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Abstract

Learning a measure of similarity between pairs of objecemismportant generic problem in ma-
chine learning. It is particularly useful in large scale kggiions like searching for an image that
is similar to a given image or finding videos that are relevara given video. In these tasks, users
look for objects that are not only visually similar but alsamantically related to a given object.
Unfortunately, the approaches that exist today for legrsunch semantic similarity do not scale to
large data sets. This is both because typically their CPUstmidige requirements grow quadrat-
ically with the sample size, and because many methods imgas@lex positivity constraints on
the space of learned similarity functions.

The current paper presents OASIS,@nline Algorithm for Scalable Image Similarityarn-
ing that learns a bilinear similarity measure over sparpessentations. OASIS is an online dual
approach using the passive-aggressive family of learrigpgrithms with a large margin criterion
and an efficient hinge loss cost. Our experiments show th&ISAs both fast and accurate at a
wide range of scales: for a data set with thousands of imégashieves better results than existing
state-of-the-art methods, while being an order of magumifadter. For large, web scale, data sets,
OASIS can be trained on more than two million images from 15 queries within 3 days on
a single CPU. On this large scale data set, human evaluatfavged that 35% of the ten nearest
neighbors of a given test image, as found by OASIS, were seécadin relevant to that image. This
suggests that query independent similarity could be atelyriearned even for large scale data sets
that could not be handled before.
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1. Introduction

Large scale learning is sometimes defined as the regime where learning is limgechpytational
resources rather than by availability of data (Bottou, 2008). Learnirairavise similarity measure
is a particularly challenging large scale task: since pairs of samples hagetmbidered, the large
scale regime is reached even for fairly small data sets, and learning similarityrge data sets
becomes exceptionally hard to handle.

At the same time, similarity learning is a well studied problem with multiple real worldi-app
cations. It is particularly useful for applications that aim to discover ned ralevant data for a
user. For instance, a user browsing a photo in her alboum may ask to findromitlated images.
Another user may search for additional data while viewing an online vidéoowsing text docu-
ments. In all these applications, similarity could have different flavorsearnay search for images
that are similar visually, or semantically, or anywhere in between.

Many similarity learning algorithms assume that the available training data corgairgalued
pairwise similarities or distances. However, in all the above examples, ths@rmumerical value
of pairwise similarity between objects is usually not available. Fortunatelycaneoften obtain
information about theelative similarity of different pairs (Frome et al., 2007), for instance, by
presenting people with several object pairs and asking them to seleaithtbat is most similar.
For large scale data, where man-in-the-loop experiments are prohibitavgtly, relative similarities
can be extracted from analyzing pairs of images that are returned mnssso the same text query
(Schultz and Joachims, 2004). For instance, the images that are ragkgddy one of the image
search engines for the query “cute kitty” are likely to be semantically more siméarahrandom
pair of images. The current paper focuses on this setting: similarity informatiextracted from
pairs of images that share a common label or are retrieved in responsertoreoa text query.

Similarity learning has an interesting reciprocal relation with classification. ri@rhand, pair-
wise similarity can be used in classification algorithms like nearest neighboesralknethods. On
the other hand, when objects can be classified into (possibly overlambéisges, the inferred labels
induce a notion of similarity across object pairs. Importantly however, simil@sning assumes
a form of supervision that is weaker than in classification, since no labelgravided. OASIS is
designed to learn elass-independeimilarity measure with no need for class labels.

A large number of previous studies have focused on learning a similarityuneetist is also a
metric, like in the case of a positive semidefinite matrix that defines a Mahaladistaace (Yang,
2006). However, similarity learning algorithms are often evaluated in a cooteanking. For in-
stance, the learned metric is typically used together with a nearest-neidgabsifier (Weinberger
et al., 2006; Globerson and Roweis, 2006). When the amount of trairitegavailable is very
small, adding positivity constraints for enforcing metric properties is usefukducing over fitting
and improving generalization. However, when sufficient data is availabl@ many modern appli-
cations, adding positive semi-definitiveness constraints consumes e@idel computation time,
and its benefit in terms of generalization are limited. With this view, we take heapmoach that
avoids imposing positivity or symmetry constraints on the learned similarity measure

The current paper presents an approach for learning semantic similaitgdhles up to an
order of magnitude larger than current published approaches. Thregonents are combined to
make this approach fast and scalable: First, our approach usesa@mstramed bilinear similarity.
Given two imagesp; and p; we measure similarity through a bilinear forpj W p, where the
matrix W is not required to be positive, or even symmetric. Second we use a sppresentation
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of the images, which allows to compute similarities very fast. Finally, the trainingitigothat
we developed, OASIS)nline Algorithm for Scalable Image Similarity learning an online dual
approach based on the passive-aggressive algorithm (Crammer28Q8), It minimizes a large
margin target function based on the hinge loss, and already converdgéghtguality similarity
measures after being presented with a small fraction of the training pairs.

We find that OASIS is both fast and accurate at a wide range of scatessfandard benchmark
with thousands of images, it achieves better (but comparable) results xisling state-of-the-
art methods, with computation times that are shorter by orders of magnitudeveBescale data
sets, OASIS can be trained on more than two million images within three days ogla €iRU,
and its training time grows linearly with the size of the data. On this large scale etatausnan
evaluations of OASIS learned similarity show that 35% of the ten nearesthmigof a given image
are semantically relevant to that image.

The paper is organized as follows. We first present our online algor{A&|S, based on the
Passive-aggressive family of algorithms. We then present the spted extraction technique
used in the experiments. We continue by describing experiments with OAIf®blems of image
similarity, at two different scales: a large scale academic benchmark withofah®usands of
images, and a web-scale problem with millions of images. The paper ends wigbussion on
properties of OASIS.

2. Learning Relative Similarity

We consider the problem of learning a pairwise similarity funct®rmiven data on the relative
similarity of pairs of images.

