
CHAPTER 25

Missing-data imputation

Missing data arise in almost all serious statistical analyses. In this chapter we
discuss a variety of methods to handle missing data, including some relatively simple
approaches that can often yield reasonable results. We use as a running example the
Social Indicators Survey, a telephone survey of New York City families conducted
every two years by the Columbia University School of Social Work. Nonresponse
in this survey is a distraction to our main goal of studying trends in attitudes and
economic conditions, and we would like to simply clean the dataset so it could be
analyzed as if there were no missingness. After some background in Sections 25.1–
25.3, we discuss in Sections 25.4–25.5 our general approach of random imputation.
Section 25.6 discusses situations where the missing-data process must be modeled
(this can be done in Bugs) in order to perform imputations correctly.

Missing data in R and Bugs

In R, missing values are indicated by NA’s. For example, to see some of the data
from five respondents in the data file for the Social Indicators Survey (arbitrarily
picking rows 91–95), we type

R codecbind (sex, race, educ_r, r_age, earnings, police)[91:95,]

and get

R outputsex race educ_r r_age earnings police

[91,] 1 3 3 31 NA 0

[92,] 2 1 2 37 135.00 1

[93,] 2 3 2 40 NA 1

[94,] 1 1 3 42 3.00 1

[95,] 1 3 1 24 0.00 NA

In classical regression (as well as most other models), R automatically excludes
all cases in which any of the inputs are missing; this can limit the amount of
information available in the analysis, especially if the model includes many inputs
with potential missingness. This approach is called a complete-case analysis, and
we discuss some of its weaknesses below.

In Bugs, missing outcomes in a regression can be handled easily by simply in-
cluding the data vector, NA’s and all. Bugs explicitly models the outcome variable,
and so it is trivial to use this model to, in effect, impute missing values at each
iteration.

Things become more difficult when predictors have missing values. For example,
if we wanted to model attitudes toward the police, given earnings and demographic
predictors, then the model would not automatically account for the missing values
of earnings. We would have to remove the missing values, impute them, or model
them. In Bugs, regression predictors are typically unmodeled and so Bugs does not
know how to draw from a predictive distribution for them. To handle missing data
in the predictors, Bugs regression models such as those in Part IIB need to be
extended by modeling (that is, supplying distributions for) the input variables.
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25.1 Missing-data mechanisms

To decide how to handle missing data, it is helpful to know why they are missing.
We consider four general “missingness mechanisms,” moving from the simplest to
the most general.

1. Missingness completely at random. A variable is missing completely at random

if the probability of missingness is the same for all units, for example, if each
survey respondent decides whether to answer the “earnings” question by rolling
a die and refusing to answer if a “6” shows up. If data are missing completely at
random, then throwing out cases with missing data does not bias your inferences.

2. Missingness at random. Most missingness is not completely at random, as can
be seen from the data themselves. For example, the different nonresponse rates
for whites and blacks (see Exercise 25.1) indicate that the “earnings” question
in the Social Indicators Survey is not missing completely at random.

A more general assumption, missing at random, is that the probability a variable
is missing depends only on available information. Thus, if sex, race, education,
and age are recorded for all the people in the survey, then “earnings” is missing
at random if the probability of nonresponse to this question depends only on
these other, fully recorded variables. It is often reasonable to model this process
as a logistic regression, where the outcome variable equals 1 for observed cases
and 0 for missing.

When an outcome variable is missing at random, it is acceptable to exclude the
missing cases (that is, to treat them as NA’s), as long as the regression controls
for all the variables that affect the probability of missingness. Thus, any model
for earnings would have to include predictors for ethnicity, to avoid nonresponse
bias.

This missing-at-random assumption (a more formal version of which is some-
times called the ignorability assumption) in the missing-data framework is the
basically same sort of assumption as ignorability in the causal framework. Both
require that sufficient information has been collected that we can “ignore” the
assignment mechanism (assignment to treatment, assignment to nonresponse).

3. Missingness that depends on unobserved predictors. Missingness is no longer “at
random” if it depends on information that has not been recorded and this in-
formation also predicts the missing values. For example, suppose that “surly”
people are less likely to respond to the earnings question, surliness is predictive
of earnings, and “surliness” is unobserved. Or, suppose that people with college
degrees are less likely to reveal their earnings, having a college degree is predic-
tive of earnings, and there is also some nonresponse to the education question.
Then, once again, earnings are not missing at random.

A familiar example from medical studies is that if a particular treatment causes
discomfort, a patient is more likely to drop out of the study. This missingness is
not at random (unless “discomfort” is measured and observed for all patients).

