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Preface

Robustness of control systems to disturbances and uncertainties has always been the
central issue in feedback control. Feedback would not be needed for most control systems
if there were no disturbances and uncertainties. Developing multivariable robust control
methods has been the focal point in the last two decades in the control community. The
state-of-the-art H., robust control theory is the result of this effort.

This book introduces some essentials of robust and Ho control theory. It grew from
another book by this author, John C. Doyle, and Keith Glover, entitled Robust and
Optimal Control, which has been extensively class-tested in many universities around
the world. Unlike that book, which is intended primarily as a comprehensive reference of
robust and H, control theory, this book is intended to be a text for a graduate course
in multivariable control. It is also intended to be a reference for practicing control
engineers who are interested in applying the state-of-the-art robust control techniques
in their applications. With this objective in mind, I have streamlined the presentation,
added more than 50 illustrative examples, included many related MatLAB® commands!
and more than 150 exercise problems, and added some recent developments in the area
of robust control such as gap metric, v-gap metric, model validation, and mixed p
problem. In addition, many proofs are completely rewritten and some advanced topics
are either deleted completely or do not get an in-depth treatment.

The prerequisite for reading this book is some basic knowledge of classical control
theory and state-space theory. The text contains more material than could be covered in
detail in a one-semester or a one-quarter course. Chapter 1 gives a chapter-by-chapter
summary of the main results presented in the book, which could be used as a guide for
the selection of topics for a specific course. Chapters 2 and 3 can be used as a refresher
for some linear algebra facts and some standard linear system theory. A course focusing
on Ho control should cover at least most parts of Chapters 4-6, 8,9, 11-13, and Sections
14.1 and 14.2. An advanced H. control course should also include the rest of Chapter
14, Chapter 16, and possibly Chapters 10, 7, and 15. A course focusing on robustness
and model uncertainty should cover at least Chapters 4, 5, and 8-10. Chapters 17 and
18 can be added to any advanced robust and H control course if time permits.

I have tried hard to eliminate obvious mistakes. It is, however, impossible for me
to make the book perfect. Readers are encouraged to send corrections, comments, and

IMATLAB is a registered trademark of The MathWorks, Inc.

vii
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viii ) PREFACE

suggestions to me, preferably by electronic mail, at
kemin@ee.lsu.edu

I am also planning to put any corrections, modifications, and extensions on the Internet
so that they can be obtained either from the following anonymous ftp:

ftp ee.lsu.edu  cd pub/kemin/books/essentials /
or from the author’s home page:
http://kilo.ee.lsu.edu/kemin/books/essentials /

This book would not be possible without the work done jointly for the previous
book with Professor John C. Doyle and Professor Keith Glover. I thank them for their
influence on my research and on this book. Their serious attitudes toward scientific
research have been reference models for me. I am especially grateful to John for having
me as a research fellow in Caltech, where I had two very enjoyable years and had
opportunities to catch a glimpse of his “BIG PICTURE” of control.

I want to thank my editor from Prentice Hall, Tom Robbins, who originally proposed
the idea for this book and has been a constant source of support for me while writing it.
Without his support and encouragement, this project would have been a difficult one.
It has been my great pleasure to work with him.

I'would like to express my sincere gratitude to Professor Bruce A. Francis for giving
me many helpful comments and suggestions on this book. Professor Francis has also
kindly provided many exercises in the book. I am also grateful to Professor Kang-Zhi Liu
and Professor Zheng-Hua Luo, who have made many useful comments and suggestions.
I want to thank Professor Glen Vinnicombe for his generous help in the preparation of
Chapters 16 and 17. Special thanks go to Professor Jianqing Mao for providing me the
opportunity to present much of this material in a series of lectures at Beijing University
of Aeronautics and Astronautics in the summer of 1996.

In addition, I would like to thank all those who have helped in many ways in making
this book possible, especially Professor Pramod P. Khargonekar, Professor André Tits,
Professor Andrew Packard, Professor Jie Chen, Professor Jakob Stoustrup, Professor
Hans Henrik Niemann, Professor Malcolm Smith, Professor Tryphon Georgiou, Profes-
sor Tongwen Chen, Professor Hitay Ozbay, Professor Gary Balas, Professor Carolyn
Beck, Professor Dennis S. Bernstein, Professor Mohamed Darouach, Dr. Bobby Boden-
heimer, Professor Guoxiang Gu, Dr. Weimin Lu, Dr. John Morris, Dr. Matt Newlin,
Professor Li Qiu, Professor Hector P. Rotstein, Professor Andrew Teel, Professor Ja-
gannathan Ramanujam, Dr. Linda G. Bushnell, Xiang Chen, Greg Salomon, Pablo A.
Parrilo, and many other people.

I'would also like to thank the following agencies for supporting my research: National
Science Foundation, Army Research Office (ARO), Air Force of Scientific Research, and
the Board of Regents in the State of Louisiana.

Finally, I would like to thank my wife, Jing, and my son, Eric, for their generous
support, understanding, and patience during the writing of this book.

Kemin Zhou
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Here is how H is pronounced in Chinese:

%mn%

It means “The joy of love is endless.”
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Chapter 1

Introduction

This chapter gives a brief description of the problems considered in this book and the
key results presented in each chapter.

1.1 What Is This Book About?

This book is about basic robust and Heo control theory. We consider a control system
with possibly multiple sources of uncertainties, noises, and disturbances as shown in
Figure 1.1.

disturbance
other controlled signals

tracking errors

. controlle;
reference signals

Figure 1.1: General system interconnection




2 INTRODUCTION

We consider mainly two types of problems:

¢ Analysis problems: Given a controller, determine if the controlled signals (in-
cluding tracking errors, control signals, etc.) satisfy the desired properties for all
admissible noises, disturbances, and model uncertainties.

e Synthesis problems: Design a controller so that the controlled signals satisfy the
desired properties for all admissible noises, disturbances, and model uncertainties.

Most of our analysis and synthesis will be done on a unified linear fractional transforma-
tion (LFT) framework. To that end, we shall show that the system shown in Figure 1.1
can be put in the general diagram in Figure 1.2, where P is the interconnection matrix,
K is the controller, A is the set of all possible uncertainty, w is a vector signal including
noises, disturbances, and reference signals, z is a vector signal including all controlled
signals and tracking errors, u is the control signal, and y is the measurement.

A
v n
z P w
’-——q le—
Y K u

Figure 1.2: General LFT framework

The block diagram in Figure 1.2 represents the following equations:

v n
z = Pl w
Y u
7 = Av
u = Ky.

Let the transfer matrix from w to z be denoted by T, and assume that the ad-
missible uncertainty A satisfies (A) < 1/7, for some Y« > 0. Then our analy-
sis problem is to answer if the closed-loop system is stable for all admissible A and
IT.w]l,o < 7p for some prespecified Yp > 0, where ||T.,|, is the M., norm defined as
IT:wllco = sup,, & (T;w(jw)). The synthesis problem is to design a controller K so that
the aforementioned robust stability and performance conditions are satisfied.

In the simplest form, we have either A = 0 or w = 0. The former becomes the well-
known M, control problem and the later becomes the robust stability problem. The two
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problems are equivalent when A is a single-block unstructured uncertainty through the
application of the small gain theorem (see Chapter 8). This robust stability consequence
was probably the main motivation for the development of Hoo methods.

The analysis and synthesis for systems with multiple-block A can be reduced in most
cases to an equivalent M, problem with suitable scalings. Thus a solution to the He
control problem is the key to all robustness problems considered in this book. In the
next section, we shall give a chapter-by-chapter summary of the main results presented
in this book.

We refer readers to the book Robust and Optimal Control by K. Zhou, J. C. Doyle,
and K. Glover [1996] for a brief historical review of Ho, and robust control and for
some detailed treatment of some advanced topics.

1.2 Highlights of This Book

The key results in each chapter are highlighted in this section. Readers should consult
the corresponding chapters for the exact statements and conditions.

Chapter 2 reviews some basic linear algebra facts.
Chapter 3 reviews system theoretical concepts: controllability, observability, sta-
bilizability, detectability, pole placement, observer theory, system poles and zeros, and

state-space realizations.

Chapter 4 introduces the H spaces and the H,, spaces. State-space methods of
computing real rational H, and H, transfer matrix norms are presented. For example,

let iiB
G(s) = [+c = ] € RH.oo.
Then
|G||3 = trace(B*QB) = trace(CPC™)
and

G|l = max{y: H has an eigenvalue on the imaginary axis},

where P and Q are the controllability and observability Gramians and

* f a2
o A BB/fy]'

| -crc -4




4 INTRODUCTION

Chapter 5 introduces the feedback structure and discusses its stability.

w1 €1
O—

- P

+

R €2 + W2
K O

We define that the above closed-loop system is internally stable if and only if

I -k _[ U-KEP)' K(-PR)! c R
-P T | PU-KP)' (I-PK)! <
Alternative characterizations of internal stability using coprime factorizations are also
presented.

Chapter 6 considers the feedback system properties and design limitations. The
formulations of optimal M, and H,, control problems and the selection of weighting
functions are also considered in this chapter.

Chapter 7 considers the problem of reducing the order of a linear multivariable
dynamical system using the balanced truncation method. Suppose

A Ap B,
G(S) = A21_ A22 B2 (S RHOO
C. G | D

is a balanced realization with controllability and observability Gramians P=Q =¥ =
diag(3y, 3s)

21 = diag(01]51,02132,...,U,IS',)
22 = diag(aﬂ_lIsr“,ar+215r+2,...,UNISN).
Then the truncated system G,(s) = [ @1 % } is stable and satisfies an additive
1

error bound: N
IG() = Gels)lloo <2 3 o
i=r+1
Frequency-weighted balanced truncation method is also discussed.
Chapter 8 derives robust stability tests for systems under various modeling assump-

tions through the use of the small gain theorem. In particular, we show that a system,
shown at the top of the following page, with an unstructured uncertainty A € RH




1.2. Highlights of This Book 5

with ||A|l, < 1 is robustly stable if and only if ||T%wl|,, < 1, where T, is the matrix
transfer function from w to z.

Chapter 9 introduces the LFT in detail. We show that many control problems
can be formulated and treated in the LFT framework. In particular, we show that
every analysis problem can be put in an LFT form with some structured A(s) and some
interconnection matrix M(s) and every synthesis problem can be put in an LFT form
with a generalized plant G(s) and a controller K(s) to be designed.

TN

-+— T e

Chapter 10 considers robust stability and performance for systems with multiple
sources of uncertainties. We show that an uncertain system is robustly stable and
satisfies some Ho, performance criterion for all A; € RH with [|A;j]|, < 1if and only
if the structured singular value () of the corresponding interconnection model is no
greater than 1.




6 INTRODUCTION

Chapter 11 characterizes in state-space all controllers that stabilize a given dy-
namical system G(s). For a given generalized plant

A | B B
G(s) = Gu(s)  Gra(s) ] = | C; ’ Dlll D2
G2(s) Gls) Cy | Dy D;Z

we show that all stabilizing controllers can be parameterized as the transfer matrix from
y to u below where F and L are such that A + LC, and A + By F are stable.

z w
G
u
E Dy E
E 1) B, :
! A |
| f F !
i -L .
(31 ()1
Q

Chapter 12 studies the stabilizing solution to an algebraic Riccati equation (ARE).
A solution to the following ARE

A' X+ XA+ XRX+Q=0
is said to be a stabilizing solution if A + RX is stable. Now let
A R
i=| o 4]
and let X_(H) be the stable H invariant subspace and

x_(H)=1m[§2 ]

where X, X, € C**". If X; is nonsingular, then X := X,X;! is uniquely determined
by H, denoted by X = Ric(H). A key result of this chapter is the so-called bounded
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real lemma, which states that a stable transfer matrix G(s) satisfies ||G(s)||,, < 7 if
and only if there exists an X such that A + BB*X/~? is stable and

XA+ A*X + XBB*X/y* +C*C =0.
The Ho, control theory in Chapter 14 will be derived based on this lemma.

Chapter 13 treats the optimal control of linear time-invariant systems with quadratic
performance criteria (i.e., Hy problems). We consider a dynamical system described by

an LFT with
A| B B
Gs)=| Ci| 0 Dy
Co| Dy O
PR P
G
] u
K
Define
Ry = D},D12 >0, Ry=Dy;D3 >0
H o [ A - ByR{'D;,Cy —-ByR'B; ]
7| =Ci(I - D2R{'D;,)C1 —(A— ByR{'D}yCh)*

Iy = { (4 - BiD3, R 1 Cy)" ~GiR;'C ]
’ ~By(I — D3, R;'D21)B; —(A— B1D3 R;'Cy)

X, = Ric(Hy) >0, Y;:=Ric(Js) >0
Fy:= —R{'(B} Xz + D},C1), Ls:=—(Y2C3 + BiD};)R;".
Then the Hy optimal controller (i.e., the controller that minimizes ||T%.]|,) is given by

A+ ByFy + LoCy | —L
o) = [ ]

Chapter 14 first considers an H, control problem with the generalized plant G(s)
as given in Chapter 13 but with some additional simplifications: R; = I, Ry = I,
Di,Cy = 0, and B1D3; = 0. We show that there exists an admissible controller such
that ||T,wl|e < 7 if and only if the following three conditions hold:

(i) Heo € dom(Ric) and X := Ric(Hy) > 0, where

A ’)’_2BIB’1' - BQB;

Ho =1 _cuc, A ;
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(ii) Jo € dom(Ric) and Y, := Ric(Jw) > 0, where
L[ A e -ce )
©=| -BB; —A :
(i) A(XooYao) <7 -

Moreover, an admissible controller such that |7, || < 7 is given by

_[Ax | -ZuLo
Ksub - [ Foo | 0 ]
where X
Ao := A+ 2B1Bf Xoo + BoFoo + Zoo Lo O

Foo'=—BjXe, Leo:=-YuC0}, Zo:=I—-7Y0eXo) .

We then consider further the general H,, control problem. We indicate how various
assumptions can be relaxed to accommodate other more complicated problems, such
as singular control problems. We also consider the integral control in the Hy and H..
theory and show how the general H,, solution can be used to solve the H., filtering
problem.

Chapter 15 considers the design of reduced-order controllers by means of controller
reduction. Special attention is paid to the controller reduction methods that preserve
the closed-loop stability and performance. Methods are presented that give sufficient
conditions in terms of frequency-weighted model reduction.

Chapter 16 first solves a special Ho, minimization problem. Let P = M~!N be a
normalized left coprime factorization. Then we show that

inf
K stabilizing

[K](I+PK)—‘[I P]Hm

I
- (Vi=Iw )

This implies that there is a robustly stabilizing controller for

-1

= inf

" K stabilizing ||| T

[ K ] (I + PK)~\ 1

oo

Pa=(M+Ay) YN+ Ay)

with

if and only if
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Using this stabilization result, a loop-shaping design technique is proposed. The pro-
posed technique uses only the basic concept of loop-shaping methods, and then a robust
stabilization controller for the normalized coprime factor perturbed system is used to
construct the final controller.

Chapter 17 introduces the gap metric and the v-gap metric. The frequency domain
interpretation and applications of the v-gap metric are discussed. The controller order
reduction in the gap or v-gap metric framework is also considered.

Chapter 18 considers briefly the problems of model validation and the mixed real
and complex p analysis and synthesis.

Most computations and examples in this book are done using MATLAB. Since we
shall use MATLAB as a major computational tool, it is assumed that readers have some
basic working knowledge of the MATLAB operations (for example, how to input vec-
tors and matrices). We have also included in this book some brief explanations of
MATLAB, SIMULINK®, Control System Toolbox, and i Analysis and Synthesis Toolbox!
commands. In particular, this book is written consistently with the p Analysis and
Synthesis Toolbox. (Robust Control Toolbox, LMI Control Toolbox, and other soft-
ware packages may equally be used with this book.) Thus it is helpful for readers to
have access to this toolbox. It is suggested at this point to try the following demo
programs from this toolbox.

> msdemol
> msdemo2

We shall introduce many more MATLAB commands in the subsequent chapters.

1.3 Notes and References

The original formulation of the H,, control problem can be found in Zames [1981].
Relations between H., have now been established with many other topics in control:
for example, risk-sensitive control of Whittle [1990]; differential games (see Basar and
Bernhard [1991], Limebeer, Anderson, Khargonekar, and Green [1992]; Green and Lime-
beer [1995]); chain-scattering representation, and J-lossless factorization (Green [1992]
and Kimura [1997]). See also Zhou, Doyle, and Glover [1996] for additional discussions
and references. The state-space theory of H., has also been carried much further, by
generalizing time invariant to time varying, infinite horizon to finite horizon, and finite
dimensional to infinite dimensional, and even to some nonlinear settings.

ISIMULINK is a registered trademark of The MathWorks, Inc.; p-Analysis and Synthesis is a trade-
mark of The MathWorks, Inc. and MUSYN Inc.; Control System Toolbox, Robust Control Toolbox,
and LMI Control Toolbox are trademarks of The MathWorks, Inc.




10 INTRODUCTION

1.4 Problems

Problem 1.1 We shall solve an easy problem first. When you read a paper or a book,
you often come across a statement like this “It is easy ...”. What the author really
meant was one of the following: (a) it is really easy; (b) it seems to be easy; (c) it is
easy for an expert; (d) the author does not know how to show it but he or she thinks it
is correct. Now prove that when I say “It is easy” in this book, I mean it is really easy.
(Hint: If you can prove it after you read the whole book, ask your boss for a promotion.
If you cannot prove it after you read the whole book, trash the book and write a book
yourself. Remember use something like “it is easy ...” if you are not sure what you are
talking about.)




Chapter 2

Linear Algebra

Some basic linear algebra facts will be reviewed in this chapter. The detailed treatment
of this topic can be found in the references listed at the end of the chapter. Hence we shall
omit most proofs and provide proofs only for those results that either cannot be easily
found in the standard linear algebra textbooks or are insightful to the understanding of
some related problems.

2.1 Linear Subspaces

Let R denote the real scalar field and C the complex scalar field. For the interest of this
chapter, let F be either R or C and let F* be the vector space over F (i-e., F™ is either R"
or C*). Now let 1, 22,..., 71 € F". Then an element of the form a1z +. .. +axzr with
a; € F is a linear combination over F of z1,...,2%. The set of all linear combinations
of z1,%s,...,x; € F™ is a subspace called the span of 71,72, ..., 2k, denoted by

span{zy, x2,..., Tk} = {z =z + ...+ oxxi : @; € F}.

A set of vectors z1,Zs,...,Zx € F* is said to be linearly dependent over F if there
exists aq,...,or € F not all zero such that ajzz +...+axzx = 0; otherwise the vectors
are said to be linearly independent.

Let S be a subspace of F”, then a set of vectors {z1,Z2,...,2x} € S is called a basis
for S if z1,Zo,. ..,z are linearly independent and S = span{z,z3,. .-, zr }. However,
such a basis for a subspace S is not unique but all bases for S have the same number
of elements. This number is called the dimension of S, denoted by dim(S).

A set of vectors {z1,%2,...,zx} in F* is mutually orthogonal if zjz; = 0 for all
i # j and orthonormal if z}x; = 6;;, where the superscript * denotes complex conjugate
transpose and 4;; is the Kronecker delta function with 6;; = 1 for ¢ = j and 6;; = 0
for i # j. More generally, a collection of subspaces Si,852,...,8, of F* is mutually
orthogonal if z*y = 0 whenever z € S; and y € S; for ¢ # j.

11
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The orthogonal complement of a subspace S C F* is defined by
Sti={yef: y*z =0 for all = € S}.

We call a set of vectors {uy,uz,.. ., Ut} an orthonormal basis for a subspace S € ™ if
the vectors form a basis of S and are orthonormal. It is always possible to extend such
a basis to a full orthonormal basis {u;,us, ..., un} for F*. Note that in this case

St = span{uii1,...,Un},

and {ug41,...,us} is called an orthonormal completion of {wr,u2, ..., ui}.
Let A € F™*" be a linear transformation from F* to F™; that is,

A:F —s F".
Then the kernel or null space of the linear transformation A is defined by
KerA = N(A):={z e F: Az = 0},
and the image or range of A is
ImA=R(A):={yeF" .y = Az, z € F}.
Let a;,i=1,2,...,n denote the columns of a matrix 4 € F™*". then
ImA = span{a,,ay,...,a,}.

A square matrix U € F™*" whose columns form an orthonormal basis for F* is called
a unitary matriz (or orthogonal matriz if F = R), and it satisfies U*U = I = UU*.
Now let A = [a;;] € C**™; then the trace of A is defined as

trace(A) := Z ai;.
i=1

Ilustrative MATLAB Commands:
> basis_of KerA = null(A); basis_of ImA = orth(A); rank_of A = rank(A);

2.2 [Eigenvalues and Eigenvectors

Let A € C**™; then the eigenvalues of A are the n roots of its characteristic polynomial
p(A) = det(AM] — A). The maximal modulus of the eigenvalues is called the spectral
radius, denoted by

p(A) := max |\;]

1<i<n
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if A; is a root of p()), where, as usual, | - | denotes the magnitude. The real spectral
radius of a matrix A, denoted by pr(A), is the maximum modulus of the real eigenvalues
of A; that is, pr(4) := max |Ail. A nonzero vector x € C" that satisfies

Az = Az

is referred to as a right eigenvector of A. Dually, a nonzero vector y is called a left
eigenvector of A if
yrA= )yt

In general, eigenvalues need not be real, and neither do their corresponding eigenvectors.
However, if A is real and ) is a real eigenvalue of A, then there is a real eigenvector
corresponding to A. In the case that all eigenvalues of a matrix A are real, we will
denote Amax(A) for the largest eigenvalue of A and Amin(A) for the smallest eigenvalue.
In particular, if A is a Hermitian matrix (i.e., A = A*), then there exist a unitary matrix
U and a real diagonal matrix A such that A = UAU*, where the diagonal elements of
A are the eigenvalues of A and the columns of U are the eigenvectors of A.

Lemma 2.1 Consider the Sylvester equation
AX+XB=C, (2.1)

where A € F**», B € F™*™, and C € F**™ are given matrices. There exists
unique solution X € F**™ if and only if \i(A) + X;(B) # 0, Vi = 1,2,...,n, and
1=L12,...,m.

In particular, if B = A*, equation (2.1) is called the Lyapunov equation; and the
necessary and sufficient condition for the ezistence of a unique solution is that
M(A) +X;(A) #£0, Vi, j=1,2,...,n.

Illustrative MATLAB Commands:
> [V, D] = eig(A) % AV =VD

> X=lyap(A,B,-C) % solving Sylvester equation.

2.3 Matrix Inversion Formulas

Let A be a square matrix partitioned as follows:

A A
A=
[ Az A2 ] ’

where A;; and Ag are also square matrices. Now suppose Ay is nonsingular; then A
has the following decomposition:

A A | I 01 411 O I A7lAs
Agy Ag | T | AnAG I 0 A 0 I




14 LINEAR ALGEBRA

with A := A4y ~ A21A11 Ap2, and A is nonsingular iff A is nonsingular. Dually, if A,
is nonsingular, then

Aun A | _[1 AnAy A o I 0
A21 A22 - 0 I 0 A22 A2—21A21 I

with A := Ay - A12A22 A1, and A is nonsingular iff A is nonsingular. The matrix A
(A) is called the Schur complement of A;; (Azq) in A.

Moreover, if A is nonsingular, then

[Au Am] -1 [A;l +A11‘A12A A21Au —Aﬁ‘AlgA‘l]

Ax Az A7 A AT ATl
and ) . .

An A | _ ATt —A7 A A

Az Az Tl AR AnATY A + AG  Ap A A A

The preceding matrix inversion formulas are particularly simple if A is block trian-

gular:
An 0 17t [ Al 0 ]
A2y Ag | -4 An A AR
Ay Ap 7 _ AT —Af AR A
0 Agg 0 A2_21 ’

The following identity is also very useful. Suppose A;; and A, are both nonsingular
matrices; then

(A1 — A12A5 An) ™t = AT + AT A (Ags - At AT Ar) T An AT

As a consequence of the matrix decomposition formulas mentioned previously, we
can calculate the determinant of a matrix by using its submatrices. Suppose A;; is
nonsingular; then

det A = det 4y, det(Ago — A21A1—11A12).

On the other hand, if A2, is nonsingular, then
det A = det A22 det(Au - A12A2—21A21).
In particular, for any B € C™*" and C € C"*™, we have

I. B

det[ -C I,

] = det(I, + CB) = det(I,, + BC)

and for z,y € C*
det(In, + zy*) =1+ y*z.

Related MATLAB Commands: inv, det

s annad
s
3~ \715
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2.4 Invariant Subspaces

Let A : C* — C" be a linear transformation, A be an eigenvalue of A, and = be a
corresponding eigenvector, respectively. Then Az = Az and A(az) = Max) for any
a € C. Clearly, the eigenvector z defines a one-dimensional subspace that is invariant
with respect to premultiplication by A since AFx = Xfz,Vk. In general, a subspace
S € C" is called invariant for the transformation A, or A-invariant, if Az € S for every
z € S. In other words, that S is invariant for A means that the image of S under A
is contained in S: AS C S. For example, {0}, C*, KerA, and ImA are all A-invariant
subspaces.

As a generalization of the one-dimensional invariant subspace induced by an eigen-
vector, let Ay, ..., A be eigenvalues of A (not necessarily distinct), and let z; be the cor-
responding eigenvectors and the generalized eigenvectors. Then S = span{z1,...,Zk}
is an A-invariant subspace provided that all the lower-rank generalized eigenvectors
are included. More specifically, let A; = Ay = --- = X; be eigenvalues of A, and
let z1,Zs,...,%; be the corresponding eigenvector and the generalized eigenvectors ob-
tained through the following equations:

(A-MDz; = 0
(A——)\l.[)l‘g = Iy

(A — )\1[)1‘[ = Xi-1-

Then a subspace S with z; € S for some ¢ < [ is an A-invariant subspace only if all lower-
rank eigenvectors and generalized eigenvectors of z; are in S (ie., z; € 5, V1 <1 < t).
This will be further illustrated in Example 2.1.

On the other hand, if S is a nontrivial subspace! and is A-invariant, then there is
z € § and X such that Az = Az.

An A-invariant subspace S C C" is called a stable invariant subspace if all the
eigenvalues of A constrained to S have negative real parts. Stable invariant subspaces
will play an important role in computing the stabilizing solutions to the algebraic Riccati
equations in Chapter 12.

Example 2.1 Suppose a matrix A has the following Jordan canonical form:

A1

A[.’L‘l Ty I3 .’L‘4]=[.’I)1 T9 I3 24] )\1 )\3

A4

1We will say subspace S is trivial if § = {0}.
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with ReA; <0, A3 <0, and Ay > 0. Then it is easy to verify that

Sy = span{z;} S12 = span{z;,z,} S123 = span{z;, 3,73}
S3 = span{z3} S13 = span{z;,z3} S124 = span{zy,z;,74}
Sy = span{z,} S14 = span{z;,z4} S34 = span{zs,z4}

are all A-invariant subspaces. Moreover, S, S3, S12, S13, and S;23 are stable A-invariant
subspaces. The subspaces S; = span{z.}, Sa3s = span{zz,z3}, So4 = span{z2,z4}, and
S234 = span{zs,z3,74} are, however, not A-invariant subspaces since the lower-rank
eigenvector z, is not in these subspaces. To illustrate, consider the subspace S»3. Then
by definition, Az, € S,3 if it is an A-invariant subspace. Since

Azo = Azo + r,

Azy € S23 would require that z; be a linear combination of z2 and z3, but this is
impossible since ; is independent of z5 and zs.

2.5 Vector Norms and Matrix Norms

In this section, we shall define vector and matrix norms. Let X be a vector space.
A real-valued function ||-|| defined on X is said to be a norm on X if it satisfies the
following properties:

(i) llzll > 0 (positivity);

(i) ||lzll = 0 if and only if z = O (positive definiteness);
(iii) |lez|| = |a|||z|l, for any scalar a (homogeneity);
(iv) ||z +yll < llzll + llyll (triangle inequality)
forany z € X and y € X.

Let z € C*. Then we define the vector p-norm of z as

n 1/p
l=li, := (Z ll‘il”) , for 1<p< oo
=1

In particular, when p = 1,2, co we have

n
lzlly == |asl;
i=1

”.73”2 =
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lzlloo = max |ail.
Clearly, norm is an abstraction and extension of our usual concept of length in three-
dimensional Euclidean space. So a norm of a vector is a measure of the vector “length”
(for example, ||z||, is the Euclidean distance of the vector z from the origin). Similarly,
we can introduce some kind of measure for a matrix.
Let A = [a;;] € C™*"; then the matrix norm induced by a vector p-norm is defined

as

|| Az]|
|A]|, := sup ——=.
14y = 58 e,

The matrix norms induced by vector p-norms are sometimes called induced p-norms.
This is because ||A||, is defined by or induced from a vector p-norm. In fact, A can
be viewed as a mapping from a vector space C* equipped with a vector norm ||-||, to
another vector space C™ equipped with a vector norm |[-|| ,. So from a system theoretical
point of view, the induced norms have the interpretation of input/output amplification
gains.

In particular, the induced matrix 2-norm can be computed as

”A”2 =V /\maX(A*A)-

We shall adopt the following convention throughout this book for the vector and
matriz norms unless specified otherwise: Let x € C* and A € C™*"; then we shall
denote the FEuclidean 2-norm of x simply by

]l = llll
and the induced 2-norm of A by

1A]] := [l A, -

The Euclidean 2-norm has some very nice properties:

Lemma 2.2 Letz € F* andy € F™.

1. Supposen > m. Then ||z|| = |ly|| if there is a matriz U € F**™ such thatx = Uy
and U*U = 1.

2. Suppose n = m. Then |z*y| < ||z|| lyll- Moreover, the equality holds iff x = ay
for some a € F ory =0.

3. izl < |lyll iff there is a matriz A € F**™ with ||A|| < 1 such that z = Ay.
Furthermore, ||z|| < |lyll o 1Al < 1.

4. |[Uz|| = |lz|| for any appropriately dimensioned unitary matrices U.
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Another often used matrix norm is the so called Frobenius norm. It is defined as

m n
22 layl -

=1 j=1

|A|l g := \/trace(A*A) =

However, the Frobenius norm is not an induced norm.

The following properties of matrix norms are easy to show:
Lemma 2.3 Let A and B be any matrices with appropriate dimensions. Then
1. p(A) < ||A|} (this is also true for the F-norm and any induced matriz norm).

2. [|AB|| < A|llIBll- In particular, this gives "A‘1|| > ||A|I7Y if A is invertible.
(This is also true for any induced matriz norm.)

3. [lUAV|| = ||A|l, and [UAV || = ||A||g, for any appropriately dimensioned unitary
matrices U and V.

4. |ABllp < [|Alll|Bllp and [[AB||p < Bl |Allp-

Note that although premultiplication or postmultiplication of a unitary matrix on a
matrix does not change its induced 2-norm and F-norm, it does change its eigenvalues.

For example, let
10
A= [ Lo ] .

Then A;1(A) =1, 2(A) = 0. Now let

Sl

U=

|

e[ 7 4]

Sl
S-S

then U is a unitary matrix and

0

with A (UA) = V2, A2(UA) = 0. This property is useful in some matrix perturbation
problems, particularly in the computation of bounds for structured singular values,
which will be studied in Chapter 9.

Related MATLAB Commands: norm, normest
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2.6 Singular Value Decomposition

A very useful tool in matrix analysis is singular value decomposition (SVD). It will be
seen that singular values of a matrix are good measures of the “size” of the matrix and
that the corresponding singular vectors are good indications of strong/weak input or
output directions.

Theorem 2.4 Let A € F™*", There exist unitary matrices

U = [ul,uQ,...,um]GF'"x'"
V = [v,ve,...,v,) € F"
such that 5
_ * _ 1 0
A=UZV*, = [ 0 0 ] R
where
g1 0 0
0 a2 0
I = .
0 © Op
and

01> 03> >0p >0, p=min{m,n}.
Proof. Let o = ||A]| and without loss of generality assume m 2 n. Then, from the
definition of ||A||, there exists a 2 € F* such that
Azl = o ||z]} -
By Lemma 2.2, there is a matrix 7 € F™*™ guch that U*U = I and
Az =0Uz.
Now let

h

"o

m:ielF", e ™.
|2l

We have Az = oy. Let
V=[z W |eF>"

and
U=[y Ul]Elmem

be unitary.?2 Consequently, U* AV has the following structure:

e | yAz yrAVL | _[oyty yrAVL | _ (o W
Av=UTAV =1 gy U{AVl]_[aU{*y viav; [ =0 B |

2Recall that it is always possible to extend an orthonormal set of vectors to an orthonormal basis
for the whole space.
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where w := V*A*y € F*~! and B := U} AU, € Fm-1)x(n-1)

Since .
1
0
ATl . = (0 + w*w),
0 J1l,
it follows that [|4;]|° > 62 + w*w. But since o = lAll = {|A1]l, we must have w = 0.

An obvious induction argument gives
U'AV = L.