Formally, let? be a set of images, amg =r(pi, pj) € R be a pairwise relevance measure which
states how stronglp; € 2 is related top; € P. This relevance measure could encode the fact that
two images belong to the same category or were appropriate for the samge\faato not assume
that we have full access to all the values ofnstead, we assume that we can compare some pairwise
relevance scores (for instancgp;, pj) andr(pi, p«)) and decide which pair is more relevant. We
also assume that whep;, pj) is not available, its value is zero (since the vast majority of images
are not related to each other). Our goal is to learn a similarity fun&{pn p;) that assigns higher
similarity scores to pairs of more relevant images,

S(pi.p") > S(pi, P ), VP, pt.p € P suchthatr(pi, p") > r(pi.p). (1)

In this paper we overload notation by usipgto denote both the image and its representation as a
column vectom; € RY. We consider a parametric similarity function that has a bi-linear form,

Sw(pi,pj) = o W pj )

with W € R9<4, Importantly, if the images; are represented as sparse vectors, namely, only a
numberk; < d of thed entries in the vectop; are non-zeroes, then the value of Equation (2) can be
computed very efficiently even whehis large. SpecificallySy can be computed with complexity

of O(kik;) regardless of the dimensionality
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2.1 An Online Algorithm

We propose an online algorithm based on the Passive-Aggressiy&a(Rily of learning algorithms
introduced by Crammer et al. (2006). Here we consider an algorithm seattuplets of images
pi, B, P € P such thar (pi, pi") > r(pi, pr )-

We aim to find a parametric similarity functi@such that all triplets obey

Sw(pi,p;") > Sw(pi, P ) +1 (3)

which means that it fulfills Equation (1) with a safety margin of 1. We define @dleviing hinge
loss function for the triplet:

lw(pi, P, ) = max{0,1—Sw(pi,p;") + Sw(pi,p; )} 4)

Our goal is to minimize a global lodsy that accumulates hinge losses (4) over all possible triplets
in the training set:

lw= ) lw(pi, PP -
(PP P )P

In order to minimize this loss, we apply the Passive-Aggressive algorithatiitely over triplets
to optimizeW. First, W is initialized to some valu&v®. Then, at each training iteratidn we
randomly select a triplep;, p;", p; ), and solve the following convex problem with soft margin:

. 1 .
who= argrwné\|W—W"1H§m+CE (5)
st lw(pi,p,p ) <& and &>0

where ||-||ero IS the Frobenius norm (point-wide, norm). Therefore, at each ite_rati(imWi is
selected to optimize a trade-off between remaining close to the previous perswie ! and min-
imizing the loss on the current triplay (pi, pi*, p;”). Theaggressivenegsaramete€ controls this
trade-off.

OASIS
I nitialization:
Initialize WO = |

Iterations
repeat
Sample three imaggs p;", p;, such that (p;, ;") > r(pi, p; ).
UpdateW' = W'-1 ;!

wheret; = min {C, % }

andV' = [p(p{ — P )s--- P (P — PO
until (stopping criterion)

Figure 1: Pseudo-code of the OASIS algorithm.
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We follow Crammer et al. (2006) to solve the problem in Equation (5). Wie&pi, pr,p) =
0, itis clear thaw' = W'~ satisfies Equation (5) directly. Otherwise, we define the Lagrangian

LOW,TEN) = JIW W24 CE+T(L— €~ pIW(p| — p; ) ~AE ©)

wheret > 0 andA > 0 are Lagrange multipliers. The optimal solution is such that the gradient
vanishes‘wgi’wnz‘m =0, hence

0L(W,T,§,A)

=W-W-1_1v=
W Vi=0

where the gradient matrix; = %% = [pt(p" —p )., PP — p)]T. The optimal neww is
therefore _
W=wW"111v (7)

where we still need to estimate Differentiating the Lagrangian with respect§@nd setting it to
zero also yields:
0L(W,T,&,N)
0g

which, knowing thatA > 0, means that < C. Plugging Equations (7) and (8) back into the La-
grangian in Equation (6), we obtain

—C-1-A=0 ®)

1 .
L(1) = QTZIIViIIZH(l— pr W't Tvi)(pF =) -
Regrouping the terms we obtain
1 i _
L(1) = —§I2||Vi||2+r(l— W (g =)

Taking the derivative of this second Lagrangian with respettaind setting it to 0, we have

0L(T i _
O vl @ oW - p) =0

which yields _

o 1PIWIH T =) wia(pi P P7)

IVil|2 IVil|2
Finally, Sincet < C, we obtain
: - Nt n—
T= min{C, IW'*l(plv p|2 ’ pl ) } . (9)
Vil

Equations (7) and (9) summarize the update needed for every triplefs, p; ). It has been
shown (Crammer et al., 2006) that applying such an iterative algorithm yaetdsnulative online
loss that is likely to be small. It was furthermore shown that selecting theWBedtiring training
using a hold-out validation set achieves good generalization. We alsosow that multiple runs
of the algorithm converge to provide similar precision (see Figure 7).
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2.2 LossBounds

Following closely the analysis of loss bounds for passive aggres3\ealgorithms developed by
Crammer et al. (2006) we state simil@fative bounds for the OASIS framework. We do this by
rewriting OASIS as a straightforward linear classification problem. Denpte;kthe vector ob-
tained by“unfolding” the matriX¥V (concatenating all its columns into a single vector) and similarly
X the unfolded matrip; (p;” — p()T. Using this notation, the constraint in Equation (3) becomes

WIYI)>1 )

with - denoting the standard inner product. This is equivalent to the formulati® afhen the
labely; is always 1. The introduction of slack variables in Equation (5) brings ubdovariant
denoted by Crammer et al. (2006) as PA-I.

The loss bounds in Crammer et al. (2006) relywanbeing the zero vector. Since here we
initialize with WP = | (the identity matrix) we need to adapt the analysis slightly. Wdbe a vector

in ]Rdz obtained by unfolding an arbitrary matrix We define
i=1-W-% and I'=1-T-% |,

wherel; is the instantaneous loss at round i, &hds the loss suffered by the arbitrary vecfar.
The following two theorems rely on Lemma 1 of Crammer et al. (2006), whichestate without
proof:

S T2l —Tixil|? - 21) < || - we?

While in Crammer et al. (2006 is the zero vector, in our ca$® is the unfoldeddentity matrix
We therefore have
I = Wo||? = (|| — 2trace(U) +n.

Using this modified lemma we can restate the relevant bound:

Theorem 1 Let (X7),...(Xv) be a sequence of examples whgies R*, || X' || < R for alli = 1...M.
Then, for any matriyJ € R"2, the number of prediction mistakes made by OASIS on this sequence
of examples is bounded from above by,

M
max{RZ,1/C} (”uuéro — 2tracg(U) +n+2C Zli*)
i=
where C is the aggressiveness parameter provided to OASIS.

2.3 Sampling Strategy

For real world data sets, the actual number of triplgtsp;", p;”) is typically very large and cannot
be stored in memory. Instead, we use the fact that the number of relevaygsrfaa a category or

a query is typically small, and keep a list of relevant images for each quergtegory. For the
case of single-labeled images, we can efficiently retrieve an image thatiantte a given image,
by first finding its class, and then finding another image from that class.case of multi-labeled
images is described in Section 5.2.