If missingness is not at random, it must be explicitly modeled, or else you must
accept some bias in your inferences.

4. Missingness that depends on the missing value itself. Finally, a particularly dif-
ficult situation arises when the probability of missingness depends on the (po-
tentially missing) variable itself. For example, suppose that people with higher
earnings are less likely to reveal them. In the extreme case (for example, all per-
sons earning more than $100,000 refuse to respond), this is called censoring, but
even the probabilistic case causes difficulty.
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Censoring and related missing-data mechanisms can be modeled (as discussed in
Section 18.5) or else mitigated by including more predictors in the missing-data
model and thus bringing it closer to missing at random. For example, whites
and persons with college degrees tend to have higher-than-average incomes, so
controlling for these predictors will somewhat—but probably only somewhat—
correct for the higher rate of nonresponse among higher-income people. More
generally, while it can be possible to predict missing values based on the other
variables in your dataset, just as with other missing-data mechanisms, this situ-
ation can be more complicated in that the nature of the missing-data mechanism
may force these predictive models to extrapolate beyond the range of the ob-
served data.

General impossibility of proving that data are missing at random

As discussed above, missingness at random is relatively easy to handle—simply
include as regression inputs all variables that affect the probability of missing-
ness. Unfortunately, we generally cannot be sure whether data really are missing
at random, or whether the missingness depends on unobserved predictors or the
missing data themselves. The fundamental difficulty is that these potential “lurk-
ing variables” are unobserved—by definition—and so we can never rule them out.
We generally must make assumptions, or check with reference to other studies (for
example, surveys in which extensive follow-ups are done in order to ascertain the
earnings of nonrespondents).

In practice, we typically try to include as many predictors as possible in a model
so that the “missing at random” assumption is reasonable. For example, it may
be a strong assumption that nonresponse to the earnings question depends only
on sex, race, and education—but this is a lot more plausible than assuming that
the probability of nonresponse is constant, or that it depends only on one of these
predictors.

25.2 Missing-data methods that discard data

Many missing data approaches simplify the problem by throwing away data. We
discuss in this section how these approaches may lead to biased estimates (one of
these methods tries to directly address this issue). In addition, throwing away data
can lead to estimates with larger standard errors due to reduced sample size.

Complete-case analysis

A direct approach to missing data is to exclude them. In the regression context, this
usually means complete-case analysis: excluding all units for which the outcome
or any of the inputs are missing. In R, this is done automatically for classical
regressions (data points with any missingness in the predictors or outcome are
ignored by the regression). In Bugs, missing values in unmodeled data are not
allowed, so these cases must be excluded in R before sending the data to Bugs, or
else the variables with missingness must be explicitly modeled (see Section 25.6).

Two problems arise with complete-case analysis:

1. If the units with missing values differ systematically from the completely ob-
served cases, this could bias the complete-case analysis.

2. If many variables are included in a model, there may be very few complete cases,
so that most of the data would be discarded for the sake of a simple analysis.
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Available-case analysis

Another simple approach is available-case analysis, where different aspects of a
problem are studied with different subsets of the data. For example, in the 2001
Social Indicators Survey, all 1501 respondents stated their education level, but
16% refused to state their earnings. We could thus summarize the distribution of
education levels of New Yorkers using all the responses and the distribution of
earnings using the 84% of respondents who answered that question. This approach
has the problem that different analyses will be based on different subsets of the
data and thus will not necessarily be consistent with each other. In addition, as
with complete-case analysis, if the nonrespondents differ systematically from the
respondents, this will bias the available-case summaries. For example in the Social
Indicators Survey, 90% of African Americans but only 81% of whites report their
earnings, so the “earnings” summary represents a different population than the
“education” summary.

Available-case analysis also arises when a researcher simply excludes a variable
or set of variables from the analysis because of their missing-data rates (sometimes
called “complete-variables analyses”). In a causal inference context (as with many
prediction contexts), this may lead to omission of a variable that is necessary to
satisfy the assumptions necessary for desired (causal) interpretations.

Nonresponse weighting

As discussed previously, complete-case analysis can yield biased estimates because
the sample of observations that have no missing data might not be representative of
the full sample. Is there a way of reweighting this sample so that representativeness
is restored?

