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In this article one builds a class of recursive sets, one establishes
properties of these sets and one proposes applications. This article widens
some results of [1].

1) Definitions, properties.

One calls recursive sets the sets of elements which are built in a recursive manner:
let T be a set of elements and f; for i between 1 and s, of operations n,, such that
fi:T" — T . Let’s build by recurrence the set M included in 7" and such that:

(Def. 1) 1°) certain elements a,...,a, of T, belongto M .
2°) if (e, @ ) belong to M, then f(q,,...a; ) belong to M for all

ie{l,2,..,s}.
3%) each element of M is obtained by applying a number finite of times the rules
1° or2°.

We will prove several proprieties of these sets M , which will result from the manner in
which they were defined. The set M is the representative of a class of recursive sets
because in the rules 1° and 2° by particularizing the elements «,,...,a, respectively

fi»--».f, one obtains different sets.

Remark 1 : To obtain an element of M , it is necessary to apply initially the rule

(Def. 2) The elements of M are called elements M -recursive.
(Def. 3) One calls order of an element a of M the smallest natural p > 1 which

has the propriety that a is obtained by applying p times the rule 1°or 2°.
One notes M, the set which contains all the elements of orderp of M. It is

obvious that M, = {al,...,an }

M,=U U fla o )p\M,.

i=1 (e, - YeM"
One withdraws M, because it is possible that f,(a; ,...,a; )=4a which belongs
1 nj

to M,, and thus does not belong to M, .
One proves that for £ >1 one has:



k
M, = U f;'(ail""’ai”,) \UMh
(T %y, )GHL’) h=1

where each

H:): !&ail,_..,ai”’_)/aij €M, je{1,2,...,ni}; 1<g; <k and at least an
element a, eM,,1<j,<n, }

The sets M,, peN *, form a partition of the set M .
Theorem 1:

M=UM,, where N ={1,2,3..}.
peN"
Proof:
From the rule 1° it results that M, < M .

One supposes that this propriety is true for values which are less than p. It results
p-1

that M, c M , because M, is obtained by applying the rule 2° to the elements of Uwm,.

i=1
Thus | M , © M . Reciprocally, one has the inclusion in the contrary sense in
peN’

accordance with the rule 3°.

Theorem 2: The set M is the smallest set, which has the properties 1°and 2°.

Proof:

Let R be the smallest set having properties 1° and 2°. One will prove that this set
1S unique.

Let’s suppose that there exists another set R'having properties 1° and 2°, which is
the smallest. Because R is the smallest set having these proprieties, and because R' has
these properties also, it results that R < R'; of an analogue manner, we have R'c R:
therefore R=R".

It is evident that M 'c R. One supposes that M, c R for 1<i < p. Then (rule

3%), and taking in consideration the fact that each element of M, is obtained by applying
rule 2° to certain elements of M,, 1<i<p, it results that M , € R. Therefore

UM, =R (peN’), thus M = R. And because R is unique, M = R.
p

Remark 2. The theorem 2 replaces the rule 3° of the recursive definition of the set
M by:” M is the smallest set that satisfies proprieties 1°and 2°”.

Theorem 3: M is the intersection of all the sets of T which satisfy conditions 1°
and 2°.
Proof:



Let 7,, be the family of all sets of T satisfying the conditions 1°and 2°. We note
=) A.
AeT),
I has the properties 1° and 2° because:
1) Forall i e{l,2,...,n}, a, €l ,because a, €A forall A of T),.

2) If a,,...a, €I, it results that «,,...,o, belong to A that is A of T,.

Therefore,
Vi e {1,2,...,s}, fila,,...a; ) €A which is Aof T),, therefore f(c,,....a, ) el

for all i from {1,2,...,s}.

From theorem 2 it results that M < I .

Because M satisfies the conditions 1° and 2°, it results that M eT,,, from which
I < M . Therefore M =1

(Def. 4) A set Acis called closed for the operation f; if and only if for all

I

& s, Of A onehas f (¢ ,...a

iy 2 igng,

(Def. 5) A set Ac T is called M -recursively closed if and only if:

1) {al,...,an }g A.
2) Ais closed in respect to operations f,,..., f, .
With these definitions, the precedent theorems become:

O) belong to A .

ign;

Theorem 2’: The set M is the smallest M - recursively closed set.

Theorem 3’: M is the intersection of all M - recursively closed sets.
(Def. 6) The system of elements (a,,...a,), m=>1 and a, €T for

ie {1,2,...,m}, constitute a M -recursive description for the element «, if ¢, = and
that each «; (i € {1, 2,...,m}) satisfies at least one of the proprieties:

1) o e{al,...,an .