This completes the proof. m]

The o; is the ith singular value of A, and the vectors u; and v; are, respectively,
the ith left singular vector and the jth right singular vector. It is easy to verify that

Av; = oju,

A*u; = o;v;.
The preceding equations can also be written as

* 2
A*Av; = aiv;
* — 2
AA*w; = ofu;.

Hence o2 is an eigenvalue of AA4* or A*A, u; is an eigenvector of AA*, and v; is an

eigenvector of A*A.
The following notations for singular values are often adopted:

7(A) = o0max(A4) = o1 = the largest singular value of A:
and
g(A) = 0min(A) = 0, = the smallest singular value of A.

Geometrically, the singular values of a matrix A are precisely the lengths of the semi-
axes of the hyperellipsoid E defined by

E={y:y=Az,z e C", izl = 1}.

Thus v, is the direction in which [Jy|| is largest for all [lz|l = 1; while v, is the direction
in which [|y|| is smallest for all ||z|| = 1. From the input/output point of view, v; (v,)
is the highest (lowest) gain input (or control) direction, while u, (um) is the highest
(lowest) gain output (or observing) direction. This can be illustrated by the following
2 x 2 matrix:

A= [ cosf, -—sinb J [ o1 J [ cosf, —siné,
(2p)]

sinf; cosé; sinf;  cos#é,
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It is easy to see that A maps a unit circle to an ellipsoid with semiaxes of o1 and o2.

Hence it is often convenient to introduce the following alternative definitions for the

largest singular value 7
o(A) = max lAz||
Z||=

and for the smallest singular value g of a tell matriz:

(A) := min ||Az]|.

- ll=ll=1
Lemma 2.5 Suppose A and A are square matrices. Then
(i) la(A+ D) —a(A)] <T(A);

(i) a(AD) = a(A)a(B);

1
oy a—1y . .o .
(ii1) (A7) = (A if A is invertible.
Proof.
(i) By definition
g(A+4) = min Il(A+A)$IIZ"nlui{ll{llflxll—|lAwll}
min ||Az| — max ||Azx
> min |14 - mex Az
= o(4)-5(A).

Hence —7(A) < g(A + A) — a(A). The other inequality (4 +A) - o(A) <7(A)
follows by replacing A by 4 + A and A by —A in the preceding proof.

(ii) This follows by noting that

a(44) = n%igl lAAz||

= /”m”in1 T*A*A*AAzx

a(4) min, lAz|l = g(A)e(A).

\Y

(iii) Let the singular value decomposition of A be A = ULV™; then A"t =VvETlUu~
Hence 7(A~1) = F(£71) = 1/a(Z) = 1/a(A).

0O

may not be true if A and A are not square matrices. For example,

] and A =[ 3 4 ]; then g(AA) =0 but g(4) = V5 and g(A) = 5.

Note that (2%

~—

consider A =

e
N =
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Some useful properties of SVD are collected in the following lemma.

Lemma 2.6 Let A € F"*" and
01202220, >0,41=---=0, 7 < min{m,n}.

Then

1. rank(A4) =r;

2. KerA = span{v,41,...,v,} and (Kerd)* = span{vy,...,v.};

3. ImA = span{uy,...,u,} and (ImA4)+ = span{u,t1,...,Um};

4. A€ F™*™ has a dyadic expansion:

A= zr: ouv; = UV},
i=1
where Uy = [uy,...,u,], V, = [v1,...,v,], and &, = diag(o1,...,0.);
5. |AIG =02 402+ +02;
6. ||All = o1;

7. 0i(UhAV,) = 0i(A),i=1,...,p for any appropriately dimensioned unitary ma-
trices Uy and Vy;

8. Let k <r =rank(A) and Ay := Zle o;u;v}; then

min  ||A—B|| = |4 - Ai|| = ox41.
rank(B)<k

Proof. We shall only give a proof for part 8. It is easy to see that rank(Ax) < k and
|4 — Akl = ox4+1. Hence, we only need show that  min |A—BJ| > oxs1. Let B
rank(B)<k
be any matrix such that rank(B) < k. Then
14— Bl IULV* — B|| = || -~ U*BV]||

e 03-aran 55 | oo,

v

where B=[ Iy, 0 |U*BV [ Ikgl } € FE+UX(k+1) and rank(B) < k. Let z € Ft+1
be such that Bz =0 and llz|]| = 1. Then

14~ Bl 2 |[Sess = B]| 2 | (Siss ~ Blaf = 15essall > ouer.

Since B is arbitrary, the conclusion follows. O
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Illustrative MATLAB Commands:
> [U,E,V]=svd(A) % A=UXZV"

Related MATLAB Commands: cond, condest

2.7 Semidefinite Matrices

A square Hermitian matrix A = A* is said to be positive definite (semidefinite), denoted
by A >0 (>0),if z*Az > 0 (> 0) for all z # 0. Suppose A € F**" and A = 4™ > 0;
then there exists a B € F**" with r > rank(A) such that A = BB*.

Lemma 2.7 Let B € F™"*" gnd C € F**™. Suppose m > k and B*B = C*C. Then
there exists a matriz U € F™** such that U*U = I and B=UC.

Proof. Let V; and V, be unitary matrices such that

pon[%]. e-n(9]

where B; and C; are full-row rank. Then B; and C; have the same number of rows
and V3 := B;C;(C,C}) 7! satisfies V3'Vs = I since B*B = C*C. Hence V3 is a unitary
matrix and V3*B; = C;. Finally, let

_ Vs 0 |«
v=v| % v
for any suitably dimensioned Vj such that V'V, = I. 0O

We can define square root for a positive semidefinite matrix A, A2 = (AY?)* >0,
by
A=AV2AMR

Clearly, A/2 can be computed by using spectral decomposition or SVD: Let A=UAU™
then
A1/2 - UAI/QU*’

where

A =diag{\1,..., An}, AY? =diag{vA1,..., VAn}-
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Lemma 2.8 Suppose A = A* >0 and B=B*>0. Then A> B iff p(BA~!) < 1.

Proof. Since A > 0, we have A > B iff
0<I—A"Y2BA™Y2 = [ _ A=12(BA~1)A1/2,

However, A='/2BA~!/2 and BA~! are similar, hence \;(BA~!) = Mi(AT12BA1/?),
Therefore, the conclusion follows by the fact that

0<I-A"12Bg-1/2

iff p(A~1/2BA~1/2) < 1iff p(BA™1) < 1. O

2.8 Notes and References

A very extensive treatment of most topics in this chapter can be found in Brogan [1991],
Horn and Johnson (1990, 1991] and Lancaster and Tismenetsky [1985]. Golub and Van
Loan’s book [1983] contains many numerical algorithms for solving most of the problems
in this chapter.

2.9 Problems

Problem 2.1 Let

110
1 01
A=]2 11
1 01
2 0 2

Determine the row and column rank of A and find bases for Im(A), Im(A*), and Ker(A).

1 4
Problem 2.2 Let Do =| 2 5
3 6
Furthermore, find a D, such that [ D D, ] is a unitary matrix.

. Find a D such that D*D = I and ImD = ImD,.

Problem 2.3 Let A be a nonsingular matrix and z,y € C*. Show

Azy*A

A—l * —1= _ g
( +oy’) 1+y*Azx

and
det A

-1 *\—1 __
det(A™" + zy*) =T 4s
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Problem 2.4 Let A and B be compatible matrices. Show
B(I+AB) ' =1+ BA)™'B, (I+ Al =T1-AT+ A7

Problem 2.5 Find a basis for the maximum dimensional stable invariant subspace of

A R .
H'__[-—Q _A*}wn;h

Problem 2.6 Let A = [a;;]. Show that a(A) := max; |ai;| defines a matrix norm.
Give examples so that a(A) < p(A) and a(AB) > a(A)a(B).

1 2 3
4 1 -1
(b) Find the minimal norm solution «: min {llzl| : Az = B}.

Problem 2.7 Let A = ( and B = ((1)) (a) Find all z such that Az = B.

1 2 3
Problem 2.8 Let A = (——2 —5) and B = (4) . Find an z such that ||Az — B||
0 1 5
is minimized.
Problem 2.9 Let ||A]| < 1. Show
1. I-A) ' =I+A+A%+---.
2. (7= A7 <1+ 1Al + AP + -+ = t=fay-
3T =7 2y
Problem 2.10 Let A € C™*". Show that
1
T I4ll, < Al < VallAlly;
1
T 461, < 14l < vVmllAlly;

1
—llAlle < ll4lly < m Al -
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Problem 2.11 Let A = 2y* and z,y € C*. Show that AN, = llAllp = l|z|| ly]]-

1 1+4j

Problem 2.12 Let A = [ 1—; o } Find A% and a B € C? such that A = BB".

P, P,

Problem 2.13 Let P = P* = [ P Prn

Ai(Pn), V1<i<k.

] > 0 with P; € Ckxk, Show /\I(P) >

Problem 2.14 Let X = X* > 0 be partitioned as X = )X(l,l ‘§12 ] (a) Show
12 <222

KerXy; C KerXjs; (b) let X, = Uzdiag(A1,0)Us be such that A, is nonsingular and

define X3, := U,diag(AT?, 0)U; (the pseudoinverse of X5, ); then show that V = X2 X5

solves Y X3 = X12; and (c) show that

X X | _ [T XiX5 Xu - X2 XHX:, 0 I 0
Xt X2 | |0 I 0 X2 XhHXy, T



Chapter 3

Linear Systems

This chapter reviews some basic system theoretical concepts. The notions of controlla-
bility, observability, stabilizability, and detectability are defined and various algebraic
and geometric characterizations of these notions are summarized. Observer theory is
then introduced. System interconnections and realizations are studied. Finally, the
concepts of system poles and zeros are introduced.

3.1 Descriptions of Linear Dynamical Systems

Let a finite dimensional linear time invariant (FDLTI) dynamical system be described
by the following linear constant coefficient differential equations:

i = Az+ Bu, z(to) =To 3.1)

y = Cz+ Du, (3.2)
where z(t) € R" is called the system state, z(to) is called the initial condition of the
system, u(t) € R™ is called the system input, and y(t) € RP is the system output. The
A,B,C, and D are appropriately dimensioned real constant matrices. A dynamical
system with single-input (m = 1) and single-output (p = 1) is called a SISO (single-
input and single-output) system; otherwise it is called a MIMO (multiple-input and
multiple-output) system. The corresponding transfer matrix from u to y is defined as

Y(s) = G(s)U(s),

where U(s) and Y(s) are the Laplace transforms of u(t) and y(t) with zero initial
condition (z(0) = 0). Hence, we have

G(s) = C(sI — A)'B +D.

Note that the system equations (3.1) and (3.2) can be written in a more compact matrix

HEEHIB!
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To expedite calculations involving transfer matrices, we shall use the following notation:

[%J =C(sI-A)~'B+D.

In MATLAB the system can also be written in the packed form using the command
> G=pck(A, B, C, D) % pack the realization in partitioned form
> seesys(G) % display G in partitioned format

> [A, B, C, Dj=unpck(G) % unpack the system matrix

& 5]

is a real block matrix, not a transfer function.

Note that

INlustrative MATLAB Commands:

> G=pck([], [], [], 10) % create a constant system matrix

> [y, x, t}=step(A, B, C, D, Iu) % Iu=i (step response of the ith channel)
> [y, x, tj=initial(A, B, C, D, x0) % initial response with initial condition Zo
> [y, x, t}=impulse(A, B, C, D, Iu) % impulse response of the Tuth channel

> [y,x]=lsim(A,B,C,D,U,T) % U is a length(T") x column(B) matrix input; T is
the sampling points.

Related MATLAB Commands: minfo, trsp, cos_tr, sin_tr, siggen

3.2 Controllability and Observability

We now turn to some very important concepts in linear system theory.

Definition 3.1 The dynamical system described by equation (3.1) or the pair (A, B)
is said to be controllable if, for any initial state £(0) = zo, t; > 0 and final state 1,
there exists a (piecewise continuous) input u(-) such that the solution of equation 8.1)
satisfies z(¢,) = z;. Otherwise, the system or the pair (A, B) is said to be uncontrollable.

The controllability (and the observability introduced next) of a system can be verified
through some algebraic or geometric criteria.
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Theorem 3.1 The following are equivalent:
(i) (A, B) is controllable.
(i1) The matriz
W.(t) := /Ot eA"BB*e? Tdr
is positive definite for any t > 0.
(i) The controllability matriz
C=[B AB A?B ... A"'B ]
has full-row rank or, in other words, (A|ImB) := S Im(A'B) =R".

(iv) The matriz [A — A, B] has full-row rank for all X in C.

(v) Let A and x be any eigenvalue and any corresponding left eigenvector of A (i.e.,
z*A =z*)); then *B # 0.

(vi) The eigenvalues of A+BF can be freely assigned (with the restriction that complex
eigenvalues are in conjugate pairs) by a suitable choice of F.

Example 3.1 Let A = [g g] and B = [ 1 } Then z; = [(1)} and z9 = ?

are independent eigenvectors of A and !B #0, ¢ = 1,2. However, this should not lead
one to conclude that (4, B) is controllable. In fact, z = 71 — 2 is also an eigenvector
of A and z* B = 0, which implies that (A, B) is not controllable. Hence one must check

for all possible eigenvectors in using criterion (v).

Definition 3.2 An unforced dynamical system & = Az is said to be stable if all the
eigenvalues of A are in the open left half plane; that is, ReA(4) < 0. A matrix A with
such a property is said to be stable or Hurwitz.

Definition 3.3 The dynamical system of equation (3.1), or the pair (A, B), is said to
be stabilizable if there exists a state feedback u = Fz such that the system is stable
(i.e., A+ BF is stable).

It is more appropriate to call this stabilizability the state feedback stabilizability to
differentiate it from the output feedback stabilizability defined later.
The following theorem is a consequence of Theorem 3.1
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Theorem 3.2 The following are equivalent:
(i) (A, B) is stabilizable.
(i) The matriz [A — A, B has full-row rank for all Re) > 0.
(i) For all X and x such that z*A = 2*\ and Rel >0, *B #0.
(iv) There ezists a matriz F such that A + BF is Hurwitz.

We now consider the dual notions: observability and detectability of the system
described by equations (3.1) and (3.2).

Definition 3.4 The dynamical system described by equations (3.1) and (3.2) or by the
pair (C, A) is said to be observable if, for any t; > 0, the initial state z(0) = z¢ can be
determined from the time history of the input u(t) and the output y(¢) in the interval
of [0,¢;]. Otherwise, the system, or (C, A), is said to be unobservable.

Theorem 3.3 The following are equivalent:
(i) (C,A) is observable.
(ii) The matriz
W,(t) .= /Ot e’ TC*Cetdr
is positive definite for any t > 0.

(i) The observability matriz
C
CA
O = CA?

CA™1
has full-column rank or I, Ker(CA-1) = 0.

A-2I

(v) The matriz [ c

J has full-column rank for all X in C.

(v) Let X and y be any eigenvalue and any corresponding right eigenvector of A (i.e.,
Ay = Xy); then Cy # 0.

(vi) The eigenvalues of A+ LC can be freely assigned (with the restriction that complezx
eigenvalues are in conjugate pairs) by a suitable choice of L.

(vii) (A*,C*) is controllable.
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Definition 3.5 The system, or the pair (C,A), is detectable if A+ LC is stable for
some L.

Theorem 3.4 The following are equivalent:
(i) (C,A) is detectable.

A—-AI

(i) The matriz [ c

} has full-column rank for all ReA > 0.

(iii) For all X and x such that Az = Az and Rel > 0, Cx #0.
(iv) There erists a matriz L such that A+ LC is Hurwitz.
(v) (A*,C*) is stabilizable.

The conditions (iv) and (v) of Theorems 3.1 and 3.3 and the conditions (ii) and
(iii) of Theorems 3.2 and 3.4 are often called Popov-Belevitch-Hautus (PBH) tests. In
particular, the following definitions of modal controllability and observability are often
useful.

Definition 3.6 Let )\ be an eigenvalue of A or, equivalently, a mode of the system.
Then the mode A is said to be controllable (observable) if z*B # 0 (Cz # 0) for all
left (right) eigenvectors of A associated with A; that is, 2*A = Az* (Az = Az) and
0 # z € C*. Otherwise, the mode is said to be uncontrollable (unobservable).

It follows that a system is controllable (observable) if and only if every mode is control-
lable (observable). Similarly, a system is stabilizable (detectable) if and only if every
unstable mode is controllable (observable).

Illustrative MATLAB Commands:

> C= ctrb(A, B); O= obsv(A, C);

> Wc(oo)=gram(A, B); % if A is stable.

> F=-place(A, B, P) % P is a vector of desired eigenvalues.

Related MATLAB Commands: ctrbf, obsvf, canon, strans, acker

3.3 Observers and Observer-Based Controllers

Tt is clear that if a system is controllable and the system states are available for feed-
back, then the system closed-loop poles can be assigned arbitrarily through a constant
feedback. However, in most practical applications, the system states are not completely
accessible and all the designer knows are the output y and input uw. Hence, the esti-
mation of the system states from the given output information y and input u is often
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necessary to realize some specific design objectives. In this section, we consider such an
estimation problem and the application of this state estimation in feedback control.

Consider a plant modeled by equations (3.1) and (3.2). An observer is a dynamical
system with input (u,y) and output (say, ), that asymptotically estimates the state z,
that is, £(t) — 2(t) — 0 as t — oo for all initial states and for every input.

Theorem 3.5 An observer ezists iff (C,A) is detectable. Further, if (C,A) is de-
tectable, then a full-order Luenberger observer is given by

¢ = Ag+Bu+ L(Cq+ Du~— y) (3.3)
i = q (3.4)

where L is any matriz such that A + LC is stable.

Recall that, for a dynamical system described by the equations (3.1) and (3.2), if (A, B)
is controllable and state z is available for feedback, then there is a state feedback u = Fz
such that the closed-loop poles of the system can be arbitrarily assigned. Similarly, if
(C, A) is observable, then the system observer poles can be arbitrarily placed so that the
state estimator & can be made to approach z arbitrarily fast. Now let us consider what
will happen if the system states are not available for feedback so that the estimated
state has to be used. Hence, the controller has the following dynamics:

2 = (A+LC)2+Bu+LDu— Ly
= Fi.

Then the total system state equations are given by

=l e wesriie][2]

Let e := x — &; then the system equation becomes

el _[A+LC 0 e
[a:]_[ -LC A+BF] a:]
and the closed-loop poles consist of two parts: the poles resulting from state feedback
Ai(A + BF) and the poles resulting from the state estimation Aj(A + LC). Now if
(A, B) is controllable and (C, A) is observable, then there exist F and L such that the
eigenvalues of A+ BF and A + LC can be arbitrarily assigned. In particular, they can
be made to be stable. Note that a slightly weaker result can also result even if (A, B)
and (C, A) are only stabilizable and detectable.
The controller given above is called an observer-based controller and is denoted as

u=K(s)y
and
A+BF+LC+LDF|-L
K(s)= 7 o |
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Now denote the open-loop plant by

o418

then the closed-loop feedback system is as shown below:

Y u
G K'—’

In general, if a system is stabilizable through feeding back the output y, then it is
said to be output feedback stabilizable. It is clear from the above construction that a
system is output feedback stabilizable if and only if (A, B) is stabilizable and (C, A) is
detectable.

1 2 1
10 ] B = [ 0
state feedback u = Fz such that the closed-loop poles are at {—2,—3}. This can be
done by choosing F = [ -6 —8 ] using

Example 3.2 Let A = [ ], and C = [ 1 0 ]. We shall design a

> F = —place(4, B,[-2,-3]).

Now suppose the states are not available for feedback and we want to construct an
observer so that the observer poles are at {—10,—10}. Then L = [ ___gi ] can be
obtained by using

> L = —acker(A',C',[~10,-10])
and the observer-based controller is given by

—534(s + 0.6966)

K(s) = 5 7 34.6564)(s — 8.6564)°

Note that the stabilizing controller itself is unstable. Of course, this may not be desirable
in practice.
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3.4 Operations on Systems

In this section, we present some facts about system interconnection. Since these proofs
are straightforward, we will leave the details to the reader.
Suppose that G; and G2 are two subsystems with state-space representations:

_ A] B1 _ A2 B2
Gl‘[q Dl]’ G“"[cz D ]

Then the series or cascade connection of these two subsystems is a system with the
output of the second subsystem as the input of the first subsystem, as shown in the
following diagram:

G, Gy

This operation in terms of the transfer matrices of the two subsystems is essentially the
product of two transfer matrices. Hence, a representation for the cascaded system can
be obtained as

_ Ay l B, A, I B,
ser = | gp] |3
Ar BiC By D, A, 0 B,
= 0 Ay B, = B,Cy; A B, D,
C, DC, | D,D, D,Cy, C; | D,D,

Similarly, the parallel connection or the addition of G; and G can be obtained as

A 0 B
G1+G2=[A1|Bl]+[A2|B2]: 01 A, B; _
Ci | Dy C2 [ Do Ci C, |Di+Ds

For future reference, we shall also introduce the following definitions.

Definition 3.7 The transpose of a transfer matrix G(s) or the dual system is defined
as
G — GT(s) = B*(sI — A*)"'C* + D*

o] = [55

Definition 3.8 The conjugate system of G(s) is defined as
G — G~ (s):= GT(~s) = B*(—sI — A*)"'C* + D*

HE [

or, equivalently,

or, equivalently,
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In particular, we have G*(jw) == [G(jw)]" = G~ (jw).

_ Areal rational matrix G(s) is called an inverse of a transfer matrix G(s) if G (5)G(s) =
G(s)G(s) = I. Suppose G(s) is square and D is invertible. Then

g1 [A=BD'C|-BD"!
- D'c | DT |’

The corresponding MATLAB commands are
G1G2 == mmult(Gl, Gz), [ Gy G2 ] < SbS(Gl, Gz)

G1+G2 = madd(Gl,Gz), Gl"‘G2 p— mSllb(Gl,Gz)

G»
GT(s) < transp(G), G~(s) <> cjt(G), G7'(s) + minv(G)

[Gl] < abv(G1,G2), [Gl o ] < daug(Gi,G2),
2

a G(s) <= mscl(G,a), «isa scalar.

Related MATLAB Commands: append, parallel, feedback, series, cloop,
sclin, sclout, sel

3.5 State-Space Realizations for Transfer Matrices

In some cases, the natural or convenient description for a dynamical system is in terms
of matrix transfer function. This occurs, for example, in some highly complex sys-
tems for which the analytic differential equations are too hard or too complex to write
down. Hence certain engineering approximation or identification has to be carried out;
for example, input and output frequency responses are obtained from experiments so
that some transfer matrix approximating the system dynamics can be obtained. Since
the state-space computation is most convenient to implement on the computer, some
appropriate state-space representation for the resulting transfer matrix is necessary.

In general, assume that G(s) is a real rational transfer matrix that is proper. Then
we call a state-space model (A, B,C, D) such that

oo [22]

Definition 3.9 A state-space realization (4, B,C, D) of G(s) is said to be a minimal
realization of G(s) if A has the smallest possible dimension.

a realization of G(s).

Theorem 3.6 A state-space realization (A, B,C, D) of G(s) is minimal if and only if
(A, B) is controllable and (C, A) is observable.
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We now describe several ways to obtain a state-space realization for a given multiple-
input and multiple-output transfer matrix G(s). We shall first consider SIMO (single-
input and multiple-output) and MISO (multiple-input and single-output) systems.

Let G(s) be a column vector of transfer function with p outputs:

n—1 n—2 e
G(S) — /318 +ﬁ23 + +,3n—ls+ﬂn

+d, B, €RP, de RP.
s"+a1s" '+ ta, 15+an A ’

Then G(s) = [ g Z J with
—a1 —ag —Qp-1 —Gan 1
1 0 0 0 0
A= 0 1 0 0 b= 0

[}
o
(==
S

C=[/81 ,32 tgn—l ﬂn]

is a so-called controllable canonical form or controller canonical form.
Dually, consider a multiple-input and single-output system

Mms" s 15+

G(s) = d, n7 € R™,d* € R™.
() s"+as" 4+ +a,15+ap T o eRT. e
Then
( —-ai 1 0 0 m T
—a; 01 -« 0| n
AlB . Lo .
Gls) = _ : . : :
(#) [c d] ~@no1 0 0 - 1(m,,
—a, 0 0 --- 0 7,
| 1 00 --- 0 d

is an observable canonical form or observer canonical form.

For a MIMO system, the simplest and most straightforward way to obtain a real-
ization is by realizing each element of the matrix G(s) and then combining all these
individual realizations to form a realization for G(s). To illustrate, let us consider a
2 x 2 (block) transfer matrix such as

_[ Gi(s) Gals)
G(s)_[Gs(z) Gj(s)J

and assume that G;(s) has a state-space realization of the form

Gi(s) = [ é g:'_ ] i=1,...4

- |
g
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Then a realization for G(s) can be obtained as (G = abv(sbs(G1,Gz2),sbs(Gs, G4))):

A, 0 0 O0|B O
0 A 0 O
0 0 A; 0 |Bs O
0 0 0 As| 0 By
Ci Co 0 0 |D D
0 0 Cs Cs|D3 Dy

G(s) =

Alternatively, if the transfer matrix G(s) can be factored into the product and/or
the sum of several simply realized transfer matrices, then a realization for G can be
obtained by using the cascade or addition formulas given in the preceding section.

A problem inherited with these kinds of realization procedures is that a realization
thus obtained will generally not be minimal. To obtain a minimal realization, a Kalman
controllability and observability decomposition has to be performed to eliminate the un-
controllable and/or unobservable states. (An alternative numerically reliable method to
eliminate uncontrollable and /or unobservable states is the balanced realization method,
which will be discussed later.)

We shall now describe a procedure that does result in a minimal realization by
using partial fractional expansion (the resulting realization is sometimes called Gilbert’s
realization due to E. G. Gilbert).

Let G(s) be a p x m transfer matrix and write it in the following form:

with d(s) a scalar polynomial. For simplicity, we shall assume that d(s) has only real
and distinct roots A; # A, if 1 # j and

d(s) = (s —A)(s = Az2)---(s = Ap).
Then G(s) has the following partial fractional expansion:

T W;ﬁ
G(s)=D+ZS*A..
=1 i

Suppose
rank W,i = ki

and let B; € Ré*™ and C; € RP**i be two constant matrices such that

W, = C;B;.
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Then a realization for G(s) is given by

A1, B,

G(s) = ' :
(#) Mk, | B,
¢ - C | D

It follows immediately from PBH tests that this realization is controllable and observ-
able, and thus it is minimal.

An immediate consequence of this minimal realization is that a transfer matrix with
an rth order polynomial denominator does not necessarily have an rth order state-space
realization unless W; for each i is a rank one matrix.

This approach can, in fact, be generalized to more complicated cases where d(s) may
have complex and/or repeated roots. Readers may convince themselves by trying some
simple examples.

Ilustrative MATLAB Commands:
>» G=nd2sys(num, den, gain); G=zp2sys(zeros, poles, gain);
Related MATLAB Commands: ss2tf, ss2zp, 2p2ss, tf2ss, residue, minreal

3.6 Multivariable System Poles and Zeros

A matrix is called a polynomial matrix of a variable if every element of the matrix is a
polynomial of the variable.

Definition 3.10 Let Q(s) be a (p x m) polynomial matrix (or a transfer matrix) of s.
Then the normal rank of Q(s), denoted normalrank (Q(s)), is the maximally possible
rank of Q(s) for at lease one s € C.

To show the difference between the normal rank of a polynomial matrix and the rank
of the polynomial matrix evaluated at a certain point, consider

s 1
Qls)=1| s 1
s 1

Then Q(s) has normal rank 2 since rank Q(3) = 2. However, Q(0) has rank 1.
The poles and zeros of a transfer matrix can be characterized in terms of its state-

space realizations. Let
A|lB
C!D

be a state-space realization of G(s).
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Definition 3.11 The eigenvalues of A are called the poles of the realization of G(s).
To define zeros, let us consider the following system matrix:

a=["5" 3]

Definition 3.12 A complex number z € C is called an invariant zero of the system
realization if it satisfies

A ZoI B

rank [ c D

] < normalrank [ A-sI B ]

C D

The invariant zeros are not changed by constant state feedback since

([ A+BF -l B] _ ([ A==l B][I 0
ran c+DF D| = ™ ¢ D||F I
3 A—zl B
= rank[ C D]'

It is also clear that invariant zeros are not changed under similarity transformation.

The following lemma is obvious.

A-sl B
C D
invariant zero of a realization (A, B,C, D) if and only if there ezist 0 # z € C" and

u € C™ such that
A—2zl B T4y
C D w |

Moreover, if u =0, then 2o is also a nonobservable mode.

Lemma 3.7 Suppose { ] has full-column normal rank. Then z € C is an

Proof. By definition, zp is an invariant zero if there is a vector [ 2 ] # 0 such that
A-—- Z()I B T —0
C D w |

A-sl B } has full-column normal rank.

since [ c D

On the other hand, suppose zo is an invariant zero; then there is a vector [ i } #0

[ Ble

such that
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. . B . A—-sI B
We claim that z # 0. Otherwise, [ D ]u = 0 or 4 = 0 since [ c D ] has
full-column normal rank (i.e., T = 0), which is a contradiction.
Finally, note that if u = 0, then
A-— Z()I _
[ oo
and zp is a nonobservable mode by PBH test. a

When the system is square, the invariant zeros can be computed by solving a gen-
eralized eigenvalue problem:

(& 8)0:]-= [ 8]0

M N

using a MATLAB command: eig(M, N).

Lemma 3.8 Suppose [ A Z,SI IB; } has full-row normal rank. Then 2y € C is an

invariant zero of a realization (A, B,C, D) if and only if there exist 0 # y € C* and

v € CP such that
. A—2zI B
[y v ][ c' D]zo'

Moreover, if v =10, then zo is also a noncontrollable mode.

B

Lemma 3.9 G(s) has full-column (row) normal rank if and only if [ A Z,SI D

} has

full-column (row) normal rank.
Proof. This follows by noting that
A-sl B | I 0 A-sI B
C D| | CA-s)T T 0 G(s)

A—-sI B
C D

and

normalrank [ } = n + normalrank(G(s)).

O

Lemma 3.10 Let G(s) € R,(s) be a p x m transfer matriz and let (A,B,C,D) be a
minimal realization. If the system input is of the form u(t) = woe*t, where A € C is not
a pole of G(s) and ug € C™ is an arbitrary constant vector, then the output due to the
input u(t) and the initial state £(0) = (A] — A)~'Bug is y(t) = G(N)uoe™, Vt > 0. In
particular, if X is a zero of G(s), then y(t) = 0.
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Proof The system response with respect to the input u(t) = upe™ and the initial
condition z(0) = (AI — A)~!Bug is (in terms of the Laplace transform)
Y(s) = C(sI—A)'z(0)+C(sI - A)"'BU(s) + DU(s)
= C(sI — A)™'z(0) + C(sI — A)"'Bug(s — A) ™" + Dug(s — A7t
= C(sI - A)~'z(0) + C [(sI — A)™" = (\I = A)™"] Buo(s — A)™*
+C(M — A) "' Bug(s — A) 7' + Dug(s — A)7!
C(sI — A)~}(z(0) — (A — A)~' Bug) + G(A)uo(s — At
G(Nug(s — A)~t.

Hence y(t) = G(M)uoe. o

Example 3.3 Let

-1 -2 1 ]1 2 3
0 2 -1]3 2 1
G(s)z[%’-?—]= 4 -3 —2|1 1 1
T 1 11000
2 3 410 00

Then the invariant zeros of the system can be found using the MATLAB command
> G=pck(A, B, C, D), zo = szeros(G), % or
> z¢ = tzero(A,B,C,D)

which gives zp = 0.2. Since G(s) is full-row rank, we can find y and v such that

A-2I B
[y* ’U*][ CZO D]:()a

which can again be computed using a MATLAB command:

0.0466
0.0466
> null([A - zo * eye(3),B;C,D}') = [ z ] = | —-0.1866

Related MATLAB Commands: spoles, rifd

3.7 Notes and References

Readers are referred to Brogan [1991], Chen [1984], Kailath [1980], and Wonham [1985]
for extensive treatment of standard linear system theory.
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3.8 Problems

Problem 3.1 Let A € C**" and B € C™*™. Show that X(t) = e**X(0)eB" is the
solution to

X =AX + XB.

Problem 3.2 Given the impulse response, h;(t), of a linear time-invariant system with
model

J+a1y+ay=u
find the impulse response, h(t), of the system

Z'j + alg] + Ay = bou + blu + bg’u,.
Justify your answer and generalize your result to nth order systems.

Problem 3.3 Suppose a second order system is given by & = Az. Suppose it is known
that (1) = [ 5 ] for (0) = [ . ] and z(1) = [ > J for (0) = [ ; ] Find z(n)

for 2(0) = [ L . Can you determine A?

0

Problem 3.4 Assume (4, B) is controllable. Show that (F,G) with

r=[& o] o= 0]

7]

is controllable if and only if

is a full-row rank matrix.