Specifically, to sample a triplépi, p;", p;”) during training, we first uniformly sample an image

pi from 2. Then we uniformly sample an imagg from the images sharing the same categories
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or queries ag;. Finally, we uniformly sample an image from the images that share no category
or query withp;. When the setP is very large and the number of categories or queries is also
very large, one does not need to maintain the set of non-relevant imargesch image: sampling
directly from P instead only adds a small amount of noise to the training procedure and-eafipt
harmful.

When relevance feedbackép;, pj) are provided as real numbers and not jasf0,1}, one
could use these number to bias training towards those pairs that have areilghrance feedback
value. This can be done by considerir(g, p;) as frequencies of appearance, and sampling pairs
according to the distribution of these frequencies.

3. Image Representation

The problem of selecting an informative representation of images is still solved computer
vision challenge, and an ongoing research topic. Different appesaitt image representation
have been proposed including by Feng et al. (2004); Takala et &5)2Md Tieu and Viola (2004).
In the information retrieval community there is wide agreement that a bageadsvepresentation is
a very useful representation for handling text documents in a wide i@raggplications. For image
representation, there is still no such approach that would be adequatevide variety of image
processing problems. However, among the proposed representatiomssensus is emerging on
usinglocal descriptorsfor various tasks, for example, Lowe (2004); Quelhas et al. (2008)s
type of representation segments the image liegiions of interestand extracts visual features from
each region. The segmentation algorithm as well as the region featuseamang approaches,
but, in all cases, the image is then represented as a set of feature asornbing the regions of
interest. Such a set is often calletbag-of-local-descriptors

In this paper we take the approach of creating a sparse representsaxhdn the framework of
local descriptors. Our features are extracted by dividing each imagevattapping square blocks,
and each block is then described with edge and color histograms. Fohistiggrams, we rely on
uniform Local Binary Pattern§uLBPs) proposed by Ojala et al. (2002). These texture descriptors
have shown to be effective on various tasks in the computer vision literé@jaéa et al., 2002;
Takala et al., 2005), certainly due to their robustness with respect tgesan illumination and
other photometric transformations (Ojala et al., 2002). Local Binary Pattestimate a texture
histogram of a block by considering differences in intensity at circulaghimrhoods centered on
each pixel. Precisely, we usdR;, patterns, which means that a circle of radius 2 is considered
centered on each block. For each circle, the intensity of the center pigeiipared to the inter-
polated intensities located at 8 equally-spaced locations on the circle, w8 sha-igure 2, left.
These eight binary tests (lower or greater intensity) result in an 8-hiteseg, see Figure 2, right.
Hence, each block pixel is mapped to a sequence am®rg256 possible sequences and each
block can therefore be represented as a 256-bin histogram. In faas, ligen observed that the bins
corresponding to non-uniform sequences (sequences with more theamsRions 1— 0 or 0— 1)
can be merged, yielding more compact 59-bin histograms without perfornase¢Ojala et al.,
2002).

Color histograms are obtained by K-means clustering. We first selectitepaiaypical colors
by training a color codebook from the Red-Green-Blue pixels of a lagjeitig set of images using
K-means. The color histogram of a block is then obtained by mapping eadhileel to the closest
color in the codebook palette.
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172 47— 0 — 11000111
185 67
101
Neighborhood Intensities Binary Tests 8-bit Sequence

Figure 2: An example of Local Binary PattednBRs 2). For a given pixel, the Local Binary Pattern
is an 8-bit code obtained by verifying whether the intensity of the pixel iatgreor lower
than its 8 neighbors.

Finally, the histograms describing color and edge statistics of each blockoaoatenated,
which yields a single vector descriptor per block. Our local descripfaesentation is therefore
simple, relying on both a basic segmentation approach and simple featuresalljaalternative
representations could also be used with OASIS, (Feng et al., 2004giéraet al., 2006; Tieu
and Viola, 2004) However, this paper focuses on the learning modela &shchmark of image
representations is beyond the scope of the current paper.

As a final step, we use the representation of blocks to obtain a repriésefda an image. For
computation efficiency we aim at a high dimensional and sparse vecta@.dpacthis purpose, each
local descriptor of an imagp is represented as a discrete index, callisdial termor visterm and,
like for text data, the image is represented &mg-of-vistermsector, in which each componept
is related to the presence or absence of vistamp.

The mapping of the descriptors to discrete indexes is performed accdodagodeboolC,
which is typically learned from the local descriptors of the training images ¢iréameans clus-
tering (Duygulu et al., 2002; Jeon and Manmatha, 2004; Quelhas et @h).2Z0he assignment of
the weightp; of vistermi in imagep is as follows:

f. d
> (f) dj)?

wheref; is the term frequency dfin p, which refers to the number of occurrences of p, while
d; is the inverse document frequency jofwhich is defined as-log(r;), rj being the fraction of
training images containing at least one occurrence of visterithis approach has been found
successful for the task of content based image ranking describeddmgi®r and Bengio (2008).

In the experiments described below, we used a large set of images colfemtedhe web
to train the features. This set is described in more detail in Section 5.2. \Wdeauset of 20
typical RGB colors (hence the number of clusters used in the k-meanslérs avas 20), the block
vocabulary sized = 10000 and our image blocks were of size 64x64 pixels, overlappingy ever
32 pixels. Furthermore, in order to be robust to scale, we extractedsbkickarious scales by
successively down scaling images by a factor of 1.25 and extractingaheds at each level, until
there were less than 10 blocks in the resulting image. There was on awemgel 70 non-zero
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values (out of 10000) describing a single image. Note that no other infam@uch as meta-data)
was added in the input vector representation each image.

4. Related Wor k

Similarity learning can be considered in two main setups, depending on thefigyelable training
labels. First, a regression setup, where the training set consists obpaisgectsx!, x? and their
pairwise similarityy; € R. In many cases however, precise similarities are not available, but rather
a weaker notion of similarity order. In one such setup, the training setstem triplets of objects

xt, x2,x2 and a ranking similarity function, that can tell which of the two paifs x?) or (x,x3) is

more similar. Finally, multiple similarity learning studies assume that a binary medassireilarity

is availabley; € {+1,—1}, indicating whether a pair of objects is similar or not.

For small-scale data, there are two main groups of similarity learning apm®adhhe first
approach, learning Mahalanobis distances, can be viewed as lealitiegrgprojection of the data
into another space (often of lower dimensionality), where a Euclidean desiardefined among
pairs of objects. Such approaches include Fisher’s Linear Discrimiaalysis (LDA), relevant
component analysis (RCA) (Bar-Hillel et al., 2003), supervised glotsitic learning (Xing et al.,
2003), large margin nearest neighbor (LMNN) (Weinberger et al.62@0d Metric Learning by
Collapsing Classes (Globerson and Roweis, 2006). A Mahalanobis ekstearning algorithm
which uses a supervision signal identical to the one we employ in OASIS ialé®and Fung
(2006), which learns a special kind of PSD matrix via linear programming. 8&® a review by
Yang (2006) for more details.

