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Abstract

This article revisits an integral of radical trigonometric functions. It presents several methods
of integration where the integrand takes the form

√
1± sinx or

√
1± cosx. The integral has ap-

plications in Calculus where as the length of cardioid represented in polar coordinates.
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1 Introduction

This article revisits an integral where the integrand takes the form of radical trigonometric functions.
A general form of radical trigonometric integrands in the context of this article refers to

√
a± b sinx

or
√
a± b cos x, for a, b > 0. The integral of these functions is expressed in terms of elliptic integral

and are available in mathematical handbooks and tables of integrals. For example, the latter integral
is given in Section 2.5 (see 2.576) of a famous mathematical handbook by Gradstyen and Ryzhik [10].
For a particular case of a = b, after removing the constant factor, the integrand reduces to radical
trigonometric functions

√
1± sinx or

√
1± cos x. Interestingly, it seems that explicit expressions for

the integral of these functions have not been specifically listed in any tables of integrals and handbooks,
including, but not limited to, [1, 7, 10, 12, 15, 17, 20]. The focus of this article is to consider the
special case when a = 1 = b, where several techniques of integration are discussed in a more detail.
To the best of our knowledge, this is the first time when such a compilation for particular integrands
is presented.

The motivation of this article springs from an encounter from one of the coauthors’ in teaching
Calculus 2 course during the Spring 2014 semester in Nazarbayev University, Astana, Kazakhstan.
Particularly, the content of this article is related to the topic on the integral calculus of polar curves,
and one of the examples is calculating the length of a cardioid. We adopt the Calculus textbook
written by Anton, Bivens and Davis [3] where the polar curves are discussed in Section 10.3. Another
recommended textbook reading for this course is the one written by Stewart [22]. An example [Example
4, Section 10.4, page 692] from the latter textbook mentions that finding the length of cardioid r =
1+sin θ can be evaluated by multiplying both the numerator and the denominator of the integrand by√
2− 2 sin θ or alternatively, using the Computer Algebra System (CAS). Yet, evaluating this integral

by hand is apparently not so obvious to many students since they have to do further manipulation on
the obtained expression. The screenshot of the example from Stewart’s textbook has been excerpted
and displayed in Figure 1.

After rationalizing the numerator and implementing the Pythagorean trigonometric identity, the
numerator simplifies to

√
cos2 θ = | cos θ|, but it has to be in absolute value form, instead of simply

cos θ. This is a common mistake found among students since they may forget or tend to ignore the
absolute value sign. From an instructor’s perspective, it is imperative to remind the students to be
aware of this fact. Referring to Bloom’s taxonomy of learning domains [4], the educational activity
of this learning process is the cognitive domain. The process covers knowledge, comprehension and
application. In this example, students possess the knowledge that any value of the square root must
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be non-negative and an absolute value of any quantity is always non-negative too. A comprehension
of these facts is essential to conclude (application of knowledge) that the square root of a quantity
squared is indeed equal to the absolute value of that quantity.

Referring to the revised Bloom taxonomy [2], a connection between learning activities and learning
objectives can further be established. The knowledge dimension covers the factual and conceptual

aspects. In this context, students must know the definition of an absolute value and be able to make
an interrelationship between the property of a square root and the absolute value. The cognitive
dimension includes remember, understand, apply aspects. Possessing the knowledge of absolute value,
it is crucial to investigate whether the students can retrieve this knowledge from their memory, whether
they understand why absolute value has to be non-negative and whether they are able to simplify and
conclude that

√
cos2 θ = | cos θ|.

Figure 1: An example from a textbook on calculating the length of cardioid r = (1 + sin θ) where the
calculation details are omitted.