Problem 3.5 Let A\;,i = 1,2,...,n be n distinct eigenvalues of a matrix 4 € C**"
and let z; and y; be the corresponding right- and left-unit eigenvectors. Show that

n
vie; =65, A=Y Azl

i=1
and

C(sI-A)'B= zn: (E%B—)
i=1 ¢

Furthermore, show that the mode J; is controllable iff yIB # 0 and the mode J; is
observable iff Cz; # 0.
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Problem 3.6 Let (4,b,c) be a realization with A € R**", b € R", and ¢ € R".
Assume that A;(A4) + A;(A) # 0 for all 4,j. This assumption ensures the existence of
X € R™*™ such that

AX +XA+bc=0

Show that X is nonsingular if and only if (4, b) is controllable and (c, A) is observable.

Problem 3.7 Compute the system zeros and the corresponding zero directions of the
following transfer functions

-1 =2 l 1 2
G3($) = ) Gg(s) = (; i 3 (1) ’
1 1 l 00
1 s+3
[ 2(s4+1)(s+2) s+ 2 | s+l (s+1)(s—2)
G(S) - l: 3(3 + 3)(3 + 4) (3 + 1)(8 + 3) } 3 G4(5) = 10 p
s—2 s+3

Also find the vectors z and u whenever appropriate so that either

[Az'z[ g][i]:O or [ z* u*][AE,ZI g}:o‘







Chapter 4
Ho and Hoo Spaces

The most important objective of a control system is to achieve certain performance
specifications in addition to providing internal stability. One way to describe the per-
formance specifications of a control system is in terms of the size of certain signals of
interest. For example, the performance of a tracking system could be measured by the
size of the tracking error signal. In this chapter, we look at several ways of defining a
signal’s size (i.e., at several norms for signals). Of course, which norm is most appro-
priate depends on the situation at hand. For that purpose, we shall first introduce the
Hardy spaces Hz and Ho,. Some state-space methods of computing real rational Hs
and H transfer matrix norms are also presented.

4.1 Hilbert Spaces

Recall the inner product of vectors defined on a Euclidean space C":
n I Y1
(z,y) = I*y=zfiyi Ve=| : |,y=| : | €C.

o
v Tn Yn

Note that many important metric notions and geometrical properties, such as length,
distance, angle, and the energy of physical systems, can be deduced from this inner
product. For instance, the length of a vector z € C" is defined as

lzll :== V/(z,z)
and the angle between two vectors z,y € C* can be computed from

(z,y)
izl llyll’

The two vectors are said to be orthogonal if Z(z,y) = 3.

cos £(z,y) = £(z,y) € [0,7].

45




46 H: AND H, SPACES

We now consider a natural generalization of the inner product on C* to more general
(possibly infinite dimensional) vector spaces.

Definition 4.1 Let V be a vector space over C. An inner product' on V is a complex-
valued function,

(): VxVi—C
such that for any z,y,2 € V and o,8 € C

(i) (z,ay + B2) = a(z,y) + B(z, 2)

(i) (z,y) = (y, )
(iii) (z,z) >0if x #£0.
A vector space V with an inner product is called an inner product space.

It is clear that the inner product defined above induces a norm ||z|| := Vi{z, ), so
that the norm conditions in Chapter 2 are satisfied. In particular, the distance between
vectors z and y is d(z,y) = ||z — y||.

Two vectors z and y in an inner product space V are said to be orthogonal if
(z,y) = 0, denoted z L y. More generally, a vector z is said to be orthogonal to a set
SCV,denoted byz L S,ifx Lyforally e S.

The inner product and the inner product induced norm have the following familiar
properties.

Theorem 4.1 Let V be an inner product space and let z,y € V. Then

(i) [(z,y)| < ||zl |lyll (Cauchy-Schwarz inequality). Moreover, the equality holds if
and only if T = ay for some constant a or y = 0.

(ii) o +yl* + llz — ylI* = 2|le|l*> + 2 ||y|l* (Paralielogram law).

(iii) ||z +ylI” = |l + y)l* f = Ly.

A Hilbert space is a complete inner product space with the norm induced by its inner
product. For example, C* with the usual inner product is a (finite dimensional) Hilbert
space. More generally, it is straightforward to verify that C**™ with the inner product
defined as

n m
(4,B) :=trace A"B =Y Y ai;b;; VA, B e Cm
i=1 j=1
is also a (finite dimensional) Hilbert space.
A well-know infinite dimensional Hilbert space is £2[a, b], which consists of all square

integrable and Lebesgue measurable functions defined on an interval [a, b] with the inner
product defined as

b
(f.0) = / (6 g(t)dt

! The property (i) in the following list is the other way around to the usual mathematical convention
since we want to have (z,y) = z*y rather than y*x for z,y € C*.
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for f,g € Ls[a,b]. Similarly, if the functions are vector or matrix-valued, the inner
product is defined correspondingly as

b
(f,9) ==/ trace [f(t)"g(t)] dt.

Some spaces used often in this book are £3[0,00), L2(—00,0], Lo(—00,00). More pre-.
cisely, they are defined as
Ly = L3(—00,00): Hilbert space of matrix-valued functions on R, with inner product

(r0)i= [ wacelr(e)g(o) .

Loy = L£3]0,00): subspace of L2(—00,00) with functions zero for ¢ <0.

Lo_ = L3(—00,0]: subspace of Ly(—00,00) with functions zero for ¢ > 0.

4.2 H; and H, Spaces

Let S C C be an open set, and let f(s) be a complex-valued function defined on S:
f(s): S—C.

Then f(s) is said to be analytic at a point zo in S if it is differentiable at 2o and also
at each point in some neighborhood of zy. It is a fact that if f(s) is analytic at 2o then
f has continuous derivatives of all orders at zp. Hence, a function analytic at z has
a power series representation at zo. The converse is also true (i.e., if a function has
a power series at zp, then it is analytic at z). A function f(s) is said to be analytic
in S if it has a derivative or is analytic at each point of S. A matrix-valued function
is analytic in S if every element of the matrix is analytic in S. For example, all real
rational stable transfer matrices are analytic in the right-half plane and e™° is analytic
everywhere.

A well-know property of the analytic functions is the so-called mazimum modulus
theorem.

Theorem 4.2 If f(s) is defined and continuous on a closed-bounded set S and analytic
on the interior of S, then |f(s)| cannot attain the mazimum in the interior of S unless
f(s) is a constant.

The theorem implies that |f(s)| can only achieve its maximum on the boundary of S;
that is,

1glggclf(s)l = ggggif(s)l

where 85 denotes the boundary of S. Next we consider some frequently used complex
(matrix) function spaces.
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L2(jR) Space

L3(jR) or simply £, is a Hilbert space of matrix-valued (or scalar-valued) func-
tions on jR and consists of all complex matrix functions F such that the following
integral is bounded:

/oo trace [F* (jw)F(jw)] dw < oo.

The inner product for this Hilbert space is defined as
1 [}
(F,G) = 5 / trace [F* (jw)G(jw)] dw

for F,G € L3, and the inner product induced norm is given by
1y := V(F, F).

For example, all real rational strictly proper transfer matrices with no poles on the
imaginary axis form a subspace (not closed) of £3(jR) that is denoted by R.L,( JR) or
simply RL,.

H, Space?®

Hz is a (closed) subspace of £5(jR) with matrix functions F(s) analytic in
Re(s) > 0 (open right-half plane). The corresponding norm is defined as

1 [ . .
l|F||§ = 31;;3 { ﬂ/ trace [F* (o + jw)F (o + jw)) dw} .

It can be shown? that

IFIE = 5= [ trace [F* )Pl o

Hence, we can compute the norm for H; just as we do for £,. The real rational
subspace of H3, which consists of all strictly proper and real rational stable transfer
matrices, is denoted by RHs.

H; Space

Hj is the orthogonal complement of Hs in Ly; that is, the (closed) subspace of
functions in £, that are analytic in the open left-half plane. The real rational
subspace of Hy, which consists of all strictly proper rational transfer matrices
with all poles in the open right-half plane, will be denoted by R’H;‘. It is easy to
see that if G is a strictly proper, stable, and real rational transfer matrix, then
G € My and G~ € Hy. Most of our study in this book will be focused on the real
rational case.

2The Hs space and Moo space defined in this subsection together with the Hp spaces, p > 1,
which will not be introduced in this book, are usually called Hardy spaces and are named after the
mathematician G. H. Hardy (hence the notation of #).

3See Francis [1987].

T T, T
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The L, spaces defined previously in the frequency domain can be related to the £,
spaces defined in the time domain. Recall the fact that a function in £, space in the
time domain admits a bilateral Laplace (or Fourier) transform. In fact, it can be shown
that this bilateral Laplace transform yields an isometric isomorphism between the L,
spaces in the time domain and the £, spaces in the frequency domain (this is what is
called Parseval’s relations):

L(—00,00) = L3(jR)

Eg[o, OO) = Hz
Lo(—00,0] = Hy.

As a result, if g(t) € L2(—00,00) and if its bilateral Laplace transform is G(s) € L2(3R),
then

IGll2 = llgll, -
Hence, whenever there is no confusion, the notation for functions in the time domain
and in the frequency domain will be used interchangeably.

Laplace Transform

£2 [O, OO) H2
Inverse Transform

Laplace Transform

Inverse Transform

Laplace Transform
Lo(—00, 0] 'HZL
Inverse Transform

Figure 4.1: Relationships among function spaces

Define an orthogonal projection
P, : Lo(—00,00) — L]0, 00)
such that, for any function f(t) € La(—00,00), we have g(t) = P4 f(t) with

| ft), fort>0;
9(t) '_{ 0, for t < 0.
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In this book, P, will also be used to denote the projection from L3(jR) onto Has.
Similarly, define P_ as another orthogonal projection from £;(—00,00) onto L(—00,0]
(or £3(jR) onto Hz). Then the relationships between L, spaces and Hs spaces can be
shown as in Figure 4.1.

Other classes of important complex matrix functions used in this book are those
bounded on the imaginary axis.

L (jR) Space

Lo (jR) or simply Lo is a Banach space of matrix-valued (or scalar-valued) func-
tions that are (essentially) bounded on jR, with norm

| Flloo := esssup & [F(jw)].
wER

The rational subspace of L, denoted by RL (JR) or simply RL, consists of
all proper and real rational transfer matrices with no poles on the imaginary axis.
Ho Space
Ho is a (closed) subspace of Lo, with functions that are analytic and bounded in
the open right-half plane. The H., norm is defined as
|Fllo := sup T[F(s)] = sup7 [F(jw)].
Re(s)>0 w€R

The second equality can be regarded as a generalization of the maximum modulus
theorem for matrix functions. (See Boyd and Desoer [1985] for a proof.) The real
rational subspace of H, is denoted by RH ., which consists of all proper and real
rational stable transfer matrices.

H, Space

H, is a (closed) subspace of £, with functions that are analytic and bounded in
the open left-half plane. The HZ norm is defined as

|Fllec := sup [F(s)] = sup7 [F(jw)).
Re(s)<0 w€eR

The real rational subspace of H, is denoted by RH__, which consists of all proper,
real rational, antistable transfer matrices (i.e., functions with all poles in the open
right-half plane).

Let G(s) € L be a p x ¢ transfer matrix. Then a multiplication operator is defined as

Mg :Ly— Ly

Mgf = Gf.
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In writing the preceding mapping, we have assumed that f has a compatible dimension.
A more accurate description of the foregoing operator should be

Mg : L3 — L.

That is, f is a g-dimensional vector function with each component in L-. However, we
shall suppress all dimensions in this book and assume that all objects have compatible
dimensions.

A useful fact about the multiplication operator is that the norm of a matrix G in
Lo equals the norm of the corresponding multiplication operator.

Theorem 4.3 Let G € Lo be a p X q transfer matriz. Then ||M¢| = |G|l

Remark 4.1 It is also true that this operator norm equals the norm of the operator
restricted to Ha (or Hi); that is,

|Mcll = | Mglw.)l := sup {I|Gfll2 = f € Ha, lIfll2 < 1}

This will be clear in the proof where an f € Hs is constructed. o

Proof. By definition, we have

Mgl = sup {IGfllz: f € Lz, [Ifllz <1}

First we see that |G|« is an upper bound for the operator norm:

IG]IE = 5= [ £1)G ()G ) () do

IA

IGIZNFI-

To show that ||Gl|eo is the least upper bound, first choose a frequency wo where @ [G(jw)]
is maximum; that is,

1 [ .
615 [ 5GP do

7 [G(jwo)] = l|Gllos,

and denote the singular value decomposition of G(jwo) by

G(jwo) = Tu (jwo)v; (jwo) + Y _ osui(jwo)v] (jwo)
=2
where r is the rank of G(jwo) and u;,v; have unit length.

Next we assume that G(s) has real coefficients and we shall construct a function
f(s) € Hy with real coefficients so that the norm is approximately achieved. [It will
be clear in the following that the proof is much simpler if f is allowed to have complex
coefficients, which is necessary when G(s) has complex coefficients.]
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If wo < o0, write v1(jwy) as
018301
azel??
v1(Jwo) =
ageife

where a; € R is such that 8; € (—,0] and q is the column dimension of G. Now let

0 < B; < 00 be such that
6, = / (ﬁi —qwo)
Bi + jwo
(with B; — oo if §; = 0) and let f be given by

f(s)

(with 1 replacing g’lj if §; = 0), where a scalar function f is chosen so that

¢ if lw—wo| <eor|w+w|<e
0 otherwise

1FGo = {

where € is a small positive number and ¢ is chosen so that f has unit 2-norm (i.e.,
¢ = y/m/2¢). This, in turn, implies that f has unit 2-norm. Then

1615 ~ 5= [16(=jun)* = + 7 Gljuwo) ]
= 7[G(jw)]* = |G|

Similarly, if wy = oo, the conclusion follows by letting wo — oo in the foregoing. O

Ilustrative MATLAB Commands:
> [sv, w]=sigma(A, B, C, D); % frequency response of the singular values; or

> w=logspace(l, h, n); sv=sigma(A, B, C, D, w); % n points between 10' and
10*.

Related MATLAB Commands: semilogx, semilogy, bode, fregs, nichols, frsp,
vsvd, vplot, pkvnorm

e
|
|

kie =
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4.3 Computing £; and H, Norms

Let G(s) € L, and recall that the £o norm of G is defined as

Gl = \/% /_oo trace{G*(jw)G(jw)} dw

= llgll,

= \/ / ~ trace{g*(t)g(t)} dt

where g(t) denotes the convolution kernel of G.

It is easy to see that the £, norm defined previously is finite iff the transfer matrix G
is strictly proper; that is, G(oo) = 0. Hence, we will generally assume that the transfer
matrix is strictly proper whenever we refer to the £, norm of G (of course, this also
applies to Hy norms). One straightforward way of computing the £; norm is to use
contour integral. Suppose G is strictly proper; then we have

1613 = 5 [ trace(G" (u)Gie))} do
= 5;—3 }{ trace{G™ (s)G(s)} ds.

The last integral is a contour integral along the imaginary axis and around an infinite
semicircle in the left-half plane; the contribution to the integral from this semicircle
equals zero because G is strictly proper. By the residue theorem, ||G||2 equals the sum
of the residues of trace{G~(s)G(s)} at its poles in the left-half plane.

Although ||G||2 can, in principle, be computed from its definition or from the method
just suggested, it is useful in many applications to have alternative characterizations and
to take advantage of the state-space representations of G. The computation of a RH,
transfer matrix norm is particularly simple.

Lemma 4.4 Consider a transfer matric

with A stable. Then we have
|G||2 = trace(B*QB) = trace(CPC™*) (4.1)

where Q and P are observability and controllability Gramians that can be obtained from
the following Lyapunov equations:

AP+ PA*+BB*=0 A'Q+QA+C*C=0.
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Proof. Since G is stable, we have

- Cet'B, t>0
o=@ ={ P 120

and

oo

IGI3 = / trace{g*(t)g(t)} dt = / trace{g(t)g(t)"} dt
0 0
= / trace{ B*e*"tC*Ce**B} dt:/ trace{Ce“*BB*e"tC*} dt.
0 0

The lemma follows from the fact that the controllability Gramian of (4, B) and the
observability Gramian of (C, A) can be represented as

Q= / eAtC*Cett dt, P = / e tBB*et™t dt,
0 0

which can also be obtained from
AP+ PA*+BB*=0 A*Q+QA+C*C=0.
]

To compute the £5 norm of a rational transfer function, G(s) € RL,, using the
state-space approach, let G(s) = [G(s)]+ + [G(s)]- with G, € RH; and G_ € RHy;

then
IGIZ = IG(s)+ 113 + IG(s))- 13

where [[[G(s)]+ ll, and IG(8)]-ll, = N[G(=8)l+lly = I[G(s)]-)"; can be computed
using the preceding lemma.

Still another useful characterization of the Hy norm of G is in terms of hypothetical
input-output experiments. Let e; denote the ith standard basis vector of R™, where m
is the input dimension of the system. Apply the impulsive input é(t)e; [6(¢) is the unit
impulse] and denote the output by z;(¢)(= g(t)e;). Assume D = 0; then 2; € L4 and

m
1G5 = liz:ll3-
=1

Note that this characterization of the H; norm can be appropriately generalized for
nonlinear time-varying systems; see Chen and Francis [1992] for an application of this
norm in sampled-data control.

Example 4.1 Consider a transfer matrix
3(s+3) 2
_ s—1)(s+2 s—1 | _
6| I T |aee
(s+2)(s+3) s—4
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with
-2 0 ‘—1 0
0 -312 0
G. = 1 0l0 0}’ Gu=
1 170 0

Then the command h2norm(G;) gives ||G,||, = 0.6055 and h2norm(cjt(Gu)) gives
[Gull, = 3.182. Hence [|Gll, = \/IG. |3 + [|Gull; = 3.2393.

Ilustrative MATLAB Commands:
> P =gram(A,B); Q =gram(A',C’); or P =lyap(A,B*B');

> [Gs, Gy] = sdecomp(G); % decompose into stable and antistable parts.

4.4 Computing L, and H, Norms

We shall first consider, as in the £, case, how to compute the oo norm of an RLc
transfer matrix. Let G(s) € RLo and recall that the Lo norm of a matrix rational
transfer function G is defined as

[Glloo == sgp?{G(J'w)}-

The computation of the £, norm of G is complicated and requires a search. A control
engineering interpretation of the infinity norm of a scalar transfer function G is the
distance in the complex plane from the origin to the farthest point on the Nyquist plot
of G, and it also appears as the peak value on the Bode magnitude plot of |G(jw)|-
Hence the oo norm of a transfer function can, in principle, be obtained graphically.

To get an estimate, set up a fine grid of frequency points:

{wla o '7WN}~
Then an estimate for |G|/ is

max, {G(jwr)}-

This value is usually read directly from a Bode singular value plot. The RLo norm can
also be computed in state-space.

G(s) = [%{%} € RLoo. (4.2)

Lemma 4.5 Let v > 0 and
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Then ||Glleo < 7 i and only if 7(D) < v and the Hamiltonian matriz H has no eigen-
values on the imaginary aris where

A+ BR™!D*C BR™'B*

H ~C*(I+DR'D*)C —(A+ BR-'D*C)*

(4.3)
and R =~*I — D*D.

Proof. Let ®(s) = v*I — G~(s)G(s). Then it is clear that ||G||o < 7 if and only if
®(jw) > 0 for all w € R. Since ®(c0) = R > 0 and since ®(jw) is a continuous function
of w, ®(jw) > 0 for all w € R if and only if ®(jw) is nonsingular for all w € R U {o0};
that is, ®(s) has no imaginary axis zero. Equivalently, ®~!(s) has no imaginary axis
pole. It is easy to compute by some simple algebra that

BR™!
1(s) = H ’ [ —C*DR-! ]
[ R'D*c R'B*|| R

Thus the conclusion follows if the above realization has neither uncontrollable modes
nor unobservable modes on the imaginary axis. Assume that Jwo is an eigenvalue
of H but not a pole of ®(s). Then jwy, must be either an unobservable mode of

-1
([ R7'D*C R7'B* |,H) or an uncontroilable mode of (H, —CI?’%R"I ]) Now

suppose juwo is an unobservable mode of ([ R"!D*C  R™!B* ], H). Then there exists
an xy = [ 1 ] # 0 such that
Z2

Hzo = jwoze, [ R°!D*C R™'B* Jzo =0.
These equations can be simplified to

(ijI - A).’L‘] = 0
(Jwol + A®)zs = -C*Cxy
D*Cz, + B*z, = 0.

Since A has no imaginary axis eigenvalues, we have z; = 0 and z, = 0. This contradicts
our assumption, and hence the realization has no unobservable modes on the imaginary
axis.

Similarly, a contradiction will also be arrived at if jwy is assumed to be an uncon-

BR™!
trollable mode of (H, [ —C*DR-! ]) O

i
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Bisection Algorithm
Lemma 4.5 suggests the following bisection algorithm to compute RL norm:
(a) Select an upper bound 7, and a lower bound v such that v < ||Gl o < Ya;

(b) If (v, — 1) /v <specified level, stop; |G| ~ (Yu +71)/2. Otherwise go to the next
step;

(c) Set v = (v +7u)/2
(d) Test if ||G|lcc < 7 by calculating the eigenvalues of H for the given 7;

(e) If H has an eigenvalue on jR, set v = 7v; otherwise set v, = 7; go back to step
(b).

Of course, the above algorithm applies to Ho norm computation as well. Thus Lo
norm computation requires a search, over either v or w, in contrast to Lo (H2) norm
computation, which does not. A somewhat analogous situation occurs for constant
matrices with the norms || M||2 = trace(M*M) and ||M|| = 7[M]. In principle, [I1AL13
can be computed exactly with a finite number of operations, as can the test for whether
F(M) < v (e.g., Y2 — M*M > 0), but the value of (M) cannot. To compute (M),
we must use some type of iterative algorithm.

Remark 4.2 It is clear that |G|l < v iff ”'y‘lGHOO < 1. Hence, there is no loss of
generality in assuming v = 1. This assumption will often be made in the remainder of
this book. It is also noted that there are other fast algorithms to carry out the preceding
norm computation; nevertheless, this bisection algorithm is the simplest. o

Additional interpretations can be given for the Ho, norm of a stable matrix transfer
function. When G(s) is a single-input and single-output system, the Ho norm of the
G(s) can be regarded as the largest possible amplification factor of the system’s steady-
state response to sinusoidal excitations. For example, the steady-state response of the
system with respect to a sinusoidal input u(t) = U sin(wot + @) is

y(t) = U|G(jwo)|sin (wot + ¢ + LG(Jwo))

and thus the maximum possible amplification factor is sup |G(jwo)|, which is precisely
wo

the Ho norm of the transfer function.

In the multiple-input and multiple-output case, the Ho, norm of a transfer matrix
G € RH., can also be regarded as the largest possible amplification factor of the
system’s steady-state response to sinusoidal excitations in the following sense: Let the
sinusoidal inputs be

uy sin(wot + ¢1) Uy
uy sin(wot + @2) Us

£
=
li
1533
il

uq sin(wot + @q) Uq
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e

Then the steady-state response of the system can be written as

Y1 sin(wot + 6,) %

Y2 sin(wot + 62) A Y2
y(t) = : o g=1 .

Yp sin(wot + 6,) Yp

for some y;, 6;, i =1,2,...,p, and furthermore,

= 1E]]
IGlloo = sup Tl

i wo,tt

where ||-|| is the Euclidean norm. The details are left as an exercise.

Example 4.2 Consider a mass/ spring/damper system as shown in Figure 4.2.

1 o)

m, -
k, L.+ b
F2 1 1 x2
%//
my
ko L b,
o’

Figure 4.2: A two-mass/spring/damper system

The dynamical system can be described by the following differential equations:

.’tl Iy

2 =al"|4+B [ A ]
I3 T3 Fg
i4 Ty

"y
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The largest singular value
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// . \_x\
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vr>/'/4 5
[ R , \\\ N
107+ The smallest singular value . \;

<
frequency (rad)sec)

Figure 4.3: ||G||., is the peak of the largest singular value of G(jw)

with
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Suppose that G(s) is the transfer matrix from (Fy, F2) to (z1,z2); that is,

1
e[}

and suppose k; = 1, ko = 4, by = 0.2, b, =0.1,my =1,and my =2 with appropriate
units. The following MATLAB commands generate the singular value Bode plot of the
above system as shown in Figure 4.3.

-
<o O

0
0]7 D—O,

> G=pck(A,B,C,D);

> hinfnorm(G,0.0001) or linfnorm(G,0.0001) % relative error < 0.0001
> w=logspace(-1,1,200); % 200 points between 1 = 10~ and 10 = 10%;
> Gf=frsp(G,w); % computing frequency response;

> [u,s,v]=vsvd(Gf); % SVD at each frequency;
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> vplot('liv,lm’,s), grid % plot both singular values and grid.

Then the H., norm of this transfer matrix is IG($)llo, = 11.47. which is shown as
the peak of the largest singular value Bode plot in Figure 4.3. Since the peak is achieved
at Wmax = 0.8483, exciting the system using the following sinusoidal input

Fy ] _ [ 0.9614sin(0.8483¢)
Fy |~ | 0.2753sin(0.8483¢ — 0.12)

gives the steady-state response of the system as

1 | _ [ 11.47 x 0.96145in(0.8483¢ — 1.5483)
T2 |~ | 11.47 x 0.27535in(0.8483¢ — 1.4283) | -

This shows that the system response will be amplified 11.47 times for an input signal
at the frequency wpay, which could be undesirable if F; and F, are disturbance force
and z; and z, are the positions to be kept steady.

Example 4.3 Consider a two-by-two transfer matrix

10(s + 1) 1
240.2 100 1
G(s) = s“+0.2s + s+
$+2 5(s+1)

s2+01s+10 (s+2)(s+3)
A state-space realization of G can be obtained using the following MATLAB commands:
> G11=nd2sys([10,10],[1,0.2,100]);
> G12=nd2sys(1,[1,1]);
> G21=nd28ys([1,2],[1,0.1,10]);
> G22=nd23ys([5,5],[1,5,6]);
> G=sbs(abv(G11,G21),abv(G12,G22));

Next, we set up a frequency grid to compute the frequency response of G and the
singular values of G(jw) over a suitable range of frequency.

> w=logspace(0,2,200); % 200 points between 1 = 10° and 100 = 102;
> Gf=frsp(G,w); % computing frequency response;
> [u,s,v]=vsvd(Gf); % SVD at each frequency;

-“Vﬁz,'i —— -
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> vplot('liv,lm’,s), grid % plot both singular values and grid;
> pkvnorm(s) % find the norm from the frequency response of the singular values.

The singular values of G(jw) are plotted in Figure 4.4, which gives an estimate of
|G|l ~ 32.861. The state-space bisection algorithm described previously leads to
G, = 50.25 £ 0.01 and the corresponding MATLAB command is

> hinfnorm(G,0.0001) or linfnorm(G,0.0001) % relative error < 0.0001.

-
=]

2l -
1

|
10 10 10"

Figure 4.4: The largest and the smallest singular values of G(jw)

The preceding computational results show clearly that the graphical method can lead
to a wrong answer for a lightly damped system if the frequency grid is not sufficiently
dense. Indeed, we would get |G|, =~ 43.525,48.286 and 49.737 from the graphical
method if 400, 800, and 1600 frequency points are used, respectively.

Related MATLAB Commands: linfnorm, vnorm, getiv, scliv, var2con, xtract,
xtracti

4.5 Notes and References

The basic concept of function spaces presented in this chapter can be found in any
standard functional analysis textbook, for instance, Naylor and Sell [1982] and Gohberg
and Goldberg [1981]. The system theoretical interpretations of the norms and function
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spaces can be found in Desoer and Vidyasagar (1975]. The bisection Lo, norm compu-
tational algorithm was first developed in Boyd, Balakrishnan, and Kabamba [1989]. A
more efficient £, norm computational algorithm is presented in Bruinsma and Stein-
buch [1990].

4.6 Problems

Problem 4.1 Let G(s) be a matrix in RH,. Prove that
=G5 + 1.

7L

Problem 4.2 (Parseval relation) Let f(t),9(t) € Ly, F(jw) = F{f(t)}, and G(jw) =
F{g(t)}. Show that

2

[ st =3 [~ pioer o

and

[ wra=L [ o,

Note that
Fo) = [ foe a1 =7 = & [ Faeran

where 7~! denotes the inverse Fourier transform.

Problem 4.3 Suppose A4 is stable. Show

/ (jwI — A) ldw = 7.

Suppose G(s) = [ g g

the above formula to show that

2—17; /_ _ G (jw)G(jw)dw = B*QB.

J € RHo and let Q@ = Q* be the observability Gramian. Use

[Hint: Use the fact that G~(s)G(s) = F~(s) + F(s) and F(s) = B*Q(sI — A)"'B]

Problem 4.4 Compute the 2-norm and oo-norm of the following systems:

1 s+3 1 ol1
+1 +1 -2

Gis)=| ° (s+1)(s-2) | Ga(s)=| 2 3|1
10 5 1 2]0
§—2 s+3
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-1 -2 =31 2

-1 =201 1 0 0|01

Gg(s) = 1 0 0 s G4(S) = 0 1 0 2 0
2 310 1 0 0410

0 1 1 0 2

Problem 4.5 Let r(t) = sinwt be the input signal to a plant
2
G(s) = “n

§2 + 2fwns + w?

with 0 < £ < 1/v/2. Find the steady-state response of the system y(t). Also find the
frequency w that gives the largest magnitude steady-state response of y(t).

Problem 4.6 Let G(s) € RHo be a p x ¢ transfer matrix and y = G(s)u. Suppose

uy sin(wot + ¢1) Uy

ug sin{wot + ¢2) Uy
u(t) = : RS

ug sin(wot + @) Ugq

Show that the steady-state response of the system is given by

1 sin(wot + 61) 3
ya sin(wet + 02) R Y2
y(t) = . , Y= .
yp sin(wot + 0p) Yp

for some y; and §;, i =1,2,...,p. Show that sup 9l = 1G]l o -
d’iw“’m”ﬁ“zgl

Problem 4.7 Write a MATLAB program to plot, versus -, the distance from the imag-
inary axis to the nearest eigenvalue of the Hamiltonian matrix for a given state-space
model with stable A. Try it on

s+1 8
(s+2)(s+3) s+1
s =2 s+4

(s+3)(s+4) (s+1)(s+2)
Read off the value of the Heo-norm. Compare with the MATLAB function hinfnorm.

1
Problem 4.8 Let G(s) = CETIIES S

plot and state-space algorithm, respectively for £ = 1,0.1, 0.01,0.001 and compare the
results.

Compute ||G(s)]|,, using the Bode







Chapter 5

Internal Stability

This chapter introduces the feedback structure and discusses its stability and various
stability tests. The arrangement of this chapter is as follows: Section 5.1 discusses the
necessity for introducing feedback structure and describes the general feedback con-
figuration. Section 5.2 defines the well-posedness of the feedback loop. Section 5.3
introduces the notion of internal stability and various stability tests. Section 5.4 intro-
duces the stable coprime factorizations of rational matrices. The stability conditions in
terms of various coprime factorizations are also considered in this section.

5.1 Feedback Structure

In designing control systems, there are several fundamental issues that transcend the
boundaries of specific applications. Although they may differ for each application and
may have different levels of importance, these issues are generic in their relationship to
control design objectives and procedures. Central to these issues is the requirement to
provide satisfactory performance in the face of modeling errors, system variations, and
uncertainty. Indeed, this requirement was the original motivation for the development
of feedback systems. Feedback is only required when system performance cannot be
achieved because of uncertainty in system characteristics. A more detailed treatment
of model uncertainties and their representations will be discussed in Chapter 8.

For the moment, assuming we are given a model including a representation of un-
certainty that we believe adequately captures the essential features of the plant, the
next step in the controller design process is to determine what structure is necessary
to achieve the desired performance. Prefiltering input signals (or open-loop control)
can change the dynamic response of the model set but cannot reduce the effect of un-
certainty. If the uncertainty is too great to achieve the desired accuracy of response,
then a feedback structure is required. The mere assumption of a feedback structure,
however, does not guarantee a reduction of uncertainty, and there are many obstacles
to achieving the uncertainty-reducing benefits of feedback. In particular, since for any

65
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reasonable model set representing a physical system uncertainty becomes large and the
phase is completely unknown at sufficiently high frequencies, the loop gain must be
small at those frequencies to avoid destabilizing the high-frequency system dynamics.
Even worse is that the feedback system actually increases uncertainty and sensitivity in
the frequency ranges where uncertainty is significantly large. In other words, because
of the type of sets required to model physical systems reasonably and because of the
restriction that our controllers be causal, we cannot use feedback (or any other control
structure) to cause our closed-loop model set to be a proper subset of the open-loop
model set. Often, what can be achieved with intelligent use of feedback is a signifi-
cant reduction of uncertainty for certain signals of importance with a small increase
spread over other signals. Thus, the feedback design problem centers around the trade-
off involved in reducing the overall impact of uncertainty. This tradeoff also occurs, for
example, when using feedback to reduce command/disturbance error while minimizing
response degradation due to measurement noise. To be of practical value, a design
technique must provide means for performing these tradeoffs. We shall discuss these
tradeoffs in more detail in the next chapter.

