ni , such that  
fi :T ni → T . Let’s build by recurrence the set M  included in T  and such that: 

(Def. 1)  1o) certain elements a1,...,an  of T , belong to M . 
  2o) if (α i1

,...,α ini
)  belong to M , then fi (α i1

,...,α ini
)  belong to M for all 

i ∈ 1,2,..., s{ }. 
  3o) each element of M is obtained by applying a number finite of times the rules 
1o  or 2o . 

We will prove several proprieties of these sets M , which will result from the manner in 
which they were defined.  The set M is the representative of a class of recursive sets 
because in the rules 1o  and 2o, by particularizing the elements a1,...,an  respectively 
f1,..., fs  one obtains different sets. 

 
Remark 1 :  To obtain an element of M , it is necessary to apply initially the rule 

1. 
(Def. 2) The elements of M are called elements M -recursive. 
(Def. 3) One calls order of an element a  of M the smallest natural p ≥ 1which 

has the propriety that a  is obtained by applying p  times the rule 1o or 2o. 
One notes M p  the set which contains all the elements of order p  of M . It is 

obvious that M1 = a1,...,an{ }. 

 

M 2 = fi (α i1
,...,α ini

)
(αi1

,...,αini
)∈M1

ni

U
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

s

U \ M1 . 

One withdraws M1  because it is possible that 
1

( ,..., )
n jj j j if a a a=  which belongs 

to M1 ,  and thus does not belong to M 2 . 
One proves that for k ≥ 1 one has: 
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M k+1 = fi (α i1
,...,α ini

)
(α i1

,...,α ini
)∈

k

( i )∏
U

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

s

U \ Mh
h=1

k

U  

where each  
 
 = (α i1

,...,α ini
) /{k

(i )∏ α i j
∈Mqj

 j ∈ 1,2,...,ni{ }; 1 ≤ qj ≤ k  and at least  an 

element  aijo
∈M k ,1 ≤ jo ≤ ni }. 

The sets M p ,   p ∈`* , form a partition  of the set M . 
  
Theorem 1: 
  
 

  
M = M p

p∈`*
U , where  ̀

* = 1,2,3,...{ }. 

Proof: 
From the rule 1o it results that M1 ⊆ M . 
One supposes that this propriety is true for values which are less than p . It results 

that M p ⊆ M , because M p  is obtained by applying the rule 2o to the elements of 
 

Mi
i=1

p−1

U . 

Thus 
  

M p
p∈`*
U ⊆ M . Reciprocally, one has the inclusion in the contrary sense in 

accordance with the rule 3o. 
 
Theorem 2: The set M is the smallest set, which has the properties 1o and 2o. 
Proof: 
Let R  be the smallest set having properties 1o and 2o. One will prove that this set 

is unique. 
Let’s suppose that there exists another set R ' having properties 1o and 2o, which is 

the smallest. Because R is the smallest set having these proprieties, and because R '  has 
these properties also, it results that R ⊆ R ' ; of an analogue manner, we have R '⊆ R :  
therefore R = R ' . 

It is evident that M '⊆ R . One supposes that Mi ⊆ R  for 1≤ i < p . Then (rule 
3o), and taking in consideration the fact that each element of M p  is obtained by applying 
rule 2o to certain elements of Mi , 1 ≤ i < p , it results that pM R⊆ . Therefore 

*( )p
p

M R p⊆ ∈U ` , thus M ⊆ R . And because R  is unique, M = R . 

Remark 2. The theorem 2 replaces the rule 3o of the recursive definition of the set 
M  by: ” M is the smallest set that satisfies proprieties 1o and 2o”. 

 
Theorem 3: M is the intersection of all the sets of T which satisfy conditions 1o 

and 2o. 
Proof:  
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Let T12  be the family of all sets of T satisfying the conditions 1o and 2o.  We note 

12A T

I A
∈

= I . 

I  has the properties 1o  and 2o because:  
1) For all i ∈ 1,2,...,n{ }, ai ∈I , because ai ∈A  for all A  of T12 . 
2) If α i1

,...,α ini
∈I , it results that α i1

,...,α ini
belong to A  that is A  of T12 . 

