Chapter 1
A New Parallel Algorithm for Computing the
Singular Value Decomposition*

Nicholas J. Higham’ Pythagoras Papadimitriou

Abstract

A new method is described for computing the singular value decomposition (SVD).
It begins by computing the polar decomposition and then computes the spectral
decomposition of the Hermitian polar factor. The method is particularly attractive for
shared memory parallel computers with a relatively small number of processors, because
the polar decomposition can be computed efficiently on such machines using an iterative
method developed recently by the authors. This iterative polar decomposition method
requires only matrix multiplication and matrix inversion kernels for its implementation
and is designed for full rank matrices; thus the proposed SVD method is intended
for matrices that are not too close to being rank-deficient. On the Kendall Square
KSR1 virtual shared memory computer the new method is up to six times faster than a
parallelized version of the LAPACK SVD routine, depending on the condition number
of the matrix.

1 Background and Motivation

A modern theme in matrix computations is to build algorithms out of existing kernels.
In this work we propose an algorithm for computing the singular value decomposition
(SVD) that requires just three building blocks: matrix multiplication, matrix inversion,
and solution of the Hermitian eigenproblem. Our approach is motivated by the fact that
for the Kendall Square KSR1 virtual shared memory computer there is not available, at the
time of writing, a library of matrix computation software that takes full advantage of the
machine. The manufacturer does, however, supply a KSRIib/BLAS library that contains
a highly optimized level-3 BLAS routine xGEMM! [6], together with an implementation of
LAPACK, KSRIib/LAPACK [7], that calls the KSRIlib/BLAS library. Our aim was to
produce an SVD routine that is faster on the KSR1 than the KSRIlib/LAPACK routine

*Appears as: N. J. Higham and P. Papadimitriou. A new parallel algorithm for computing the singular
value decomposition. In J. G. Lewis, editor, Proceedings of the Fifth SIAM Conference on Applied Linear
Algebra, pages 80-84. Society for Industrial and Applied Mathematics, Philadelphia, 1994. This paper is a
shortened version of [4].

"Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(na.nhigham@na-net.ornl.gov). The work of this author was supported by Science and Engineering Re-
search Council grant GR/H52139, and by the EEC Esprit Basic Research Action Programme, Project 6634
(APPARQC).

‘Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(na.papadimitriou@na-net.ornl.gov). Current address: Data Information Systems PLC, 125 Thes-
salonikis, N. Philadelphia, Athens 142 43, Greece. This author was supported by an SERC Research
Studentship.

!The ‘%’ in routine names stands for the Fortran data type: in this case, S or C.

1

2 HiGHAM AND PAPADIMITRIOU

xGESVD (which implements the Golub—Reinsch algorithm), but without sacrificing numerical
stability. Rather than code any of the existing parallel SVD algorithms [1], [2], [10], we
wanted to make use of parallel codes that we had already developed for computing the
polar decomposition and solving the Hermitian eigenproblem. Our aim has been achieved
and we think that our new algorithm merits consideration for other parallel machines that
lack an optimized SVD routine.

Unlike standard techniques for computing the SVD, our method is influenced by the
singular value distribution. Specifically, the time required to compute the SVD of A is,
very roughly, proportional to logy k2(A), where ko(A) is the 2-norm condition number.
Since, furthermore, the iteration underlying our method can fail to converge when A is
rank-deficient, the method is intended for matrices that are not too nearly rank-deficient.
There are various applications in which this requirement is met. When the iteration does
converge the method is almost always numerically stable, and in any case it is easy to test
the stability a posteriori.

2 The SVD Algorithm

Any matrix A € C™*" (m > n) has a polar decomposition A = UH, where U € C™*™ has
orthonormal columns and H = (A*A)'/2 € C"*" is Hermitian positive semidefinite. If A
is real then the polar factors are real. Let H have the spectral decomposition H = VDV™*,
where V' is unitary and D = diag(d;) with dy > dy > --- > d,, > 0. Then A = PXQ* is an
SVD where P = UV, ¥ = D and Q = V. Note that this is an “economy size” SVD with
an m X n P, which is all that is needed to solve the least squares problem, for example.
If the full SVD is required, we could first compute a QR factorization A = Q[g“ | and then
find the SVD of R. The polar decomposition is often expressed in terms of the SVD, but
we are turning the tables to regard the SVD as a combination of a polar decomposition and
a spectral decomposition. In floating point arithmetic, rounding errors can cause some of
the computed c@ to be negative when H is nearly singular. The following algorithm takes
account of this possibility. Although we state our algorithms for complex A, they require
only real arithmetic when A is real.