Another educational aspect of the integral involving radical trigonometric functions is related
to the synthesis skill of cognitive domain in Bloom’s taxonomy. In the revised Bloom’s taxonomy,
the educational content involves factual and conceptual aspects of the knowledge dimension, where
students attempt to make interrelationships among the basic elements of trigonometric functions.
The cognitive process dimension covers remember, understand, apply and analyze aspects. When
this example is posed to the classroom for the students to work on, it turns out that some excellent
students come up with different techniques by manipulating the integrand expression. This shows
that different students approach the problem distinctly, they attempt to integrate with the method
which is most convenient to them. For instance, for some students, the technique of trigonometric
substitution is a more comfortable approach, others implement a variable shift method to solve the
problem successfully. Thus, there are several ways by which students can approach the problem.

For many Calculus instructors, however, the interest in integration techniques has waned. With the
introduction of CAS, many of them now give only cursory attention to such techniques. Nevertheless,
the methods of integration covered in this article are still interesting from educational perspective.
They provide a valuable pedagogical tool to assist and improve the students’ learning skills, which
are beneficial to both the instructors and the students themselves alike. In particular, by introducing
several methods during class sessions, the techniques covered in this article become useful in the
sense that it does not only expose the students to various techniques of integration but also makes
them review and strengthen their knowledge of trigonometry and trigonometric functions. As can be
observed later, this article recalls some important properties of trigonometric functions of sine, cosine
and tangent as well as a significant application of trigonometric substitution in solving particular types
of integration.

This article is organized as follows. The following section covers the integral of radical sine func-
tion

√
1± sinx. Section 3 briefly covers the integral of radical cosine function

√
1± cos x. Several
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techniques of integration are covered and more detailed derivations are discussed in Section 2, includ-
ing rationalizing numerator, combining trigonometric identities, twice trigonometric substitutions and
variable shift methods. All of these methods require some variations of integrating absolute value
function, which will be presented accordingly in the corresponding subsections. Section 4 presents an
application where the integrals of radical sine and cosine functions appear, particularly in calculating
the length of a cardioid. The final section draws conclusions and provides remark to our discussion.

2 Integral of radical sine function

This section deals with the integral of a radical sine function where the integrand takes the form√
1± sinx. There are a number of methods to obtain the result, and four techniques are covered in

this section. The first method is by rationalizing the numerator. From here, one may depart either
to use the Pythagorean identity or to employ a trigonometric substitution. The second method is
by combining several trigonometric identities. We observe that double-angle formula and the identity
relating sinx and tanx/2 follow different paths of calculation and yet arrive at identical expression.
The third technique is by implementing trigonometric substitutions two times, mainly using tangent
function. Finally, the fourth technique is conducted by shifting the variable by π/2. Two options can
be developed from this path, where both of them alter the integral from radical sine function into
radical cosine function. The four methods covered in this section are summarized in the following tree
diagram.

Integration techniques

Variable shift

x = π/2 − y

x = y − π/2

Twice trigonometric
substitutions

Combining identities

sinx and tan(x/2)

Double-angle formula

Rationalizing numerator

Trigonometric substitution

Pythagorean identity

2.1 Rationalizing numerator

The following integral will be used in this subsection. Let f be a function which has at most one root
on each interval on which it is defined, and F an antiderivative of f , i.e. F ′(x) = f(x), then

∫ |f(x)|
√

F (x)
dx = −2 sgn[f(x)]

√

F (x) + C (2.1)

where sgn(x) is the sign function, which takes the values −1, 0 or 1 when x is negative, zero or positive,
respectively.

Pythagorean identity

Let I be an indefinite integral of the radical sine function I =

∫ √
1± sinx dx, then rationalizing the

numerator by multiplying both the numerator and the denominator with
√
1∓ sinx, applying the
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Pythagorean trigonometric identity and utilizing the definition of the absolute value, it yields:

I =

∫ √
1± sinx ·

√
1∓ sinx√
1∓ sinx

dx =

∫

√

1− sin2 x√
1∓ sinx

dx =

∫

√
cos2 x√

1∓ sinx
dx

=

∫ | cos x|√
1∓ sinx

dx = −2 sgn(cos x)
√
1∓ sinx+ C

where the last expression is readily obtained by implementing (2.1).