Suppose, for instance, that only one variable has missing data. We could build
a model to predict the nonresponse in that variable using all the other variables.
The inverse of predicted probabilities of response from this model could then be
used as survey weights to make the complete-case sample representative (along
the dimensions measured by the other predictors) of the full sample. This method
becomes more complicated when there is more than one variable with missing data.
Moreover, as with any weighting scheme, there is the potential that standard errors
will become erratic if predicted probabilities are close to 0 or 1.

25.3 Simple missing-data approaches that retain all the data

Rather than removing variables or observations with missing data, another ap-
proach is to fill in or “impute” missing values. A variety of imputation approaches
can be used that range from extremely simple to rather complex. These methods
keep the full sample size, which can be advantageous for bias and precision; however,
they can yield different kinds of bias, as detailed in this section.

Whenever a single imputation strategy is used, the standard errors of estimates
tend to be too low. The intuition here is that we have substantial uncertainty about
the missing values, but by choosing a single imputation we in essence pretend that
we know the true value with certainty.

Mean imputation. Perhaps the easiest way to impute is to replace each missing
value with the mean of the observed values for that variable. Unfortunately, this
strategy can severely distort the distribution for this variable, leading to complica-
tions with summary measures including, notably, underestimates of the standard
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deviation. Moreover, mean imputation distorts relationships between variables by
“pulling” estimates of the correlation toward zero.

Last value carried forward. In evaluations of interventions where pre-treatment
measures of the outcome variable are also recorded, a strategy that is sometimes
used is to replace missing outcome values with the pre-treatment measure. This is
often thought to be a conservative approach (that is, one that would lead to un-
derestimates of the true treatment effect). However, there are situations in which
this strategy can be anticonservative. For instance, consider a randomized evalua-
tion of an intervention that targets couples at high risk of HIV infection. From the
regression-to-the-mean phenomenon (see Section 4.3), we might expect a reduction
in risky behavior even in the absence of the randomized experiment; therefore, car-
rying the last value forward will result in values that look worse than they truly
are. Differential rates of missing data across the treatment and control groups will
result in biased treatment effect estimates that are anticonservative.

Using information from related observations. Suppose we are missing data regard-
ing the income of fathers of children in a dataset. Why not fill these values in with
mother’s report of the values? This is a plausible strategy, although these impu-
tations may propagate measurement error. Also we must consider whether there
is any incentive for the reporting person to misrepresent the measurement for the
person about whom he or she is providing information.

Indicator variables for missingness of categorical predictors. For unordered cate-
gorical predictors, a simple and often useful approach to imputation is to add an
extra category for the variable indicating missingness.

Indicator variables for missingness of continuous predictors. A popular approach
in the social sciences is to include for each continuous predictor variable with miss-
ingness an extra indicator identifying which observations on that variable have
missing data. Then the missing values in the partially observed predictor are re-
placed by zeroes or by the mean (this choice is essentially irrelevant). This strategy
is prone to yield biased coefficient estimates for the other predictors included in the
model because it forces the slope to be the same across both missing-data groups.
Adding interactions between an indicator for response and these predictors can help
to alleviate this bias (this leads to estimates similar to complete-case estimates).

Imputation based on logical rules. Sometimes we can impute using logical rules:
for example, the Social Indicators Survey includes a question on “number of months
worked in the previous year,” which all 1501 respondents answered. Of the persons
who refused to answer the earnings question, 10 reported working zero months
during the previous year, and thus we could impute zero earnings to them. This
type of imputation strategy does not rely on particularly strong assumptions since,
in effect, the missing-data mechanism is known.

25.4 Random imputation of a single variable

When more than a trivial fraction of data are missing, however, we prefer to perform
imputations more formally. In order to understand missing-data imputation, we
start with the relatively simple setting in which missingness is confined to a single
variable, y, with a set of variables X that are observed on all units. We shall consider
the case of imputing missing earnings in the Social Indicators Survey.
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Figure 25.1 Histogram of earnings (in thousands of dollars) in the Social Indicators Sur-
vey: (a) for the 988 respondents who answered the question and had positive earnings, (b)
deterministic imputations for the 241 missing values from a regression model, (c) random
imputations from that mode. All values are topcoded at 100, with zero values excluded.

Simple random imputation

The simplest approach is to impute missing values of earnings based on the observed
data for this variable. We can write this as an R function:

R code random.imp <- function (a){

missing <- is.na(a)

n.missing <- sum(missing)

a.obs <- a[!missing]

imputed <- a

imputed[missing] <- sample (a.obs, n.missing, replace=TRUE)

return (imputed)

}

(To see how this function works, take a small dataset and evaluate the function line
by line.) We use random.imp to create a completed data vector of earnings:

R code earnings.imp <- random.imp (earnings)

imputing into the missing values of the original earnings variable. This approach
does not make much sense—it ignores the useful information from all the other
questions asked of these survey responses—but these simple random imputations
can be a convenient starting point. A better approach is to fit a regression to the
observed cases and then use that to predict the missing cases, as we show next.