To focus our discussion, we shall consider the standard feedback configuration shown
in Figure 5.1. It consists of the interconnected plant P and controller K forced by
command 7, sensor noise n, plant input disturbance d;, and plant output disturbance
d. In general, all signals are assumed to be multivariable, and all transfer matrices are
assumed to have appropriate dimensions.

Figure 5.1: Standard feedback configuration

5.2 Well-Posedness of Feedback Loop

Assume that the plant P and the controller K in Figure 5.1 are fixed real rational
proper transfer matrices. Then the first question one would ask is whether the feedback
interconnection makes sense or is physically realizable. To be more specific, consider a
simple example where

s—1

—_— K=1
s+2’
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are both proper transfer functions. However,

(s+2) s—1
3 (r-=n-d)+ 3

d;.

u =

That is, the transfer functions from the external signals 7 — n — d and d; to u are not
proper. Hence, the feedback system is not physically realizable.

Definition 5.1 A feedback system is said to be well-posed if all closed-loop transfer
matrices are well-defined and proper.

Now suppose that all the external signals 7,7,d, and d; are specified and that the
closed-loop transfer matrices from them to u are, respectively, well-defined and proper.
Then y and all other signals are also well-defined and the related transfer matrices are
proper. Furthermore, since the transfer matrices from d and n to u are the same and
differ from the transfer matrix from r to u by only a sign, the system is well-posed if
1

d ] to u exists and is proper.

and only if the transfer matrix from

To be consistent with the notation used in the rest of this book, we shall denote

K:=-K (5.1)

and regroup the external input signals into the feedback loop as wy and w, and regroup

the input signals of the plant and the controller as e; and eo. Then the feedback loop

with the plant and the controller can be simply represented as in Figure 5.2 and the

system is well-posed if and only if the transfer matrix from 51 to e; exists and is
2

proper.

Figure 5.2: Internal stability analysis diagram

Lemma 5.1 The feedback system in Figure 5.2 is well-posed if and only if
I — K(00)P(o0) (5.2)

18 tnvertible.
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Proof. The system in Figure 5.2 can be represented in equation form as

e1 = w; + Kes
ey = ’UJ2+P€1.

Then an expression for e; can be obtained as
(I- KP)el = w; + Kw,.

Thus well-posedness is equivalent to the condition that (I-K P)~! exists and is proper.
But this is equivalent to the condition that the constant term of the transfer function
I — K P is invertible. a

It is straightforward to show that equation (5.2) is equivalent to either one of the
following two conditions:

[ I -K(co)

—P(co) I J is invertible; (5.3)

I — P(00)K(00) is invertible.

The well-posedness condition is _simple to state in terms of state-space realizations.
Introduce realizations of P and K:

re[2f8) +- [

Then P(00) = D, K(00) = D and the well-posedness condition in equation (5.3) is

I -D
-D I
we shall have D = 0, and hence well-posedness for most practical control systems is
guaranteed.

equivalent to the invertibility of . Fortunately, in most practical cases

9.3 Internal Stability
Consider a system described by the standard block diagram in Figure 5.2 and assume

that the system is well-posed.

Definition 5.2 The system of Figure 5.2 is said to be internally stable if the transfer
matrix
I K17 _ [ U-kP)' K(I-PR) 5.0
B P(I-KP)"! (I-PK)! '
_ [I+KUI-PK)"'P K(I-PKk)!
- (I - PK)"'p (I -PK)™!

from (w1, w;) to (e;, e2) belongs to RH...
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Note that to check internal stability, it is necessary (and sufficient) to test whether each
of the four transfer matrices in equation (5.4) is in Heo. Stability cannot be concluded
even if three of the four transfer matrices in equation (5.4) are in Ho. For example, let
an interconnected system transfer function be given by

s—1 - 1
P=—— K=- .
s+ 1’ s—1
Then it is easy to compute
s+1 s+1
el s+2 (s —=1)(s+2) [wll
e ] | s—1 s+1 wy |’
s+2 s+ 2

which shows that the system is not internally stable although three of the four transfer
functions are stable.

Remark 5.1 Internal stability is a basic requirement for a practical feedback system.
This is because all interconnected systems may be unavoidably subject to some nonzero
initial conditions and some (possibly small) errors, and it cannot be tolerated in practice
that such errors at some locations will lead to unbounded signals at some other locations
in the closed-loop system. Internal stability guarantees that all signals in a system are
bounded provided that the injected signals (at any locations) are bounded. o

However, there are some special cases under which determining system stability is
simple.

Corollary 5.2 Suppose K € RHo. Then the system in Fiyure 5.2 is internally stable
if and only if it is well-posed and P(I KP)™!' € RHo

Proof. The necessity is obvious. To prove the sufficiency, it is sufficient to show that
(I — PK)™! € RHo. But this follows from

(I-PK)'=I+(I-PK)'PK
and (I — PK)™'P, K € RHw. 0
Also, we have the following:

Corollary 5.3 Suppose P € RHo,. Then the system in Figure 5.2 is internally stable
if and only if it is well-posed and K(I - PK)™!' € RHq.

Corollary 5.4 Suppose P € RH, and K € RHo. Then the system in Figure 5.2 is
internally stable if and only if (I — PK)™' € RH, or, equivalently, det(I — P(s YK(s))
has no zeros in the closed right-half plane.
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Note that all the previous discussions and conclusions apply equally to infinite di-
mensional plants and controllers. To study the more general case, we shall limit our
discussions to finite dimensional systems and define

number of open right-half plane (rhp) poles of K (s)

N

np = number of open right-half plane (rhp) poles of P(s).

Theorem 5.5 The system is internally stable if and only if it is well-posed and
(i) the number of open thp poles of P(s)K(s) = ny + Np;
(i) (I — P(s)K(s))~! is stable.

Proof. It is easy to show that PK and (I — PK )~! have the following realizations:

where

Q
I

(I-DD)y'[ ¢ DC ]
D = (I-DD).

Hence, the system is internally stable iff A is stable. (see Problem 5.2.)

Now suppose that the system is internally stable; then (I - PK')‘1 € RH . So we
only need to show that given condition (ii), condition (i) is necessary and sufficient for
the internal stability. This follows by noting that (A, B) is stabilizable iff

(5 %1% 3

is stabilizable; and (C, A) is detectable iff

([C DéL[é’%f]) (5.6)

is detectable. But conditions (5.5) and (5.6) are equivalent to condition (i). a

Condition (i) in the preceding theorem implies that there is no unstable pole/zero
cancellation in forming the product PK.

L

XP |



5.4. Coprime Factorization over R'H,, 71

The preceding theorem is, in fact, the basis for the classical control theory, where
the stability is checked only for one closed-loop transfer function with the implicit
assumption that the controller itself is stable (and most probably also minimum phase;
or at least marginally stable and minimum phase with the condition that any imaginary
axis pole of the controller is not in the same location as any zero of the plant).

Example 5.1 Let P and K be two-by-two transfer matrices

! 0 1-35
s—1 5 -1
P= 1 s K = s+1
-1
0 s+1 0
Then
-1 -1 s+1 (s+1)?
. Q -1 N B 2(s—1
PR — s+1 s  U-PR)yl= s+2 (s+2)2(s—-1)
-1 0 s+1
s+1 s+2
So the closed-loop system is not stable even though
L (s+2)?
det(I — PK) =
et )= G

has no zero in the closed right-half plane and the number of unstable poles of PK =
nt + n, = 1. Hence, in general, det(] — PK) having no zeros in the closed right-half
plane does not necessarily imply (I — PK)™! € RH.

5.4 Coprime Factorization over RH,

Recall that two polynomials m(s) and n(s), with, for example, real coefficients, are said
to be coprime if their greatest common divisor is 1 (equivalent, they have no common
zeros). It follows from Euclid’s algorithm?® that two polynomials m and n are coprime
iff there exist polynomials z(s) and y(s) such that m + yn = 1; such an equation is
called a Bezout identity. Similarly, two transfer functions m(s) and n(s) in RH, are
said to be coprime over RH if there exists z,y € RH, such that

zm+yn = 1.

13ee, for example, Kailath {1980], pages 140-141.
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The more primitive, but equivalent, definition is that m and n are coprime if every
common divisor of m and n is invertible in RH.; that is,

h,mh™' nh™! € RHo = ™' € RH .
More generally, we have the following:

Definition 5.3 Two matrices M and N in RH, are right coprime over RH, if they
have the same number of columns and if there exist matrices X, and Y, in RH. such
that

[ X, y,][%]:x,Mw,N:f.

Similarly, two matrices M and N in RH, are left coprime over RH if they have the
same number of rows and if there exist matrices X; and Y; in RH, such that
- [ X

[M N ] n]:ﬂmm+ﬁnzﬁ

AA{ ] is left in-
vertible in RH,, and the matrix [ M N ] is right invertible in RH . These two
equations are often called Bezout identities.

Now let P be a proper real rational matrix. A right coprime factorization (rcf)
of P is a factorization P = NM~!, where N and M are right coprime over RH .
Similarly, a left coprime factorization (Icf) has the form P = M~'N, where N and M
are left-coprime over RHo. A matrix P(s) € R,(s) is said to have double coprime
factorization if there exist a right coprime factorization P = NM ™!, a left coprime
factorization P = M~!N, and X,, Y;, Xi, Y € RHs such that

EREEIR

Note that these definitions are equivalent to saying that the matrix [

Of course, implicit in these definitions is the requirement that both A and M be square
and nonsingular.

Theorem 5.6 Suppose P(s) is a proper real rational matriz and

Al B
P=[515]
1s a stabilizable and detectable realization. Let F and L be such that A+ BF and A+ LC
are both stable, and define

M oy A+BF|B -L
N x| = F I 0
! C+DF|D I

(5.8)
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X Y. A+LC|-(B+LD) L
B c -D I

Then P = NM~! = M~IN are rcf and lcf, respectively, and, furthermore, equation
(5.7) is satisfied.

Proof. The theorem follows by verifying equation (5.7). m]

Remark 5.2 Note that if P is stable, then we can take X, = X; =1, Y, = Y; = 0,

Remark 5.3 The coprime factorization of a transfer matrix can be given a feedback-
control interpretation. For example, right coprime factorization comes out naturally
from changing the control variable by a state feedback. Consider the state-space equa-
tions for a plant P:

= Az + Bu
= Cz+ Du.

Next, introduce a state feedback and change the variable
v:=u—-Fx
where F' is such that A + BF is stable. Then we get

(A+ BF)z + Bv
Fr+wv
y = (C+DF)x+ Dv.

Evidently, from these equations, the transfer matrix from v to u is

o = [442712]

and that from v to y is

A+BF | B
N(s) = [WT]

Therefore,
uw=Mv, y=Nv

so that y = NM ~lu; that is, P = NM ™1, <o
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We shall now see how coprime factorizations can be used to obtain alternative charac-
terizations of internal stability conditions. Consider again the standard stability analysis
diagram in Figure 5.2. We begin with any rcf’s and Icf’s of P and K:

P=NM"'=M"N (5.10)
K=Uv-'=v"17. (5.11)

Lemma 5.7 Consider the system in Figure 5.2. The following conditions are equiva-
lent:

1. The feedback system is internally stable.

[ AAJ, 5 ] 1s invertible in RH .

o

s

v -U].. o
[ N M } is invertible in RH .
4. MV = NU is invertible in RHe-
5. VM —= UN is invertible in RH -

Proof. Note that the system is internally stable if

. 11
[_IP _IK ] € RHoo
or, equivalently,
5 -1
I K
[P I] € RH (5.12)
Now R
I K| _ I vvt] _[M U M-t 0
P I | | NM! I | NV 0 v-!
so that

Since the matrices
M o0 M U
o V|”{ N V
are right coprime (this fact is left as an exercise for the reader), equation (5.12) holds
iff
M Ul
[400]” can,
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This proves the equivalence of conditions 1 and 2. The equivalence of conditions 1 and
3 is proved similarly.

Conditions 4 and 5 are implied by conditions 2 and 3 from the following equation:

vV U M U] _[VM-UN 0
-N M N V|~ 0 MV - NU

Since the left-hand side of the above equation is invertible in R, so is the right-hand
side. Hence, conditions 4 and 5 are satisfied. We only need to show that either condition
4 or condition 5 implies condition 1. Let us show that condition 5 implies condition 1;
this is obvious since

I kK17 v )T
P I - NM-1 I
~ ~ -1 ~
M o0 M U vV oo
'[0 IHN 1] [0 I]GRH“"’
M U
if[ N I] € RH, or if condition 5 is satisfied. [

Combining Lemma 5.7 and Theorem 5.6, we have the following corollary.

Corollary 5.8 Let P be a proper real rational matriz and P = NM~ = M~'N be the
corresponding rcf and lef over RHo,. Then there exists a controller

Ko = UoVy ! =V i,

with Uy, Vo, Us, and Vo in RHo such that

[ N R ]=100) -

Furthermore, let F and L be such that A+ BF and A+ LC are stable. Then a particular
set of state-space realizations for these matrices can be given by

A+BF|B -L
[ % ‘U/O ] = F I 0 (5.14)
0 C+DF|D I
. A+LC|~(B+LD) L
[ V;’V ]g" ] = F I 0 (5.15)
- C -D I
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Proof. The idea behind the choice of these matrices is as follows. Using the observer
theory, find a controller Ky achieving internal stability; for example

# . [A+BF+LC+LDF | -L
0 F [0

(5.16)

Perform factorizations A o
Ko =UoVy ! = ViU,

which are analogous to the ones performed on P. Then Lemma 5.7 implies that each
of the two left-hand side block matrices of equation (5.13) must be invertible in RH .
In fact, equation (5.13) is satisfied by comparing it with equation (5.7). m]

Finding a coprime factorization for a scalar transfer function is fairly easy. Let
P(s) = num(s)/den(s) where num(s) and den(s) are the numerator and the denomi-
nator polynomials of P(s), and let a(s) be a stable polynomial of the same order as
den(s). Then P(s) = n(s)/m(s) with n(s) = num(s)/a(s) and m(s) = den(s)/a(s) is
a coprime factorization. However, finding an z(s) € Ho and a y(s) € Hs such that
z(s)n(s) + y(s)m(s) = 1 needs much more work.

Example 5.2 Let P(s) = s(ss;-i-??») and a = (s + 1)(s + 3). Then P(s) = n(s)/m(s)

_5=2 d m(s) = —

(s+1)(s+3) T os+1

x(s) € Hoo and a y(s) € Hoo such that z(s)n(s) + y(s)m(s) = 1, consider a stabilizing
5 —

s+ 10

with n(s) = forms a coprime factorization. To find an

. Then K = ufv with v = K and v = 1 is a coprime

controller for P: K = —
factorization and

(s +11.7085)(s + 2.214)(s + 0.077)
(s+1)(s+3)(s+10)

m(s)v(s) — n(s)u(s) = =: 0(s)

Then we can take

(s —1)(s +1)(s +3)
(s + 11.7085)(s + 2.214)(s + 0.077)

z(s) = —u(s)/B(s) =

3 _ (s+ 1)(s+3)(s+10)
y(s) = U(S)/ﬂ(s) - (.S + 117085)(3 + 2214)(3 + 0077)

MATLAB programs can be used to find the appropriate F' and L matrices in state-
space so that the desired coprime factorization can be obtained. Let A € R**™, B €
R**™ and C € RP*™. Then an F and an L can be obtained from

> F=-lgr(A, B, eye(n), eye(m)); % or
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> F=-place(A, B, Pf); % Pf= poles of A+BF
> L = -lqr(A’,C',eye(n),eye(p)); % or
> L = —place(A’,C',Pl); % Pl=poles of A+LC.

5.5 Notes and References

The presentation of this chapter is based primarily on Doyle [1984]. The discussion of in-
ternal stability and coprime factorization can also be found in Francis [1987], Vidyasagar
[1985], and Nett, Jacobson, and Balas [1984].

5.6 Problems

Problem 5.1 Recall that a feedback system is said to be internally stable if all closed-
loop transfer functions are stable. Describe the conditions for internal stability of the
following feedback system:

Gl i 62

H

How can the stability conditions be simplified if H(s) and Gi(s) are both stable?

-~ -1
Problem 5.2 Show that [ L F ] € RH.. if and only if
._[4 BC BD ), -t -
A._[O i ]+[ B ](1 DD)'[Cc DC |

is stable.

Problem 5.3 Suppose N,M,U,V € RHo, and NM~! and UV ™! are right coprime
factorizations, respectively. Show that

M ol[M U]
0V N V
is also a right coprime factorization.

Problem 5.4 Let G(s) = (_;;%)_(;1?__3—)'

n(s)/m(s) and z,y € RH such that zn + ym = 1.

Find a stable coprime factorization G =
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_ (s—1)(s+a) _(5-3)(s+a)
Problem 5.5 Let N(s) = G+6+3)610) and M (s) = m

(N, M) is also a coprime factorization of the G in Problem 5.4 for any o > 0 and 3 > 0.

. Show that

Problem 5.6 Let G = NM~! be a right coprime factorization over RH... It is called
a normalized coprime factorization if NN + M~M = I. Now consider scalar transfer
function G. Then the following procedure can be used to find a normalized coprime
factorization: (a) Let G = n/m be any coprime factorization over RH... (b) Find
a stable and minimum phase spectral factor w such that w™w = n~n + m~m. Let
N =n/w and M = m/w; then G = N/M is a normalized coprime factorization. Find
a normalized coprime factorization for Problem 5.4.

Problem 5.7 The following procedure constructs a normalized right coprime factor-
ization when G is strictly proper:

1. Get a stabilizable, detectable realization 4, B, C.

2. Do the MATLAB command F = —lqr(4, B,C'C, I).

3. Set
A+ BF | B
N —
[]o= 8T

Verify that the procedure produces factors that satisfy G = NM~!. Now try the
procedure on

1 1
s—1 s-2
G =
(s) N )
s s+2
Verify numerically that
NHw)*N(jw) + M(jw)*M(jw) =1, VYw. (5.17)

Problem 5.8 Use the procedure in Problem 5.7 to find the normalized right coprime
factorization for

1 s+3
Cas) = 5:(-)1 (s+1?5(s—2)
s—2 s+3
T 2s+1)(s+2) s+2
Ga(s) = s(s+3)(s+4) (3+1)(s+3)}
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-1 =2 11]1 2 3
0 2 -1(3 2 1
Gs(s)=| -4 -3 -2|1 1 1
1 1 11]0 00
3 4]0 00
—1-2'12
0 112 1
G =TT To 0
1 110 0

Problem 5.9 Define the normalized left coprime factorization and describe a procedure
to find such factorizations for strictly proper transfer matrices.







Chapter 6

Performance Specifications
and Limitations

In this chapter, we consider further the feedback system properties and discuss how to
achieve desired performance using feedback control. We also consider the mathematical
formulations of optimal Hs and H., control problems. A key step in the optimal
control design is the selection of weighting functions. We shall give some guidelines to
such selection process using some SISO examples. We shall also discuss in some detail
the design limitations imposed by bandwidth constraints, the open-loop right-half plane
zeros, and the open-loop right-half plane poles using Bode’s gain and phase relation,
Bode’s sensitivity integral relation, and the Poisson integral formula.

6.1 Feedback Properties

In this section, we discuss the properties of a feedback system. In particular, we consider
the benefit of the feedback structure and the concept of design tradeoffs for conflicting
objectives — namely, how to achieve the benefits of feedback in the face of uncertainties.

ﬂ
>
e
I3

59
o 8
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~
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£~

Figure 6.1: Standard feedback configuration
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Consider again the feedback system shown in Figure 5.1. For convenience, the system
diagram is shown again in Figure 6.1. For further discussion, it is convenient to define
the input loop transfer matriz, L;, and output loop transfer matriz, L,, as

L;=KP, L,=PK,

respectively, where L; is obtained from breaking the loop at the input (u) of the plant
while L, is obtained from breaking the loop at the output (y) of the plant. The input
sensitivity matrix is defined as the transfer matrix from d; to u,:

Si=I+L)™, up,=Sid.
The output sensitivity matrix is defined as the transfer matrix from d to y:
S,=(I+L,)"', y=S58.d.
The input and output complementary sensitivity matrices are defined as
Ti=I-S;=L(I+L)™"
T,=1-S,=Lo(I+L,)™",

respectively. (The word complementary is used to signify the fact that T is the comple-
ment of S, T = I — S.) The matrix I + L; is called the input return difference matriz
and I + L, is called the output return difference matriz.

It is easy to see that the closed-loop system, if it is internally stable, satisfies the
following equations:

y = To(r—n)+ S.Pd; + S.d (6.1)
r—y = So(r—d)+Ton— S,Pd; (6.2)
u = KS,(r—n)—-KS.d—-Tid; (6.3)

up = KS,(r—n)—KS.d+ Sid;. (6.4)

These four equations show the fundamental benefits and design objectives inherent in
feedback loops. For example, equation (6.1) shows that the effects of disturbance d on
the plant output can be made “small” by making the output sensitivity function S,
small. Similarly, equation (6.4) shows that the effects of disturbance d; on the plant
input can be made small by making the input sensitivity function S; small. The notion
of smaliness for a transfer matrix in a certain range of frequencies can be made explicit
using frequency-dependent singular values, for example, 7(S,) < 1 over a frequency
range would mean that the effects of disturbance d at the plant output are effectively
desensitized over that frequency range.
Hence, good disturbance rejection at the plant output (y) would require that
1

7(S,) = F(I+PK)™")= 20+ PK) (for disturbance at plant output, d),

7(SoP) = @((I+PK)™'P)=5(PS;) (for disturbance at plant input, d;)
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be made small and good disturbance rejection at the plant input (u,) would require
that

1

7S:) = v(I+KP)Y)= ZTTKP) (for disturbance at plant input, d;),
7(S:;K) = G(K(I+PK)™')=5(KS,) (for disturbance at plant output, d)
be made small, particularly in the low-frequency range where d and d; are usually
significant.
Note that
a(PK)-1 < ¢(I+PK)<a(PK)+1
g(KP)-1 < g(I+KP)<g(KP)+1
then
< 58) < ———— if g(PK)>1
o(PK)+1~ %~ g(PK)-1 =
1 1
— < 7(S) L ——=——, if g(KP)>1
SKP 71 S78) S gy oy I EP)>

These equations imply that

7(S,) <1 < g(PK)>»1
7(S;)<1 < o(KP)>1.

Now suppose P and K are invertible; then

o(PK)> 1oro(KP)>1 <= &(S,P)=7((I +PK)"'P) ~a(K™!) = a%)
o(PK)> 1ot a(KP)>1 <> 7(KS,) =7 (K(I+PK)™) ~5(P1) = %

Hence good performance at plant output (y) requires, in general, large output loop gain
a(L,) = ¢(PK) > 1in the frequency range where d is significant for desensitizing d and
large enough controller gain ¢(K) > 1 in the frequency range where d; is significant for
desensitizing d;. Similarly, good performance at plant input (u,) requires, in general,
large input loop gain g(L;) = g(KP) > 1 in the frequency range where d; is significant
for desensitizing d; and large enough plant gain ¢(P) > 1 in the frequency range where
d is significant, which cannot be changed by controller design, for desensitizing d. [In
general, S, # S; unless K and P are square and diagonal, which is true if P is a scalar
system. Hence, small 3(S,) does not necessarily imply small 7(S;); in other words,
good disturbance rejection at the output does not necessarily mean good disturbance
rejection at the plant input.]

Hence, good multivariable feedback loop design boils down to achieving high loop (and
possibly controller) gains in the necessary frequency range.
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Despite the simplicity of this statement, feedback design is by no means trivial.
This is true because loop gains cannot be made arbitrarily high over arbitrarily large
frequency ranges. Rather, they must satisfy certain performance tradeoff and design
limitations. A major performance tradeoff, for example, concerns commands and dis-
turbance error reduction versus stability under the model uncertainty. Assume that the
plant model is perturbed to (I + A)P with A stable, and assume that the system is
nominally stable (i.e., the closed-loop system with A = 0 is stable). Now the perturbed
closed-loop system is stable if

det (I + (I + A)PK) = det(I + PK)det(] + AT))

has no right-half plane zero. This would, in general, amount to requiring that | AT, ||
be small or that (T,) be small at those frequencies where A is significant, typically at
high-frequency range, which, in turn, implies that the loop gain, 3(L,), should be small
at those frequencies.

Still another tradeoff is with the sensor noise error reduction. The conflict between
the disturbance rejection and the sensor noise reduction is evident in equation (6.1).
Large g(L,(jw)) values over a large frequency range make errors due to d small. How-
ever, they also make errors due to n large because this noise is “passed through” over
the same frequency range, that is,

y=T,(r —n)+ S,Pd; + Spd =~ (r —n)

Note that n is typically significant in the high-frequency range. Worst still, large loop
gains outside of the bandwidth of P — that is, o(Lo(jw)) > 1 or g(Li(jw)) > 1 while
7(P(jw)) < 1 — can make the control activity (u) quite unacceptable, which may cause
the saturation of actuators. This follows from

u=KS,(r—-n—-d)-Tdi=S;K(r-n—-d)-Tid; ~x P (r —n—d)—d;

Here, we have assumed P to be square and invertible for convenience. The resulting
equation shows that disturbances and sensor noise are actually amplified at u whenever
the frequency range significantly exceeds the bandwidth of P, since for w such that
(P(jw)) < 1 we have

g[P7 (jw)] = >1

1
o[P(jw)]
Similarly, the controller gain, 7(K), should also be kept not too large in the frequency
range where the loop gain is small in order not to saturate the actuators. This is because
for small loop gain 7(L,(jw)) < 1 or 7(L;(jw)) < 1

u=KS,(r—n—-d)-Tid;, ~ K(r —n —d)

Therefore, it is desirable to keep 7(K) not too large when the loop gain is small.
To summarize the above discussion, we note that good performance requires in some
frequency range, typically some low-frequency range (0, w;),

a(PK)>» 1, g(KP)>1, g(K)>1
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and good robustness and good sensor noise rejection require in some frequency range,
typically some high-frequency range (wp, 00),

F(PK) <1, 5(KP)<1, 5(K)<M

where M is not too large. These design requirements are shown graphically in Figure 6.2.
The specific frequencies w; and wy, depend on the specific applications and the knowledge
one has of the disturbance characteristics, the modeling uncertainties, and the sensor
noise levels.

A
>

7

% .

Figure 6.2: Desired loop gain

6.2 Weighted H; and H,, Performance

In this section, we consider how to formulate some performance objectives into math-
ematically tractable problems. As shown in Section 6.1, the performance objectives of
a feedback system can usually be specified in terms of requirements on the sensitivity
functions and/or complementary sensitivity functions or in terms of some other closed-
loop transfer functions. For instance, the performance criteria for a scalar system may
be specified as requiring

|S(jw)| <&, VYw < wp,
ISGw) < M, Yw > wg

where S(jw) = 1/(1 + P(jw)K (jw)). However, it is much more convenient to reflect
the system performance objectives by choosing appropriate weighting functions. For
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example, the preceding performance objective can be written as
[We(jw)S(jw)l <1, Vw

with 1 v
. £, w < wy
IWe(Jw)l = { l/M, Yw > wo
To use W, in control design, a rational transfer function W,(s) is usually used to ap-
proximate the foregoing frequency response.

The advantage of using weighted performance specifications is obvious in multi-
variable system design. First, some components of a vector signal are usually more
important than others. Second, each component of the signal may not be measured in
the same units; for example, some components of the output error signal may be mea-
sured in terms of length, and others may be measured in terms of voltage. Therefore,
weighting functions are essential to make these components comparable. Also, we might
be primarily interested in rejecting errors in a certain frequency range (for example, low
frequencies); hence some frequency-dependent weights must be chosen.

i 1 d

Wu Wi Wd

ldi d
___.E WTE r N K u O P Yy We _e..
n W, L

Figure 6.3: Standard feedback configuration with weights

In general, we shall modify the standard feedback diagram in Figure 6.1 into Fig-
ure 6.3. The weighting functions in Figure 6.3 are chosen to reflect the design objectives
and knowledge of the disturbances and sensor noise. For example, W, and W; may be
chosen to reflect the frequency contents of the disturbances d and d; or they may be used
to model the disturbance power spectrum depending on the nature of signals involved
in the practical systems. The weighting matrix W, is used to model the frequency
contents of the sensor noise while W, may be used to reflect the requirements on the
shape of certain closed-loop transfer functions (for example, the shape of the output
sensitivity function). Similarly, W,, may be used to reflect some restrictions on the con-
trol or actuator signals, and the dashed precompensator W, is an optional element used
to achieve deliberate command shaping or to represent a nonunity feedback system in
equivalent unity feedback form.
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It is, in fact, essential that some appropriate weighting matrices be used in order
to utilize the optimal control theory discussed in this book (i.e., Hz and Heo theory).
So a very important step in the controller design process is to choose the appropriate
weights, W, Wy, W,,, and possibly W,,, W;, W,.. The appropriate choice of weights for a
particular practical problem is not trivial. In many occasions, as in the scalar case, the
weights are chosen purely as a design parameter without any physical bases, so these
weights may be treated as tuning parameters that are chosen by the designer to achieve
the best compromise between the conflicting objectives. The selection of the weighting
matrices should be guided by the expected system inputs and the relative importance
of the outputs.

Hence, control design may be regarded as a process of choosing a controller K such
that certain weighted signals are made small in some sense. There are many different
ways to define the smallness of a signal or transfer matrix, as we have discussed in
the last chapter. Different definitions lead to different control synthesis methods, and
some are much harder than others. A control engineer should make a judgment of the
mathematical complexity versus engineering requirements.

Next, we introduce two classes of performance formulations: Hs and Hoo criteria.
For the simplicity of presentation, we shall assume that d; = 0 and n = 0.

‘H, Performance

Assume, for example, that the disturbance d can be approximately modeled as an
impulse with random input direction; that is,

d(t) = nb(t)

and
E(m™) =1

where E denotes the expectation. We may choose to minimize the expected energy of
the error e due to the disturbance d:

B{eE) = B{ [l e} = wes.wals

In general, a controller minimizing only the above criterion can lead to a very large
control signal u that could cause saturation of the actuators as well as many other
undesirable problems. Hence, for a realistic controller design, it is necessary to include
the control signal » in the cost function. Thus, our design criterion would usually be
something like this:

i W.S,W, :
Bl + 012} = || s, |

2

with some appropriate choice of weighting matrix W, and scalar p. The parameter p
clearly defines the tradeoff we discussed earlier between good disturbance rejection at
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the output and control effort (or disturbance and sensor noise rejection at the actuators).
Note that p can be set to p = 1 by an appropriate choice of W,. This problem can
be viewed as minimizing the energy consumed by the system in order to reject the
disturbance d.

This type of problem was the dominant paradigm in the 1960s and 1970s and is
usually referred to as linear quadratic Gaussian control, or simply as LQG. (Such prob-
lems will also be referred to as Hs mixed-sensitivity problems for consistency with the
Hoo problems discussed next.) The development of this paradigm stimulated extensive
research efforts and is responsible for important technological innovation, particularly
in the area of estimation. The theoretical contributions include a deeper understanding
of linear systems and improved computational methods for complex systems through
state-space techniques. The major limitation of this theory is the lack of formal treat-
ment of uncertainty in the plant itself. By allowing only additive noise for uncertainty,
the stochastic theory ignored this important practical issue. Plant uncertainty is par-
ticularly critical in feedback systems. (See Paganini [1995,1996] for some recent results
on robust M, control theory.)

‘Ho Performance

Although the M, norm (or £ norm) may be a meaningful performance measure and
although LQG theory can give efficient design compromises under certain disturbance
and plant assumptions, the H; norm suffers a major deficiency. This deficiency is due
to the fact that the tradeoff between disturbance error reduction and sensor noise error
reduction is not the only constraint on feedback design. The problem is that these
performance tradeoffs are often overshadowed by a second limitation on high loop gains
— namely, the requirement for tolerance to uncertainties. Though a controller may
be designed using FDLTI models, the design must be implemented and operated with
a real physical plant. The properties of physical systems (in particular, the ways in
which they deviate from finite-dimensional linear models) put strict limitations on the
frequency range over which the loop gains may be large.

A solution to this problem would be to put explicit constraints on the loop gain in
the cost function. For instance, one may chose to minimize

sup [lell; = [WeSoWall
[14]],<1

subject to some restrictions on the control energy or control bandwidth:

sup |[|afl, = [[WuKS.Will,,

llall, <1

Or, more frequently, one may introduce a parameter p and a mixed criterion

- WeSoWd
sup {Jlell2 + o* 1 =H[ ]
||J||251{ PN = | s

2
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Alternatively, if the system robust stability margin is the major concern, the weighted
complementary sensitivity has to be limited. Thus the whole cost function may be

WeS,Wq

pW1 T, W,
where W; and W, are the frequency-dependent uncertainty scaling matrices. These
design problems are usually called H., mixed-sensitivity problems. For a scalar system,
an M., norm minimization problem can also be viewed as minimizing the maximum

magnitude of the system’s steady-state response with respect to the worst-case sinusoidal
inputs.

o0

6.3 Selection of Weighting Functions

The selection of weighting functions for a specific design problem often involves ad hoc
fixing, many iterations, and fine tuning. It is very hard to give a general formula for
the weighting functions that will work in every case. Nevertheless, we shall try to give
some guidelines in this section by looking at a typical SISO problem.