Trigonometric substitution

A similar solution can also be obtained using the trigonometric substitution of u = sinx. Differentiat-
ing with respect to u, we get dx = du/ cos x = du/(±

√
1− u2), where the positive and negative signs

are related to the sign of cos x. Thus for u = sinx 6= ±1

I =

∫
√
1± u du

±
√
1− u2

=

∫

du

±
√
1∓ u

= ∓2
√
1∓ u+C

= ∓2
√
1∓ sinx+ C = −2 sgn(cos x)

√
1∓ sinx+ C.

2.2 Combining identities

A general, explicit form of an integral involving an absolute value of a function will be used in this
section. Let f be a function which has at most one root on each interval on which it is defined, and
F an antiderivative of f that is zero at each root of f (such an antiderivative exists if and only if the
condition on f is satisfied), then

∫

|f(x)| dx = sgn[f(x)]F (x) + C, (2.2)

where sgn(x) is the sign function defined previously.

Double-angle formula

We manipulate the integrand by combining the Pythagorean trigonometric identity and the double-
angle formula. Using the Pythagorean trigonometric identity, writing 1 = cos2(x/2) + sin2(x/2) and
using the double-angle formula for sinx: sinx = 2 sin(x/2) cos(x/2), the integral of the radical sine
becomes

I =

∫
√

cos2
x

2
± 2 cos

x

2
sin

x

2
+ sin2

x

2
dx =

∫

√

(

cos
x

2
± sin

x

2

)2
dx

=

∫

∣

∣

∣
cos

x

2
± sin

x

2

∣

∣

∣
dx = 2 sgn

(

cos
x

2
± sin

x

2

)(

sin
x

2
∓ cos

x

2

)

+ C

where the last expression is quickly obtained after implementing (2.2).

Identity relating sinx and tan(x/2)

A similar result will also be obtained if one employs another trigonometric identity that relates sinx
and tan(x/2). Using the double-angle formula for sinx at the numerator and the Pythagorean trigono-
metric identity at the denominator, dividing both sides by cos2(x/2), we obtain

sinx =
2 sin(x/2) cos(x/2)

cos2(x/2) + sin2(x/2)
=

2 sin(x/2) cos(x/2)
cos2(x/2)

1 + sin2(x/2)
cos2(x/2)

=
2 tan(x/2)

1 + tan2(x/2)
.
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Thus, the integral of the radical sine function I turns to

I =

∫

√

1± 2 tan x/2

1 + tan2 x/2
dx =

∫

√

1 + tan2 x/2± 2 tan x/2

1 + tan2 x/2
dx

=

∫

√

(1± tan x/2)2

sec2 x/2
dx =

∫
∣

∣

∣

∣

1± tanx/2

sec x/2

∣

∣

∣

∣

dx

=

∫

∣

∣

∣
cos

x

2
± sin

x

2

∣

∣

∣
dx = 2 sgn

(

cos
x

2
± sin

x

2

)(

sin
x

2
∓ cos

x

2

)

+ C.

2.3 Twice trigonometric substitutions

A similar expression of the solution as that of the previous section can also be obtained by the
trigonometric substitution u = tan x/2. This implies dx = 2 du/(1 + u2) and writing sinx =
2 sin(x/2) cos(x/2) the integral of the radical sine function becomes

I =

∫

√

1± 2u

1 + u2
2du

1 + u2
= 2

∫ |1± u| du
(1 + u2)3/2

= 2 sgn(1± u)

(
∫

du

(1 + u2)3/2
±
∫

u du

(1 + u2)3/2

)

.