Therefore,  
∀i ∈ 1,2,..., s{ }, fi (α i1

,...,α ini
)∈A  which is A of T12 , therefore fi (α i1

,...,α ini
)∈I  

for all i  from 1,2,..., s{ }. 
From theorem 2 it results that M ⊆ I . 
Because M satisfies the conditions 1o and 2o, it results that M ∈T12 , from which 

I ⊆ M . Therefore M = I  
(Def. 4) A set A ⊆ I is called closed for the operation fi0

if and only if for all 
α i0 1,...,α i0 n i0

 of A , one has fi0
(α i0 1,...,α i0 n i0

)  belong to A . 
(Def.  5) A set A ⊆ T is called M -recursively closed if and only if: 
1) a1,...,an{ }⊆ A . 
2) A is closed in respect to operations f1,..., fs . 
With these definitions, the precedent theorems become: 
 
Theorem 2’:  The set M is the smallest M - recursively closed set. 
 
Theorem 3’: M is the intersection of all M - recursively closed sets. 
(Def. 6) The system of elements α1,...,αm , m ≥ 1 and α i ∈T  for 

i ∈ 1,2,...,m{ }, constitute a M -recursive description for the element α , if αm = α  and 
that each α i  ( i ∈ 1,2,...,m{ }) satisfies at least one of the proprieties: 

1) α i ∈ a1,...,an{ }. 
2) α i  is obtained starting with the elements which precede it in the system by 

applying the functions f j ,  1≤ j ≤ s  defined by property 2o  of  (Def. 1). 
(Def. 7) The number m  of this system is called the length of the M -recursive 

description for the element α . 
 
Remark 3: If the element α  admits a M -recursive description, then it admits an 

infinity of such descriptions.  
Indeed, if α1,...,αm  is a M -recursive description of α  then 

1 1 1,..., , ,..., m

h times

a a α α
14243

 is also a M -recursive description for α ,  h  being able to take all 

values from ̀ . 
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Theorem 4: The set M  is identical with the set of all elements of T  which admit 
a M -recursive description. 

Proof: Let D  be the set of all elements, which admit a M -recursive description. 
We will prove by recurrence that M p ⊆ D  for all p  of  ̀

* . 

For  p = 1  we have:  M1 = a1,...,an{ }, and the aj , 1≤ j ≤ n , having as M -
recursive description: < aj > . Thus M1 ⊆ D . Let’s suppose that the property is true for 
the values smaller than p . M p  is obtained by applying the rule 2o to the elements of 

1

1

;
p

i p
i

M Mα
−

=

∈U  implies that 
1

( ,..., )
nij i ifα α α∈  and  α i j

∈Mhj
 for  hj < p  and  

1≤ j ≤ ni . 
But aij

,  1≤ j ≤ ni , admits M -recursive descriptions according to the hypothesis of 

recurrence, let’s have 1,..., jj jsβ β . Then β11,...,β1s1
,β21,...,β2s2

,...,βni 1,...,βni sni
,α  

constitute a M -recursive description for the element α . Therefore if α  belongs to D , 
then M p ⊆ D  which is 

  
M = M p

p∈`*
U ⊆ D . 

Reciprocally, let x  belong to D . It admits a M -recursive description b1,...,bt  with 
bt = x . It results by recurrence by the length of the M -recursive description of the 
element x , that x ∈M . For t = 1 we have b1 , b1 = x  and b1 ∈ a1,...,an{ }⊆ M . One 
supposes that all elements y  of D  which admit a M -recursive description of a length 
inferior to t  belong to M . Let x ∈D  be described by a system of length t : b1,...,bt , 
bt = x . Then x ∈ a1,...,an{ }⊆ M , where x  is obtained by applying the rule 2o to the 
elements which precede it in the system: b1,...,bt−1 . But these elements admit the M -
recursive descriptions of length which is smaller that t : b1 , b1,b2 ,..., b1,...,bt−1 . 
According to the hypothesis of the recurrence, b1,...,bt−1  belong to M . Therefore bt  
belongs also to M . It results that M ≡ D . 
 Theorem 5: Let b1,...,bq  be elements of T, which are obtained from the elements 
a1,...,an  by applying a finite number of times the operations 1 2, ,..., or sf f f . Then M  