Zero coding and topcoding

We begin with some practicalities of the measurement scale. We shall fit the re-
gression model to those respondents whose earnings were observed and positive
(since, as noted earlier, the respondents with zero earnings can be identified from
their zero responses to the “months worked” question). In addition, we shall “top-
code” all earnings at $100,000—that is, all responses above this value will be set
to $100,000—before running the regression. Figure 25.1a shows the distribution of
positive earnings after topcoding.

R code topcode <- function (a, top){

return (ifelse (a>top, top, a))

}

earnings.top <- topcode (earnings, 100) # earnings are in $thousands

hist (earnings.top[earnings>0])

The topcoding reduces the sensitivity of the results to the highest values, which
in this survey go up to the millions. By topcoding we lose information, but the
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main use of earnings in this survey is to categorize families into income quantiles,
for which purpose topcoding at $100,000 has no effect.

Similarly, we topcoded number of hours worked per week at 40 hours. The purpose
of topcoding was not to correct the data—we have no particular reason to disbelieve
the high responses—but rather to perform a simple transformation to improve the
predictive power of the regression model.

Using regression predictions to perform deterministic imputation

A simple and general imputation procedure that uses individual-level information
uses a regression to the nonzero values of earnings. We begin by setting up a data
frame with all the variables we shall use in our analysis:

R codesis <- data.frame (cbind (earnings, earnings.top, male, over65, white,

immig, educ_r, workmos, workhrs.top, any.ssi, any.welfare, any.charity))

and then fit a regression to positive values of earnings:

R codelm.imp.1 <- lm (earnings ~ male + over65 + white + immig + educ_r +

workmos + workhrs.top + any.ssi + any.welfare + any.charity,

data=SIS, subset=earnings>0)

We shall describe these predictors shortly, but first we go through the steps needed
to create deterministic and then random imputations. We first get predictions for
all the data:

R codepred.1 <- predict (lm.imp.1, SIS)

To get predictions for the entire data vector, we must include the data frame, sis,
in the predict() call. Simply writing predict(lm.imp.1) would give predictions
only for the data used in the fitting, which in this case are the subset of cases
for which earnings are positive and for which none of the variables used in the
regression are missing.

Next we write a little function to create a completed dataset by imputing the
predictions into the missing values:

R codeimpute <- function (a, a.impute){

ifelse (is.na(a), a.impute, a)

}

and use this to impute missing earnings:

R codeearnings.imp.1 <- impute (earnings, pred.1)

Transforming and topcoding. For the purpose of predicting incomes in the low and
middle range (where we are most interested), we can do better by working on the
square root scale of income, topcoded to 100 (in thousands of dollars):

R codelm.imp.2.sqrt <- lm (I(sqrt(earnings.top)) ~ male + over65 + white +

immig + educ_r + workmos + workhrs.top + any.ssi + any.welfare +

any.charity, data=SIS, subset=earnings>0)

display (lm.imp.2.sqrt)

pred.2.sqrt <- predict (lm.imp.2.sqrt, SIS)

pred.2 <- topcode (pred.2.sqrt^2, 100)

earnings.imp.2 <- impute (earnings.top, pred.2)

Here is the fitted model:
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R output coef.est coef.se

(Intercept) -1.67 0.44

male 0.32 0.13

over65 -1.44 0.58

white 0.96 0.15

immig -0.62 0.14

educ_r 0.79 0.07

workmos 0.33 0.03

workhrs.top 0.06 0.01

any.ssi -0.97 0.55

any.welfare -1.35 0.37

any.charity -1.17 0.60

n = 988, k = 11

residual sd = 1.96, R-Squared = 0.44

Figure 25.1b shows the deterministic imputations:

R code hist (earnings.imp.2[is.na(earnings)])

From this graph, it appears that most of the nonrespondents have incomes in the
middle range (compare to Figure 25.1a). Actually, the central tendency of Figure
25.1b is an artifact of the deterministic imputation procedure. One way to see this
is through the regression model: its R2 is 0.44, which means that the explained
variance from the regression is only 44% of the total variance. Equivalently, the
explained standard deviation is

√
0.44 = 0.66 = 66% of the data standard deviation.