Employ another trigonometric substitution u = tan y and v = 1 + u2 for the first and the second
integrals, respectively. Thus,

I = 2 sgn(1± u)

(
∫

sec2 y dy

(1 + tan2 y)3/2
± 1

2

∫

dv

v3/2

)

= 2 sgn(1± u)

(
∫

sec2 y dy

sec3 y
∓ v−1/2

)

= 2 sgn(1± u)

(
∫

1

sec y
dy ∓ 1√

v

)

= 2 sgn(1± u)

(
∫

cos y dy ∓ 1√
1 + u2

)

= 2 sgn(1± u)

(

sin y ∓ 1√
1 + u2

)

+ C = 2 sgn(1± u) sgn

(

1√
1 + u2

)(

u∓ 1√
1 + u2

)

+ C

= 2 sgn
(

1± tan
x

2

)

sgn
(

cos
x

2

)

cos
x

2

(

tan
x

2
∓ 1
)

+ C

= 2 sgn
(

cos
x

2
± sin

x

2

)(

sin
x

2
∓ cos

x

2

)

+ C.

2.4 Variable shift

The following integrals of the absolute value of trigonometric functions sinαx and cosαx, α 6= 0, will
be used in this subsection, where ⌊x⌋ denotes the floor function:

∫

|sinαx| dx =
2

α

⌊αx

π

⌋

− 1

α
cos
(

αx−
⌊αx

π

⌋

π
)

+ C (2.3)

∫

|cosαx| dx =
2

α

⌊

αx

π
+

1

2

⌋

+
1

α
sin

(

αx−
⌊

αx

π
+

1

2

⌋

π

)

+ C. (2.4)
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Variable shift x = y − π/2

Applying this variable shift, the integral I becomes

I =

∫

√

1± sin(y − π/2) dy =

∫

√

1∓ cos y dy

=











∫

√

2 sin2 y/2 dy, for − sign (+ sign original I)
∫

√

2 cos2 y/2 dy, for + sign (− sign original I)

=











√
2

∫

|sin y/2| dy, for − sign (+ sign original I)

√
2

∫

|cos y/2| dy, for + sign (− sign original I)

=

{

−2
√
2 sgn(sin y/2) cos(y/2) + C, for − sign (+ sign original I)

2
√
2 sgn(cos y/2) sin(y/2) + C, for + sign (− sign original I)

=

{

−2
√
2 sgn

[

sin
(

x
2 + π

4

)]

cos
(

x
2 − π

4

)

+ C, for − sign (+ sign original I)

2
√
2 sgn

[

cos
(

x
2 + π

4

)]

sin
(

x
2 + π

4

)

+ C, for + sign (− sign original I)

= −2
√
2 sgn

[

sin
(x

2
± π

4

)]

cos
(x

2
± π

4

)

+ C

where the last three expressions are readily obtained by implementing (2.2), returning back the original
variable and combining results corresponding to the positive and negative signs into a single expression,
respectively. Alternatively, implementing (2.3), we obtain the integral for

√
1 + sinx:

I1 = 4
√
2
⌊ y

2π

⌋

− 2
√
2 cos

(y

2
−
⌊ y

2π

⌋

π
)

+ C

= 4
√
2

⌊

x

2π
+

1

4

⌋

− 2
√
2 cos

(

x

2
+

π

4
−
⌊

x

2π
+

1

4

⌋

π

)

+ C.

Implementing (2.4), we obtain the integral for
√
1− sinx:

I2 = 4
√
2

⌊

y

2π
+

1

2

⌋

+ 2
√
2 sin

(

y

2
−
⌊

y

2π
+

1

2

⌋

π

)

+ C

= 4
√
2

⌊

x

2π
+

3

4

⌋

+ 2
√
2 sin

(

x

2
+

π

4
−
⌊

x

2π
+

3

4

⌋

π

)

+ C

where subscripts 1 and 2 correspond to the positive and negative signs in the original integral I,
respectively.