The second family of approaches, learning kernels, is used to improfe@mpance of kernel
based classifiers. Learning a full kernel matrix in a non parametric wasolslptive except for
very small data. As an alternative, several studies suggested to leaiglated sum of pre-defined
kernels (Lanckriet et al., 2004) where the weights are being learopddata. In some applications
this was shown to be inferior to uniform weighting of the kernels (Noble,8200'he work of
Frome et al. (2007) further learns a weighting over local distance funébioevery image in the
training set. Non linear image similarity learning was also studied in the contextneigionality
reduction, as in Hadsell et al. (2006).

Finally, Jain et al. (2008a,b), based on work by Davis et al. (2007) t@il@arn metrics in an
online setting. This work is one of the closest work with respect to OASI8aits a linear model
of a [dis-]similarity function between documents in an online way. The mainrdifiee is that the
work of Jain et al. (2008a) learn a true distance throughout the leapnaogss, imposing positive
definiteness constraints, and is slightly less efficient computationally. W angthis paper that
in the large scale regime, such a constraint is not necessary given thetaohavailable training
examples.

Another work closely related to OASIS is that of Rasiwasia and Vascan¢2@08), which
also tries to learn a semantic similarity function between images. In their caseyéigwemantic
similarity is learned by representing each image by the posterior probabilitipdisin over a pre-
defined set of semantic tags, and then computing the distance between twe asabe distance
between the two underlying posterior distributions. The representatiorosireages in this ap-
proach is therefore equal to the number of semantic classes, hence iwgidaie when the number
of semantic classes is very large as in free text search.
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5. Experiments

Evaluating large scale learning algorithms poses special challenges ckirstt available bench-
marks are limited either in their scale, like 30K images in Caltech256 as descyili@dffin et al.
(2007), or in their resolution, such as the tiny images data set of Torralak €007). Large
scale methods are not expected to perform particularly well on small datasgee they are de-
signed to extract limited information from each sample. Second, many images welicannot be
used without explicit permission, hence they cannot be collected anégéatbk a single database.
Large, proprietary collections of images do exist, but are not availadddyffor academic research.
Finally, except for very few cases, similarity learning approaches irentfiterature do not scale
to handle large data sets effectively, which makes it hard to compare a mstzale method with
the existing methods.

To address these issues, this paper takes the approach of conduptrgents at two different
scales. First, to demonstrate the scalability of OASIS we applied OASIS to-aeadbd data with 2.7
million images. Second, to investigate the properties of OASIS more deeplyompare OASIS
with small-scale methods using the standard Caltech256 benchmark.

5.1 Evaluation Measures

We evaluated the performance of all algorithms using standard rankiogipremeasures based on
nearest neighbors. For each query image in the test set, all other tessimageranked according
to their similarity to the query image. The number of same-class images among tkénages
(thek nearest neighbors) was computed. When averaged across test {gittgggswithin or across
classes), this yields a measure known as precision-at;tomviding a precision curve as a function
of the rankk.

We also calculated thmean average precisiofmAP), a measure that is widely used in the
information retrieval community. To compute average precision, the preeasitop-k is first cal-
culated for each test image. Then, it is averaged over all posikidhat have a positive sample.
For example, if all positives are ranked highest, the average-preéssionThe average-precision
measure is then further averaged across all test image queries, yielelimgain average precision
(mAP).

5.2 Web-Scale Experiment

Our first set of experiments is based on Google proprietary data that isrtéens of magnitude
larger than current standard benchmarks. We collected a set%K text queries submitted to the
Google Image Search system. For each of these queries, we hadtacesss of relevant images,
each of which is associated with a numerical relevance score. This yieltiedl of~2.7 million
images, which we split into a training set of 2.3 million images and a test set of 0.4 nieyes
(see Table 1).

Set Number of Queries Number of Images
Training 139944 2292259
Test 41877 402164

Table 1: Statistics of the Web data set.
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5.2.1 EXPERIMENTAL SETUP

We used the query-image relevance information to create an image-imagenoeeas follows.
Denote the set of text queries ky and the set of images . For eachg € Q, let LP; denote the
set of images that are relevant to the quenand let?; denote the set of irrelevant images. The
query-image relevance is defined by the maRiy : Q x Z? — R*, and obeyRq (q, paf) >0and
Rqi(9,py) =0forallge Q, pq+ € £Pq+, Pq € By - We also computed a normalized versiorRef,
which can be interpreted as a joint distribution matrix, or the probability to ebseequeryg and
an imagep for that query,
RQ| (q7 p)
Pr(a, p) SooRa(.P)

In order to compute the image-image relevance ma&jjx: P x P — R*, we treated images as
being conditionally independent given the querfeg,ps, p2|q) = Pr(p1|q)Pr(p2|d), and computed
the joint image-image probability as a relevance measure

Pr(pe,p2) = 3 Pr(ps, p2[a)Pr(q)= 3 Pr(p:|a)Pr(pz|a)Pr(q).
geqQ geQ

To improve scalability, we used a threshold over this joint distribution, andidered two
images to be related only if their joint distribution exceeded a cutoff value

Rii (P1, p2) = [Pr(p1, P2)]g (10)

where(x]q = x for x > 8 and is zero otherwise. To set the valuBofie have manually inspected a
small subset of pairs of related images taken from the training set. We sktbettargesd such
that most of those related pairs had scores above the threshold, while migimizge inR, .

Equation 10 is written as if one needs to calculate the full joint m&rixbut this matrix grows
quadratically with the number of images. In practice, we can use the fa®#had very sparse, to
quickly create a list with images that are relevant to a given image. To do tlds gih imagep;,
we go over all the queries for which it is relevaR (g, pi), and for each of these queries, collect
the list of all images that are relevant to that query. The average nurhfjaenes relevant for an
image in our data is small (about 100), and so is the number of images relevangiven query.
As aresultR;, can be calculated efficiently even for large image sets.