Algorithm SVD.
Given A € C™*" (m > n) this algorithm computes an SVD A = PXQ*.
(1) Compute the polar decomposition A = UH.
(2) Compute the spectral decomposition H = VDV™*.
(3) P=UVDg, ¥ =|D|, Q@ =V, where Dg = diag(sign(d;)).
For the algorithm to be successful we need efficient and stable ways to carry out steps (1)
and (2). For step (1) we consider the following algorithm of Higham and Papadimitriou [5].

Algorithm Polar.
Given A € C"™*™ (m > n) of full rank, a convergence tolerance tol and
a positive integer p, this algorithm computes the polar decomposition
A=UH. ,
& = 1(1+cos (212;1)”), a?=1/&—1,i=1:p.
Xo=A/|AllF; k=0
repeat
Cr = X; X,
p=I1—Crilr
if p < tol, goto (1), end
Compute the acceleration parameter pi.

PARALLEL SINGULAR VALUE DECOMPOSITION VIA THE POLAR DECOMPOSITION 3

1 P 1

(*) X1 = EHka > E(M%Ck +ail)
i=1>"
k=k+1
end
(1) U=2Xj
H =U*"A

H = 3(Hy + H7) (to ensure the computed H is Hermitian)

The iteration () in Algorithm Polar is globally convergent to the polar factor U, with
order 2p. The iteration is well suited to shared memory parallel computers because each
of the p inversions in (*) can be done in parallel. On the KSR1, the implementation of
Algorithm Polar described in [5], which has p equal to the number of processors (p < 16
in [5]), runs an order of magnitude faster than the KSRlib/LAPACK SVD routine xGESVD.
We emphasize, however, that there is little point in choosing p bigger than 16, because
the increased order of convergence brings little or no reduction in the number of iterations.
When more than 16 processors are available they can be employed to share the work of
forming each of the p matrix inverses.

Algorithm Polar requires that A have full rank. If A is rank deficient then so are all the
iterates Xj. The iteration still converges, but to a matrix with singular values 0 and 1; we
obtain the correct H, but a rank-deficient U. In practice, when A is rank-deficient rounding
errors usually cause the iteration to converge to a matrix with orthonormal columns (to
within the convergence tolerance) and we may still obtain a satisfactory computed polar
decomposition, but rounding errors can also cause failure to converge. Note that U is not
unique when A is rank deficient, so there are many possible matrices to which the iteration
could converge in the presence of rounding errors.

The numerical stability of Algorithm SVD is investigated in [4]. The conclusion is that
Algorithm SVD is stable if a stable eigensolver is used and if Algorithm Polar produces a
stable computed polar decomposition A = UH. If the “optimal” acceleration parameter
{1, as defined in [5], is used in Algorithm Polar, then ||A — UH||5 is typically of order
k2 (A)tol|| Al|2; this is the observed behaviour and it can be partly explained theoretically [5].
For the unaccelerated iteration (p; = 1) more iterations may be required, but ||A — UH||
is now usually of order tol||Al|2 (indeed it is of this order in all our experiments) and again
there is some supporting theory [5]. There is an inexpensive a posteriori test for stability
of Algorithm Polar; see [4].

3 Experiments on the KSR1

We have implemented Algorithm SVD on the Kendall Square KSR1 virtual shared memory
computer. Each node of the KSR1 is a superscalar 64-bit processor with a 40 Mflop peak
performance and 32 Mbytes of local cache memory. We had access to 16 processors of the
32-processor KSR1 at the University of Manchester. Our codes are written in KSR Fortran,
which is Fortran 77 with some parallel and Fortran 90 extensions. We used single precision
arithmetic, for which the unit roundoff v ~ 1.1 x 10716,

Although the KSRIib/BLAS library contains a highly optimized SGEMM routine, the
other level 3 BLAS routines do not appear to be highly optimized for the KSR1 [8]. The
SGEMM routine supports four optional parameters in addition to those in the standard level
3 BLAS specification; they permit controlled exploitation of parallelism.

To compute the polar decomposition A = UH we used the KSR1 implementation
of Algorithm Polar from [5], with tol = mu and with no acceleration (u = 1). We

4 HiGHAM AND PAPADIMITRIOU

TABLE 1
Times in seconds for eigensolvers.

Order | Standard SSYEV Modified SSYEV Algorithm BJ
64 0.71 0.29 29.74
128 5.58 1.78 52.15
256 40.51 17.01 136.02
512 369.56 148.53 236.78
1024 2534.84 1150.37 1014.07
TABLE 2

Times in seconds for SGESVD.

Order | Standard SGESVD Modified SGESVD
64 1.35 1.35
128 9.77 9.12
256 122.39 101.03
512 980.10 880.02
1024 9500.00 7500.00

considered two approaches to computing the spectral decomposition of H. The first is to
use the LAPACK driver routine SSYEV, which carries out the symmetric QR algorithm,
involving a reduction to tridiagonal form followed by an iterative QR phase. To obtain
better performance than that provided by the KSRIib/LAPACK SSYEV we modified the
SGEMM calls to include the four KSR1-specific additional parameters.