Variable shift x = π/2 − y

Applying this variable shift, the integral I becomes

I = −
∫

√

1± sin(π/2− y) dy = −
∫

√

1± cos y dy

=











−
√
2

∫

|cos y/2| dy, for + sign

−
√
2

∫

|sin y/2| dy, for − sign

=

{

−2
√
2 sgn(cos y/2) sin(y/2) + C, for + sign

2
√
2 sgn(sin y/2) cos(y/2) + C, for − sign

=

{

2
√
2 sgn

[

cos
(

x
2 − π

4

)]

sin
(

x
2 − π

4

)

+ C, for + sign

−2
√
2 sgn

[

sin
(

x
2 − π

4

)]

cos
(

x
2 − π

4

)

+ C, for − sign

= 2
√
2 sgn

[

cos
(x

2
∓ π

4

)]

sin
(x

2
∓ π

4

)

+ C
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where the last three expressions are readily obtained by implementing (2.2), returning back the original
variable and combining two results into a single expression, respectively. Alternatively, implement-
ing (2.4), we obtain the integral for

√
1 + sinx:

I1 = −4
√
2

⌊

y

2π
+

1

2

⌋

− 2
√
2 sin

(

y

2
−
⌊

y

2π
+

1

2

⌋

π

)

+ C

= −4
√
2

⌊

3

4
− x

2π

⌋

+ 2
√
2 sin

(

x

2
− π

4
+

⌊

3

4
− x

2π

⌋

π

)

+ C

= 4
√
2

⌈

x

2π
− 3

4

⌉

+ 2
√
2 sin

(

x

2
− π

4
−
⌈

x

2π
− 3

4

⌉

π

)

+ C

where ⌈x⌉ is the ceiling function and the relationship between the floor and the ceiling functions are
utilized to obtain the last expression, i.e. ⌊x⌋+ ⌈−x⌉ = 0. Implementing (2.3), we obtain the integral
for

√
1− sinx:

I2 = −4
√
2
⌊ y

2π

⌋

+ 2
√
2 cos

(y

2
−
⌊ y

2π

⌋

π
)

+ C

= −4
√
2

⌊

1

4
− x

2π

⌋

+ 2
√
2 cos

(

x

2
− π

4
+

⌊

1

4
− x

2π

⌋

π

)

+ C

= 4
√
2

⌈

x

2π
− 1

4

⌉

+ 2
√
2 cos

(

x

2
− π

4
−
⌈

x

2π
− 1

4

⌉

π

)

+ C

where the subscripts 1 and 2 correspond to the positive and negative signs in the expressions of I,
respectively.

3 Integral of radical cosine function

This section compiles a number of techniques to integrate the radical cosine function in the form
√
1± cos x. Let J be an indefinite integral of radical cosine function J =

∫ √
1± cos x dx. Since the

derivations are similar to the ones in Section 2, only the final results will be presented. Employing the
variable shift method either by x = π/2− y or x = y − π/2 will alter the cosine function into the sine
function and vice versa. Thanks to this redundancy, the coverage of this technique will be omitted
in this section. The integration techniques presented in this section basically can also be summarized
with a similar tree diagram presented in Section 2.

3.1 Rationalizing numerator

Implementing two techniques of rationalizing numerator and by trigonometric substitution u = cos x,
we obtain a similar result to the one in the previous section:

J = −2 sgn(sinx)
√
1∓ cos x+ C.

3.2 Combining identities

This technique deals with combining the Pythagorean trigonometric identity with the double-angle
formula and the identity of cosx and tan(x/2). The double-angle formula used here is cos x =
cos2(x/2)− sin2(x/2). The identity of cos x in terms of tan(x/2) reads

cos x =
1− tan2(x/2)

1 + tan2(x/2)
.

Employing these identities the integral J now reads

J =

{

2
√
2 sgn [cos(x/2)] sin(x/2) + C, for + sign

−2
√
2 sgn [sin(x/2)] cos(x/2) + C, for − sign.