We trained OASIS over 2.3 million images in the training set using the sampling mesohan
based on the relevance of each image, as described in Section 2.3. cldreeleumber of training
iterations, we used as a validation set a small subset of the training seteédheamean average
precision of the model at regular intervals during the training processnifig was stopped when
the mean average precision had saturated, which happened after 160 itahaions (triplets).
Overall, training took a total 0£4000 minutes on a single CPU of a standard modern machine.
Finally, we evaluated the trained model on the 400 thousand images of thettest s

5.2.2 RESULTS

We start with specific examples illustrating the behavior of OASIS, and cantiith a quantita-
tive analysis of precision and speed. Table 2 shows the top five imagesledrby OASIS on
four examples of query-images in the test set. The relevant text queriea¢h image are shown
beneath the image. The first example (top row), shows a query-imagedbainginally retrieved
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Query image Top 5 relevant images retrieved by OASIS

illusion, eye illusion, A i i — " P . s
opticallﬁlusion optical illusion trippy, t”g% pictures, illusion, eye tricks circles, moving pictures

scottish fold humor cat cubs tigers funny stuff, dog cartoon puppies

52

swiss alps wedge, china road silk

bodyboarding

food fish, fried fish

panini, bread garlic,

taco pizza bakery greek food 3
grill cheese

Table 2: OASIS: Successful cases from the Web data set

in response to the text query “illusion”. All five images ranked highly by C&8&re semantically
related, showing other types of visual illusions. Similar results can be \wxbéor the three re-
maining examples on this table, where OASIS captures well the semantics of ghiotas (cats
and dogs), mountains and different food items.

In all these cases, OASIS captures similarity that is both semantic and viswad, tke raw
visual similarity of these images is not high. A different behavior is demaestia Table 3. It
shows three cases where OASIS was biased by visual similarity and edovigh rankings to im-
ages that were semantically non relevant. In the first example, the assbofifiewers is confused
with assortments of food items and a thigh section (5th nearest neighbot) dsosisually similar
shape. The second example presents a query image which in itself hdmite demantic element.
The results retrieved are those that merely match texture of the query imédeanno semantic
similarity. In the third example, OASIS fails to capture the butterfly in the query @nag

To obtain a quantitative evaluation of OASIS we computed the precision &f tging a thresh-
old 8 = 0, which means that an image in the test set is considered relevant to amaggy if there
exists at least one text query to which they were both relevant to.

The obtained precision values were quite low, achieving 1.5% precisioa @ifihranked image.
This is drastically lower than the precision described below for Caltecr&bcould be the result
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Query image Top 5 relevant images retrieved by OASIS

roses bouquet - ) panini, bread garlic,
grill cheese

garden vegetable schwitters canyon canyon grand

B

insect flowers strawberry

Table 3: OASIS: Failure cases from the Web data set

of multiple reasons. First, the number of unique textual queries in our datyidarge (around
150K), hence the images in this data set were significantly more heteragetihem images in the
Caltech256 data.

Second, and most importantly, our labels that measure pairwise relevenoerapartial. This
means that many pairs of images that are semantically related are not labalechasA clear
demonstration of this effect is observed in Tables 2 and 3. The query #nflige “scottish fold)
have labels that are usually very different from the labels of the rettiewages (as intfumor
cat’, “ agility”) even if their semantic content is very similar. This is a common problem in conten
based analysis, since similar content can be described in many diffeaggt im the case discussed
here, the partial data on the query-image relevadRgeis further propagated to the image-image
relevance measufey, .

5.2.3 HUMAN EVALUATION EXPERIMENTS

In order to obtain a more accurate estimate of the real semantic precisioreriwenped a rating
experiment with human evaluators. We chose the 25 most relevant itfagesthe test set and
retrieved their 10 nearest neighbors as determined by OASIS. We exlctiuckry-images which
contained porn, racy or duplicates in their 10 nearest neighbors. \WWeelkcted randomly a set of
10 negative imagep~ that were chosen for each of the query imagesich thatR; (p, p~) = 0.
These negatives were then randomly mixed with the 10 nearest neighbors.

All 25 guery images were presented to twenty human evaluators, askingdhmark which of
the 20 candidate images aemantically relevartp the query imagé.Evaluators were volunteers

1. The overall relevance of an image was estimated as the sum of redevaiithe image with respect to all queries.
2. The description of the task as given to the evaluators is provided inn&ippA.
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selected from a pool of friends and colleagues, many of which hadiexge with search or ma-
chine vision problems. We collected the ratings on the positive images andbatattthe precision
at topk.

(A) (B)
0.02~ . 1r o N
—— cross validation precision
Web-scale test set - == =mean human precision
0.015} 1 08
= 0.6f
3 0.01f ]
o
= ST, N
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0.005r
‘ : 1
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-1~111

o
()
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number of neighbors query ID (sorted by precision)

Figure 3: (A) Precision at tojk as a function ok neighbors computed agairilt; (6 = 0) for the
web-scale test set(B) Precision at tofk as a function ok neighbors for the human
evaluation subset(C) Mean precision for 5 selected queries. Error bars denote the
standard error of the mean. To select the queries for this plot, we ficsiated the mean-
average precision per query, sorted the queries by their mAP, andesktee queries
ranked at position 1, 6, 11, 16, and A1D) Precision of OASIS and human evaluators,
per query, using rankings of all (remaining) human evaluators as adttouth.

Figure 3(B) shows the average precision across all queries andagwalu Precision peaks
at 42% and reaches 35% at the top 10 ranked image, being significantir higin the values
calculated automatically usirfg, .

We observed that the variability across different query images was atgdigh. Figure 3(C)
shows the precision for 5 different queries, selected to span the cdrayerage-precision values.
The error bars at each curve show the variability in the responsesfefetif evaluators. The
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precision of OASIS varies greatly across different queries. Someydomages were “easy” for
OASIS, yielding high scores from most evaluators, while other quertegved images that were
consistently found to be irrelevant by most evaluators.

We also compared the magnitude of variability across human evaluators, wahility across
queries. We first calculated the mAP from the precision curves of everyycand evaluator, and
then calculated the standard deviation in the mAP of every evaluator ancenf query. The
mean standard deviation over queries was 0.33, suggesting a largdlirialithe difficulty of
image queries, as observed in Figure 3(C) . The mean standard deviagiogvaluators was.p5,
suggesting that different evaluators had very different notions af whages should be regarded as
“semantically similar” to a query image.

Finally, to estimate an “upper bound” on the difficulty of the task, we also coedptlne pre-
cision of the human evaluators themselves. For every evaluator, we wseah#tings of all other
evaluators as ground truth, to compute his precision. As with the ranks 8f&Ave computed the
fraction of evaluators that marked an image as relevant, and repeateelthiately for every query
and human evaluator, providing a measure of “coherence” per geigyre 3(D) shows the mean
precision obtained by OASIS and human evaluators for every queryridaia. For some queries
OASIS achieves precision that is very close to that of the mean human @rallmmany cases
OASIS achieves precision that is as good or better than some evaluators.