Hence, the predicted values from the regression will tend to be less variable than the
original data. If we were to use the resulting deterministic imputations, we would
be falsely implying that most of these nonrespondents had incomes in the middle
of the scale.

Random regression imputation

We can put the uncertainty back into the imputations by adding the prediction
error into the regression, as discussed in Section 7.2. For this example, this involves
creating a vector of random predicted values for the 241 missing cases using the
normal distribution, and then squaring, as before, to return to the original dollar
scale:

R code pred.4.sqrt <- rnorm (n, predict (lm.imp.2.sqrt, SIS),

sigma.hat (lm.imp.2.sqrt))

pred.4 <- topcode (pred.4.sqrt^2, 100)

earnings.imp.4 <- impute (earnings.top, pred.4)

Figure 25.1c shows the resulting imputed values from a single simulation draw.
Compared to Figure 25.1b, these random imputations are more appropriately spread
across the range of the population.

The new imputations certainly do not look perfect—in particular, there still seem
to be too few imputations at the topcoded value of $100,000—suggesting that the
linear model on the square root scale, with normal errors, is not quite appropriate
for these data. (This makes sense given the spike in the data from the topcoding.)
The results look much better than the deterministic imputations, however.

Figure 25.2 illustrates the deterministic and random imputations in another way.
The left plot in the figure shows the deterministic imputations as a function of the
predicted earnings from the regression model. By the definition of the imputation
procedure, the values are identical and so the points fall along the identity line.
The right plot shows the random imputations, which follow a generally increasing
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Figure 25.2 Deterministic and random imputations for the 241 missing values of earnings
in the Social Indicators Survey. The deterministic imputations are exactly at the regression
predictions and ignore predictive uncertainty. In contrast, the random imputations are
more variable and better capture the range of earnings in the data. See also Figure 25.1.

pattern but with scatter derived from the unexplained variance in the model. (The
increase in variance as a function of predicted value arises from fitting the model
on the square root scale and squaring at the end.)

Predictors used in the imputation model

We fit a regression of earnings on sex, age, ethnicity, nationality, education, the
number of months worked in the previous year and hours worked per week, and
indicators for whether the respondent’s family receives each of three forms of income
support (from disability payments, welfare, and private charities).

It might seem strange to model earnings given information on income support—
which is, in part, a consequence of earnings—but for the purposes of imputation this
is acceptable. The goal here is not causal inference but simply accurate prediction,
and it is acceptable to use any inputs in the imputation model to achieve this goal.

Two-stage modeling to impute a variable that can be positive or zero

In the Social Indicators Survey, we only need to impute the positive values of
earnings: the “hours worked” and “months worked” questions were answered by
everyone in the survey, and these variables are a perfect predictor of whether the
value of earnings (more precisely, employment income) is positive. For the missing
cases of earnings, we can impute 0 if workhrs = 0 and workmos = 0, and impute a
continuous positive value when either of these is positive. This imputation process
is what was described above, with the regression based on n = 988 data points
and displayed in Figure 25.2. The survey as a whole included 1501 families, of
whom 272 reported working zero hours and months and were thus known to have
zero earnings. Of the 1229 persons reporting positive working hours or months, 988
responded to the earnings question and 241 did not.

Now suppose that the workhrs and workmos variables were not available, so that
we could not immediately identify the cases with zero earnings. We would then
impute missing responses to the earnings question in two steps: first, imputing an
indicator for whether earnings are positive, and, second, imputing the continuous
positive values of earnings.

Mathematically, we would impute earnings y given regression predictors X in a
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two-step process, defining
y = Iyypos,

where Iy = 1 if y > 0 and 0 otherwise, and ypos = y if y > 0. The first model is a
logistic regression for Iy:

Pr(Iy
i = 1) = logit−1(Xiα),

and the second part is a linear regression for the square root of ypos:
√

y
pos
i ∼ N(Xiβ, σ2).

The first model is fit to all the data for which y is observed, and the second model
is fit to all the data for which y is observed and positive.