(3.1)
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3.3 Twice trigonometric substitutions

Employing the substitution u = tan(x/2), we have

J =















∫

2
√
2 du

(1 + u2)3/2
= sgn

(

1√
1 + u2

)

2
√
2u√

1 + u2
+ C, for + sign

∫

2
√
2|u| du

(1 + u2)3/2
= sgn

(

u√
1 + u2

) −2
√
2√

1 + u2
+ C, for − sign.

After returning to the initial variable x, identical expressions with the ones in (3.1) will be obtained.

4 Application: Cardioid

The integral discussed above appears as calculation of the arc length of a cardioid. The length of
cardioids r = a(1± sin θ), a > 0 is given by

L = a
√
2

∫ 2π

0

√
1± sin θ dθ.

The sketches of the cardioids are presented in Figure 2. The properties of the curve have been
investigated in a classical paper by Yates more than half a century ago [27]. The author also compiled
a handbook on many kinds of curves, including cardioid, and discussed their properties [26]. Another
approach of calculating an area of cardioid and other shapes of closed curves is presented using the
surveyor’s method [5]. A road-wheel relationship by rolling a cardioid wheel on an inverted cycloid is
discussed in [11].

Cardioid finds various applications in fractals, complex analysis, plant physiology and engineering.
In fractals, it appears in Douady cauliflower, which is a decoration formed via numerous small cardioids
of the Mandelbrot set [16, 18]. In plant physiology, the seed shape of Arabidopsis (rock cress) can
be modelled using cardioid [9]. The model based on the comparison of the outline of the seed’s
longitudinal section with a transformed cardioid, where the horizontal axis is scaled by a factor equal
to the Golden Ratio. An envelope of rays either reflected or refracted from the surface, known as
caustic, from a cup of coffee or milk exhibits the shape of a cardioid [14]. In the field of electronics
and electrical engineering, a cardioid directional pattern in a microphone provides a relatively wide
pick-up zone [13].

It is stated but not shown in a Calculus textbook authored by Stewart [21, 22] that one can
calculate this integral using the techniques described in this article or by technology, amongst others,
are Integral Calculator [8], Sage [19], Symbolab [23] and Wolfram Alpha [25]. The author uses the
cardioid r = 1 + sin θ as an example, as shown in Figure 1 mentioned earlier in the introduction of
this article. In general, evaluating a definite integral involving an absolute value, one must find the
zeros of the function in the absolute value and divide the range of integration into pieces by toggling
the sign within each of the intervals.

r = a(1 + sin θ)

a−a

2a

x

y
r = a(1 − sin θ)

a−a

−2a

x

y

Figure 2: Sketches of cardioids r = a(1 + sin θ) (left) and r = a(1− sin θ) (right), a > 0.

8



4.1 Rationalizing numerator

Since cos θ ≥ 0 for 0 ≤ θ ≤ π/2 and 3π/2 ≤ θ ≤ 2π and cos θ < 0 for π/2 < θ < 3π/2, we need
to split the integral into three intervals. See the top panel of Figure 3. Thus, using the result from
Subsection 2.1, the length of the cardioids r = a(1± sin θ) is given by

L = a
√
2

∫ 2π

0

| cos θ|√
1∓ sin θ

dθ

= a
√
2

(

∫ π/2

0

cos θ√
1∓ sin θ

dθ −
∫ 3π/2

π/2

cos θ√
1∓ sin θ

dθ +

∫ 2π

3π/2

cos θ√
1∓ sin θ

dθ

)

= 2a
√
2

(

∓
√
1∓ sin θ

∣

∣

∣

π/2

0
±

√
1∓ sin θ

∣

∣

∣

3π/2

π/2
∓

√
1∓ sin θ

∣

∣

∣

2π

3π/2

)

= 8a.

| cos θ|

θ
π/2 3π/2

1

| cos θ/2 + sin θ/2|

θ
3π/2

1

| cos θ/2 − sin θ/2|

θ
π/2

1

Figure 3: Plots of | cos θ| (top panel), |cos(θ/2) + sin(θ/2)| (middle panel) and |cos(θ/2)− sin(θ/2)|
(bottom panel) for 0 ≤ θ ≤ 2π with the indicated zeros.