can be defined recursively in the following mode: 
1) Certain elements a1,...,an ,b1,...,bq  of T  belong to M . 
2) M  is closed for the applications fi , with i ∈ 1,2,..., s{ }. 
3) Each element of M  is obtained by applying a finite number of times the rules (1) or 
(2) which precede. 

Proof: evident. Because b1,...,bq  belong to T , and are obtained starting with the 
elements a1,...,an  of M  by applying a finite number of times the operations fi , it results 
that b1,...,bq  belong to M . 
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Theorem 6: Let’s have gj ,  1≤ j ≤ r , of the operations nj , where gj :T nj → T  
such that M  to be closed in rapport to these operations. Then M  can be recursively 
defined in the following manner: 
1) Certain elements a1,...,an  de T  belong to M . 
2) M  is closed for the operations fi , i ∈ 1,2,..., s{ } and gj , j ∈ 1,2,...,r{ }. 
3) Each element of M  is obtained by applying a finite number of times the precedent 
rules. 
Proof is simple: Because M  is closed for the operations gj  (with j ∈ 1,2,...,r{ }), one 
has, that for any α j1,...,α j n j

 from M , gj (α j1,...,α j n j
)∈M  for all j ∈ 1,2,...,r{ }. 

 From the theorems 5 and 6 it results: 
Theorem 7: The set M can be recursively defined in the following manner: 

1) Certain elements a1,...,an ,b1,...,bq of T  belong to M . 
2) M  is closed for the operations fi  ( i ∈ 1,2,..., s{ }) and for the operations gj  
( j ∈ 1,2,...,r{ }) previously defined. 
3) Each element of  M is defined by applying a finite number of times the previous 2 
rules. 
(Def. 8) The operation fi  conserves the property P  iff for any elements α i1,...,α ini

 
having the property P , fi (α i1,...,α ini

)  has the property P . 
Theorem 8 : If a1,...,an  have the property P , and if the functions f1,..., fs  

preserve this property, then all elements of M  have the property P . 
Poof:  

 
  
M = M p

p∈`*
U . The elements of M1  have the property P .  

Let’s suppose that the elements of Mi  for i < p  have the property P . Then the 
elements of M p  also have this property because M p  is obtained by applying the 

operations f1, f2 ,..., fs  to the elements of: Mi
i=1
U , elements which have the property P . 

Therefore, for any p  of  ̀ , the elements of M p  have the property P .  
 Thus all elements of M  have it. 
 Corollary 1 : Let’s have the property P : ” x  can be represented in the form 
F(x)”. 
 If a1,...,an  can be represented in the form F(a1),...,  respectively F(an ) , and if 

1,..., sf f  maintains the property P , then all elements α  of M  can be represented in the 
form F(α ) . 

Remark. One can find more other equivalent def. of M . 
 
 

2) APPLICATIONS, EXAMPLES. 
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 In applications, certain general notions like: M - recursive element, M -recursive 
description, M - recursive closed set will be replaced by the attributes which characterize 
the set M .  For example in the theory of recursive functions, one finds notions like: 
recursive primitive functions, primitive recursive description, primitively recursive closed 
sets. In this case ” M ” has been replaced by the attribute ”primitive” which characterizes 
this class of functions, but it can be replaced by the attributes ”general”, ”partial”. 
 By particularizing the rules 1o and 2o of the def. 1, one obtains several interesting 
sets: 
 Example 1: (see [2], pp. 120-122, problem 7.97). 
 Example 2: The set of terms of a sequence defined by a recurring relation 
constitutes a recursive set. 
 Let’s consider the sequence:  an+ k = f (an ,an+1,...,an+ k−1)  for all n  of  ̀