We illustrate with the earnings example. First we fit the two models:

R code glm.sign <- glm (I(earnings>0) ~ male + over65 + white +

immig + educ_r + any.ssi + any.welfare + any.charity,

data=SIS, family=binomial(link=logit))

display (glm.sign)

lm.ifpos.sqrt <- lm (I(sqrt(earnings.top)) ~ male + over65 + white +

immig + educ_r + any.ssi + any.welfare + any.charity,

data=SIS, subset=earnings>0) # (same as lm.imp.2 from above)

display (lm.ifpos.sqrt)

Then we impute whether missing earnings are positive:

R code pred.sign <- rbinom (n, 1, predict (glm.sign, data, type="response"))

pred.pos.sqrt <- rnorm (n, predict (lm.ifpos.sqrt, SIS),

sigma.hat(lm.ifpos.sqrt))

and then impute the earnings themselves:

R code pred.pos <- topcode (pred.pos.sqrt^2, 100)

earnings.imp <- impute (earnings, pred.sign*pred.pos)

Matching and hot-deck imputation

A different way to impute is through matching: for each unit with a missing y,
find a unit with similar values of X in the observed data and take its y value. This
approach is also sometimes called “hot-deck” imputation (in contrast to “cold deck”
methods, where the imputations come from a previously collected data source).
Matching imputation can be combined with regression by defining “similarity” as
closeness in the regression predictor (for example, 0.32 ·male−1.44 ·over65+0.96 ·
white+· · · for the model on page 536). Matching can be viewed as a nonparametric
or local version of regression and can also be useful in some settings where setting
up a regression model can be challenging.

For example, the New York City Department of Health has the task of assigning
risk factors to all new HIV cases. The risk factors are assessed from a reading of each
patient’s medical file, but for a large fraction of the cases, not enough information
is available to determine the risk factors. For each of these “unresolved” cases,
we proposed taking a random imputation from the risk factors of the five closest
resolved cases, where “closest” is defined based on a scoring function that penalizes
differences in sex, age, the clinic where the HIV test was conducted, and other
information that is available on all or most cases.

More generally, one could estimate a propensity score that predicts the missing-
ness of a variable conditional on several other variables that are fully observed, and
then match on this propensity score to impute missing values.
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25.5 Imputation of several missing variables

It is common to have missing data in several variables in an analysis, in which
case one cannot simply set up a model for a single partially observed variable y

given a set of fully observed X variables. In fact, even in the Social Indicators
Survey example, some of the predictor variables (ethnicity, interest income, and
the indicators for income supplements) had missing values in the data, which we
crudely imputed before running the regression for the imputations. More generally,
we must think of the dataset as a multivariate outcome, any components of which
can be missing.

Routine multivariate imputation

The direct approach to imputing missing data in several variables is to fit a mul-
tivariate model to all the variables that have missingness, thus generalizing the
approach of Section 25.4 to allow the outcome Y as well as the predictors X to be
vectors. The difficulty of this approach is that it requires a lot of effort to set up a
reasonable multivariate regression model, and so in practice an off-the-shelf model
is typically used, most commonly the multivariate normal or t distribution for con-
tinuous outcomes, and a multinomial distribution for discrete outcomes. Software
exists to fit such models automatically, so that one can conceivably “press a button”
and impute missing data. These imputations are only as good as the model, and so
they need to be checked in some way—but this automatic approach is easy enough
that it is a good place to start, in any case.

Iterative regression imputation

A different way to generalize the univariate methods of the previous section is to
apply them iteratively to the variables with missingness in the data. If the variables
with missingness are a matrix Y with columns Y(1), . . . , Y(K) and the fully observed
predictors are X , this entails first imputing all the missing Y values using some
crude approach (for example, choosing imputed values for each variable by randomly
selecting from the observed outcomes of that variable); and then imputing Y(1)

given Y(2), . . . , Y(K) and X ; imputing Y(2) given Y(1), Y(3), . . . , Y(K) and X (using
the newly imputed values for Y(1)), and so forth, randomly imputing each variable
and looping through until approximate convergence.

For example, the Social Indicators Survey asks about several sources of income.
It would be helpful to use these to help impute each other since they have non-
overlapping patterns of missingness. We illustrate for the simple case of imputing
missing data for two variables—interest income and earnings—using the same fully
observed predictors used to impute earnings in the previous section.

We create random imputations to get the process started:

R codeinterest.imp <- random.imp (interest)

earnings.imp <- random.imp (earnings)

and then we write a loop to iteratively impute. For simplicity in demonstrating the
programming, we set up the function on the original (non-square-root) scale of the
data:

R coden.sims <- 10

for (s in 1:n.sims){

lm.1 <- lm (earnings ~ interest.imp + male + over65 + white +

immig + educ_r + workmos + workhrs.top + any.ssi + any.welfare +
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any.charity)

pred.1 <- rnorm (n, predict(lm.1), sigma.hat(lm.1))

earnings.imp <- impute (earnings, pred.1)

lm.2 <- lm (interest ~ earnings.imp + male + over65 + white +

immig + educ_r + workmos + workhrs.top + any.ssi + any.welfare +

any.charity)

pred.2 <- rnorm (n, predict(lm.2), sigma.hat(lm.2))

interest.imp <- impute (interest, pred.2)

}

This code could be easily elaborated to handle topcoding, transformations, and
two-stage modeling for variables that could be zero or positive (see Exercise 25.4).
These operations should be done within the imputation loop, not merely tacked on
at the end.