Consider an SISO feedback system shown in Figure 6.1. Then the tracking error is
e=r—y=_5S(r—d)+Tn— SPd;. So, as we have discussed earlier, we must keep |S|
small over a range of frequencies, typically low frequencies where r and d are significant.
To motivate the choice of our performance weighting function W,, let L = PK be a
standard second-order system
L= __i._

s(s + 2€éwn)

It is well-known from the classical control theory that the quality of the (step) time
response can be quantified by rise time t,, settling time ¢, and percent overshoot
100M,%. Furthermore, these performance indices can be approximately calculated as

b OBH2I6E 0 e 0t n

_ 7t§
" gw;Mpze Vi <<

The key points to note are that (1) the speed of the system response is proportional to
wn, and (2) the overshoot of the system response is determined only by the damping ratio
€. Tt is well known that the frequency w, and the damping ratio £ can be essentially
captured in the frequency domain by the open-loop crossover frequency and the phase
margin or the bandwidth and the resonant peak of the closed-loop complementary
sensitivity function 7.

Since our performance objectives are closely related to the sensitivity function, we
shall consider in some detail how these time domain indices or, equivalently, w, and §
are related to the frequency response of the sensitivity function

1 s(s+28wn)
T1+ L 2+ 2wps +w?

S
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sensitivity function

= : :
10° ! e

10° 10
normalized frequency

Figure 6.4: Sensitivity function S for £ = 0.05,0.1,0.2,0.5,0.8, and 1 with normalized
frequency (w/wy)

The frequency response of the sensitivity function S is shown in Figure 6.4. Note that
|S(jwn/V2)| = 1. We can regard the closed-loop bandwidth wy ~ w,/v/2, since beyond
this frequency the closed-loop system will not be able to track the reference and the
disturbance will actually be amplified.

Next, note that

. av/a? + 4¢£2
M, = |IS|l,, = IS(wmes)| vt 4

T VAo a) f it

where o = \/0.5-4—0.5\/1 +8£% and wmax = aw,. For example, M, = 5.123 when
& = 0.1. The relationship between ¢ and M, is shown in Figure 6.5. It is clear that the
overshoot can be excessive if M, is large. Hence a good control design should not have
a very large M,.

Now suppose we are given the time domain performance specifications then we can
determine the corresponding requirements in frequency domain in terms of the band-
width ws and the peak sensitivity M,. Hence a good control design should result in
a sensitivity function S satisfying both the bandwidth w; and the peak sensitivity M,
requirements, as shown in Figure 6.6. These requirements can be approximately repre-
sented as

lS(s)IS) , $=jw, Vw

S
S/Ms + wp
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peak sensitivity
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Figure 6.5: Peak sensitivity M, versus damping ratio §
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Figure 6.6: Performance weight W, and desired S
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Or, equivalently, |W,S| < 1 with

S$/M, + wy
L]

W, = (6.5)
The preceding discussion applies in principle to most control design and hence the
preceding weighting function can, in principle, be used as a candidate weighting function
in an initial design. Since the steady-state error with respect to a step input is given by
|S(0)], it is clear that |S(0)| = 0 if the closed-loop system is stable and (WS, < oo.
Unfortunately, the optimal control techniques described in this book cannot be used
directly for problems with such weighting functions since these techniques assume that all
unstable poles of the system (including plant and all performance and control weighting
functions) are stabilizable by the control and detectable from the measurement outputs,
which is cléarly not satisfied if W, has an imaginary axis pole since W, is not detectable
from the measurement. We shall discuss in Chapter 14 how such problems can be
reformulated so that.the techniques described in this book can be applied. A theory
dealing directly with such problems is available but is much more complicated both
theoretically and computationally and does not seem to offer much advantage.

1/1Wel

Figure 6.7: Practical performance weight W, and desired S

Now instead of perfect tracking for step input, suppose we only need the steady-
state error with respect to a step input to be no greater than € (i.e., |S(0)| < e);
then it is sufficient to choose a weighting function W, satisfying [W.(0)| > 1/¢ so that
[WeS|l, <1 can be achieved. A possible choice of W can be obtained by modifying
the weighting function in equation (6.5):

/My + wy
S+ wpe

W, = (6.6)

-

P
1w
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Hence, for practical purpose, one can usually choose a suitable ¢, as shown in Figure 6.7,
to satisfy the performance specifications. If a steeper transition between low-frequency
and high-frequency is desired, the weight W, can be modified as follows:

W, = (m)k 6.7)

3+wb\'7§

for some integer k > 1.
The selection of control weighting function W, follows similarly from the preceding
discussion by considering the control signal equation

u=KS(r-n-d)-Td;

The magnitude of |K S| in the low-frequency range is essentially limited by the allowable
cost of control effort and saturation limit of the actuators; hence, in general, the max-
imum gain M, of KS can be fairly large, while the high-frequency gain is essentially
limited by the controller bandwidth (wsc) and the (sensor) noise frequencies. Ideally,
one would like to roll off as fast as possible beyond the desired control bandwidth so
that the high-frequency noises are attenuated as much as possible. Hence a candidate
weight W, would be

(6.8)

Figure 6.8: Control weight W, and desired K.S

However, again the optimal control design techniques developed in this book cannot
be applied directly to a problem with an improper control weighting function. Hence
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we shall introduce a far away pole to make W, proper:

s +wbc/M,,
€18 +Wbc

W, = (6.9)

for a small £; > 0, as shown in Figure 6.8. Similarly, if a faster rolloff is desired, one

may choose
R k
W, = (33 Wee/ VM, (6.10)
{”/51- S + Wpe

for some integer k > 1.
The weights for MIMO problems can be initially chosen as diagonal matrices with
each diagonal term chosen in the foregoing form.

6.4 Bode’s Gain and Phase Relation

One important problem that arises frequently is concerned with the level of perfor-
mance that can be achieved in feedback design. It has been shown in Section 6.1 that
the feedback design goals are inherently conflicting, and a tradeoff must be performed
among different design objectives. It is also known that the fundamental requirements,
such as stability and robustness, impose inherent limitations on the feedback properties
irrespective of design methods, and the design limitations become more severe in the
presence of right-half plane zeros and poles in the open-loop transfer function.

In the classical feedback theory, Bode’s gain-phase integral relation (see Bode [1945])
has been used as an important tool to express design constraints in scalar systems. This
integral relation says that the phase of a stable and minimum phase transfer function
is determined uniquely by the magnitude of the transfer function. More precisely, let
L(s) be a stable and minimum phase transfer function: then

LL(jwg) = %/ gl;lT,Ll In coth I%‘du (6.11)
. |I/, el”l/2 + e—'”l/z . . .
where v := In(w/wp). The function Incoth 5 = In SE = ooz 8 plotted in Fig-

ure 6.9.
Note that In coth % decreases rapidly as w deviates from wy and hence the integral
dIn|L(jw)|
dv

depends mostly on the behavior of near the frequency wg. This is clear

from the following integration:

1 re Iv] 1.1406 (rad), a =In3 65.3°, a=1In3
—/ Incoth —dv = 1.3146 (rad), a=In5 = 75.3°, a=1In5
TJ-a 1.443 (rad), a=1In10 82.7°, a=In10.

B e p——
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Figure 6.9: The function In coth % vs v

Note that M(iw—)l

7
almost all frequencies. It follows that ZL(jwo) will be large if the gain L attenuates
slowly near wy and small if it attenuates rapidly near wy. For example, suppose the

is the slope of the Bode plot, which is generally negative for

slope @E%Lji)—l = —/; that is, (—20¢ dB per decade), in the neighborhood of wp; then
v
it is reasonable to expect
—£x65.3°, if theslope of L=—£for § < =<3
/L(jwo) < { —€x75.3°, if the slope of L = —£ for 1< =<5
—€x 82.7°, if the slope of L = —£ for {5 < = <10

The behavior of ZL(jw) is particularly important near the crossover frequency w,, where
|L(jw.)| = 1 since 7 + ZL(jw,) is the phase margin of the feedback system. Further,
the return difference is given by

7+ ZL(jw.)

11 + Ljwe)| = |1 + L7 (jwe)| = 2 [sin 3

¥

which must not be too small for good stability robustness. If 7 + ZL(jw.) is forced to
be very small by rapid gain attenuation, the feedback system will amplify disturbances
and exhibit little uncertainty tolerance at and near w.. Since it is generally required
that the loop transfer function L roll off as fast as possible in the high-frequency range,
it is reasonable to expect that ZL(jw.) is at most —¢ x 90° if the slope of L(jw) is —¢
near w.. Thus it is important to keep the slope of L near w. not much smaller than
—1 for a reasonably wide range of frequencies in order to guarantee some reasonable
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performance. The conflict between attenuation rate and loop quality near crossover is
thus clearly evident.

Bode’s gain and phase relation can be extended to stable and nonminimum phase
transfer functions easily. Let 2y, 2,, ...,z be the right-half plane zeros of L(s), then L
can be factorized as

—8s+2z1 -84 29 -8+ zi
L(s) =
S$+21 8§+ 2 S+ 2k

Lmp(s)
where Ly, is stable and minimum phase and |L(jw)| = |Lmp(jw)|. Hence

—Jwo + z;

k
ZL(jwo) = LLmp(jwo) + £ [] e

i=1

1 % dln|Lyy)| v| b o+
== = mel )y coth g (AT EH
7r/_°° dv "ot V+Z Jwo + 2’

i=1

which gives

, 1 [* din|L| || S —jwo +
ZL == ——— Incoth —d L— 1 6.12
(jwo) T /_oo dv feo 2 v ; Jwo + 2 ( )
. Jwo + 2 . . . .
Since £— < 0 for each 4, a nonminimum phase zero contributes an additional

Jwo + 2
phase lag and imposes limitations on the rolloff rate of the open-loop gain. For example,

suppose L has a zero at z > 0; then

é—]w0+z

P1(wo/2) := ootz

= —90°, —53.13°, —28°,
wo=z2,2/2,2/4

as shown in Figure 6.10. Since the slope of |L| near the crossover frequency is, in
general, no greater than —1, which means that the phase due to the minimum phase
part, Lyp, of L will, in general, be no greater than —90°, the crossover frequency (or
the closed-loop bandwidth) must satisfy

we < 2/2 (6.13)

in order to guarantee the closed-loop stability and some reasonable closed-loop perfor-
mance.
Next suppose L has a pair of complex right-half zeros at z = z + jy with z > 0; then

¢2(w0/|z|) = é—.]wo++ 2z —.]w0++—2
JWo Tz JWot 2 otz z12,021/3,)21/4

~180°, —106.26°, —73.7°, —~56°, Re(z) > 3(z)
=< —180°, ~86.7°, —55.9°, -41.3°, Re(z) ~ S¢(z2)
—-360°, 0°, 0°, 0°, Re(2) € 3(z)
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as shown in Figure 6.11. In this case we conclude that the crossover frequency must
satisfy
|21/4, Re(z) > §(z)
we < ¢ [21/3, Re(z) = S(z) (6.14)
|2, Re() < S(2)

in order to guarantee the closed-loop stability and some reasonable closed-loop perfor-
mance.

6.5 Bode’s Sensitivity Integral

In this section, we consider the design limitations imposed by the bandwidth constraints
and the right-half plane poles and zeros using Bode’s sensitivity integral and Poisson
integral. Let L be the open-loop transfer function with at least two more poles than
zeros and let p;,py, ..., pm be the open right-half plane poles of L. Then the following
Bode’s sensitivity integral holds:

/000 In|S(jw)ldw == iRe(p,-) (6.15)

=1

In the case where L is stable, the integral simplifies to
/ In |S(jw)]dw = 0 (6.16)
0

These integrals show that there will exist a frequency range over which the magnitude
of the sensitivity function exceeds one if it is to be kept below one at other frequencies,
as illustrated in Figure 6.12. This is the so-called water bed effect.

.
NE by
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Suppose that the feedback system is designed such that the level of sensitivity re-
duction is given by
ISGw)| <e<1, VYwe [0, w]

where € > 0 is a given constant.

Bandwidth constraints in feedback design typically require that the open-loop trans-
fer function be small above a specified frequency, and that it roll off at a rate of more
than one pole-zero excess above that frequency. These constraints are commonly needed
to ensure stability robustness despite the presence of modeling uncertainty in the plant
model, particularly at high frequencies. One way of quantifying such bandwidth con-
straints is by requiring the open-loop transfer function to satisfy

) M,
|L(jw)| £ Y

<Eé<1l, VYwE [wp, )

where wy, > wi, and My > 0, 3 > 0 are some given constants.
Note that for w > wp,

1 1
S(jw)| < - <
SO < TG = 1- 2
and
®© M, 1 My \*
_/w ln(l———w1+ﬂ>dw - ;/w’ ;(wwa) d
B il wh M, )
~ii(l+8)-1 wp TP
Wh = 1 Mh ' Wh Mh
< N2 ) =22 -
- B i:li(wflz+ﬂ) Bln (1 w'll+ﬂ>
Wh -
< —~—1In(l-¢€
Then

") Re(p) = /0 " ln [S(w) ldw

= /0 1n|S(jw)|dw+/ 1n]S(jw)|dw+/ In |S(jw)|dw

wi wh

. * My
< - 1 - In[1- d
< wilne+ (wn wz)wermgh] n|S(jw)| /wh n ( ww) w
< wlne+ (wp —w;) max In|S(jw)| - ﬂ111(1 — &),
""e[“’h“’h] ﬁ




100 PERFORMANCE SPECIFICATIONS AND LIMITATIONS

which gives
1\ &2 oy
max 15(Ge) > (1) (L~ gt
w€[wy,wy] €

where m
_T Ei:l Re(p:)

Wh — Wy

The above lower bound shows that the sensitivity can be very significant in the transition
band.

Next, using the Poisson integral relation, we investigate the design constraints on
sensitivity properties imposed by open-loop nonminimum phase zeros. Suppose L has
at least one more poles than zeros and suppose z = Zo + jyo with zo > 0 is a right-half
plane zero of L. Then

(6.17)

z+p,‘l

(o) ) Zo m
In S(jw —“dwzwln
/ S e IH 2= pi

—00 =1

This integral implies that the sensitivity reduction ability of the system may be severely
limited by the open-loop unstable poles and nonminimum phase zeros, especially when
these poles and zeros are close to each other.

Define o
]
8z ;:/ 4,
(2) ey TE+ (w — yo)2
Then
1|2+ > . g
In — = In|S(jw)|————

< (1= 6(2)) In[|S(jw)ll + 6(2) In(e),

I1S(3)ee > (é)—L (ﬁ

=1

which gives

z+pi) e
=P

This lower bound on the maximum sensitivity shows that for a nonminimum phase
system, its sensitivity must increase significantly beyond one at certain frequencies if
the sensitivity reduction is to be achieved at other frequencies.

6.6 Analyticity Constraints

Let p1,p2,...,pm and 21, 23,..., 2; be the open right-half plane poles and zeros of L,
respectively. Suppose that the closed-loop system is stable. Then-

Spi)=0, T(p:)=1,i=1,2,...,m

e - A . . g e
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and
S(z;)=1, T(2;)=0,j=12,...,k
The internal stability of the feedback system is guaranteed by satisfying these analyticity
(or interpolation) conditions. On the other hand, these conditions also impose severe
limitations on the achievable performance of the feedback system.
Suppose S = (I + L)t and T = L(I + L)~! are stable. Then p1,po,...,Pm are the
right-half plane zeros of S and 21, 22, ..., 2 are the right-half plane zeros of T. Let

m k
s—pi 8 —2j
By(s) = B B.s) =[] =2

1,=ls+p,- j=13+z,-

Then |B,(jw)| = 1 and |B.(jw)| = 1 for all frequencies and, moreover,
B;l(s)S(s) € Hoo, B7'(5)T(3) € Heo-
Hence, by the maximum modulus theorem, we have
IS = | By (9S> B (2)8(2)] = 1B, (2)]
for any z with Re(z) > 0. Let z be a right-half plane zero of L; then

_ x|z +pi
156 > 1B =] —"_\
il LA &
Similarly, one can obtain
u P+ 2z
IT(s)ll.. = 1B ) = [ |=—2
P—z

i=1

where p is a right-half plane pole of L.
The weighted problem can be considered in the same fashion. Let W, be a weight
such that W, S is stable. Then

z+pi
W50l 2 W2 T[22
=1
M,
Now suppose We(s) = f/_::_j_b IW.S||,, <1, and 2 is a real right-half plane zero.
Then
z/M +wp 2—pi| _.
2z + wpe€ H z2+pi l -
which gives
1 1
< —-——) -
wo S T (a Ms) z(a Ms)

where a = 1 if L has no right-half plane poles. This shows that the bandwidth of the
closed-loop must be much smaller than the right-half plane zero. Similar conclusions
can be arrived at for complex right-half plane zeros.
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6.7 Notes and References

The loop-shaping design is well-known for SISO systems in the classical control theory.
The idea was extended to MIMO systems by Doyle and Stein [1981] using the LQG
design technique. The limitations of the loop-shaping design are discussed in detail in
Stein and Doyle [1991]. Chapter 16 presents another loop-shaping method using H
control theory, which has the potential to overcome the limitations of the LQG/LTR
method. Some additional discussions on the choice of weighting functions can be found
in Skogestad and Postlethwaite [1996]. The design tradeoffs and limitations for SISO
systems are discussed in detail in Bode [1945], Horowitz [1963], and Doyle, Francis,
and Tannenbaum [1992]. The monograph by Freudenberg and Looze [1988] contains
many multivariable generalizations. The multivariable generalization of Bode’s integral
relation can be found in Chen [1995], on which Section 6.5 is based. Some related results
can be found in Boyd and Desoer [1985]. Additional related results can be found in a
recent book by Seron, Braslavsky, and Goodwin [1997).

6.8 Problems

Problem 6.1 Let P be an open-loop plant. It is desired to design a controller so that
the overshoot < 10% and settling time < 10 sec. Estimate the allowable peak sensitivity
M, and the closed-loop bandwidth.

1
Problem 6.2 Let L; = m be an open-loop transfer function of a unity feedback
s
system. Find the phase margin, overshoot, settling time, and the corresponding M,.

Problem 6.3 Repeat Problem 6.2 with

_ 100(s + 10)
T (s+1)(s+2)(s+20)

2

10(1 —

Problem 6.4 Let P = (;TI(S)i Use classical loop-shaping method to design a con-
s

troller so that the system has at least 30° phase margin and as large a crossover frequency

as possible.

Problem 6.5 Use the root locus method to show that a nonminimum phase system
cannot be stabilized by a very high-gain controller.

5]
Problem 6.6 Let P= ———— Design a controller so that the system has at
(1-38)(s+2)

least 30° phase margin and the smallest possible bandwidth (or crossover frequency).

Problem 6.7 Use the root locus method to show that an unstable system cannot be
stabilized by a very low gain controller.
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Problem 6.8 Consider the unity-feedback loop with proper controller K (s) and strictly
proper plant P(s), both assumed square. Assume internal stability.

1. Let w(s) be a scalar weighting function, assumed in R'Ho,. Define
e = [w(I + PK) Moo, &=IKI+PK) |

so € measures, say, disturbance attenuation and é measures, say, control effort.
Derive the following inequality, which shows that ¢ and ¢ cannot both be small
simultaneously in general. For every Re sg > 0

[w(s0)| < €+ |w(s0)|omin[P(50)]0.

2. Tf we want very good disturbance attenuation at a particular frequency, you might
guess that we need high controller gain at that frequency. Fix w with jw not a
pole of P(s), and suppose

€ := omax|(I + PK)™!(jw)] < 1.

Derive a lower bound for oin[K (jw)]. This lower bound should blow up as € — 0.







Chapter 7

Balanced Model Reduction

Simple linear models/controllers are normally preferred over complex ones in control
system design for some obvious reasons: They are much easier to do analysis and
synthesis with. Furthermore, simple controllers are easier to implement and are more
reliable because there are fewer things to go wrong in the hardware or bugs to fix in
the software. In the case when the system is infinite dimensional, the model/controller
approximation becomes essential. In this chapter we consider the problem of reducing
the order of a linear multivariable dynamical system. There are many ways to reduce the
order of a dynamical system. However, we shall study only one of them: the balanced
truncation method. The main advantage of this method is that it is simple and performs
fairly well.

A model order-reduction problem can, in general, be stated as follows: Given a full-
order model G(s), find a lower-order model (say, an rth order model G,), such that G
and G, are close in some sense. Of course, there are many ways to define the closeness
of an approximation. For example, one may desire that the reduced model be such that

G=Gr+ A,

and A, is small in some norm. This model reduction is usually called an edditive model
reduction problem. We shall be only interested in £, norm approximation in this book.
Once the norm is chosen, the additive model reduction problem can be formulated as

inf |G- Gyl -
deg(G)<r

In general, a practical model reduction problem is inherently frequency-weighted (i.e.,
the requirement on the approximation accuracy at one frequency range can be drastically
different from the requirement at another frequency range). These problems can, in
general, be formulated as frequency-weighted model reduction problems:

inf  ||Wo(G - G )Wl
deg(Gr)<r

105
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with an appropriate choice of W; and W,. We shall see in this chapter how the bal-
anced realization can give an effective approach to the aforementioned model reduction
problems.

7.1 Lyapunov Equations

Testing stability, controllability, and observability of a system is very important in linear
system analysis and synthesis. However, these tests often have to be done indirectly. In
that respect, the Lyapunov theory is sometimes useful. Consider the following Lyapunov
equation:

A'Q+QA+H=0 (7.1)

with given real matrices A and H. It is well known that this equation has a unique
solution iff Ai(4) + A;(4) # 0,Vi,j. In this section, we shall study the relationships
between the stability of A and the solution of Q. The following results are standard.

Lemma 7.1 Assume that A is stable, then the following statements hold:
(i) Q = [ e tHeAtdt.
(i) Q>0 if H>0and Q>0 if H>O0.

(i) If H > 0, then (H, A) is observable iff Q > 0.

An immediate consequence of part (iii) is that, given a stable matrix A, a pair (C, A)
is observable if and only if the solution to the following Lyapunov equation

A'Q+QA+C*C =0

is positive definite, where Q is the observability Gramian. Similarly, a pair (4, B) is
controllable if and only if the solution to

AP+ PA*+ BB*=0

is positive definite, where P is the controllability Gramian.
In many applications, we are given the solution of the Lyapunov equation and need
to conclude the stability of the matrix A.

Lemma 7.2 Suppose Q is the solution of the Lyapunov equation (7.1), then
(i) ReA(A) <04 Q>0 and H>O0.
(i) A is stable if @ > 0 and H > 0.

(i) A is stable if @ >0, H > 0, and (H, A) is detectable.




7.2. Balanced Realizations 107

Proof. Let ) be an eigenvalue of A and v # 0 be a corresponding eigenvector, then
Av = \v. Premultiply equation (7.1) by v* and postmultiply equation (7.1) by v to get

2Re A(v*Qu) +v*Hv = 0.

Now if Q > 0, then v*Qu > 0, and it is clear that Rel < 0if H > 0 and ReX < 0 if
H > 0. Hence (i) and (ii) hold. To see (iii), we assume ReA > 0. Then we must have .
v*Hv = 0 (i.e., Hv = 0). This implies that A is an unstable and unobservable mode,
which contradicts the assumption that (H, A) is detectable. a

7.2 Balanced Realizations

Although there are infinitely many different state-space realizations for a given transfer
matrix, some particular realizations have proven to be very useful in control engineering
and signal processing. Here we will only introduce one class of realizations for stable
transfer matrices that are most useful in control applications. To motivate the class of
realizations, we first consider some simple facts.

Lemma 7.3 Let [ é g ] be a state-space realization of a (not necessarily stable)

transfer matriz G(s). Suppose that there exists a symmetric matriz

I Y
p=r=[5 5]

with P, nonsingular such that
AP + PA*+ BB* =0.

Now partition the realization (A, B,C, D) compatibly with P as

A A | B
Ay Asx | By
C, C; | D
An | By | . . . .
Then C ia) is also a realization of G. Moreover, (A11, By) is controllable if A1x
1
is stable.

Proof. Use the partitioned P and (4, B,C) to get

0= AP + PA* + BB* = [ A11P1+P1AI1+BlB; P1A§1 +BlB; ]’

An P +B2BI BQB;
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which gives B, = 0 and A;; = 0 since Py is nonsingular. Hence, part of the realization
is not controllable:

A Az | B A A (B An | B
A2an A By | =| 0 Ap| o0 | = [ Cl ! Dl ]
Cl Cz I D Cl Cz I D 1

Finally, it follows from Lemma 7.1 that (A, 1, B1) is controllable if A4, is stable. a

We also have the following:

Lemma 7.4 Let g g ] be a state-space realization of a (not necessarily stable)

transfer matriz G(s). Suppose that there exists a symmetric matriz
— N _ Ql 0
with Q1 nonsingular such that

QA+ A'Q+C*C=0.
Now partition the realization (A, B, C, D) compatibly with Q as

Ann A (B
A2y Axn | B, |.
¢, G| D

Then [ “é}ll Bg ] is also a realization of G. Moreover, (C1,A11) is observable if Ay,
is stable.

The preceding two lemmas suggest that to obtain a minimal realization from a stable
nonminimal realization, one only needs to eliminate all states corresponding to the zero
block diagonal term of the controllability Gramian P and the observability Gramian
Q. In the case where P is not block diagonal, the following procedure can be used to
eliminate noncontrollable subsystems:

1. Let G(s) = [ g IB; ] be a stable realization.

2. Compute the controllability Gramian P > 0 from
AP + PA* + BB* = 0.

3. Diagonalize P to get P = [ un U, ] [ 1})1 3

] [Uh Uz ] with A; > 0 and
[ U1 U, ] unitary.
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UrAU, | Ut B

4. Then G(s) = [ reiii D
1

] is a controllable realization.

A dual procedure can also be applied to eliminate nonobservable subsystems.

Now assume that A; > 0 is diagonal and is partitioned as A; = diag(A11, A12) such
that Amax(A12) € Amin(A11); then it is tempting to conclude that one can also discard
those states corresponding to A2 without causing much error. However, this is not
necessarily true, as shown in the following example.

Example 7.1 Consider a stable transfer function

35+ 18

G = 213718

Then G(s) has a state-space realization given by

-1 —4/a} 1
Gs)=| 4o =2 |2a
-1 2/a |0

where a is any nonzero number. It is easy to check that the controllability Gramian of
the realization is given by
0.5

Since the last diagonal term of P can be made arbitrarily small by making o small,
the controllability of the corresponding state can be made arbitrarily weak. If the state
corresponding to the last diagonal term of P is removed, we get a transfer function

L [ -1]1 -1
G = = s
[ -1[0 ] s+1
which is not close to the original transfer function in any sense. The problem may be
easily detected if one checks the observability Gramian @, which is

Q:[0.5 1/a2].

Since 1/a? is very large if a is small, this shows that the state corresponding to the last
diagonal term is strongly observable.

This example shows that the controllability (or observability) Gramian alone cannot
give an accurate indication of the dominance of the system states in the input/output
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behavior. This motivates the introduction of a balanced realization that gives balanced
Gramians for controllability and observability.
Al B
C|D
controllability Gramian and observability Gramian, respectively. Then by Lemma 7.1,
P and Q satisfy the following Lyapunov equations:

Suppose G = is stable (i.e., A is stable). Let P and Q denote the

AP + PA* + BB* =0 (7.2)

A'Q+QA+C*C =0, (7.3)

and P >0, Q > 0. Furthermore, the pair (4, B) is controllable iff P > 0, and (C,A)is
observable iff Q > 0.
Suppose the state is transformed by a nonsingular T to £ = Tr to yield the realiza-

tion
A|B] [rar-'|TB
¢|\p| [ CT ™D |

Then the Gramians are transformed to P = TPT* and Q= (T~YH)*QT~'. Note that
PQ = TPQT™!, and therefore the eigenvalues of the product of the Gramians are
invariant under state transformation.

Consider the similarity transformation T, which gives the eigenvector decomposition

G =

PQ=T7'AT, A=diag(\1,,,...,\y],,).

Then the columns of T~ are eigenvectors of PQ corresponding to the eigenvalues {);}.
Later, it will be shown that PQ has a real diagonal Jordan form and that A > 0, which
are consequences of P > 0 and Q > 0.

Although the eigenvectors are not unique, in the case of a minimal realization they
can always be chosen such that

P=TPT*=7%,

Q=(T)QTr'=13,

where ¥ = diag(o11,,,021,,,... yonIsy) and 2 = A. This new realization with con-
trollability and observability Gramians P = Q = % will be referred to as a balanced
realization (also called internally balanced realization). The decreasingly ordered num-
bers, 01 > 03 > ... > on > 0, are called the Hankel singular values of the system.

More generally, if a realization of a stable system is not minimal, then there is a trans-
formation such that the controllability and observability Gramians for the transformed
realization are diagonal and the controllable and observable subsystem is balanced. This
is a consequence of the following matrix fact.
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Theorem 7.5 Let P and Q be two positive semidefinite matrices. Then there exists a

nonsingular matric T such that

b
X2
O 2
0

TPT* =

(T-l)*QT—l

b

respectively, with £,, s, T3 diagonal and positive definite.

Proof. Since P is a positive semidefinite matrix, there exists a transformation 77 such

that 1
. 0
. TyPIT = [ 0 O}
Now let 0 0
™) -1oT! = [ 1 12 ]
(T7)™ QTy Ql Qo
and there exists a unitary matrix U; such that
N 2 0
U1Q11U1=[ 01 0], £, >0
Let U
-1 _ 1 0
@ =5 7]
and then

(T3) N (T QI H(Te) ™' =

But @ > 0 implies ng = 0. So now let

I 0
(T3) ' = 0 I
—QinZ* 0
giving
o1
(T5) " N(T3) NI QI (T) ' (Ts) = | O
0

Next find a unitary matrix Us such that

A* —2A * z
Uz(Qa2 — QI 51 °Qi21)Us = [ ()3

0 le
0 Qe
Qla Q22

o OO

0
~ 0 ~
Q22 — Q1T Qi

0
0], ¥3>0
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Define
=5V 0 0
(TH™*= 0 I 0
0 0 U,
and let
T = T4T3T2T1
Then
31 P
* 22 *\—1 -1 _ 0
TPT* = 0 , (T QT ' = S
0 0
with Xp = 1. O

Corollary 7.6 The product of two positive semidefinite matrices is similar to a positive
semidefinite matriz.

Proof. Let P and @ be any positive semidefinite matrices. Then it is easy to see that
with the transformation given previously

TPQT-! = [ £t o ]

0 0
a

Corollary 7.7 For any stable system G = [ g IB; ], there ezists a nonsingular trans-

TAT-! | TB

formation T such that G =
CT-* | D

has controllability Gramian P and ob-

servability Gramian Q given by

21 Z"1

respectively, with £y, £, 3 diagonal and positive definite.
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é D is a minimal realization, a balanced realization
can be obtained through the following simplified procedure:

In the special case where

1. Compute the controllability and observability Gramians P > 0,Q > 0.
2. Find a matrix R such that P = R*R.
3. Diagonalize RQR* to get RQR* = UT2U*.

TAT'|TB

4. Let T~! = R*US~Y2. Then TPT* = (T*)7'QT~! = T and
CT™' | D

is balanced.

Assume that the Hankel singular values of the system are decreasingly ordered so
that £ = diag(o171,,,021s,,-..,0n81sy) with 6y > 02 > ... > on and suppose o, >
0,41 for some 7. Then the balanced realization implies that those states corresponding
to the singular values of 6,41, ...,0n are less controllable and less observable than those
states corresponding to oy, . .., .. Therefore, truncating those less controllable and less
observable states will not lose much information about the system.

Two other closely related realizations are called input normal realization with P = I
and Q = £2, and output normal realization with P = ¥?2 and Q = I. Both realizations
can be obtained easily from the balanced realization by a suitable scaling on the states.

Next we shall derive some simple and useful bounds for the Ho norm and the £,

norm of a stable system.
A|B
G(S) = [T‘—T] € RHoo

is a balanced realization; that is, there ezists

Theorem 7.8 Suppose

Y = diag(o11s,,021s;,...,0n1) >0
with oy > 09 > ... > on > 0, such that
AY +TA*+BB*=0 AT+ TA+CC=0
Then
oo N
51 <16l < [ ot <2Y o,
=1

where g(t) = CeB.

Remark 7.1 It should be clear that the inequalities stated in the theorem do not
depend on a particular state-space realization of G(s). However, use of the balanced
realization does make the proof simple. <
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Proof. Let G(s) have the following state-space realization:

t = Az + Bw
z = Cz. (7.4)
Assume without loss of generality that (A4, B) is controllable and (C, A) is observable.