* , with 
0 , 1i ia a i k= ≤ ≤ . One will recursively construct the set  A = am{ }m∈`*  and one will 

define in the same time the position of an element in the set A : 
 1°)  a1

0 ,...,ak
0  belong to A , and each ai

0  (1≤ i ≤ k ) occupies the position i  in the 
set A ; 
 2°) if an ,an+1,...,an+ k−1  belong to A , and each aj  for n ≤ j ≤ n + k −1  occupies 
the position j  in the set A , then f (an ,an+1,...,an+ k−1)  belongs to A  and occupies the 
position n + k  in the set A . 
 3°) each element of B  is obtained by applying a finite number of times the rules 
1o  or 2o. 
 Example 3: Let G = e,a1,a2 ,...,a p{ } be a cyclic group generated by the element 

a  . Then ( ),G �  can be recursively defined in the following manner: 

 1°) a  belongs to G . 
 2°) if b  and c  belong to G  then b c� belongs to G . 
 3°) each element of G  is obtained by applying a finite number of times the rules 
1 or 2. 
 Example 4: Each finite set ML = x1, x2 ,..., xn{ } can be recursively defined (with 
ML ⊆ T ): 
 1°) The elements x1, x2 ,..., xn  of T  belong to ML . 
 2°) If a  belongs to ML , then f (a)  belongs to ML , where f :T → T  such that 
f (x) = x ; 

 3°) Each element of ML  is obtained by applying a finite number of times the 
rules 1° or 2°. 
 Example 5: Let L  be a vectorial space on the commutative corps K  and 

x1,..., xm{ } be a base of L . Then L , can be recursively defined in the following manner: 
 1°) x1,..., xm  belong to L ; 
 2°) if x, y  belong to L  and if a  belongs to K , then x ⊥ y  y  belong to L  and 
a ∗ x  belongs to  L ; 

3°) each element of L  is recursively obtained by applying a finite number of 
times the rules 1° or 2°. 
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(The operators ⊥  and  ∗  are respectively the internal and external operators of 
the vectorial space L ). 

Example 6: Let X  be an A -module, and M ⊂ X  (M ≠ ∅) , with M = xi{ }i∈I
. 

The sub-module generated by M  is: 
{ }{ }1 1/ ... , , , 1,...,n n i iM x X x a x a x a A x M i n= ∈ = + + ∈ ∈ ∈  

can be recursively defined in the following way: 
 1°) for all i  of  1,2,...,n{ }, { }1, 2,..., in x M∈� ; 
 2°) if x  and y  belong to M  and a  belongs to A , then x + y  belongs to M , 
and ax  also; 
 3°) each element of M  is obtained by applying a finite number of times the 
rules 1° or 2°. 

In accordance to the paragraph 1 of this article, M  is the smallest sub-set of X 
that verifies the conditions 1° and 2°, that is M  is the smallest sub-module of X that 
includes M . M  is also the intersection of all the subsets of X  that verify the 
conditions 1° and 2°, that is M  is the intersection of all sub-modules of X  that contain 
M . One also directly refines some classic results from algebra.  

 One can also talk about sub-groups or ideal generated by a set: one also 
obtains some important applications in algebra. 

Example 7: One also obtains like an application the theory of formal languages, 
because, like it was mentioned, each regular language (linear at right) is a regular set and 
reciprocally. But a regular set on an alphabet  Σ = a1,...,an{ } can be recursively defined 
in the following way: 

1°) ∅, ε{ }, a1{ },..., an{ } belong to R . 
2°) if P  and Q  belong to R , then P ∪Q , PQ , and P∗  belong to R , with 

{ }/  or P Q x x P x Q∪ = ∈ ∈ ; { }/  and PQ xy x P y Q= ∈ ∈ , and 
 
P∗ = Pn

n=0

∞

U  with 

 

n

n times

P P P P= ⋅ ⋅⋅⋅14243  and, by convention, P0 = ε{ }. 

3°) Nothing else belongs to R  other that those which are obtained by using 1° or 
2°. 

From which many properties of this class of languages with applications to the 
programming languages will result. 
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