5.2.4 SPEED AND SCALABILITY

We further studied how the runtime of OASIS scales with the size of the trairinggure 4 shows
that the runtime of OASIS, as found by early stopping on a separate vatidatpgrows linearly
with the train set size. We compare this to the fastest result we found in théuiterbased on a fast
implementation of LMNN by Weinberger and Saul (2008). LMNN learns a dMatobis distance
for k-nearest neighbor classification, aiming to have the nearest neigHtzosaumple belong to the
same class, and samples from different classes separated by a lagye mhe LMNN algorithm
is known to scale quadratically with the number of objects, although their iexpets with MNIST
data show that the active set of constraints grows linearly. This couleét@use MNIST has 10
classes only. In many real world data however, the number of classealtygrows almost linearly
with the number of samples.

5.3 Caltech256 Data Set

To compare OASIS with small-scale methods we usedCdlieech256]ata set (Griffin et al., 2007).
This data set consists of 30607 images that were obtained from Google seags#h and from
PicSearch.comimages were assigned to 257 categories and evaluated by humang ito @misure
image quality and relevance. After we have pre-processed the imagesaibdd in Section 3 and
filtered images that were too small, we were left with 29461 images in 256 cetegdio allow
comparisons with other methods in the literature that were not optimized f@espggresentation,
we also reduced the block vocabulary sitffom 10000 to 1000. This processed data is available
online athttp://ai.stanford.edutgal/Research/OASIS

Using the Caltech256 data set allows us to compare OASIS with existing similanityriga
methods. For OASIS, we treated images that have the same labels as similsanTehkabels were
used for comparing with methods that learn a metric for classification, aslukxbelow.
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—&—fast LMNN (MNIST 10 categories)

=
= 2daysr
% 3 hrs
£ 3hrsp 60K,"al
g z
2 /

‘4

5mint

/“IS min
37secr

9sec B/

60 600 10K 100K 2M
number of images (log scale)

Figure 4: Comparison of the runtime of OASIS and fast-LMNN by Weinbeagel Saul (2008),

over a wide range of scales. LMNN results (on MNIST data) are faster @ASIS
results on subsets of the web data. However LMNN scales quadraticallyheitiumber
of samples, hence is three times slower on 60K images, and may be infeasitsadting
2.3 million images.

5.3.1 GOMPARED METHODS

We compared the following approaches:

1.

2.

OASIS. - The algorithm described above in Section 2.1.

Euclidean. - The standard Euclidean distance in feature space. The initialization ofSDAS
using the identity matrix is equivalent to this distance measure.

. MCML - Metric Learning by Collapsing Classes (Globerson and Roweis, 200} ap-

proach learns a Mahalanobis distance such that samples from the samarelasapped to
the same point. The problem is written as a convex optimization problem, andvweeibad
the gradient-descent implementation provided by the authors.

LMNN - Large Margin Nearest Neighbor Classification (Weinberger et al.6R0bhis ap-
proach learns a Mahalanobis distancekforearest neighbor classification, aiming to have the
k-nearest neighbors of a given sample belong to the same class while es&mopiaifferent
classes are separated by a large margin. As a preprocessing phass, imeae projected to a
basis of the principal components (PCA) of the data, with no dimensionalitgtiedysince
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this improved the precision results. We also compared with a fast implementatidmiNifl,
that uses a clever scheme of maintaining a set of active constraints (\Wginlaed Saul,
2008). We used the web data discussed above to compare with previabsishpd results
obtained with fast-LMNN on MNIST data (see Figure 4).

5. LEGO - Online metric learning (Jain et al., 2008a). LEGO learns a Mahalanobisidésta
in an online fashion using a regularized per instance loss, yielding a gosgmidefinite
matrix. The main variant of LEGO aims to fit a given set of pairwise distani¢s.used
another variant of LEGO that, like OASIS, learns from relative distancesur experimental
setting, the loss is incurred for same-class examples being more than a distimce away,
and different class examples being less than a certain distance awa{) u&«3 the LogDet
divergence for regularization, as opposed to the Frobenius nornmu§ASIS.

For all these approaches, we used an implementation provided by thesauigorithms were
implemented in Matlab, with runtime bottlenecks implemented in C for speedup (dXE&D).
We test below two variants of OASIS applied to the Caltech256 data set: Matieed implementa-
tion, and one that has@components. We useda ™ implementation of OASIS for the web-scale
experiments described below.

We have also experimented with the methods of Xing et al. (2003) and ROAHBel et al.,
2003). We found the method of Xing et al. (2003) to be too slow for the sedsiirexperiments.
RCA is based on a per-class eigen decomposition that is not well defined thib number of
samples is smaller than the feature dimensionality. We therefore experimentedpsigbrocessing
phase of dimensionality reduction followed by RCA, but results were infésiother methods and
were not included in the evaluations below. RCA also did not perform wedinitested on the full
data, where dimensionality was not a problem, possibly because it is igheédgo handle well
sparse data.

5.3.2 EXPERIMENTAL PROTOCOL

We tested all methods on subsets of classes taken from the Caltech28&omgp&ach subset was
built such that it included semantically diverse categories, spanning lthrarige of classification
difficulty, as measured by Griffin et al. (2007). We used subsets of 4i@e20, 50 and 249 classes
(we used 249 classes since classes 251-256 are strongly correlttteather classes, and since
class 129 did not contain enough large images). The full lists of catedgorézsh set are given in
Appendix B. For each set, images from each class were split into a traietirng 40 images and a
test set of 25 images, as proposed by Griffin et al. (2007).

We used cross-validation to select the values of hyper parameters falgatithms except
MCML. Models were learned on 80% of the training set (32 images), aald&ed on the remain-
ing 20%. Cross validation was used for setting the following hyper paraséter early stopping
time for OASIS; thew parameter for LMNN ¢ € {0.125 0.25,0.5}), and the regularization param-
etern for LEGO (h € {0.02,0.08,0.32}). We found that LEGO was usually not sensitive to the
choice ofn, yielding a variance that was smaller than the variance over differeas-saidation
splits. Results reported below were obtained by selecting the best valuelofgbr parameter and
then training again on the full training set (40 images). For MCML, we used#fault parameters
supplied with the code from the authors, since its very long run time and multipgengéers made
it non-feasible to tune hyper parameters on this data.
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Figure 5: Mean average precision of OASIS as a function of the nunfliesining steps. Error
bars represent standard error of the mean over 5 selections of trédiinmages) and
test (25 images) sets. Performance is compared with a baseline obtaingthesirive
Euclidean metric on the feature vector. C=0A) 10 classes. Test performance saturates
around 30K training steps, while going over all triplets would require 2.8 millieps
(B) 20 classes.

5.3.3 RESULTS

Figure 5 traces the mean average precision over the training and thet$est ggrogresses during
learning. For the 10 classes task, precision on the test set saturfféamamd 35K training steps),
and then decreases very slowly.