Then ¥ is nonsingular. Next, differentiate z(¢)*E~!z(t) along the solution of equation
(7.4) for any given input w as follows:

(%(a:*)l_lx) ="'z +2*S7 e = 2" (A'S 7 + 271 4)z + 2(w, B*E 1)

Using the equation involving controllability Gramian to substitute for A*S~1 + £-14
and completion of the squares gives

d
(@ 27'2) = |lw|? - Jlw - B*S™'a)?
Integration from ¢ = —oo to t = 0 with z(—o00) = 0 and z(0) = z, gives
=7 30 = |lwll} — llw — B*7'2(l3 < [jwl3

Let w = B*S7!z; then ¢ = (A+ BB*S™ )z = ~SA*T !z = =z € L3[-0,0)
= w € L2[~0,0) and

inf 2 0) = =z5X .
werM o) Ul | 2(0) = 2o} = 252"z
Given z(0) = 2o and w = 0 for ¢ > 0, the norm of 2(t) = Ce“'zy can be found from
/ lz(®)II? dt = / z5et 'C* Cettaydt = 23T
0 0

To show o1 < ||G||,, note that

oo 2
g*xw f_oo llz(2)l|° dt
o= sup Morwls_

= 2 _ sup
weta(-ooo0) Wl weca=s0m0) /1% ()7 at
V fooo ||z(t)||2 dt x*Exo
> sup =S8 3

2 =SUp Y/ =01
w€La(~00,0] \/f_Ooo lw@)|2dt  =o#0 | T3E %o

We shall now show the other inequalities. Since

G(s) = /0 ~ g(t)e='dt, Re(s) > 0,
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by the definition of H, norm, we have

o0
61 = s | ["atear
Re(s)>0[|J0O
o
< sup / lg(®)e=¢| at
Re(s)>0Jo
<

/ " gl de.

To prove the last inequality, let e; be the ith unit vector and define
E1=[61 esl], E2=[e.91+1 T esl+sg]7

En = [ €si+-dsy_1+1 "7 Csitetsy ]
N
Then )  E:Ef =1 and
i=1

/0 " g de dat

il

N
CeAt/2 Z E,-EfeAt/zB

i=1

r

N o0
) / “Ce’“”E,E;'eA"’?B" dt
i=170

IA

IN

N o0
) N et | e B
=170

N . pos N
< ;\//0 ”CeAt/2E,~|!2 dt\//(; ”E;,"eAt/zB“?dtS 22@

where we have used Cauchy-Schwarz inequality and the following relations:

=1

/ ” “CeAt/in“2 dt = / ™ A (E;‘e*“t/“’c*ceA‘NE,-) dt = 2Amax (EXSE;) = 203
0 0

/ ” “E;e*‘“/23”2 dt = / . (E{eAt/zBB*eA“/ZEi) dt = 2\max (EISE;) = 20,
0 0

Example 7.2 Consider a system

-1 -2]|1
Gis)=| 1 0|0
2 3|0




116 BALANCED MODEL REDUCTION

It is easy to show that the Hankel singular values of G are o, = 1.6061 and g = 0.8561.
The Hoo norm of G is ||G||, = 2.972 and the £, norm of g(t) can be computed as

0
/ lg(t)ldt=h1+h2+h3+h4+...
0

where h;,i = 1,2,... are the variations of the step response of G shown in Figure 7.1,
which gives [° |g(t)|dt ~ 3.5. (See Problem 7.2.)

2.5
2l
h2
- -~ ha
vvvv - v M
g 1.5 T h3
a. e T
$
&
Z L h1
[o -3 .
o 1 2 3 4 5 6 7 8 Q 10
time
Figure 7.1: Estimating the £; norm of g(t)
So we have

1.6061 = 0 < ||G||, = 2.972 < / lg(t)|dt = 3.5 < 2(0y + 02) = 4.9244.
0

Illustrative MATLAB Commands:

> [Ab, Bb, Cb, sig, Tinv]=balreal(A, B, C); % sig is a vector of Hankel
singular values and Tinv = T-1;

> [Gp,sig] = sysbal(G);

Related MATLAB Commands: ssdelete, ssselect, modred, strunc
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7.3 Model Reduction by Balanced Truncation

Consider a stable system G € RHo and suppose G = [ é g ] is a balanced realiza-

tion (i.e., its controllability and observability Gramians are equal and diagonal). Denote
the balanced Gramians by ¥; then

AL +YXA*+BB* =0 (7.5)
A*T+TA+C*C =0. (7.6)
- . ¥ 0 .
Now partition the balanced Gramian as ¥ = 0 % and partition the system
2

accordingly as
An A ' By
G=|_ Ax Axn | B
C; G I D

The following theorem characterizes the properties of these subsystems.

Theorem 7.9 Assume that ¥, and X have no diagonal entries in common. Then both
subsystems (A;i, Bi, C:), i = 1,2 are asymptotically stable.

Proof. It is clearly sufficient to show that Ay is asymptotically stable. The proof for
the stability of Ay, is similar. Note that equations (7.5) and (7.6) can be written in
terms of their partitioned matrices as

Anti +51A5, + BBy = 0 (7.7)
TiAn + AT S +CCL = 0 (7.8)
ATy + 247, + BBy = 0 (7.9)
YoA2 + AIgEl + C;Cl = 0 (7.10)
Ago¥o + X045, + BeB, = 0 (7.11)
YoAge + A2 + C5C, 0. (7.12)

By Lemma 7.3 or Lemma 7.4, ¥£; can be assumed to be positive definite without loss
of generality. Then it is obvious that A\;(41;) < 0 by Lemma 7.2. Assume that A, is
not asymptotically stable; then there exists an eigenvalue at jw for some w. Let V be
a basis matrix for Ker(4;; — jwI). Then we have

(Au - ij)V = 0, (713)

which gives
V*(Al; +jwl) =0.
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Equations (7.7) and (7.8) can be rewritten as

(A1 = jwI)Z; + £,(A%, + jwl) + BB} =0 (7.14)

Ti(Aq; = jwl) + (A}, +jwDZTy + CiC,=0. (7.15)
Multiplication of equation (7.15) from the right by V and from the left by V* gives
V*CyC1V = 0, which is equivalent to

CiV =0.
Multiplication of equation (7.15) from the right by V now gives
(A}] + jwDT,V =0.

Analogously, first multiply equation (7.14) from the right by £,V and from the left by
V*3; to obtain
BT,V =0.

Then multiply equation (7.14) from the right by £,V to get
(A1 = jwI)T3V = 0.

It follows that the columns of £2V are in Ker(4;; — jwI). Therefore, there exists a
matrix ¥; such that
TV =vE2
Since £} is the restriction of £ to the space spanned by V, it follows that it is possible
to choose V such that £2 is diagonal. It is then also possible to choose £, diagonal and
such that the diagonal entries of £; are a subset of the diagonal entries of T, .
Multiply equation (7.9) from the right by £,V and equation (7.10) by V to get

AnZiV + DALS,V = 0
22A21V + AI221V = 0,
which gives ~
(A2 V)E2 = $2(An V).

This is a Sylvester equation in (A3 V). Because £? and £% have no diagonal entries in
common, it follows that
AnV =0 (7.16)

is the unique solution. Now equations (7.16) and (7.13) imply that

An  Ar v]_ [V
An Ap || o [T 0 ]
which means that the A-matrix of the original system has an eigenvalue at jw. This

contradicts the fact that the original system is asymptotically stable. Therefore, A;;
must be asymptotically stable. O
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Corollary 7.10 If T has distinct singular values, then every subsystem is asymptoti-
cally stable.

The stability condition in Theorem 7.9 is only sufficient as shown in the following
example.

Example 7.3 Note that

_2 —28284| -2
is;i)ﬁ."_gl =l o - ‘ ~1.4142
(s+1)(s+2) |73 14142 | 1

is a balanced realization with ¥ = I, and every subsystem of the realization is stable.
On the other hand,

S1 0 14142 | 14142
o= | 14142 0 0
STt “1414z 0 | 1

s2—s+2

is also a balanced realization with ¥ = I, but one of the subsystems is not stable.

Theorem 7.11 Suppose G(s) € RH and

A A B
G(s)=| An A | B
C, G, | D

is a balanced realization with Gramian T = diag(X:, Z2)

¥, = diag(alIsl,aglsz,...,orlsr)

Y = dia‘g(07+113r+1 ) o-r+2137.+3 yeeoy O'NISN)
and

01> 09> > 0p > 0pg1 > 0pp2 > > 0N

where o; has multiplicity s, = 1,2,...,N and s1 + s2+ -+ Sy = n. Then the
truncated system

6r(o) = [ ]

is balanced and asymptotically stable. Furthermore,

lG(s) — Gr(8)|loo < 2(0r41 +Org2t+ -+ oN)
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Proof. The stability of G, follows from Theorem 7.9. We shall first show the one step
model reduction. Hence we shall assume £, = N1,y . Define the approximation error

[ A Ag B,
E, = Az Aa B, } - [ ‘é.ll % }
| G G | D !
[ A, 0 0 | B ]
_ 0 Ay A | B
- 0 An Axn | B,
=6 o G o]

Apply a similarity transformation 7" to the preceding state-space realization with

[1/2 1/2 0] (I I oJ
T=11/2 -I/2 0, T'=|1 -I o

0 0 I (0 0 I
to get
An 0 A2/2 | By
B — | 0 Au —4p/2| 0
o= Ay —Ay Ay | B

0 -20, C, |0

Consider a dilation of Ey;(s):

_ [ Eu(s) Eia(s)
Be) = | Bl E22(3)J
[ An 0 A12/2 | By 0
0 Au -Aip/2| 0  onEflC:
= Aay — Ao Ay B, -C3
0 —201 C2 0 20'NI
| —20xB3Z! 0 -B} |20n1 0

- [

Then it is easy to verify that

satisfies

e



7.3. Model Reduction by Balanced Truncation 121

Using these two equations, we have

A -BB*|BD"
E(s)E~(s) = 0o -A" c*
| ¢ -DB*|DD*
(A -AP- PA*-BB* | PC* +BD"
= |0 — A c*
| C _¢p-pB* | DD
[A 0 | ©
= | 0 —A*| C*
¢ | DD~
= DD*=40%I

where the second equality is obtained by applying a similarity transformation

1 P
r-[0 7]
Hence ||E11|l,, < ||E|lo = 20n, which is the desired result.
The remainder of the proof is achieved by using the order reduction by one-step re-
An | B

C, | D
is internally balanced with balanced Gramian given by

sults and by noting that G (s) = ] obtained by the “kth” order partitioning

21 = diag(01131,02132,...,O‘kIsk)
Let Ex(s) = Gry1(s) — Gi(s) for k=1,2,...,N —1 and let Gn(s) = G(s). Then
7 [Er(jw)] < 20441

since G (s) is a reduced-order model obtained from the internally balanced realization
of Gr41(s) and the bound for one-step order reduction holds.
Noting that

G(s) — G.(s) = ZEk(s)

by the definition of Ex(s), we have

N-1 N-1
7[G(jw) — Gr(jw) € Y TIE(w)] €2 ) ok
=r k=r
This is the desired upper bound. a

A useful consequence of the preceding theorem is the following corollary.
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Corollary 7.12 Let 0;,i = 1,...,N be the Hankel singular values of G(s) € RH.
Then

1G(s) — G(o0)ll oo < 201 +...+ o)

The above bound can be tight for some systems.

Example 7.4 Consider an nth-order transfer function

6= - iia,-’

i=1

with a; > 0 and b; > 0. Then [|G(s)||., = G(0) = > i=1 bi/a; and G(s) has the following
state-space realization:

—a ' vby
—ap Vb2

—an\/}z
VB Vb - V| 0

and the controllability and observability Gramians of the realization are given by

o[22

a;+a;

It is easy to see that o; = \;(P) = X;(Q) and

n n n
b; 1 1
D_0i =3 M(P)=trace(P) = 3 7 = 26(0) = 5 G,
=1 =1 =1
In particular, let a; = b; = @®; then P = Q — 31, (e, 0; — 2 as a — 00). This
example also shows that even when the Hankel singular values are extremely close, they
may not be regarded as repeated singular values.

The model reduction bound can also be loose for systems with Hankel singular values
close to each other.
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Example 7.5 Consider the balanced realization of a fourth-order system:

_ (s—099)(s —2)(s =3)(s —4)

Gl = DG+ +3)G+9)
_99e+00 —57e+00 —27e+00 13e+00 | —4.3e+00
57¢e+00 —81le—07 —-6.4e—01 1.5e—06 1.3¢e — 03
— | —27¢400 64e—01 -7.9e—01 7.le—01 |—13e+00
_13¢+00 15e—06 —7.le—01 —2.7¢—06|—2.3¢—03
13e 100 13¢—03 13¢+00 —23e—03| 1.0e+00

with Hankel singular values given by

o1 = 0.9998, o, =0.99838, o3 = 0.9963,04 = 0.9923.

The approximation errors and the estimated bounds are listed in the following table.
The table shows that the actual error for an rth-order approximation is almost the same
as 20,41, which would be the estimated bound if we regard o,41 = Or42 =+ = 04. In
general, it is not hard to construct an nth-order system so that the rth-order balanced
model reduction error is approximately 20,41 but the error bound is arbitrarily close
to 2(n — r)o,4+1. One method to construct such a system is as follows: Let G(s) be a
stable all-pass function, that is, G~(s)G(s) = I. Then there is a balanced realization
for G so that the controllability and observability Gramians are P = @ = I. Next,
make a very small perturbation to the balanced realization, then the perturbed system
has a balanced realization with distinct singular values and P = Q = I. This perturbed

system will have the desired properties.

r 0 1 2 3
G =G, 1.0997 | 1.9983 | 1.9933 | 1.9845
Bounds: 23 ,,,0: | 7.9744 | 5.9748 [ 3.9772 | 1.9845
20,41 1.0996 | 1.9976 | 1.9926 | 1.9845

The balanced realization and truncation can be done using the following MATLAB

commands:

> [Gp,sig] = sysbal(G); % find a balanced realization G, and the Hankel singular

values sig.

> G, = strunc(Gyp,2); % truncate to the second-order.

Related MATLAB Commands: reordsys, resid, Hankmr
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7.4 Frequency-Weighted Balanced Model Reduction

This section considers the extension of the balanced truncation method to the frequency-
weighted case. Given the original full-order model G € RH., the input weighting
matrix W; € RH, and the output weighting matrix W, € RH, our objective is to
find a lower-order model G, such that

IWo(G - Gr)Will,

is made as small as possible. Assume that G, W;, and W, have the following state-space

realizations:
A|B A; | B; _| 4o | B,
o= [2iw] w=[Ee] w= [

with A € R**". Note that there is no loss of generality in assuming D = G(o0) = 0
since otherwise it can be eliminated by replacing G, with D + G,.
Now the state-space realization for the weighted transfer matrix is given by

A 0 BC; | BD;

BC 4 o | o | [A|B
Bi 1¢lo

WoGWo=1 70" "0 4

D.C C, 0 | 0

Let P and Q be the solutions to the following Lyapunov equations:
AP+ PA*+BB* = 0 (7.17)
QA+ A*Q+C*C = 0 (7.18)
Then the input weighted Gramian P and the output weighted Gramian Q are defined
by
P=[1, o]p[{;], Q=1 o]Q[{;]
It can be shown easily that P and Q satisfy the following lower-order equations:
[A BC{” P Pn} [ P Pm] [ A BCi]'_‘_'BD;}[BDi "

0 A Ph P Ph Po |0 a B: B | =0
(7.19)

Q Qi A o1 [ a o T Q Qu + [ C*D; co; | 0
Q2 Q2 B,C A, | Q1 Q2 C, Cs -
(7.20)

The computation can be further reduced if W; = I or W, =1I. In the case of W; = I,
P can be obtained from
PA*+ AP+ BB* =0 (7.21)
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while in the case of W, = I, @ can be obtained from
QA+ A Q+C*C=0 (7.22)
Now let T be a nonsingular matrix such that

TPT* = (T QT ' = [ 2 . ]
2

(i.e., balanced) with &y = diag(o1ls,,...,0r1,,) and Xp = diag(or41Ls, 4111 ONLsy)
and partition the system accordingly as

[TAT—1 TB] A Aw | B
= | Ay Az | B

-1
CT 0 Cl 02 | 0

Then a reduced-order model G, is obtained as

| An [ By
.- [t

Unfortunately, there is generally no known a priori error bound for the approximation
error and the reduced-order model G, is not guaranteed to be stable either.

A very special frequency-weighted model reduction problem is the relative error
model reduction problem where the objective is to find a reduced-order model G, so
that

G, = G(I + Arel)

and ||Arelll,, is made as small as possible. Are is usually called the relative error. In
the case where G is square and invertible, this problem can be simply formulated as

min |IG_1(G - G,)“w.

degG,-<r
Of course, the dual approximation problem
G, = (I + Arel)G

can be obtained by taking the transpose of G. It turns out that the approximation G,
obtained below also serves as a multiplicative approximation:

G= Gr(I + Amul)

where A, is usually called the multiplicative error.
Error bounds can be derived if the frequency-weighted balanced truncation method
is applied to the relative and multiplicative approximations.
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Theorem 7.13 Let G,G~! € RHy be an nth-order square transfer matriz with a
state-space realization
G(s) = [—{—vg g ]
Let P and Q be the solutions to
PA*+ AP+ BB* =0 (7.23)
QA-BD'C)+ (A - BD7IC)*Q+C*(D YD lCc =0 (7.24)
Suppose

P=Q= diag(allsl,...,arlsr,o,HIer,...,aleN) = diag(¥;, o)

with oy > 032 > ... > on > 0, and let the realization of G be partitioned compatibly with
¥ and £, as

An Ap | B
G(s)=| A1 A | B,
i G |D

Then
An | By ]

Gr(s) = [ C: | D
is stable and minimum phase. Furthermore,
N

[ | | (1 +20:(1/1 + 02 +a,~)) -1
1=r+1
N
lAmull, < H (1 +20i(y/1+02+ o.-)) -1
i=r+1

Related MATLAB Commands: srelbal, sfrwtbal

7.5 Notes and References

Balanced realization was first introduced by Mullis and Roberts [1976] to study roundoff
noise in digital filters. Moore [1981] proposed the balanced truncation method for model-
reduction. The stability properties of the reduced-order model were shown by Pernebo
and Silverman [1982]. The error bound for the balanced model reduction was shown
by Enns [1984a, 1984b], and Glover [1984] subsequently gave an independent proof.
The frequency-weighted balanced model-reduction method was also introduced by Enns
[1984a, 1984b]. The error bounds for the relative error are derived in Zhou (1995]. Other
related results are shown in Green [1988]. Other weighted model-reduction methods
can be found in Al-Saggaf and Franklin [1988], Glover [1986b], Glover, Limebeer and
Hung [1992], Green [1988], Hung and Glover [1986], Zhou [1995], and references therein.
Discrete-time balance model-reduction results can be found in Al-Saggaf and Franklin
[1987], Hinrichsen and Pritchard [1990], and references therein.
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7.6 Problems

Problem 7.1 Use the following relation

% (eAthA*t) = Aett Qe + eAtQet A
to show that P = [~ e4*Qe*"!dt solves

AP+ PA*+Q =0
if A is stable.

Problem 7.2 Let G(s) € Hoo and let g(t) be the inverse Laplace transform of G(s).
Let h;,5 = 1,2,... be the variations of the step response of G. Show that

[ o0l = b+t
0

Problem 7.3 Let Q@ > 0 be the solution to
QA+ A*Q+C*'C=0

Suppose Q has m zero eigenvalues. Show that there is a nonsingular matrix T such that

TAT-' | TB A 01 B
=| Ay Ay | B2 |, AypeR™M™.
~1
CcT D C 0 1 D

Apply the above result to the following state-space model:

-4 -7 =2 1 21
A= 1 0 o, B=]o0o -1/, C:[?fé],D:O
-1 1 0 0 2

Problem 7.4 Let

Gls) = Z s+

=1

Find a balanced realization for each of the following a:
a =2, 4, 20, 100.
Discuss the behavior of the Hankel singular values as oo — oo.

Problem 7.5 Find a transformation so that TPT* = X2, (T*)~'QT~! = I. (This
realization is called output normalized realization.)
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Problem 7.6 Consider the model reduction error:

A11 0 A12/2 Bl
B — | 0 An -4n/2|0 | _ [ 4B
= Ay —An Az By | | C. |0

0 -2¢¢ C; |0

) T 0
P=| 0 o%3! 0

0 0 20n1,,

Show that

satisfies .
A.P+ PA: + B.B: + 26—2130;0513 =0.
N

Problem 7.7 Suppose P and Q are the controllability and observability Gramians of
G(s) = C(sI — A)™'B € RHoo. Let G4(2) = G(S)Is=:_1;i_ = Cq(zI — Ay)~'By + Dy.
Compute the controllability and observability Gramians P,; and Q4 and compare PQ
and Pde.

Problem 7.8 Note that a delay can be approximated as

for a sufficiently large n. Let a process model 1 i_ Ts be approximated by
1-005s\"° 1
G(s) = >
1+ 0.05s 1+sT

For each T' = 0,0.01,0.1,1, 10, find a reduced-order model, if possible, using balanced
truncation such that the approximation error is no greater than 0.1.

4



Chapter 8

Uncertainty and Robustness

In this chapter we briefly describe various types of uncertainties that can arise in phys-
ical systems, and we single out “unstructured uncertainties” as generic errors that are
associated with all design models. We obtain robust stability tests for systems under
various model uncertainty assumptions through the use of the small gain theorem. We
also obtain some sufficient conditions for robust performance under unstructured un-
certainties. The difficulty associated with MIMO robust performance design and the
role of plant condition numbers for systems with skewed performance and uncertainty
specifications are revealed. A simple example is also used to indicate the fundamental
difference between the robustness of an SISO system and that of a MIMO system. In
particular, we show that applying the SISO analysis/design method to a MIMO system
may lead to erroneous results.

8.1 Model Uncertainty

Most control designs are based on the use of a design model. The relationship between
models and the reality they represent is subtle and complex. A mathematical model
provides a map from inputs to responses. The quality of a model depends on how closely
its responses match those of the true plant. Since no single fixed model can respond
exactly like the true plant, we need, at the very least, a set of maps. However, the
modeling problem is much deeper — the universe of mathematical models from which a
model set is chosen is distinct from the universe of physical systems. Therefore, a model
set that includes the true physical plant can never be constructed. It is necessary for
the engineer to make a leap of faith regarding the applicability of a particular design
based on a mathematical model. To be practical, a design technique must help make
this leap small by accounting for the inevitable inadequacy of models. A good model
should be simple enough to facilitate design, yet complex enough to give the engineer
confidence that designs based on the model will work on the true plant.

The term uncertainty refers to the differences or errors between models and reality,

129
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and whatever mechanism is used to express these errors will be called a representation
of uncertainty.}(fiepresentations of uncertainty vary primarily in terms of the amount
of structure they contain. This reflects both our knowledge of the physical mechanisms
that cause differences between the model and the plant and our ability to represent these
mechanisms in a way that facilitates convenient manipulation ?For example, consider
the problem of bounding the magnitude of the effect of some uncertainty on the output
of a nominally fixed linear system. A useful measure of uncertainty in this context is
to provide a bound on the power spectrum of the output’s deviation from its nominal
response. In the simplest case, this power spectrum is assumed to be independent
of the input. This is equivalent to assuming that the uncertainty is generated by an
additive noise signal with a bounded power spectrum; the uncertainty is represented as
additive noise. Of course, no physical system is linear with additive noise, but some
aspects of physical behavior are approximated quite well using this model. This type
of uncertainty received a great deal of attention in the literature during the 1960s and
1970s, and elegant solutions are obtained for many interesting problems (e.g., white
noise propagation in linear systems, Wiener and Kalman filtering, and LQG optimal
control). Unfortunately, LQG optimal contro! did not address uncertainty adequately
and hence had less practical impact than might have been hoped.

Generally, the deviation’s power spectrum of the true output from the nominal will
depend significantly on the input. For example, an additive noise model is entirely in-
appropriate for capturing uncertainty arising from variations in the material properties
of physical plants. The actual construction of model sets for more general uncertainty
can be quite difficult. For example, a set membership statement for the parameters of
an otherwise known FDLTI model is a highly structured representation of uncertainty.
It typically arises from the use of linear incremental models at various operating points
(e.g., aerodynamic coefficients in flight control vary with flight environment and air-
craft configurations, and equation coefficients in power plant control vary with aging,
slag buildup, coal composition, etc.). In each case, the amounts of variation and any
known relationships between parameters can be expressed by confining the parameters
to appropriately defined subsets of parameter space. However, for certain classes of sig-
nals (e.g., high-frequency), the parameterized FDLTI model fails to describe the plant
because the plant will always have dynamics that are not represented in the fixed order
model.
>+ In general, we are forced to use not just a single parameterized model but model sets
that allow for plant dynamics that are not explicitly represented in the model struc-
ture. A simple example of this involves using frequency domain bounds on transfer
functions to describe a model set. To use such séfs to describe physical systems, the
bounds must roughly grow with frequency. In particular, at sufficiently high frequencies,
phase is completely unknown (i.e., £180° uncertainties). This is a consequence of dy-
namic properties that inevitably occur in physical systems. This gives a less structured
representation of uncertainty. %ﬁ
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Examples of less structured representations of uncertainty are direct set membership
statements for the transfer function matrix of the model. For instance, the statement

Pa(s) = P(s) + Wi(s)A(s)W2(s), F[A(w)] <1, Yw >0, (8.1)

where W, and W, are stable transfer matrices that characterize the spatial and frequency
structure of the uncertainty, confines the matrix Pa to a neighborhood of the nominal
model P. In particular, if W; = I and Wy = w(s)I, where w(s) is a scalar function,
then Pa describes a disk centered at P with radius w(jw) at each frequency, as shown in
Figure 8.1. The statement does not imply a mechanism or structure that gives rise to A.
The uncertainty may be caused by parameter changes, as mentioned previously or by
neglected dynamics, or by a host of other unspecified effects. An alternative statement
to equation (8.1) is the so-called multiplicative form:

Pa(s)=(I + Wl(s)A(s)/Wz(s))P(s)‘ (8.2)

This statement confines Pa to a normalized neighborhood of the nominal model P. An
advantage of equation (8.2) over (8.1) is that in equation (8.2) compensated transfer
functions have the same uncertainty representation as the raw model (i.e., the weighting
functions apply to PK as well as P). Some other alternative set membership statements
will be discussed later.

P(Gw)

w(jw)

Figure 8.1: Nyquist diagram of an uncertain model

The best choice of uncertainty representation for a specific FDLTI model depends,
of course, on the errors the model makes. In practice, it is generally possible to repre-
sent some of these errors in a highly structured parameterized form. These are usually
the low-frequency error components. There are always remaining higher-frequency er-
rors, however, which cannot be covered this way. These are caused by such effects as
infinite-dimensional electromechanical resonance, time delays, diffusion processes, etc.
Fortunately, the Iéss structured representations, such as equations (8.1) and (8.2), are
well suited to represent this latter class of errors. Consequently, equations (8.1) and
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(8.2) have become widely used “generic” uncertainty representations for FDLTI models.
An important point is that the construction of the weighting matrices W; and W, for
multivariable systems is not trivial.

Motivated from these observations, we will focus for the moment on the multiplica-
tive description of uncertainty. We will assume that PA in equation (8.2) remains a
strictly proper FDLTI system for all A. More general perturbations (e.g., time varying,
infinite dimensional, nonlinear) can also be covered by this set provided they are given
appropriate “conic sector” interpretations via Parseval’s theorem. This connection is
developed in [Safonov, 1980] and [Zames, 1966 and will not be pursued here.

When used to represent the various high-frequency mechanisms mentioned previ-
ously, the weighting functions in equation (8.2) commonly have the properties illustrated
in Figure 8.2. They are small (< 1) at low frequencies and increase to unity and above
at higher frequencies. The growth with frequency inevitably occurs because phase un-
certainties eventually exceed +180 degrees and magnitude deviations eventually exceed
the nominal transfer function magnitudes. Readers who are skeptical about this reality
are encouraged to try a few experiments with physical devices.

nominal model

log o

N

actual model

Figure 8.2: Typical behavior of multiplicative uncertainty: ps(s) = [1 + w(s)é(s)]p(s)

Also note that the representation of uncertainty in equation (8.2) can be used to
include perturbation effects that are in fact certain. A nonlinear element may be quite
accurately modeled, but because our design techniques cannot effectively deal with the
nonlinearity, it is treated as a conic sector nonlinearity.! As another example, we may
deliberately choose to ignore various known dynamic characteristics in order to achieve
a simple nominal design model. One such instance is the model reduction process
discussed in the last chapter.

1See, for example, Safonov [1980] and Zames [1966).
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Example 8.1 Let a dynamical system be described by

10 ((2 + 0.2a)s% + (2 + 0.3a + 0.48)s + (1 + 0.28))
(52 +0.55 + 1)(s2 + 25 + 3)(s2 + 35+ 6) ’

P(s,a,0) = a, B€[-1,1]

Then for each frequency, all possible frequency responses with varying parameters a and
0 are in a box, as shown in Figure 8.3. We can also obtain an unstructured uncertainty
bound for this system. In fact, we have

P(s,a,B8) e {Ph+ WA | ||Al| £1}
with Py := P(s,0,0) and

10 (0.2s% + 0.7s + 0.2)
(s2+0.58+1)(s®+25+3)(s?+3s+6)

W{(s) = P{s,1,1) — P(s,0,0) =

The frequency response Py + WA is shown in Figure 8.3 as circles.

85

'
w

a8 : :
-2 -1.5 -1 ~0.5 8] 0.5 1 1.5 2 25

Figure 8.3: Nyquist diagram of uncertain system and disk covering

Another way to bound the frequency response is to treat a and 8 as norm bounded
uncertainties; that is,

P(s,a,8) € {Po+ WiA, + Walo | [|Ai]l, <1}
with Py = P(s,0,0) and

10(0.2s? + 0.3s) ‘
(s24+0.58+1)(s2 + 25+ 3)(s%2 + 35+ 6)’ 1

W, =
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B 10(0.4s + 0.2)
" (82 +0.58+ 1)(s% + 25 + 3)(s2 + 35 + 6)
It is in fact easy to show that
{Po+ WiA1 + Wolz | [JAill, <1} ={R+WA| Al <1}

with |W| = |W;|+ |W2|. The frequency response Py + W A is shown in Figure 8.4. This
bounding is clearly more conservative.

W,

1

05p

Figure 8.4: A conservative covering

Example 8.2 Consider a process control model

—T8
G(3)=1’f§+1, 4<k<9,2<T<3 1<7<2.

Take the nominal model as

6.5
(2.5s +1)(1.55 + 1)

Then for each frequency, all possible frequency responses are in a box, as shown in
Figure 8.5. To obtain an unstructured uncertainty bound for this system, plot the error

Aa(jw) = Gjw) = Go(jw)

for a set of parameters, as shown in Figure 8.6, and then use the MATLAB command
ginput to pick a set of upper-bound frequency responses and use fitmag to fit a stable
and minimum phase transfer function to the upper-bound frequency responses.

Go(s) =
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Imaginary
%

f
N
T

-6

Real

Figure 8.5: Uncertain delay system and Gy

> mf= ginput(50) % pick 50 points: the first column of mf is the frequency points
and the second column of mf is the corresponding magnitude responses.

> magg=vpck(mf(:,2),mf(:,1)); % pack them as a varying matrix.

> W, =fitmag(magg); % choose the order of W, online. A third-order W, is
sufficient for this example.

> [A,B,C,D]=unpck(W,) % converting into state-space.
> [Z, P, K]=ss2zp(A,B,C,D) % converting into zero/pole/gain form.

We get
_0.0376(s + 116.4808)(s + 7.4514)(s + 0.2674)

(s +1.2436)(s + 0.5575)(s + 4.9508)

and the frequency response of W, is also plotted in Figure 8.6. Similarly, define the
multiplicative uncertainty

Wa(s)

. G(s) = Go(s)
Am(S) T GO(S)

and a W,, can be found such that |A,,(jw)| < |[Win(jw)|, as shown in Figure 8.7. A
W, is given by

_2.8169(s + 0.212)(s2 + 2.6128s + 1.732)

B 52 +2.2425s + 2.6319

Wa,
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10"

A, (dashed line) and a bound W, (solid line)

Figure 8.6

107

Figure 8.7: A,, (dashed line) and a bound W,, (solid line)

¥4
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Note that this W,, is not proper since Gy and G do not have the same relative degrees.
To get a proper W,,,, we need to choose a nominal model Gy having the same the relative
order as that of G.

The following terminologies are used in this book:

Definition 8.1 Given the description of an uncertainty model set IT and a set of per-
formance objectives, suppose P € II is the nominal design model and K is the resulting
controller. Then the closed-loop feedback system is said to have

Nominal Stability (NS): if K internally stabilizes the nominal model P.
Robust Stability (RS): if K internally stabilizes every plant belonging to II.

Nominal Performance (NP): if the performance objectives are satisfied for the
nominal plant P.

Robust Performance (RP): if the performance objectives are satisfied for every
plant belonging to II.