2) «; is obtained starting with the elements which precede it in the system by
applying the functions f;, 1< j<s defined by property 2° of (Def. 1).

(Def. 7) The number m of this system is called the length of the M -recursive
description for the element « .

Remark 3: If the element « admits a M -recursive description, then it admits an
infinity of such descriptions.
Indeed, if <al,...,am> is a M -recursive description of « then

a,....,a8,,a,....a, ) is also a M -recursive description for &, h being able to take all

h times

values from N .



Theorem 4: The set M is identical with the set of all elements of 7 which admit
a M -recursive description.
Proof: Let D be the set of all elements, which admit a M -recursive description.

We will prove by recurrence that M, < D forall p of N "
For p=1 we have: M, = {al,...,an , and the a;, 1<j<n, having as M -
recursive description: <a; >. Thus M, < D. Let’s suppose that the property is true for

the values smaller than p. M, is obtained by applying the rule 2° to the elements of

p-1

UMi; aeM, implies that o€ fi(,...q ) and «, €M, for h <p and
i=1

I1<j<n,.

But a, , 1< j<n,, admits M -recursive descriptions according to the hypothesis of

recurrence, let’s have <ﬂj1,...,,6’jsj>. Then <,B“,...,,Blsl,ﬂZI,...,,BZSZ,...,,Bnll,...,,Bn[%_,a>
constitute a M -recursive description for the element « . Therefore if « belongs to D,
then M, < D whichis M= |JM,cD.

peN"
Reciprocally, let x belong toD. It admits a M -recursive description <bl,...,b,> with
b, = x. It results by recurrence by the length of the M -recursive description of the
element x, that x e M . For t =1 we have <b1>, b,=x and b, e{al,...,an}g M . One
supposes that all elements y of D which admit a M -recursive description of a length
inferior to ¢ belong to M . Let x € D be described by a system of length ¢ : <b1,...,bt>,
b =x. Then x € {al,...,an }g M , where x is obtained by applying the rule 2° to the
elements which precede it in the system: b,,...,b,_,. But these elements admit the M -
recursive descriptions of length which is smaller that ¢: <b1>,<b1,b2>,...,(bl,...,bt_1>.
According to the hypothesis of the recurrence, b,,...,b, , belong to M . Therefore b,

belongs also to M . It results that M = D.
Theorem 5: Let bl,...,bq be elements of T, which are obtained from the elements

a,,...,a, by applying a finite number of times the operations f, f,,..., or f . Then M

can be defined recursively in the following mode:
1) Certain elements al,...,an,bl,...,bq of T belong to M .
2) M is closed for the applications f;, with i € {1, 2,...,s}.
3) Each element of M is obtained by applying a finite number of times the rules (1) or
(2) which precede.

Proof: evident. Because bl,...,bq belong to T, and are obtained starting with the
elements a,,...,a, of M by applying a finite number of times the operations f;, it results
that bl,...,bq belong to M .



Theorem 6: Let’s have g,, 1< j<r, of the operations n,, where g, :T" —T

such that M to be closed in rapport to these operations. Then M can be recursively
defined in the following manner:
1) Certain elements a,,...,a, de T belongto M .

2) M is closed for the operations f;, i e{l,2,...,s} and gi>J e{l,2,...,r}.
3) Each element of M is obtained by applying a finite number of times the precedent

rules.
Proof is simple: Because M is closed for the operations g; (with j €{1,2,...,r}), one

has, that for any o a,, from M, g.(a a, )eM forall j e{l,2,...r}.

jireees Ay 13000
From the theorems 5 and 6 it results:
Theorem 7: The set M can be recursively defined in the following manner:

1) Certain elements a,,...,a by,...,b, of T belong to M .
2) M 1is closed for the operations f, (i e{l,Z,...,s}) and for the operations g,

n’

(j €{l,2,...,r}) previously defined.

3) Each element of M is defined by applying a finite number of times the previous 2
rules.
(Def. 8) The operation f, conserves the property P iff for any elements «,,...,a

having the property P, f(c,.,....2;, ) has the property P.

Theorem 8: If a,,...,a, have the property P, and if the functions f,...,f,
preserve this property, then all elements of M have the property P .

Poof:

M=UM , - The elements of M, have the property P .

peN*
Let’s suppose that the elements of M, for i < p have the property P . Then the
elements of M, also have this property because M, is obtained by applying the

operations f,, f,,..., f. to the elements of: |JM, , elements which have the property P .
i=l

Therefore, for any p of N, the elements of M, have the property P .