Iterative regression imputation has the advantage that, compared to the full mul-
tivariate model, the set of separate regression models (one for each variable, Y(k))
is easier to understand, thus allowing the imputer to potentially fit a reasonable
model at each step. Moreover, it is easier in this setting to allow for interactions
(difficult to do using most joint model specifications).

The disadvantage of the iterative approach is that the researcher has to be more
careful in this setting to ensure that the separate regression models are consistent
with each other. For instance, it would not make sense to impute age based on
income but then to later ignore age when imputing income.

Moreover, even if such inconsistencies are avoided, the resulting specification will
not in general correspond to any joint probability model for all of the variables
being imputed. It is an open research project to develop methods to diagnose prob-
lems with multivariate imputations, by analogy to the existing methods such as
residual plots for finding problems in regressions. In the meantime, it makes sense
to examine histograms and scatterplots of observed and imputed data to check that
the imputations are reasonable.

25.6 Model-based imputation

Missing data can be handled in Bugs by modeling the input variables that have
missingness. This requires some work, however: with multiple missing input vari-
ables, a multivariate model is required, and this can be particularly tricky when
some of the variables are discrete. So in practice it can be helpful to do some simple
imputation in R, as we have described, before then analyzing completed datasets.
When more is known about the missing-data mechanism (for example, with cen-
sored or truncated data; see the model on page 405), it can make more sense to
explicitly model the missingness in Bugs.

Nonignorable missing-data models

Realistic censored-data problems often have particular complications. For example,
in the study of death penalty appeals described in Section 6.3, we are interested
in the duration of the appeals process for individual cases. For example, if a death
sentence is imposed in 1983 and its final appeal is decided in 1994, then the process
lasted 11 years. It is challenging to estimate the distribution of these waiting times,
and to model them based on case-level predictors, because our dataset includes
appeals only up to the year 1995. Figure 25.3 illustrates. The censoring model, by
analogy to model (18.17) on page 404, looks like:
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Figure 25.3 Delays in state appeals court for death penalty cases, plotted versus year of
sentencing (jittered to allow individual data points to be visible). We only have results up
to the year 1995. The data show a steady increase in delay times for the first decade, but
after that, the censoring makes the graph difficult to interpret directly.

yi =

{

zi if zi ≤ 1995 − ti
censored otherwise,

where yi is the observed waiting time for case i, zi is the ultimate waiting time,
and ti is the year of sentencing. We shall not analyze these data further here; we
have introduced this example just to illustrate the complexities that arise in realis-
tic censoring situations. The actual analysis for this problem is more complicated
because death sentences have three stages of review, and cases can be waiting at
any of these stages.

Imputation in multilevel data structures

Imputing becomes more complicated with clustered data. Suppose, for instance,
that we have individual-level observations on children grouped within schools (for
instance, test scores and demographics), and then measurements pertaining to the
schools themselves (for instance, school policies and characteristics such as public
versus private). We would not want to impute on a standard individual-level dataset
where the school-level measurements are just repeated over each individual in the
same school because, if a given school measurement is missing, such an approach
would not be likely to impute the same value of this variable for each member of
the group (as it should).

Our general advice in this situation is to create two datasets, as in Figure 11.3
on page 239, one with only individual-level data, and one with group-level data
and do separate imputations within each dataset while using results from one in
the other (perhaps iterating back and forth). For instance, one could first impute
individual-level variables using individual-level data and observed group-level mea-
surement. Then in the group-level dataset one could include aggregated forms of
the individual-level measurements when imputing missingness at this level.
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25.7 Combining inferences from multiple imputations

Rather than replacing each missing value in a dataset with one randomly imputed
value, it may make sense to replace each with several imputed values that reflect
our uncertainty about our imputation model. For example, if we impute using a
regression model we may want our imputations to reflect not only sampling vari-
ability (as random imputation should) but also our uncertainty about the regression
coefficients in the model. If these coefficients themselves are modeled, we can draw
a new set of missing value imputations for each draw from the distribution of the
coefficients.