The nominal stability and performance can be easily checked using various standard
techniques. The conditions for which the robust stability and robust performance are
satisfied under various assumptions on the uncertainty set IT will be considered in the
following sections.

Related MATLAB Commands: magfit, drawmag, fitsys, genphase, vunpck,
vabs, vinv, vimag, vreal, vcjt, vebe

8.2 Small Gain Theorem

This section and the next section consider the stability test of a nominally stable system
under unstructured perturbations. The basis for the robust stability criteria derived in
the sequel is the so-called small gain theorem.

Consider the interconnected system shown in Figure 8.8 with M (s) a stable p x ¢
transfer matrix.

Theorem 8.1 (Small Gain Theorem) Suppose M € RH and let v > 0. Then the
interconnected system shown in Figure 8.8 is well-posed and internally stable for all
A(s) € RHo with

(a) Al < 1/ if and only if |M(s)|lo <~

(4) Al < 1/7 if and only if [M(s)llo, <
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wq €1
Vg W
T A
+
+
€2 + w2
M O

Figure 8.8: M — A loop for stability analysis

Proof. We shall only prove part (a). The proof for part (b) is similar. Without loss
of generality, assume v = 1.

(Sufficiency) It is clear that M(s)A(s) is stable since both M(s) and A(s) are stable.
Thus by Theorem 5.5 (or Corollary 5.4) the closed-loop system is stable if det(7 — MA)
has no zero in the closed right-half plane for all A € RH, and [|A[l, < 1. Equivalently,
the closed-loop system is stable if

inf ¢ (I - M(s)A(s)) #0

s€Cy
for all A € RH and ||A||,, < 1. But this follows from

inf g (7= M(s)A(s)) 2 1-sup & (M(s5)A(s)) = 1~ M (8)A(s)llo 2 1-[IM ()]l > O-
seCy s€E+

(Necessity) This will be shown by contradiction. Suppose ||M||_ > 1. We will show
that there exists a A € RH with ||A||,, <1 such that det(] — M(s)A(s)) has a zero
on the imaginary axis, so the system is unstable. Suppose wy € R U {00} is such that
(M (jwo)) > 1. Let M(jwo) = U(jw)Z(jwo)V*(jwo) be a singular value decomposition
with

UGjwo) = [ wr w2 -+ up |
Viwo)=[ v v2 -+ ]
J1

E(jwo) = 2

To obtain a contradiction, it now suffices to construct a A € RH, such that A(jwp) =
s-viuf and [|All, < 1. Indeed, for such A(s),

det(I — M(jwo)A(jwo)) = det( — UESV*vui/o1) =1 —uiUSV*v /oy =0

and thus the closed-loop system is either not well-posed (if wy = oc) or unstable (if
w € R). There are two different cases:
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(1) wo =0 or oo: then U and V are real matrices. In this case, A(s) can be chosen as

1
A = —vjuj € R?*P
g1

(2) 0 < wp < oo: write u; and v; in the following form:

1)11€]¢1

v12€j¢2

ui = [ upe® upe’® oo wuer ], v =
s
where u;; € R and v;; € R are chosen so that 6;,¢; € [—7,0) for all 7, .
Choose §8; > 0 and «; > 0 so that
é(ﬁi_]:‘#'o) — 9, Z(aj‘]:“-’O) = ¢,
B; + jwo a; + Jwo

fori=1,2,...,pand j =1,2,...,q. Let

oq——s
1 Y1 ar+s
. —_ B, —s
Als) = : [wnBst o w3t | eRM.
Xg—S$8
V14 ag+s

Then ||All_, = 1/o; <1 and A(jwp) = Zviu}.

o1

O

The theorem still holds even if A and M are infinite dimensional. This is summarized
as the following corollary.

Corollary 8.2 The following statements are equivalent:

(i) The system is well-posed and internally stable for all A € Hoo with ||A|l, < 1/7;
(ii) The system is well-posed and internally stable for all A € RH, with | Al < 1/7v;
(iii) The system is well-posed and internally stable for all A € C¥*P with ||Al| < 1/~;
(iv) M|, < 7.

Remark 8.1 It can be shown that the small gain condition is sufficient to guarantee
internal stability even if A is a nonlinear and time-varying “stable” operator with an
appropriately defined stability notion, see Desoer and Vidyasagar [1975]. O




140 UNCERTAINTY AND ROBUSTNESS

The following lemma shows that if || M| > «, there exists a destabilizing A with
lAll,, < 1/7 such that the closed-loop system has poles in the open right-half plane.
(This is stronger than what is given in the proof of Theorem 8.1.)

Lemma 8.3 Suppose M € RHo, and ||M||,, > ~. Then there ezxists a a9 > 0 such
that for any given o € [0,0¢] there exists a A € RHo with ||A|l, < 1/7v such that
det(I — M(s)A(s)) has a zero on the azis Re(s) = 0. .

Proof. Without loss of generality, assume v = 1. Since M € RH. and
| M|, > 1, there exists a 0 < wp < oo such that ||M(jwe)|| > 1. Given any ~ such that
1 < v < {|M(jwo)], there is a sufficiently small oy > 0 such that

min [|M(o + juwo)ll > 7
o€[0,00]

and

Wi + (o0 +a)? [wi + (00 + B)? <
R+ (00 —aR\ B+ (00 -p7

for any a > 0 and 8 > 0.
Now let o € [0,00] and let M (o + jwp) = ULV* be a singular value decomposition

with

U=[u1 Ug - up]

V=[w v - v,]
01

Yy = a2

Write ; and v, in the following form:

vllejd’l

0 5 0 vy2€7%2
* —
uy = [ ulle] 1 'U,126] 2 ... ulpeJ p ], v =

vi4€7%e
where u1; € R and v;; € R are chosen so that 6;,¢; € [—x,0) for all 4, j.

Choose 3; > 0 and a; > 0 so that

y ﬁ,:—a—].wo —0, 7 a,:—a—J‘w()):(pj
Bi + o+ juwg a; + 0+ jwo
fori=1,2,...,pand j=1,2,...,q. Let
G&yv 22
1 ay+s . _ _ s
As) = — : [Bungss - Bu,3R | eRM.
1

~ QXg—S8
aqvlq—ﬂ——aq+s
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where
PP el Gl L S SO el Gl
TV Wi+ (0 -a)? T Vw4 (0 - 8y)?
Then _ -
max; {&;} max; {ﬁj} max; {&; } max; {ﬂj}
Al < < <1
g1 7
and 1
Ao + jwo) = —v1ug
o1
det (I — M(o + jwo)A(o + jwo)) =0
Hence s = 0 + jwp is a zero for the transfer function det (I — M(s)A(s)). a

The preceding lemma plays a key role in the necessity proofs of many robust stability
tests in the sequel.

8.3 Stability under Unstructured Uncertainties

The small gain theorem in the last section will be used here to derive robust stability
tests under various assumptions of model uncertainties. The modeling error A will again
be assumed to be stable. (Most of the robust stability tests discussed in the sequel can
be generalized easily to the unstable A case with some mild assumptions on the number
of unstable poles of the uncertain model; we encourage readers to fill in the details.)
In addition, we assume that the modeling error A is suitably scaled with weighting
functions Wy and W> (i.e., the uncertainty can be represented as W; AW5).

O K II

Figure 8.9: Unstructured robust stability analysis

We shall consider the standard setup shown in Figure 8.9, where IT is the set of un-
certain plants with P € II as the nominal plant and with K as the internally stabilizing
controller for P. The sensitivity and complementary sensitivity matrix functions are
defined, as usual, as

S,=(I+PK)™!!, T,=I-5,

and
S; = (I+KP)“1, T,=1-S5;.
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Recall that the closed-loop system is well-posed and internally stable if and only if

[I K1 [(I+Kn)-1 —K(I +TK)™!
(

- I | I+0OK)"'!M (I +IK)"! JGRH“’

for all IT € I1.

8.3.1 Additive Uncertainty

We assume that the model uncertainty can be represented by an additive perturbation:
II =P+ W AW,.

Theorem 8.4 Let I = {P+ W AW, : A € RHoo} and let K be a stabilizing con-

troller for the nominal plant P. Then the closed-loop system is well-posed and internally
stable for all ||All, < 1 if and only if |WoKS,W1|| < 1.

Proof. LetII =P+ W,AW, € II. Then
I k1
-II I

(I + KSOW1AW2)_1S,' —KSO([ + W, AVVQKSO)_I
(I + SoWi AW K)1So(P + Wi AW,)  So(I + Wi AWK S,)-]

is well-posed and internally stable if (I + AWK S, W;)~! € RH since

det(I + K S, W, AW,) det(I + Wy AW, KS,) = det( + SoW1 AWz K)

det(I + AW, K S,Wy).

But (I + AW2KS,W1)~! € RHo is guaranteed if |[AW,KS,W;||, < 1 (small gain
theorem). Hence ||W, K S,Wi ||, <1 is sufficient for robust stability.
To show the necessity, note that robust stability implies that

K(I+TK)™' = KS,(I + WiAW,KS,)™' € RH+
for all admissible A. This, in turn, implies that
AW K(I+ 1K) 'Wy =1 — (I + AWL,KS,W;)™! € RHoo

for all admissible A. By the small gain theorem, this is true for all A € RH., with
Al < 1 only if |[WoKS,Wil, < 1. O
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' d
Z w !
Wo = A O Wy Wy
d
T Yy e
Kl P w.

Figure 8.10: Output multiplicative perturbed systems

8.3.2 Multiplicative Uncertainty

In this section, we assume that the system model is described by the following set of
multiplicative perturbations:

II=(I+WAW,)P
with W1, Wy, A € RHy. Consider the feedback system shown in Figure 8.10.

Theorem 8.5 Let Il = {(I + W1AW,)P : A € RHo} and let K be a stabilizing con-
troller for the nominal plant P. Then the closed-loop system is well-posed and internally
stable for all A € RH o with ||All, <1 if and only of |WoT, W4 || < 1.

Proof. We shall first prove that the condition is necessary for robust stability. Suppose
|WoT,Wifl,, > 1. Then by Lemma 8.3, for any given sufficiently small ¢ > 0, there
is a A € RHo with [|A]l, < 1 such that (I + AW,T,W;)~! has poles on the axis
Re(s) = o. This implies that

(I+TK)™ = S,(I + W AW,T,)~!

has poles on the axis Re(s) = o since o can always be chosen so that the unstable poles
are not cancelled by the zeros of S,. Hence ||W>T, W], < 1 is necessary for robust
stability. The sufficiency follows from the small gain theorem. m]
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8.3.3 Coprime Factor Uncertainty

As another example, consider a left coprime factor perturbed plant described in Fig-
ure 8.11.

21 22

An ~O— Ap
wI
T N _ Y
K N O

Figure 8.11: Left coprime factor perturbed systems

Theorem 8.6 Let

M= (M+Ay)"Y(N+Ay)
with M,N,Ap, AN € RHoo. The transfer matrices (M,IQ) are assumed to be a stable
left coprime factorization of P (i.e., P = M™'N), and K internally stabilizes the
nominal system P. Define A := [ Ay Ay ] Then the closed-loop system is well-
posed and internally stable for all ||A]l, < 1 if and only if

“[ B ] (I+PK)~i| <1

o0

Proof. Let K = UV ™! be a right coprime factorization over RH. By Lemma 5.7,
the closed-loop system is internally stable if and only if

(¥ + AwyU + (01 + AM)V)_l € RHe (8.3)
Since K stabilizes P, (NU +>J\;I V)~! € RHs. Hence equation (8.3) holds if and only if
(1+ANU + Ay V)(NU + MV)—I)'1 € RHoc
By the small gain theorem, the above is true for all ||A||, <1 if and only if

” [ g ] (NU + MV)~!

[[F o

o
o]

gt P —
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8.3.4 Unstructured Robust Stability Tests

Table 8.1 summaries robust stability tests on the plant uncertainties under various
assumptions. All of the tests pertain to the standard setup shown in Figure 8.9, where
II is the set of uncertain plants with P € II as the nominal plant and with K as the

internally stabilizing controller of P.

W1 € RHoo Wiy € RHoo A€ RHo ||All, <1

Perturbed Model Sets

Representative Types of

Robust Stability Tests

I Uncertainty Characterized

output (sensor) errors

I+ W1AW,)P neglected HF dynamics (IWoT , Wl <1
uncertain rhp zeros
input (actuators) errors

P(I + W, AW,) neglected HF dynamics [(WoT; Wil <1
uncertain rhp zeros
LF parameter errors

(I+ W, AW,)" P uncertain rhp poles WS Wil <1
LF parameter errors

P(I + W, AW,)™! uncertain rhp poles [(WaS;Wi|l, <1

P+ W AW,

additive plant errors
neglected HF dynamics
uncertain rhp zeros

(W2 KS,Wh|, <1

P(I + W, AW, P)~!

LF parameter errors
uncertain rhp poles

W2S8,PWh|,, <1

(M + Ap)"Y(N + An)
P=M"'N

A=[Ay Aym]

LF parameter errors
neglected HF dynamics

uncertain rhp poles & zeros

K -1
I s <1

e <}

(N+AN)(M+Ap)E
P=NM"!
A

-[&]

LF parameter errors
neglected HF dynamics

uncertain rhp poles & zeros

[la=" itk 1|, <1

Table 8.1: Unstructured robust stability tests (HF: high frequency, LF: low frequency)
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Table 8.1 should be interpreted as follows:

UNSTRUCTURED ANALYSIS THEOREM

Given NS & Perturbed Model Sets
Then Closed-Loop Robust Stability
if and only if Robust Stability Tests

The table also indicates representative types of physical uncertainties that can be
usefully represented by cone-bounded perturbations inserted at appropriate locations.
For example, the representation Pa = (I + W; AW)P in the first row is useful for out-
put errors at high frequencies (HF), covering such things as unmodeled high-frequency
dynamics of sensors or plants, including diffusion processes, transport lags, electrome-
chanical resonances, etc. The representation Py = P(I + W;AW>) in the second row
covers similar types of errors at the inputs. Both cases should be contrasted with
the third and the fourth rows, which treat P(I + W AW;)~! and (I + W, AW,) "1 P.
These representations are more useful for variations in modeled dynamics, such as low-
frequency (LF) errors produced by parameter variations with operating conditions, with
aging, or across production copies of the same plant.

Note from the table that the stability requirements on A do not limit our ability
to represent variations in efther the number or locations of rhp singularities, as can be
seen from some simple examples.

Example 8.3 Suppose an uncertain system with changing numbers of right-half plane
poles is described by

PA-{ L.ser |<s|<1}

1
Then P, = _Lf € Pa has one right-half plane pole and P, = porE) € Pa has no

right-half plane pole. Nevertheless, the set of Pao can be covered by a set of feedback
uncertain plants:

Pa CI:= {P(1+6P)" : 6 € RHoo, ||6]l <1}

with P = l
s
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Example 8.4 As another example, consider the following set of plants:

s+1l+a
Py=—"7"7— <2
8= DGy S
This set of plants has changing numbers of right-half plane zeros since the plant has no
right-half plane zero when a = 0 and has one right-half plane zero when a@ = —2. The
uncertain plant can be covered by a set of multiplicative perturbed plants:
Pacl={—1+-2) serM.., Il <1
a T ls+2y T s+1” o e =2

It should be noted that this covering can be quite conservative.

8.4 Robust Performance

Consider the perturbed system shown in Figure 8.12 with the set of perturbed models
described by a set II. Suppose the weighting matrices Wy, W, € RH, and the perfor-

d

K P €ell O W,

Figure 8.12: Diagram for robust performance analysis

mance criterion is to keep the error e as small as possible in some sense for all possible
models belonging to the set II. In general, the set II can be either a parameterized set
or an unstructured set such as those described in Table 8.1. The performance specifica-
tions are usually specified in terms of the magnitude of each component e in the time
domain with respect to bounded disturbances, or, alternatively and more conveniently,
some requirements on the closed-loop frequency response of the transfer matrix between
d and e (say, integral of square error or the magnitude of the steady-state error with
respect to sinusoidal disturbances). The former design criterion leads to the so-called
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Li-optimal control framework and the latter leads to H; and H, design frameworks,
respectively. In this section, we will focus primarily on the M., performance objectives
with unstructured model uncertainty descriptions. The performance under structured
uncertainty will be considered in Chapter 10.

Suppose the performance criterion is to keep the worst-case energy of the error e as
small as possible over all d of unit energy, for example,

sup |lefl, <e
fldll, <1

for some small e. By scaling the error e (i.e., by properly selecting W, ) we can assume
without loss of generality that e = 1. :
Let T, ; denote the transfer matrix between d and e, then

T,;=W.(I+PsK)"'Wy, PoclIl (8.4)

Then the robust performance criterion in this case can be described as requiring that
the closed-loop system be robustly stable and that

T4l <1, VPaell (8.5)

More specifically, an output multiplicatively perturbed system will be analyzed first.
The analysis for other classes of models can be done analogously. The perturbed model
can be described as

I:={(I+WAW2)P: A€ RHo, ||All, <1} (8.6)

with Wy, Wy € RHo. The explicit system diagram is as shown in Figure 8.10. For this
class of models, we have

T, ;= WoS,(I + Wi AW,T,) Wy,

e

and the robust performance is satisfied iff
W2 T, Wil <1

and
IT.4ll, <1, VA € RHo, [1All, < 1.

The exact analysis for this robust performance problem is not trivial and will be given
in Chapter 10. However, some sufficient conditions are relatively easy to obtain by
bounding these two inequalities, and they may shed some light on the nature of these
problems. It will be assumed throughout that the controller K internally stabilizes the
nominal plant P.

Theorem 8.7 Suppose Pao € {(I + W1AW2)P: A € RH, ||All, <1} and K in-
ternally stabilizes P. Then the system robust performance s guaranteed if either one of
the following conditions is satisfied:

R
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(i) for each frequency w
E(Wd)a:(WeSo) +E(WI)E(W2T0) <L (87)

(ii) for each frequency w
KW Wa)T(WSeWa) + 5(WaT,W1) < 1 (8.8)

where W1 and Wy are assumed to be invertible and &(Wl_[Wd) is the condition
number.

Proof. It is obvious that both condition (8.7) and condition (8.8) guarantee that
|WoT,Wijl,, < 1. So it is sufficient to show that ]|Te‘;||oo <1,VA € RHo, ||A|l, < 1.
Now for any frequency w, it is easy to see that

F(T,;) < T(W.S,)o[(I+ W1AWLT,) a(Wy)
TWeSo)g(Wa) . _T(WeSo)7(Wa)
Q(I + WlAW2To) —1- E(WIAWQTO)
o(WeS,)7(Wa)
1 - g(Wh)e(WoT,)5(A)
Hence condition (8.7) guarantees (7, ;) < 1 for all A € RH,, with [|A[l < 1 at all
frequencies.

Similarly, suppose W, and W are invertible; write

T.; = WeSoWa(W W) ™11 + AWLT, W)L (W, 1 W),

€

and then
F(We S, Wa) (W W)

1 —-g(WT,W1)a(d) -
Hence by condition (8.8), 7(T,;) < 1 is guaranteed for all A € RH,, with [|A]|_ < 1
at all frequencies. O

(T4 <

Remark 8.2 It is not hard to show that either one of the conditions in the theorem is
also necessary for scalar valued systems.

Remark 8.3 Suppose x(W,'W,) ~ 1 (weighting matrices satisfying this condition
are usually called round weights). This is particularly the case if W; = wy(s)] and
Wq = wa(s)I. Recall that o(W,S,Wy) < 1 is the necessary and sufficient condition for
nominal performance and that @(W->T,W;) < 1 is the necessary and sufficient condition
for robust stability. Hence the condition (ii) in Theorem 8.7 is almost guaranteed by
NP + RS (i.e., RP is almost guaranteed by NP + RS). Since RP implies NP + RS, we
have NP + RS ~ RP. (In contrast, such a conclusion cannot be drawn in the skewed
case, which will be considered in the next section.) Since condition (ii) implies NP + RS,
we can also conclude that condition (ii) is almost equivalent to RP (i.e., beside being
sufficient, it is almost necessary). <O
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Remark 8.4 Note that in light of the equivalence relation between the robust stabil-
ity and nominal performance, it is reasonable to conjecture that the preceding robust
performance problem is equivalent to the robust stability problem in Figure 8.9 with
the uncertainty model set given by

I := (I + WaA W) (I + W1 AW,)P

and ||A.]l, <1, [lIAll,, < 1, as shown in Figure 8.13. This conjecture is indeed true;
however, the equivalent model uncertainty is structured, and the exact stability analysis
for such systems is not trivial and will be studied in Chapter 10. o

L—J A
z w

Wy A W Wy

Figure 8.13: Robust performance with unstructured uncertainty vs. robust stability
with structured uncertainty

Remark 8.5 Note that if W, and Wy are invertible, then T, ; can also be written as
T ;= W.SeWu [I + (W' Wa) AW, T,Wh (W Wa)]
So another alternative sufficient condition for robust performance can be obtained as
F(W.SoWy) + s(W ' Wa)ad(WoT,W;) < 1.

A similar situation also occurs in the skewed case below. We will not repeat all these
variations. O

8.5 Skewed Specifications

We now consider the system with skewed specifications (i.e., the uncertainty and per-
formance are not measured at the same location). For instance, the system performance
is still measured in terms of output sensitivity, but the uncertainty model is in input
multiplicative form:

I := {P(I + Wi AW,) : A € RHo, ||All, <1}.

. — . ean - . - S £ o4 SR S
[ ]
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le——
S

W2 Wd

!
Wy
K 1 S dp bW

Figure 8.14: Skewed problems

The system block diagram is shown in Figure 8.14.
For systems described by this class of models, the robust stability condition becomes

W2 T, <1,
and the nominal performance condition becomes
”WESOWdHoo S 1‘

To consider the robust performance, let Te j denote the transfer matrix from d to e.
Then

T; = WeSo(I+PWIAW,KS,) ' Wy
= W.S.Wy [I+ (W PWy)AWLTWy (W PWy) ™

The last equality follows if Wy, Wy, and P are invertible and, if W, is invertible, can
also be written as

T,; = WeSoWa(W Wy) ™ [I + (W PW)A(Wo P~ W, ) (WaT, W1 )] W wy).
Then the following results follow easily.

Theorem 8.8 Suppose Py € Il = {P(I + W1AW;): A € RHoo, [|A]l < 1} and K
internally stabilizes P. Assume that P,Wy, W,, and Wy are square and invertible. Then

the system robust performance is guaranteed if either one of the following conditions is
satisfied:

(i) for each frequency w
F(WeS,Wa) + £(W; ' PW)a(WoTiWh) < 1 (8.9)
(ii) for each frequency w

k(W W)a (WS, Wa) + F(W PW1)G(Wo P~ W, g (W, T, W) < 1. (8.10)
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Remark 8.6 If the appropriate invertibility conditions are not satisfied, then an alter-
native sufficient condition for robust performance can be given by

F(Wa)a(W.S,) + 5(PW1)F(Wo K S,) < 1.

Similar to the previous case, there are many different variations of sufficient conditions
although equation (8.10) may be the most useful one. <

Remark 8.7 It is important to note that in this case, the robust stability condition is
given in terms of L; = K P while the nominal performance condition is given in terms
of L, = PK. These classes of problems are called skewed problems or problems with
skewed specifications.? Since, in general, PK # KP, the robust stability margin or
tolerances for uncertainties at the plant input and output are generally not the same.
O

Remark 8.8 It is also noted that the robust performance condition is related to the
condition number of the weighted nominal model. So, in general, if the weighted nominal
model is ill-conditioned at the range of critical frequencies, then the robust performance
condition may be far more restrictive than the robust stability condition and the nominal
performance condition together. For simplicity, assume W, = I, Wy = I and W» = w, I,
where w; € RH is a scalar function. Further, P is assumed to be invertible. Then
the robust performance condition (8.10) can be written as

F(W.S,) + &(P)a(w:T,) < 1,Vw.

Comparing these conditions with those obtained for nonskewed problems shows that
the condition related to robust stability is scaled by the condition number of the plant.?

Since k(P) > 1, it is clear that the skewed specifications are much harder to satisfy

if the plant is not well conditioned. This problem will be discussed in more detail in
Section 10.3.3 of Chapter 10. o

Remark 8.9 Suppose K is invertible, then Ted can be written as
Ti= WK™ + LW AW,) 7 S, KW,

Assume further that W, = I, Wy = w,I, W, = I, where w, € RH is a scalar function.
Then a sufficient condition for robust performance is given by

k(K)a(Siws) + o(T;W1) < 1,Vw,

with k(K) := (K)a(K ). This is equivalent to treating the input multiplicative plant
uncertainty as the output multiplicative controller uncertainty. <

2See Stein and Doyle [1991].
3 Alternative condition can be derived so that the condition related to nominal performance is scaled
by the condition number.
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The fact that the condition number appeared in the robust performance test for skewed
problems can be given another interpretation by considering two sets of plants II; and
II,, as shown in Figure 8.15 and below.

II; {P(I + w;A): A€ RHo, [|A]l, <1}

II, = {(I+®A)P: A€ RHw, [All <1}

_______________________________________________________________

Figure 8.15: Converting input uncertainty to output uncertainty

Assume that P is invertible; then
II, DI, if |wel > juw|k(P) Yw
since P(I +w;A) = (I + w,PAP~1)P.

The condition number of a transfer matrix can be very high at high frequency, which
may significantly limit the achievable performance. The example below, taken from the
textbook by Franklin, Powell, and Workman {1990, page 788], shows that the condition
number shown in Figure 8.16 may increase with the frequency:

-02 01 1|0 1

P(s) = _%05 8 —?1 (1) 067 _ 1 | s (s + 1)(s + 0.07)
- 1 0 010 o0 “a(s) | —0.05 0.7(s+ 1)(s + 0.13)
o 1 0 ‘ 0 0

where a{s) = (s + 1)(s + 0.1707)(s + 0.02929).

It is appropriate to point out that the skewed problem setup, although more com-
plicated than that of the nonskewed problem, is particularly suitable for control system
design. To be more specific, consider the transfer function from w and d to z and e:

1))

~-WoT,W;, -WoKS,Wy
W S, PW, WS, Wy

_ [‘EV“’ vgg“’f](upx)-l[}v I][”Sl ng]

where

G(s) =
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condition number
3,
T
~

<.
T
\\

10 10° 10" 10’ 10 1w
frequency

Figure 8.16: Condition number x(w) = &(P(jw))/a(P(jw))

Then a suitable performance criterion is to make ||G(s)||, small. Indeed, small IG(s)]l &
implies that T;, KS,, S,P and S, are small in some suitable frequency ranges, which
are the desired design specifications discussed in Section 6.1 of Chapter 6. It will be
clear in Chapter 16 and Chapter 17 that the ||G||_, is related to the robust stability
margin in the gap metric, v-gap metric, and normalized coprime factor perturbations.
Therefore, making (|G|, small is a suitable design approach.

8.6 Classical Control for MIMO Systems

In this section, we show through an example that the classical control theory may not
be reliable when it is applied to MIMO system design.

Consider a symmetric spinning body with torque inputs, T} and T3, along two or-
thogonal transverse axes, z and y, as shown in Figure 8.17. Assume that the angular
velocity of the spinning body with respect to the z axis is constant, Q. Assume fur-
ther that the inertias of the spinning body with respect to the z,y, and z axes are I,
I; = I, and I3, respectively. Denote by w; and w, the angular velocities of the body
with respect to the z and y axes, respectively. Then the Euler’s equation of the spinning
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body is given by

I1(;.71 - W2Q(Il - I3) = T]
Ild)2 - wlﬂ(Ig - Il) T2

| IR T

\--
|
I
]
|
T

a1
1144 t+4-1
R N X
\ . | L/

—~—d__| ’ A

Figure 8.17: Spinning body

Define
[ ” ] = [ %ﬁi ] a:=(1-I3/1)Q.

Then the system dynamical equations can be written as

HEEGIFES

Now suppose that the angular rates w; and wp are measured in scaled and rotated
coordinates:

n| 1 cosf siné wr | _ 1 a wi
y2 | ~ cos@ | —sinf cosé we | | —a 1 wa
where tan 6 := a. (There is no specific physical meaning for the measurements of y; and

y1 but they are assumed here only for the convenience of discussion.) Then the transfer
matrix for the spinning body can be computed as

Y(s) = P(s)U(s)
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with

Pls) = 2+a2 | —a(s+1) s—a®
Suppose the control law is chosen to be a unit feedback u = —y. Then the sensitivity
function and the complementary sensitivity function are given by

1 [3—a2 a(s+1)]

1 s —a 1 1 a
S=I+P)y1=— T=PI+P) = —_
P 3+1[a 3]’ P+ P) s+1[—a1]
Note that each single loop has the open-loop transfer function as %, so each loop has
90° phase margin and oo gain margin.

Suppose one loop transfer function is perturbed, as shown in Figure 8.18.

v uy
P (7% —

” B

Figure 8.18: One-loop-at-a-time analysis

Denote (5) )
z(s
A e Ty =
w(s) 1 s+1
Then the maximum allowable perturbation is given by
1
0, < 77— =1,
9l <

which is independent of a. Similarly the maximum allowable perturbation on the other
loop is also 1 by symmetry. However, if both loops are perturbed at the same time,
then the maximum allowable perturbation is much smaller, as shown next.

Consider a multivariable perturbation, as shown in Figure 8.19; that is, P = (I +
A)P, with

o b2
A= €RH
[ 0 622 i

a 2 x 2 transfer matrix such that ||A]|_, < 7. Then by the small gain theorem, the
system is robustly stable for every such A iff

1 1 .
7< T~ Aire («lifa>1).
oo
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Figure 8.19: Simultaneous perturbations

In particular, consider
AzAdz[éll ]ERQXQ.
622
Then the closed-loop system is stable for every such A iff

det(I -+ TAd) = s? + (2 + 611 + 522)8 + 14611 + 602 + (1 + a2)611622)

1
(s+1)2 (
has no zero in the closed right-half plane. Hence the stability region is given by

2461 +8690 > 0
1+ 611 + 622 + (1 +a*)611622 > 0.
It is easy to see that the system is unstable with
611 = ~b22 = ———z.
VI+a®

The stability region for a = 5 is drawn in Figure 8.20, which shows how checking the
axis misses nearby regions of instability, and that for a >> 5, things just get that much
worse. The hyperbola portion of the picture gets arbitrarily close to (0,0). This clearly
shows that the analysis of a MIMO system using SISO methods can be misleading and
can even give erroneous results. Hence an MIMO method has to be used.

8.7 Notes and References

The small gain theorem was first presented by Zames [1966]. The book by Desoer and
Vidyasagar [1975] contains an extensive treatment and applications of this theorem in
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1 i
05+
/
0 =
S ——
05+ j
-1+
_15 b
\\
2F
2 a5 05 0 05 1 15

Figure 8.20: Stability region for a = 5

various forms. Robust stability conditions under various uncertainty assumptions are
discussed in Doyle, Wall, and Stein [1982].

8.8 Problems

Problem 8.1 This problem shows that the stability margin is critically dependent on
the type of perturbation. The setup is a unity-feedback loop with controller K (s) =1
and plant P,om(s) + A(s), where

B 10
T s24+02s+1°

1. Assume A(s) € RHo. Compute the largest 8 such that the feedback system is
internally stable for all ||A]lo < 8.

2. Repeat but with A € R.

Prom(s)

Problem 8.2 Let M € CP*? be a given complex matrix. Then it is shown in Qiu et
al [1995] that I — AM is invertible for all A € R¥*? such that #(A) < v if and only if
ua(M) < 1/v, where

pa(M) = aEu(lOf,l]Uz

ReM  —aSM
a”I1SM  ReM

ey



8.8. Problems 159

It follows that (] — AM(s))™! € RH for a given M(s) € RHo and all A € R?*P with
7(A) < v if and only if sup,, pa(M(jw)) < 1/y. Write a MATLAB program to compute
ua(M) and apply it to the preceding problem.

—T8

K
Problem 8.3 Let G(s) = T:+ -~ and K € [10,12],7 € (0,0.5], T = 1. Find a nominal

model G,(s) € RHoo and a weighting function W(s) € RH such that
G(3) € {Go(s) (1 +W(s)A(s)) : A €Ho, |A]<1}.

Problem 8.4 Think of an example of a physical system with the property that the
number of unstable poles changes when the system undergoes a small change, for ex-
ample, when a mass is perturbed slightly or the geometry is deformed slightly.

Problem 8.5 Let X be a space of scalar-valued transfer functions. A function f(s) in
X isa unitif 1/f(s) isin &

1. Prove that the set of units in R’Ho is an open set, that is, if f is a unit, then

(3¢ > 0) (Vg € RHu) ||gllc < € == f+ g isa unit. (8.11)

2. Here is an application of the preceding fact. Consider the unity feedback system
with controller k(s) and plant p(s), both SISO, with k(s) proper and p(s) strictly
proper. Do coprime factorizations over RH !

n n
p= _—’lv k= _k'
my Mg
Then the feedback system is internally stable iff npni + mymy is a unit in RH .
Assume it is a unit. Perturb p(s) to

_np+An
p_mp_i_Am, An,AmGRHoo

Show that internal stability is preserved if ||An|lco and ||Am||oc are small enough.
The conclusion is that internal stability is preserved if the perturbations are small
enough in the H,, norm.