Table 1 reports run times for standard SSYEV on one processor and for the modified
SSYEV on 16 processors, for matrices of several dimensions. In both cases we used a block
size of 16, which we found to give the best performance. Each timing is for one particular
matrix, but the times vary only slightly with the matrix.

The second approach is to use the block Jacobi method (see [3, Section 8.5.11] for
details of this method.) Papadimitriou [9] has implemented several versions of the block
Jacobi method on the KSR1. The version used here, Algorithm BJ, uses a parallel rotation
ordering and solves the spectral decomposition subproblems using SSYEV. The block size is
chosen as n/(2p), where p is the number of processors. A block rotation is skipped whenever
the off-diagonal elements of the subproblem are below a dynamically varying threshold. We
see from Table 1 that modified SSYEV is the fastest method for n < 512, but Algorithm BJ
is the fastest for n = 1024.

We now compare our new method with the KSRIib/LAPACK driver routine SGESVD.
By modifying the routine in the same way as for SSYEV we were able to reduce the run
time. Timings for square matrices of five different dimensions are given in Table 2. These
timings are largely unaffected by the singular value distribution.

In Tables 3 and 4 we give timings for Algorithm SVD with both Algorithm BJ and
modified SSYEV as the eigensolver. The timings are for a random matrix with exponentially
distributed singular values and 2-norm condition number 1.01 (Table 3) or 102 (Table 4).
Algorithm SVD is up to 6.2 times faster than modified SGESVD for k2(A) = 1.01, and up to
2.6 times faster for xy(A) = 10'2. For n = 1024 with Algorithm BJ, the percentage of the
run time taken by Algorithm Polar is 15% for k2(A) = 1.01 and 65% for ka(A) = 1012,

PARALLEL SINGULAR VALUE DECOMPOSITION VIA THE POLAR DECOMPOSITION 5

TABLE 3
Times in seconds for Algorithm SVD, ra(A) = 1.01.

Order | With Algorithm BJ With modified SSYEV
64 30.29 0.84
128 53.19 2.82
256 140.24 21.23
512 262.42 174.17
1024 1203.83 1340.13
TABLE 4

Times in seconds for Algorithm SVD, ro(A) = 1012.

Order | With Algorithm BJ With modified SSYEV
64 31.66 2.21
128 59.59 9.22
256 172.10 53.09
512 490.80 402.55
1024 2887.70 3024.00

For n = 1024 in Table 4, Algorithm SVD with Algorithm BJ is running at about 23
megaflops (compared with the peak of 640 megaflops for 16 processors of the KSR1), while
modified SGESVD for the same dimension runs at about 3 megaflops. For comparison, the
highly optimized SGEMM runs at 384 megaflops.

4 Conclusions

Algorithm SVD is the fastest stable method we know for computing the SVD of large, full
rank matrices on the KSR1. The algorithm is worth considering for other types of parallel
machine for which a fast Hermitian eigensolver, but not a fast SVD solver, is available.

References

[1] M. Berry and A. H. Sameh, An overview of parallel algorithms for the singular value and
symmetric eigenvalue problems, J. Comp. Appl. Math., 27 (1989), pp. 191-213.

[2] R. P. Brent, F. T. Luk, and C. F. Van Loan, Computation of the singular value decomposition
using mesh-connected processors, J. VLSI and Computer Systems, 1 (1985), pp. 242-270.

[3] G. H. Golub and C. F. Van Loan, Matriz Computations, Johns Hopkins University Press,
Baltimore, Maryland, second ed., 1989.

[4] N. J. Higham and P. Papadimitriou, Parallel singular value decomposition via the polar
decomposition, Numerical Analysis Report No. 239, University of Manchester, England, Oct.
1993.

[6] ——, A parallel algorithm for computing the polar decomposition, Parallel Computing, 20
(1994), pp. 1161-1173.

[6] Kendall Square Research Corporation, KSRIib/BLAS Library, Version 1.0, Installation Guide
and Release Notes, Waltham, MA, 1993.

[7] ——, KSRIib/LAPACK Library, Version 1.0b BETA, Installation Guide and Release Notes,
Waltham, MA, 1993.

[8] P. Papadimitriou, The KSR1—A numerical analyst’s perspective, Numerical Analysis Report
No. 242, University of Manchester, England, Dec. 1993.

6 HiGHAM AND PAPADIMITRIOU

[9) ——, Parallel Solution of SVD-Related Problems, With Applications, PhD thesis, University
of Manchester, England, Oct. 1993.
[10] C. F. Van Loan, The block Jacobi method for computing the singular value decomposition, in
Computational and Combinatorial Methods in Systems Theory, C. I. Byrnes and A. Lindquist,
eds., Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986, pp. 245-255.