4.2 Twice trigonometric substitutions

We know that (see the middle panel of Figure 3)

cos
θ

2
+ sin

θ

2
=

√
2 cos

(

θ

2
− π

4

){

≥ 0, for 0 ≤ θ ≤ 3π/2
< 0, for 3π/2 < θ ≤ 2π

Thus, implementing this method, the length of the cardioid r = a(1 + sin θ) reads

L = a
√
2

∫ 2π

0

∣

∣

∣

∣

cos
θ

2
+ sin

θ

2

∣

∣

∣

∣

dθ

= a
√
2

(

∫ 3π/2

0

(

cos
θ

2
+ sin

θ

2

)

dθ −
∫ 2π

3π/2

(

cos
θ

2
+ sin

θ

2

)

dθ

)

= 2a
√
2

(

sin
θ

2
− cos

θ

2

∣

∣

∣

∣

3π/2

0

−
(

sin
θ

2
− cos

θ

2

)
∣

∣

∣

∣

2π

3π/2

)

= 8a.
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Similarly, splitting the integral at θ = π/2, we also obtain the length L = 8a corresponding to the
cardioid r = a(1−sin θ). See the bottom panel of Figure 3 to observe that the zero of cos(θ/2)−sin(θ/2)
for 0 ≤ θ ≤ 2π is at π/2.

4.3 Variable shift

These integrals involve the absolute value functions | cos(y/2)| and | sin(y/2)|, for which in the original
variable θ, both functions are non-negative for 0 ≤ θ ≤ 3π/2 and negative for 3π/2 < θ < 2π. Thus,
the length of the cardioid r = a(1 + sin θ) reads

L = 2a

∫ 2π

0

∣

∣

∣

∣

sin

(

θ

2
+

π

4

)∣

∣

∣

∣

dθ

= 2a

(

∫ 3π/2

0
sin

(

θ

2
+

π

4

)

dθ −
∫ 2π

3π/2
sin

(

θ

2
+

π

4

)

dθ

)

= 4a

(

− cos

(

θ

2
+

π

4

)
∣

∣

∣

∣

3π/2

0

+ cos

(

θ

2
+

π

4

)
∣

∣

∣

∣

2π

3π/2

)

= 8a

or

L = 2a

∫ 2π

0

∣

∣

∣

∣

cos

(

π

4
− θ

2

)
∣

∣

∣

∣

dθ

= 2a

(

∫ 3π/2

0
cos

(

π

4
− θ

2

)

dθ −
∫ 2π

3π/2
cos

(

π

4
− θ

2

)

dθ

)

= 4a

(

− sin

(

π

4
− θ

2

)∣

∣

∣

∣

3π/2

0

+ sin

(

π

4
− θ

2

)∣

∣

∣

∣

2π

3π/2

)

= 8a.

Employing a similar technique, identical result of L = 8a is also obtained for the corresponding
cardioid r = a(1− sin θ).

An expression r = a(1 ± cos θ), a > 0 produces cardioids too. When comparing this expression
with the one with sine term, the effect is a 90-degree rotation, either clockwise (for the same sign)
or counterclockwise (for the opposite sign), of the corresponding cardioids with the sine term. The
sketch of the corresponding cardioid is presented in Figure 4. The length of cardioids r = a(1± cos θ),
a > 0 is given by

L = a
√
2

∫ 2π

0

√
1± cos θ dθ.

Using similar techniques discussed in Section 3, one can find that the length of these cardioids is
also 8a.

r = a(1 + cos θ)

a

−a

2a

y

x

r = a(1 − cos θ)

a

−a

−2a
x

y

Figure 4: Sketches of cardioids r = a(1 + cos θ) (left) and r = a(1− cos θ) (right), a > 0.