Thus all elements of M have it.
Corollary 1: Let’s have the property P: ”x can be represented in the form
F(x)”.
If a,,...,a, can be represented in the form F(a,),..., respectively F(a,), and if
f.,..., f, maintains the property P, then all elements & of M can be represented in the
form F(a).
Remark. One can find more other equivalent def. of M .

2) APPLICATIONS, EXAMPLES.



In applications, certain general notions like: M - recursive element, M -recursive
description, M - recursive closed set will be replaced by the attributes which characterize
the set M . For example in the theory of recursive functions, one finds notions like:
recursive primitive functions, primitive recursive description, primitively recursive closed
sets. In this case ” M ” has been replaced by the attribute ’primitive” which characterizes
this class of functions, but it can be replaced by the attributes ’general”, “’partial”.

By particularizing the rules 1° and 2° of the def. 1, one obtains several interesting
sets:

Example 1: (see [2], pp. 120-122, problem 7.97).

Example 2: The set of terms of a sequence defined by a recurring relation
constitutes a recursive set.

Let’s consider the sequence: a,,, = f(a,,a,,,,...a,,, ,) for all n of N, with

a =a’, 1<i<k. One will recursively construct the set A= {am }meN* and one will

define in the same time the position of an element in the set A :

1°) @/,...,a; belong to A, and each a/ (1<i<k) occupies the position i in the
set A ;

2°)if a,,a a belong to A, and each a; for n<j<n+k—1 occupies

n+12°" " n+k-1
the position j in the set A, then f(a, ,a
position n+ k inthe set A.
3°) each element of B is obtained by applying a finite number of times the rules
1° or 2°.

Example 3: Let G = {e,al,az,...,a” } be a cyclic group generated by the element

,a,., ;) belongs to A and occupies the

n+l12°°"

a . Then (G, D) can be recursively defined in the following manner:

1°) a belongsto G .

2°)if b and ¢ belongto G then blCbelongsto G .

3°) each element of G is obtained by applying a finite number of times the rules
1 or2.

Example 4: Each finite set ML = {xl,xz,...,xn} can be recursively defined (with
MLCT):

1°) The elements x,,x,,...,x, of T belong to ML.

2°) If a belongs to ML, then f(a) belongs to ML, where f:T — T such that
fx)=x;

3°) Each element of ML is obtained by applying a finite number of times the

rules 1° or 2°.
Example 5: Let L be a vectorial space on the commutative corps K and

{xl, s X, } be a base of L. Then L, can be recursively defined in the following manner:
1°) x,,...,x, belongto L;
2°) if x,y belong to L and if a belongs to K, then x L y y belong to L and

a*x belongsto L;
3°) each element of L is recursively obtained by applying a finite number of
times the rules 1° or 2°.



(The operators L and * are respectively the internal and external operators of
the vectorial space L).

Example 6: Let X be an A-module, and M c X (M =), with M = {xi }

iel *

The sub-module generated by M is:

<M>={XEX/XZaIX]+...+aan, aechA xeM, ie{l,...,n};

can be recursively defined in the following way:

1°) forall i of {1,2,...,11}, {1,2,...,n}DXi € <M >;

2°)if x and y belong to (M) and a belongs to A, then x+y belongs to (M),
and ax also;

3°) each element of (M) is obtained by applying a finite number of times the
rules 1° or 2°.

In accordance to the paragraph 1 of this article, (M) is the smallest sub-set of X
that verifies the conditions 1° and 2°, that is <M > is the smallest sub-module of X that
includes M. (M) is also the intersection of all the subsets of X that verify the
conditions 1° and 2°, that is <M > 1s the intersection of all sub-modules of X that contain

M . One also directly refines some classic results from algebra.
One can also talk about sub-groups or ideal generated by a set: one also
obtains some important applications in algebra.
Example 7: One also obtains like an application the theory of formal languages,
because, like it was mentioned, each regular language (linear at right) is a regular set and
reciprocally. But a regular set on an alphabet > = {al,...,an} can be recursively defined

in the following way:
1°) &, {5}, {a1 },...,{an} belong to R.
2°) if P and Q belong to R, then PUQ, PQ, and P* belong to R, with

PuQ={X/Xe P orXeQ}; PQ={Xy/Xe P andyeQ}, and P =P" with
n=0

P"=P.P---P and, by convention, P’ = {¢}.

n times

3°) Nothing else belongs to R other that those which are obtained by using 1° or
2°,

From which many properties of this class of languages with applications to the
programming languages will result.
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