Figure 6 and Table 4 compare the precision obtained with OASIS, with faupeting ap-
proaches, as described above (Section 5.3.1). OASIS achievasteatig superior results through-
out the full range ok (number of neighbors) tested, and on all four sets studied. Interestingly
found that LMNN performance on the training set was often high, suipgethat it overfits the
training set. This behavior was also noted by Weinberger et al. (2006jme sf their experiments.

OASIS achieves superior or equal performance, with a runtime thatés fasabout two orders
of magnitudes than MCML, and about one order of magnitude faster thasiNLM he run time of
OASIS and LEGO was measured until the point of early stopping.

Table 5 shows the total CPU time in minutes for training each of the algorithms cethfraea-
sured on a standard 1.8GHz Intel Xeon CPU). For the purpose of @ofajparison with competing
approaches, we tested two implementations of OASIS: The first was fully imptech&atlab. The
second had the core of the algorithm implemente@ and called from MatlaB.LMNN code and
MCML code were supplied by the authors and implemented in Matlab, with coi®ipgplemented
in C. LEGO code was supplied by the authors and fully implemented in Matlab.

Importantly, we found that Matlab does not make full use of the speedtipahabe gained by
sparse image representation. As a result,G//@"" implementation of OASIS that we tested is
significantly faster.

3. The OASIS code is available onlinehatp://ai.stanford.edutgal/Research/OASIS
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10 classes OASIS MCML LEGO LMNN  Euclidean

Matlab Matlab+C Matlab Matlab+C -

Mean avg prec| 33+1.6 29+17 27+08 24+16 23+0.9
Toplprec. | 43+40 39451 39+48 38+54 37+4.1

Top10prec. | 38+13 33+£18 32+12 29+21 27+15
TopS50prec. | 23+15 22+13 20+£05 18+15 18+0.7

20 classes OASIS MCML LEGO LMNN Euclidean

Mean avg. prec| 21+14 17412 164+1.2 14406 144+0.7
Toplprec. | 29+26 26+23 26+27 26+30 25426
Top10prec. | 24+19 21+15 20+14 19+10 18+1.0
Top 50 prec. | 15+04 14+05 13406 11+0.2 12+0.2

50 classes OASIS MCML LEGO LMNN Euclidean

Mean avg. prec| 12+04 9+04 8+0.4 9+0.4
Toplprec. |21+16 18+0.7 18+13 17+0.9
Top 10 prec. | 16+0.4 13+0.6 12+0.5 13+04
Top 50 prec. | 10+£0.3 8+0.3 7+0.2 8+0.3

*
*
*
*

Table 4. Mean average precision and precision attop 1, 10, and @ofgared methods. Values
are averages over 5 cross validation folttsjalues are the standard deviation across the 5
folds. A *' denotes cases where a method took more than 5 days to gmver

OASIS OASIS MCML LEGO LMNN (naive) fast-LMNN
classes Matlab Matlab+C Matlab+C Matlab Matlab+C Matlab+C
10 42415 012+ .03 1835+210 143+44 337+ 169 247209

20 45+ 8 0.15+.02 7425106 533+49 631+40 365+ 62
50 25+2 16+.04 * 711+28 960+ 80 2109+ 67
249  485+-113 113+.15 * ok *k *%

Table 5: Runtime (minutes) of all compared methods. Values are averageS okoss validation
folds, &= values are the standard deviation across the 5 folds. denotes cases where a
method took more than 5 days to converge.«A ‘denotes cases where performance was
worse than the Euclidean baseline.

5.4 Parallel Training

We presented OASIS as optimizing an objective function at each step. GK8ES is based on the
PA framework, it is also known to minimize a global objective of the form

HVVH%m'+(:§Eh
]
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Figure 6: Comparison of the performance of OASIS, LMNN, MCML, LE@@d the Euclidean
metric in feature space. Each curve shows the precision &t dsm function ok neigh-
bors. The results are averaged across 5 train/test partitions (40 trairaggs, 25 test
images), error bars are standard error of the means (s.e.m.), blagddash denotes
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as shown by Crammer et al. (2006) This objective is convex since theslhsase linear inW.

For such convex functions, it is guaranteed that any linear combinatieslutions is superior than
each of the individual solutions. This property suggests another wagtmaip training, by training
multiple rankers in parallel and averaging the resulting models. Each of tivédimal models can
be trained with a smaller number of iterations. Note however that there is nargea that the total

CPU time is improv

Figure 7 demonstrates this approach; we trained 5 or 10 rankers in parallplot the test set

ed.

mean average precision as a function of the number of training iterations.
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Figure 7: Comparing individual rankers and a linear combination of 5 @ndikers. Results are
for an experiment with 249 classes of the Caltech256 data set.
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Figure 8: Comparison of Symmetric variants of OASIS) 10 classes(B) 20 classes.

6. Symmetry and Positivity

The similarity matriXW learned by OASIS is not guaranteed to be positive or even symmetric. Some

applications, like ranking images by semantic relevance to a given image qeeckpawvn to be
non-symmetric when based on human judgement (Tversky, 1977). ldoviessome applications
symmetry or positivity constraints reflect a prior knowledge that may heljpdsgp overfitting.
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Furthermore positivedV impose a Mahalanobis metric over the data, that can be further factorized
to extract a linear projection of the data into a Euclidean spaé&y = (Ax)T (Ay) such that
ATA = W. Such projectior of the data can be useful for visualization and exploratory analysis of
data for example in scientific applications. We now discuss variants of Ofta&t&arn a symmetric

or positive matrices.

6.1 Symmetric Similarities

A simple approach to enforce symmetry is to project the OASIS métlehto the set of symmetric
matricesW’ = sym(W) = % (WT +W). The update procedure then consists of a series of gradient
steps followed by projection to the feasible set (of symmetric matrices). Thisagh is sometimes
called projected gradient, and we denote it h@rdine-Proj-Oasis Alternatively, projection can
also be applied after learning is completed (denoted ResgOasis.

Alternatively, the asymmetric score functi@y (pi, p;) in the lossly can be replaced with a
symmetric score

Sw(pi,pj) =—(pi—p)" W (pi—pj) -

and derive an OASIS-like algorithm (which we célissim-Oasis The optimal update for this
loss has a symmetric gradievit = (pi — p" ) (pi —pi")" — (pi — p; ) (pi — p;)T. Therefore, ifw®
is initialized with a symmetric matrix (for example, the identity matrix) Wl are guaranteed to
remain symmetricDissim-Oasiss closely related to LMNN (Weinberger et al., 2006). This can be
seen be casting the batch objective of LMNN, into an online setup, whicthedsrmerr(W) =
—w- Sy (pi, pi") + (1= ) - Iy (pi, pit, p;). This online version of LMNN becomes equivalent to
Dissim-Oasis for = 0.