A number of Calculus textbooks use this type of cardioid as an example for calculating its length.
For instance, Anton et al. [3] uses the cardioid r = 1 + cos θ. After some manipulations, one needs
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to integrate | cos(θ/2)| from θ = 0 to θ = 2π. Although general readers will attempt to split the
boundary integrations at θ = π, the authors explain that since the cardioid is symmetry about the
polar axis, the integral from θ = π to θ = 2π is equal to the one from θ = 0 to θ = π. Thus, the
integral can be calculated by twice integrating from θ = 0 to θ = π of the positive integrand cos(θ/2)
(without the absolute value). Calculus’ Thomas textbook [24] adopts the cardioid r = 1− cos θ. The
integrand reduces to | sin(θ/2)|. Fortunately, sin(θ/2) ≥ 0 for 0 ≤ θ ≤ 2π and thus by removing the
absolute value and evaluating the integral, one can quickly obtain the length of the cardioid.

5 Conclusion and Remark

This article presents the integral with radical sine and cosine functions where its application appears
in the length of a cardioid. It turns out that several techniques of integration exist to solve the
problem, which is interesting from the perspective of teaching and learning mathematics. Despite
the current trend of using CAS, the collection of integration techniques presented in this article is
a valuable pedagogical tool. To the best of our knowledge, this is the first time such a compilation
for this particular type of integrands is presented. We are convinced that this article contains useful
educational contents that will be beneficial for both instructors and students alike. We also consider
our contribution as a complement to existing Calculus textbooks which discuss a topic on calculating
the length of a polar curve, particularly cardioid.

Acknowledgment. The authors wish to thank Dr. Ulrich Norbisrath (Faculty of Computer Science, Commu-
nication and Media, University of Applied Sciences Upper Austria), Dr. Richard J. Mathar (Max-Planck Institut
für Astronomie, Heidelberg, Germany), Professor Victor Hugo Moll (Tulane University, New Orleans, Louisiana,
USA), Professor Chris Sangwin (Mathematics Education Centre, Loughborough University and School of Math-
ematics, The University of Edinburgh, UK), the anonymous reviewers whose comments and remarks helped the
improvement of this article, Murat Yessenov (Class 2017 of Physics major, SST, NU) and other students from
SST and SHSS (School of Humanities and Social Sciences) who enrolled in Section 3 of MATH-162 Calculus 2
during Spring 2014 at NU, Astana, Kazakhstan.

References

[1] Abramowitz, M., & Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables. Eastford, Connecticut: Martino Fine Books.

[2] Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and

assessing: A revision of Bloom’s taxonomy of educational objectives. Boston, Massachusetts: Allyn &
Bacon.

[3] Anton, H., Bivens, I. C., & Davis, S. (2012). Calculus–Early Trancendentals, 10th edition, (International
Student version). Hoboken, New Jersey: John Wiley & Son’s Inc.

[4] Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook

I: Cognitive domain. New York: David McKay Company.

[5] Braden, B. (1986). The surveyor’s area formula. The College Mathematics Journal, 17(4), 326–337.

[6] Briggs, W. L., Cochran, L., & Gillett, B. (2012). Calculus for Scientists and Engineers. Boston, Mas-
sachusetts: Pearson Education, Inc.

[7] Bronshtein, I. N., Semendyayev, K. A., Musiol, G., & Mühlig, H. (2007). Handbook of Mathematics, 5th
edition. Berlin Heidelberg: Springer-Verlag.

[8] http://www.integral-calculator.com/. Developed by David Scherfgen from Hochschule Bonn-Rhein-
Sieg University of Applied Sciences, Sankt Augustin, Germany.

[9] Cervantes, E., Mart́ın, J. J., Ardanuy, R., de Diego, J. G., & Tocino, Á. (2010). Modeling the Arabidopsis
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