Multiple imputation does this by creating several (say, five) imputed values for
each missing value, each of which is predicted from a slightly different model and
each of which also reflects sampling variability. How do we analyze these data? The
simple idea is to use each set of imputed values to form (along with the observed
data) a completed dataset. Within each completed dataset a standard analysis can
be run. Then inferences can be combined across datasets.

For instance, suppose we want to make inferences about a regression coefficient,
β. We obtain estimates β̂m in each of the M datasets as well as standard errors,
s1, . . . , sM . To obtain an overall point estimate, we then simply average over the
estimates from the separate imputed datasets; thus, β̂ = 1

m

∑M

m=1 β̂m. A final
variance estimate Vβ reflects variation within and between imputations:

Vβ = W +

(

1 +
1

m

)

B,

where W = 1
m

∑M

m=1 s2
m, and B = 1

m−1

∑M

m=1(β̂m − β̂)2.
If missing data have been included in the main data analysis (as when variables X

and y are given distributions in a Bugs model), the uncertainty about the missing-
data imputations is automatically included in the Bayesian inference, and the above
steps are not needed.

25.8 Bibliographic note

Little and Rubin (2002) provide an overview of methods for analysis with missing
data. For more on multiple imputation in particular, see Rubin (1987, 1996). “Miss-
ing at random” and related concepts were formalized by Rubin (1976). A simple
discrete-data example appears in Rubin, Stern, and Vehovar (1995). King et al.
(2001) review many of the practical costs and benefits of multiple imputation.

For routine imputation of missing data, Schafer (1997) presents a method based
on the multivariate normal distribution, Liu (1995) uses the t distribution, and
Van Buuren, Boshuizen, and Knook (1999) use interlocking regressions. Abayomi,
Gelman, and Levy (2005) discuss methods for checking the fit of imputation mod-
els, and Troxel, Ma, and Heitjan (2004) present a method to assess sensitivity of
inferences to missing-data assumptions.

Software for routine imputation in R and SAS has been developed by Van Buuren
and Oudshoom (2000), Raghunathan, Van Hoewyk, and Solenberger (2001), and
Raghunathan, Solenberger, and Van Hoewyk (2002). An overview of some imputa-
tion software is at www.missing-data.com.

Specialized imputation models have been developed for particular problems, with
multilevel models used to adjust for discrete predictors. Some examples include
Clogg et al. (1991), Belin et al. (1993), and Gelman, King, and Liu (1998). See also
David et al. (1986).

Meng (1994), Fay (1996), Rubin (1996), Clayton et al. (1998), and Robins and
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Wang (2000) discuss situations in which the standard rules for combining multiple
imputations have problems. Barnard and Meng (1994) and Robins and Wang (2000)
propose alternative variance estimators and reference distributions.

For more on the Social Indicators Survey, see Garfinkel and Meyers (1999). The
death-sentencing example is discussed by Gelman, Liebman, et al. (2004) and Gel-
man (2004a); see also Finkelstein et al. (2006).

25.9 Exercises

1. Based on the summaries at the very end of Section 25.2, show that the response
rates for the “earnings” question in the Social Indicators Survey are statistically
significantly different for whites and blacks.

2. Take a complete dataset (with no missingness) of interest to you with two vari-
ables, x and y. Call this the “full data.”

(a) Write a program in R to cause approximately half of the values of x to be
missing. Design this missingness mechanism to be at random but not com-
pletely at random; that is, the probability that x is missing should depend on
y. Call this new dataset, with missingness in x, the “available data.”

(b) Perform the regression of x on y (that is, with y as predictor and x as outcome)
using complete-case analysis (that is, using only the data for which both
variables are observed) and show that it is consistent with the regression on
the full data.

(c) Perform the complete-case regression of y on x and show that it is not con-
sistent with the corresponding regression on the full data.

(d) Using just the available data, fit a model in R for x given y, and use this
model to randomly impute the missing x data. Perform the regression of y on
x using this imputed dataset and compare to your results from (c).

3. Nonignorable missing data: in Exercise 9.13, you estimated the effects of incum-
bency in U.S. congressional elections, discarding uncontested elections.

(a) Construct three “bad” imputation procedures and one “good” imputation
procedure for these uncontested elections.

(b) Define clearly how to interpret these imputations. (These election outcomes
are not actually “missing”—it is known that they were uncontested.)

(c) Fit the model to the completed dataset under each of the imputation proce-
dures from (a) and compare the results.

4. Use iterative regression to impute missing data for all the income components
in the Social Indicators Survey (data at folder sis).