Figure 8 compares the precision of the different symmetric methods with thiear@ASIS.
All symmetric variants performed slightly worse, or equal to the original asyier@ASIS. Asym-
metric OASIS is also twice faster than DISSIM-OASIS. The precisioRrof-Oasiswas equivalent
to that of OASIS. This was because the asymmetric OASIS learning ruldlgataaverged to an
almost-symmetric model (as measured by a symmetry ipdék) = % =0.94).

6.2 Positive Similarity

Most similarity learning approaches focus on learning metrics. In the cooft®ASIS, whenW is
positive semi definite (PSD), it defines a Mahalanobis distance over thegm@ibe matrix square-
root of W, ATA = W can then be used to project the data into a new space in which the Euclidean
distance is equivalent to th&¥ distance in the original space.

We experimented with positive variants of OASIS, where we repeatedjgqted the learned
model onto the set of PSD matrices, once evétgrations. Projection is done by taking the eigen
decompositioWW =V -D- VT whereV is the eigenvector matrix arid is the diagonal eigenvalues
matrix limited to positive eigenvalues. Figure 9 traces precision on the testgagtiout learning
for various values of.

The effect of positive projections is complex. First, continuously projgaiimce every few steps
helps to reduce overfitting, as can be observed by the slower declineldfigcurve (upper smooth
curve) compared to the orange curve (lowest curve). Howevem phaection is performed after
many steps (instead of continuously), performance of the projected raciellly outperforms the
continuous-projection model (upper jittery curve). The reason for ffestas likely to be that the
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Figure 9: Mean average precision (mAP) during training for three P®Rgiion schemes, using
the set of 20 classes from caltech256.

estimates of the positive sub-space are very noisy when only base@warsarmples (see also Chen
et al. 2009, Section 2.1). Indeed, accurate estimation of the negatispasgbis known to be a
hard problem, because small perturbations can turn a negative but greallaue, into a small but
positive one. As a result, the set of vectors selected based on hawitigygeigenvalues, is highly
variable. We found that this effect was so strong, that the optimal projestiategy is to avoid
projection throughout learning completely. Instead, projecting into PSD lafening (namely,
after a model was chosen using early stopping) provided the bestparioe in our experiments.

An interesting alternative to obtain a PSD matrix was explored by Kulis et a09j2and
Jain et al. (2008a). Using a LogDet divergence between two matbigeX,Y) = tr(XY~1) —
log(det(XY~1)) ensures that, given an initial PSD matrix, all subsequent matrices will beaBSD
well. It would be interesting to test the effect of using LogDet regularizatiche OASIS setup.

7. Discussion

We have presented OASIS, a scalable algorithm for learning image similarttgdptures both
semantic and visual aspects of image similarity. Three key factors contribthe sralability of
OASIS. First, using a large margin online approach allows training to cgav@ren after seeing a
small fraction of potential pairs. Second, the objective function of OARI&s not require the sim-
ilarity measure to be necessarily a metric during training, although it appeassully converge
to a symmetric solution. Finally, we use a sparse representation of low |eatée which allows
computing scores very efficiently.
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We found that OASIS performs well in a wide range of scales: fromlprob with thousands
of images, where it slightly outperforms existing metric-learning approadbdarge web-scale
problems, where it achieves high accuracy, as estimated by human exaluato

OASIS differs from previous methods in that the similarity measure that it¢eamot forced to
be a metric, or even symmetric. When the number of available samples is small gflistosadd
constraints that reflect prior knowledge on the type of similarity measurecéxg to be learned.
However, we found that these constraints were not helpful everrédalgms with a few hundreds
of samples. Interestingly, human judgements of pairwise similarity are knowa &symmetric, a
property that can be easily captured by an OASIS model.

OASIS learns a class-independent model: it is not aware of which guarieategories were
shared by two similar images. As such, itis more limited in its descriptive powei Erlikely that
class-dependent similarity models could improve precision. On the other tlasd-independent
models could generalize to handle classes that were not observed ttaiirigg, as in transfer
learning. Large scale similarity learning, applied to images from a large varietiasses, could
therefore be a useful tool to address real-world problems with a langéeof classes.
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Appendix A. Human Evaluation

The following text was given as instructions to human evaluators when jgdba relevance of
images to a query image.

Scenari o:

A user is searching inmages to use in a presentation he/she plans to
give. The user runs a standard inmage search, and selects an inage,
the *‘query image''. The user then wi shes to refine the search and
l ook for inmages that are SEMANTI CALLY sinilar to the query inmage.

The difficulty lies, in the definition of ‘*SEMANTICALLY'’. This can
have many interpretations, and you should take that into account.

So for instance, if you see an image of a big red truck, you can
interpret the user intent (the notion of semantically simlar) in
various ways:

- any big red truck

- any red truck

- any big truck

- any truck

- any vehicle
You should interpret ‘‘SEMANTICALLY'’ in a broad sense rather than
inastrict sense but feel free to draw the |ine yourself (although
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be consistent).

Your task:
You will see a set of query images on the left side of the screen,
and a set of potential candidate matches, 5 per row, on the
right. Your job is to decide for each of the candidate images if it
is a good semantic match to the query image or not. The default is
that it is NOT a good match. Furthernore, if for some reason you
cannot make-up your nmind, then answer ‘‘can’t say'’.

Appendix B. Caltech256 Class Sets

e 10 classes: bear, skyscraper, billiards, yo-yo, minotaur, roulette-wheel, haugda laptop-
101, hummingbird, blimp.

e 20classes: airplanes-101, mars, homer-simpson, hourglass, waterfall, heferejp01, mountain-
bike starfish-101, teapot, pyramid, refrigerator, cowboy-hat, girgdfe-stick, crab-101, bird-
bath, fighter-jet tuning-fork, iguana, dog.

e 50classes. car-side-101, tower-pisa, hibiscus, saturn, menorah-101, mwlzartman, chandelier-

101, backpack, grapes, laptop-101, telephone-box, binoculalisopter-101, paper-shredder,
eiffel-tower, top-hat, tomato, star-fish-101, hot-air-balloon, twegxenic-table, elk, kangaroo-
101, mattress, toaster, electric-guitar-101, bathtub, gorilla, jesussthcormorant, man-
dolin, light-house, cake, tricycle, speed-boat, computer-mousefsiam, chimp, pram, fried-
egg, fighter-jet, unicorn, greyhound, grasshopper, goose, iguannking-straw, snake, hot-
dog.

e 249 classes. classes 1-250, excluding class 129 (leopards-101), which hadHasss5 large

enough images.
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