3. Give an example of a unit f(s) in RH o such that equation (8.11) fails for the H;
norm, that is, such that

(Ve > 0) (3g € RH3) |lgll2 < € and f + g is not a unit.
What is the significance of this fact concerning robust stability?

Problem 8.6 Let A and M be square constant matrices. Prove that the following
three conditions are equivalent:
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I -A1l. . _—
1. [ M I ] is invertible;

2. I — MA is invertible;

3. I — AM is invertible.

Problem 8.7 Consider the unity feedback system

For
11
s 8
G(s) =
11
s 8

design a proper controller K(s) to stabilize the feedback system internally. Now perturb
G(s) to

l14e 1
s s
, €e€R
1 1
s 8

Is the feedback system internally stable for all sufficiently small €?

Problem 8.8 Consider the unity feedback system with K(s) = 3, G(s) = ﬁ. Com-

pute by hand (i.e., without MATLAB) a normalized coprime factorization of G(s). Con-
sidering perturbations Ay and A of the factors of G(s), compute by hand the stability
radius €, that is, the least upper bound on ||[ Ay Ay 1|l,, such that feedback sta-
bility is preserved.

1
Problem 8.9 Let a unit feedback system with a controller K(s) = 3 and a nominal

s+1
lant model P,(s) = ——uv——.
plant model F,(s) $24+02s8+5

sense of [|A[|, for each of the following cases:

Construct a smallest destabilizing A € RH, in the

(a) P=P,+A;

_ : _02(s+10)
(b) P =P(1+WA) with W(s) = S 150
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_N+A, o 2s+1) . s2+02s+5

(C)P—m, —m, ———(:9—_*_2—)2“—,

andA=[ A, An ]-

Problem 8.10 This problem concerns the unity feedback system with controller K(s)

and plant
1 1 2
G(s)——s+1[3 4].

1. Take K(s) = kI, (k a real scalar) and find the range of k for internal stability.
2. Take

(ky, k2 real scalars) and find the region of (k1,k2) in R? for internal stability.
Problem 8.11 (Kharitonov’s Theorem) Let a(s) be an interval polynomial
a(s) = [ag, 03] + [a7, af|s + a7, a3 ]s® +---.

Kharitonov’s theorem shows that a(s) is stable if and only if the following four Kharitonov
polynomials are stable:

Ki(s)=ay +a7s+afs? +afs® +a7s* +a5s® +abs®+--
Ky(s)=a7 +afs+afs®+a5s® +ays' +afs® +afs®+---
Ks(s)=af +afs+a;s’ +a;s® +afs' +ats® +ags®+--
Ki(s)=af +a7s+a;8* +afs® +afs' +a5s® +ags®+--
Let a; := (a; +a})/2 and let
anom(3)=ao+als+a232+-~~.

Find a least conservative W(s) such that

Problem 8.12 One of the main tools in this chapter was the small-gain theorem. One
way to state it is as follows: Define a transfer matrix F(s) in RHo to be contractive
if || Flloo <1 and strictly contractive if || F|lo < 1. Then for the unity feedback system
the small gain theorem is this: If K is contractive and G is strictly contractive, then
the feedback system is stable.

This problem concerns passivity and the passivity theorem. This is an important
tool in the study of the stability of feedback systems, especially robotics, that is com-
plementary to the small gain theorem.
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Consider a system with a square transfer matrix F(s) in RHo. This is said to be
passive if
F(jw)+ F(jw)* >0, Vw.

Here, the symbol > 0 means that the matrix is positive semidefinite. If the system is
SISO, the condition is equivalent to

Re F(jw) > 0, Vw;

that is, the Nyquist plot of F lies in the right-half plane. The system is strictly passive
if F' — €l is passive for some € > 0.

1. Consider a mechanical system with input vector u(t) (forces and torques) and
output vector y(t) (velocities) modeled by the equation

My+Ky=u

where M and K are symmetric, positive definite matrices. Show that this system
is passive.

2. I F is passive, then (I + F)™! € RHs and (I + F)~!(I — F) is contractive; if
F is strictly passive, then (I + F)~}(I — F) is strictly contractive. Prove these
statements for the case that F is SISO.

3. Using the results so far, show (in the MIMO case) that the unity feedback system
is stable if K is passive and G is strictly passive.

Problem 8.13 Consider a SISO feedback system shown below with P = P, + W, A,.
jd
W3

K P

Assume that Py and P have the same number of right-half plane poles, W, is stable,
and
Re{Az}| <o, [S{Az}| < 8.

Derive the necessary and sufficient conditions for the feedback system to be robustly
stable.
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_ | Pun P2
Problem 8.14 Let P = [ Py Py

sufficient (and necessary, if possible) conditions in each case so that 7, (P, A) is stable
for all possible stable A that satisfies the following conditions, respectively:

] € RHo be a two-by-two transfer matrix. Find

1. at each frequency
ReA(jw) 20, [AQjw)| <a

2. at each frequency ‘
ReA(jw)et?? >0, |A(jw)| <a

where 6 > 0.
3. at each frequency
ReA(jw) > 0,FA(Jw) > 0,ReA(jw) + SA(Jw) < a
Problem 8.15 Let P = (I + AW)P, such that P and Pp have the same number of

unstable poles for all admissible A, ||All,, < . Show that K robustly stabilizes P if
and only if K stabilizes Py and

“WPOK(I + P()K)_llloo <1.

Problem 8.16 Give appropriate generalizations of the preceding problem to other
types of uncertainties.

Problem 8.17 Let

1 2
s+1 s+3

Po= 1 1
s+1 s41

1. Let P = Py + A with ||A||, <. Determine the smallest « for robust stability.
2. Let A = [ k1 k } € R?2*2, Determine the stability region.
2

Problem 8.18 Repeat the preceding problem with

s—1 5s+1
(s+12 (s+1)2

P0=
-1 s—1

(s+1)2 (s+1)?







Chapter 9

Linear Fractional
Transformation

This chapter introduces a new matrix function: linear fractional transformation (LFT).
We show that many interesting control problems can be formulated in an LFT frame-
work and thus can be treated using the same technique.

9.1 Linear Fractional Transformations
This section introduces the matrix linear fractional transformations. It is well known
from the one-complex-variable function theory that a mapping F : C — C of the form

a+bs
F(s) = c+ds

with @, b, ¢, and d € C is called a linear fractional transformation. In particular, if ¢ # 0
then F(s) can also be written as

F(s) = a+ Bs(1 —vs)™!

for some «a,8 and v € C. The linear fractional transformation described above for
scalars can be generalized to the matrix case.

Definition 9.1 Let M be a complex matrix partitioned as

My M

M= € Clp +p2)><(q1+<12),
[ My M ]

and let A, € C2%P2 and A, € C*P1 be two other complex matrices. Then we can
formally define a lower LFT with respect to A, as the map

fZ(M, .) . 92 xXpz2 CPI Xq

165
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with

Feo(M,Ag) := M1y + MipAe(I — MazAg) ™ Moy
provided that the inverse (I — M32A,)~! exists. We can also define an upper LFT with
respect to A, as

fu(M’ .) . Cn Xp1 Cp2 Xq2

with

Fu(M,Ay) = Mag + Myr Ay (I — My Ay) ™ My
provided that the inverse (I — M;;A,)~! exists.
The matrix M in the preceding LFTs is called the coefficient matriz. The motivation for

the terminologies of lower and upper LFTs should be clear from the following diagram
representations of F¢(M,A,) and F,(M, A,):

4 w1
Ay
r M _‘ Y2 l\ Juz
Y1 uy P wo

Ay M
The diagram on the left represents the following set of equations:
21 = mlw o | Mu My wy

Y1 uy My Mo w |’
w1 = Ay

while the diagram on the right represents

Y2 - Ml el My, M, ] Uz
22 wa My, Moy wy |’
U = Au Y2.

1t is easy to verify that the mapping defined on the left diagram is equal to F(M, A)
and the mapping defined on the right diagram is equal to F, (M, A,). So from the above
diagrams, F¢(M, A;) is a transformation obtained from closing the lower loop on the left
diagram; similarly, 7, (M, A,) is a transformation obtained from closing the upper loop
on the right diagram. In most cases, we shall use the general term LFT in referring to
both upper and lower LFTs and assume that the context will distinguish the situations
since one can use either of these notations to express a given object. Indeed, it is clear

that F(N,A) = F¢(M,A) with N = [ M2 M . It is usually not crucial which

My, My
expression is used; however, it is often the case that one expression is more convenient
than the other for a given problem. It should also be clear to the reader that in writing
Fe(M,A) [or F,(M,A)] it is implied that A has compatible dimensions.
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A useful interpretation of an LFT [e.g., F¢(M,A)] is that F¢(M,A) has a nominal
mapping, Mi;, and is perturbed by A, while M;3, Ms;, and Ms; reflect a prior knowl-
edge as to how the perturbation affects the nominal map, Mj,. A similar interpretation
can be applied to F,(M,A). This is why LFT is particularly useful in the study of
perturbations, which is the focus of the next chapter.

The physical meaning of an LFT in control science is obvious if we take M as a proper
transfer matrix. In that case, the LFTs defined previously are simply the closed-loop
transfer matrices from w; — 2z; and wy — 2z, respectively; that is,

Tout =\7:Z(M5Al), Tzw2=-7:u(MaAu)

where M may be the controlled plant and A may be either the system model uncer-
tainties or the controllers.

Definition 9.2 An LFT, F¢(M,A), is said to be well-defined (or well-posed) if
(I — M32A) is invertible.

Note that this definition is consistent with the well-posedness definition of the feed-
back system, which requires that the corresponding transfer matrix be invertible in
Rp(s). It is clear that the study of an LFT that is not well-defined is meaningless;
hence throughout this book, whenever an LFT is invoked, it will be assumed implicitly
that it is well-defined. It is also clear from the definition that, for any M, F,(M,0)
is well-defined; hence any function that is not well-defined at the origin cannot be ex-
pressed as an LFT in terms of its variables. For example, f(6) = 1/6 is not an LFT of
6.

In some literature, LFT is used to refer to the following matrix functions:

(A+ BQ)(C +DQ)™* or (C+Q@D)""(A+QB)

where C is usually assumed to be invertible due to practical consideration. The following
results follow from some simple algebra.

Lemma 9.1 Suppose C is invertible. Then

(A+BQ)(C+DQ)™" = Fo(M,Q)
(C+QD)"'(A+QB) = F(N,Q)
vt AC' B-AC'D ca o
M=l "¢t _cp } » N= [ B-DC~'A -DC™!

The converse also holds if M satisfies certain conditions.




168 LINEAR FRACTIONAL TRANSFORMATION

Lemma 9.2 Let F,(M,Q) be a given LFT with M = [

My My,
My My |

(a) If My is invertible, then
Fe(M,Q) = (C +QD)™*(A+QB)
with A = M1_21M11, B = M21 - M22Ml‘21M11, C = M1_21, and D = -M22M1_21,‘

that is,
[0 0 -TI
A C : -
[ B D ] = Fe ( -.44.21___9_j-!‘_4_2_2__] ,-Mml)

[ 0 0; -I
Fel | Mn 0 My

for any nonsingular matriz E.

(b) If Msy is invertible, then
Fe(M,Q) = (A+BQ)(C +DQ)™!
with A = My M5', B = Myz — MuM;;' Moy, C = M3}, and D = —M;;' May;

that is,
[ 0 My i My
A B i _
[ cC D ] = Tt ( Lo 0. I} ’_lel)

[ 0 M12 E Mll
= Fe| |0 0 T E™
—I My, ' My + E

for any nonsingular matriz E.

However, for an arbitrary LFT F,(M, Q), neither Ms; nor M, is necessarily square
and invertible; therefore, the alternative fractional formula is more restrictive.

It should be pointed out that some seemingly simple functions do not have simple
LFT representations. For example,

(A+QB)(I+QD)™!

cannot always be written in the form of F,(M,Q) for some M; however, it can be
written as

(A+QB)I + QD)™ ! = F(N,A)
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with .
A_jI A_ Q
N=|"<B 5'0"';'3" , A:[ Q]
D:0 D

Note that the dimension of A is twice of Q.
The following lemma shows that the inverse of an LFT is still an LFT.

My, My
My My,

(Fu(M,A))™! = Fu(N, A)

Lemma 9.3 Let M = { ] and Mso is nonsingular. Then

with N, is given by

N = [ My — MioM3 My —Mya M3 ] .

My My, My}
LFT is a very convenient tool to formulate many mathematical objects. We shall
illustrate this by the following two examples.

Simple Block Diagrams
A feedback system with the following block diagram

uf Wl
d
Y K "\ P W2 v
R u
F O—-
can be rearranged as an LFT:
~Z ] LY
G
Yy u

with

.......................
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A state-space realization for the generalized plant G can be obtained by directly
realizing the transfer matrix G using any standard multivariable realization techniques
(e.g., Gilbert realization). However, the direct realization approach is usually com-
plicated. Here we shall show another way to obtain the realization for G based on
the realizations of each component. To simplify the expression, we shall assume that
the plant P is strictly proper and P, F, W1, and W, have, respectively, the following
state-space realizations:

—_ AP BP — Af Bf — U U - Av Bv
P_[C,, 0 ] F‘[T,’D_f’ M=o VT e,
That is,
Zp = ApZp + Bp(d+u), yp =Cpayp,
Ty = Agzs+ Bf(yp+n), —y=Cjszrs+ Ds(y, +n),

Ty = AuTy + Byu, up = Cyzy + Dyu,

Ty = AyZy + Byyp, v =Cozy + Dyyp.
Now define a new state vector
Ip
Tf
Ty
Ty

and eliminate the variable y, to get a realization of G as

£ = Az + Byw+ Bsu
Ciz + Djyw + Disu

y = Cozx+ Dyyw+ Dasu
with
A, 0 0 0 B, 0 B,
BsC, Ay O 0 0 By 0
A=17%" 0 4. o [P B=|0o o | B=]|B,
B,C, © 0 A, 0 0 0
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Parametric Uncertainty: A Mass/Spring/Damper System

One natural type of uncertainty is unknown coefficients in a state-space model. To
motivate this type of uncertainty description, we shall begin with a familiar mechanical

system, shown in Figure 9.1.

k§ $c

Figure 9.1: A mass/spring/damper system

The dynamical equation of the system motion can be described by
. [
T+ —r+ —xr=—.
m m m

Suppose that the three physical parameters m,c, and k are not known exactly, but are
believed to lie in known intervals. In particular, the actual mass m is within 10% of
a nominal mass, m, the actual damping value c is within 20% of a nominal value of
¢, and the spring stiffness is within 30% of its nominal value of k. Now introducing
perturbations 6, 6., and &, which are assumed to be unknown but lie in the interval
[-1, 1], the block diagram for the dynamical system is as shown in Figure 9.2.

It is easy to check that % can be represented as an LFT in ,,:

L1 1o o
m_ ml+016,) m m bm(1+0.18m)™" = Fy (M1, 6m)

0.1~

L
with My = | ™ Oml . Suppose that the input signals of the dynamical system

are selected as z; = z,T2 = 2, F, and the output signals are selected as £; and Z3. To
represent the system model as an LFT of the natural uncertainty parameters é,,, 6., and
6i, we shall first isolate the uncertainty parameters and denote the inputs and outputs
of 6x, 6., and 6,, as Yk, Yc, Ym and ug, Uc, U, respectively, as shown in Figure 9.3.
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)

1
M(140.15,)

@

w f—

" 21+ 0.26.)

k(1 +0.36)

Figure 9.2: Block diagram of mass/spring/damper equation

W |-

I T2 F
] M, .___?.___

L.
: 0.2 [ »juc—(?
B

@ -

Ye

= (0. 6
03 ykkuk

Figure 9.3: A block diagram for the mass/spring/damper system with uncertain pa-
rameters
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Then
- i I ]
i 0 1 0 0 0 0
_ _ T
o B T U B I ut Z
v |=]03% o0 0 o0 0 O ol ue | =A%
u
Ye 0 02 0 0 0 0 * Um Ym
_ u
Ym -k -¢ 1 -1 -1 =01 ¢
Tl Um
That is,
. -331
[7“}=fe<M,A) z5
T
2 LF
where
0 1 0:0 0 0
E e 1 0.1
TR TE_mTEm._ Tm. TR 8 0 0
M=|03% 0 0:0 0 0 |, Aa=]0 6 0
0 02 0.0 O 0 0 0 ém
-k - 1, -1 -1 -01

9.2 Basic Principle

We have studied two simple examples of the use of LFTs and, in particular, their role in
modeling uncertainty. The basic principle at work here in writing a matrix LFT is often
referred to as “pulling out the A’s”. We will try to illustrate this with another picture.
Consider a structure with four substructures interconnected in some known way, as
shown in Figure 9.4. This diagram can be redrawn as a standard one via “pulling out
the A’s” in Figure 9.5.

Now the matrix M of the LFT can be obtained by computing the corresponding
transfer matrix in the shadowed box.

We shall illustrate the preceding principle with an example. Consider an input/output
relation

a + béy + 6,62
2= 2y =
1+ d6.6; + b2

where a,b, ¢,d, and e are given constants or transfer functions. We would like to write
G as an LFT in terms of §; and 62. We shall do this in three steps:

Guw

1. Draw a block diagram for the input/output relation with each & separated as
shown in Figure 9.6.
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= A §
. A g
A

...........
.........
——— e LT

Figure 9.5: Pulling out the A’s
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a
A Vil 7 R AN b
c
usg 5 Yys w 5, [ w
—d Y2 5, U2 —e

l

Figure 9.6: Block diagram for G

2. Mark the inputs and outputs of the §’s as y’s and u’s, respectively. (This is
essentially pulling out the A’s.)

3. Write z and y’s in terms of w and u’s with all §’s taken out. (This step is equivalent
to computing the transformation in the shadowed box in Figure 9.5.)

)1 Ui
Y2 Uz
Y3 =M | ug
Ya Ug
z w
where '
0 -—e —d 0.1
1 o0 0 00
M=|1 o 0 00
0 —be —bd+c 0:b
0 Zae Zad 1ia
Then
z=FuM,Aw, A= [ bl 0 ] .
0 &I,

All LFT examples in Section 9.1 can be obtained following the preceding steps.
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For SIMULINK users, it is much easier to do all the computations using SIMULINK
block diagrams, as shown in the following example.

Example 9.1 Consider the HIMAT (highly maneuverable aircraft) control problem
from the p Analysis and Synthesis Toolbox (Balas et al. [1994]). The system diagram

is shown in Figure 9.7 where

50(s + 100)

0.5(s + 3)

0
_ | “s+ 10000 _| s+o003
Waa = . 50(s +100) |» W= 0.5(s + 3)
s + 10000 s+ 0.03
2(s +1.28)
Sl b 0
w. = | s+320
n 0 2(s+1.28) |°
s+ 320
[ —0.0226 -366 -189 -32.1| 0O 0 ]
0 -19 0983 0 |-0414 0O
po_ | 00122 -117 263 0 | -778 224
0= 0 0 1 0 0 0
0 57.3 0 0 0 0
o 0 0 57.3 0 0 |
21
SRR 7 S . [d1 ]
E — A po| o dz
! P2
E Wael E
: T PO : S Wp
u K () W, e—

Figure 9.7: HIMAT closed-loop interconnection

)

€1
€2

n

n2
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The open-loop interconnection is

- o -
( 21 ] P2

29 d;

el :G’(s) do

€2 ny

Y1 n2

Y2 u1
) ) | U2 | 1

The SIMULINK block diagram of this open-loop interconnection is shown in Figure 9.8.

aircraft.m
Fite Edit Options Simulation Style
nY
X = ﬂ(s:x*-BDu -
y = Cx+Du[™ rt
Mux| pe
Demux State Space; Wdel
3 Muxt =
z ’ X' = Ax+Bu p
x* = Ax+Bu | 4 7 Y Sebu H>u| B8
3 IDemux y = Owbu sumz2 - Sum
a1 Stale Space: Wp State Space: himat dist
Demux1 Mux (4] J
4 MUx2 dist2
ez s
. noiset
E]w Demuxe—{ J|&—— | xV-_g;BDuu < Mux (o]
Demuxz Suml Mux3 noiss2
yZ State Space: Wn
=
ul
MUx
uz ’
| 5] 1] =1
Figure 9.8: SIMULINK block diagram for HIMAT (aircraft.m)
N A
The G(s) = can be computed by

> [A,B,C,D] = linmod('aircraft’) !
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which gives

[ —100001; 0 0 0 0 0 0 0o
0 ~0.0226 -366 —189 —32.1 0 0 0
0 0 -19 0983 0 0 0 0
A 0 0.0123 -11.7 -2.63 0 0 0 0
0 0 0 1 0 0 0 0
0 0 —-54.087 0 0 —0.018 0 0
0 0 0 0  —54.087 0 -0.018 0
| 0 0 0 0 0 0 0 -3201> |
[0 0 0 0 —703.5624 0 T
0 0 0 0 0 —~703.5624
0 0 0 0 0 0
o | —0410 0 0 0 —~0.4140 0
-778 224 0 0 -778 22.4
0 0 0 0 ()} 0
0 0 —0.94391, 0 0 0
| o 0 0 —25.24761> 0 0 ]
7035624I; 0 0 O O 0 0 0 0
0 2865 0 0  —0.9439 0 0 0
C= 0 0 0 0 2865 0 —0.9439 0 0
0 0 573 0 0 0 0 25.2476 0
0 0 0 0 573 0 ()} 0 25.2476
00 0 0 0 0 5 0 ]
00 0 0 00 0 50
p_|0 005 0 00 0 0
00 0 0500 0 O
00 1 0 20 0 0O
00 0 1 02 0 0|

9.3 Redheffer Star Products

The most important property of LFTs is that any interconnection of LFTs is again an
LFT. This property is by far the most often used and is the heart of LFT machinery.
Indeed, it is not hard to see that most of the interconnection structures discussed earlier
(e.g., feedback and cascade) can be viewed as special cases of the so-called star product.
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Suppose that P and K are compatibly partitioned matrices

Pll P12 K= Kll K12
P21 P22 ’ K21 Ky

P=

such that the matrix product P2 K, is well-defined and square, and assume further
that T — Py K1, is invertible. Then the star product of P and K with respect to this
partition is defined as

F (P, K1) Py, (I_'KIIP?‘Z)—I Kis

1 (9.1)
Ko1 (I = PpaK11)™ Py F, (K, P)

PxK := [

Note that this definition is dependent on the partitioning of the matrices P and K. In
fact, this star product may be well-defined for one partition and not well-defined for
another; however, we will not explicitly show this dependence because it is always clear
from the context. In a block diagram, this dependence appears, as shown in Figure 9.9.

__________________

Ll
Ll
z ! w z w
<-—:— f———— ] e
' P ' 2 PxK ")
! ' B | [
' '
|y U
i :
1 1
| '
| 1
1 1
t 1
N ' ' A~
z K oW
R S L ——

__________________

Figure 9.9: Interconnection of LFTs

Now suppose that P and K are transfer matrices with state-space representations:

Al B B Ak | Bki  Biko
P=1Cy| D Di K= | Ck1 | Dk Dk
Cy | D21 D Ck2 | Dk21 Dka2
Then the transfer matrix L
PxK: [ Iij — i
i)z
has a representation
. AlB B | g
*K = C:l ?11 1_)12 = el b :I
Cy|Dn Dy | -
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where
i- [ A+ ByR™'Dgnn ByR™'Cx: ]
i Bx1R™1C, Ak + Bgk1R™1D53Ck;
5 = [ By + ByR'Di11 Dy ByR™'Dgyp }
0 Bk1R™ Dy Bkq + Bgk1R™' Dy D12
o = [ Ci + D12 Dk R7IC; D1;R™Cxy ]
] Dk R7'Cy Ck2 + Dg21R™'D2;C
D = [ D1y + D12Dkn R~ Dy D12R™ ' Dk ]
D21 R™' Dy Di22 + Dxan R™' Da D12

R=1-DynDkn, R=1I-DgiDs.

In fact, it is easy to show that

i-= 2 . Dk Crka
i Cy Doy Bx, Ag ’
_ [ B; B, Dki11 Dka2
B = * ,
] Dy Doo Bk Bke
c - |G Du Dkn Cki
— * y
| C2 Do Dko1 Ck2
D — -Du D12 * DK11 DK12 )
| D2y D2 Dga1 Dkoo

The MATLAB command starp can be used to compute the star product:
> P xK = starp(P, K, dimy, dimu)

where dimy and dimu are the dimensions of y and u, respectively. In the particular case
when dim(2) = 0 and dim(w@) = 0, we have

> F(P,K) = starp(P, K, dimy, dimu)

9.4 Notes and References

This chapter is based on the lecture notes by Packard [1991] and the paper by Doyle,
Packard, and Zhou [1991].
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9.5 Problems

Problem 9.1 Find M and N matrices such that A = MAN, where A is block diago-
nal.

I.AZ[Al AQ]
- (AL 0 0
2 A‘(o 0 A2>
Ay [o 0]
3. A=
A A,
0
) A, 0 0
4. A=A, Ay 0
0 0 A,
) Ay Az 0
5. A= Ay A, Ag
0 As 0

Problem 9.2 Let G = (I — P(s)A)™'. Find a matrix M(s) such that G = F,(M,A).

Problem 9.3 Consider the unity feedback system with G(s) of size 2 x 2. Suppose
G(s) has an uncertainty model of the form

G(s) =

1+ Au(s)]gun(s) [1+ Ar(s)lgi2(s) ]
[1+ Ao1(s)]gar(s) [1+ Aga(s)lga(s) |

Suppose also that we wish to study robust stability of the feedback system. Pull out the

A’s and draw the appropriate block diagram in the form of a structured perturbation
of a nominal system. ,

Problem 9.4 Let

B B FN

A l 1 2 ilB

P(s)=| Cy |Dn Dy |, K(s) = T |
Cy | D31 Do

Find state-space realizations for F¢(P, K) and F,(P, D).




182 LINEAR FRACTIONAL TRANSFORMATION

Problem 9.5 Suppose Ds; is nonsingular and

Al B B
M(s)=| C, | D1 Dy
Cy | D21 Da

Find a state-space realization for
0 M My,
M(s) = 0 0 I
[ -1 Mn | Mu+E

where E is a constant matrix. Find the state-space realization for F,(M,E~1) when
E=1I



Chapter 10
1 and p Synthesis

It is noted that the robust stability and robust performance criteria derived in Chap-
ter 8 vary with the assumptions about the uncertainty descriptions and performance
requirements. We shall show in this chapter that they can all be treated in a unified
framework using the LFT machinery introduced in the last chapter and the structured
singular value to be introduced in this chapter. This, of course, does not mean that
those special problems and their corresponding results are not important; on the con-
trary, they are sometimes very enlightening to our understanding of complex problems,
such as those in which complex problems are formed from simple problems. On the
other hand, a unified approach may relieve the mathematical burden of dealing with
specific problems repeatedly. Furthermore, the unified framework introduced here will
enable us to treat exactly the robust stability and robust performance problems for
systems with multiple sources of uncertainties, which is a formidable problem from the
standpoint of Chapter 8, in the same fashion as single unstructured uncertainty. In-
deed, if a system is subject to multiple sources of uncertainties, in order to use the
results in Chapter 8 for unstructured cases, it is necessary to reflect all sources of un-
certainties from their known point of occurrence to a single reference location in the
loop. Such reflected uncertainties invariably have a great deal of structure, which must
then be “covered up” with a large, arbitrarily more conservative perturbation in order
to maintain a simple cone-bounded representation at the reference location. Readers
might have some idea about the conservativeness in such reflection based on the skewed
specification problem, where an input multiplicative uncertainty of the plant is reflected
at the output and the size of the reflected uncertainty is proportional to the condition
number of the plant. In general, the reflected uncertainty may be proportional to the
condition number of the transfer matrix between its original location and the reflected
location. Thus it is highly desirable to treat the uncertainties as they are and where
they are. The structured singular value is defined exactly for that purpose.

183
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10.1 General Framework for System Robustness

As we illustrated in Chapter 9, any interconnected system may be rearranged to fit the
general framework in Figure 10.1. Although the interconnection structure can become
quite complicated for complex systems, many software packages, such as SIMULINK and
p Analysis and Synthesis Toolbox, are available that could be used to generate the
interconnection structure from system components. Various modeling assumptions will
be considered, and the impact of these assumptions on analysis and synthesis methods
will be explored in this general framework.

A
Z._: P v
K

Figure 10.1: General framework

Note that uncertainty may be modeled in two ways, either as external inputs or
as perturbations to the nominal model. The performance of a system is measured in
terms of the behavior of the outputs or errors. The assumptions that characterize
the uncertainty, performance, and nominal models determine the analysis techniques
that must be used. The models are assumed to be FDLTI systems. The uncertain
inputs are assumed to be either filtered white noise or weighted power or weighted
L, signals. Performance is measured as weighted output variances, or as power, Or as
weighted output £, norms. The perturbations are assumed to be themselves FDLTI
systems that are norm-bounded as input-output operators. Various combinations of
these assumptions form the basis for all the standard linear system analysis tools.

Given that the nominal model is an FDLTI system, the interconnection system has
the form

Pii(s) Piz(s) Pis(s)
P(s)= | Pau(s) Pal(s) Pa(s)
Ps31(s) Psa(s) Pssa(s)

and the closed-loop system is an LFT on the perturbation and the controller given by
z = Fu(Fe(PK),A)w
= F(Fu(P,A),K)w.

We shall focus our discussion in this section on analysis methods; therefore, the
controller may be viewed as just another system component and absorbed into the
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interconnection structure. Denote

Mii(s) Mia(s) } .

M(s) = Fe (P(s), K(s)) = [ Mai(s)  Maza(s)

Then the general framework reduces to Figure 10.2, where

2= Fu(M,A)yw = [M22 + My A(I - MIIA)—IMIQ] w.

=gy

] A

Figure 10.2: Analysis framework

Suppose K (s) is a stabilizing controller for the nominal plant P. Then M(s) € RH .
In general, the stability of F,(M, A) does not necessarily imply the internal stability of
the closed-loop feedback system. However, they can be made equivalent with suitably
chosen w and z. For example, consider again the multiplicatively perturbed system
shown in Figure 10.3. '

€3 ds

d; Wet—1 A W1
dy €1 ‘i e2 r
K P

Figure 10.3: Multiplicatively perturbed systems

veln] = [a]

Then the system is robustly stable for all A(s) € RHo with [[A]l,, < 1if and only if
Fu(M,A) € RHy for all admissible A with My, = -WoPK(I + PK)~'W;, which is
guaranteed by || M|, < 1.

The analysis results presented in the previous chapters together with the associ-
ated synthesis tools are summarized in Table 10.1 with various uncertainty modeling
assumptions.

However, the analysis is not so simple for systems with multiple sources of model
uncertainties, including the robust performance problem for systems with unstructured

Now let
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Input Performance Perturbation Analysis Synthesis
Assumptions Specifications Assumptions Tests Methods
E(w(t)w(r)*) | E(2(t)*2(t)) <1 LQG
=6(t-T1)I
A=0 IIMa22]l, <1 | Wiener-Hopf
w=00) | B <1
EWUU) =1 Ho
flwl, <1 llz]l, <1 A=0 [[M22]l, <1 | Singular Value
Loop Shaping
lwll, <1 Internal Stability | [[All, <1 | |[Mull, <1 Hoo

Table 10.1: General analysis for single source of uncertainty

uncertainty. As we shown in Chapter 9, if a system is built from components that are
themselves uncertain, then, in general, the uncertainty in the system level is structured,
involving typically a large number of real parameters. The stability analysis involving
real parameters is much more difficult and will be discussed in Chapter 18. Here we shall
simply cover the real parametric uncertainty with norm-bounded dynamical uncertainty.
Moreover, the interconnection model M can always be chosen so that A(s) is block
diagonal, and, by absorbing any weights, ||A||,, < 1. Thus we shall assume that A(s)
takes the form of
A(s) = {diag [0:1;,,...,8,I5,A1,...,AF]: 6i(s) € RHoo, Aj € RHoo}

with ||&;]|, < 1 and [|A;]|, < 1. Then the system is robustly stable iff the intercon-
nected system in Figure 10.4 is stable.

The results of Table 10.1 can be applied to analysis of the system’s robust stability
in two ways:

(1) IM1u1ll, < 1 implies stability, but not conversely, because this test ignores the
known block diagonal structure of the uncertainties and is equivalent to regarding
A as unstructured. This can be arbitrarily conservative in that stable systems can
have arbitrarily large || M|, -

L T
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Ap(s)

81(s)I

Mi(s)

Figure 10.4: Robust stability analysis framework

(2) Test for each 6; (A;) individually (assuming no uncertainty in other channels).
This test can be arbitrarily optimistic because it ignores interaction between the
8 (A;). This optimism is also clearly shown in the spinning body example in
Section 8.6.

The difference between the stability margins (or bounds on A) obtained in (1) and (2)
can be arbitrarily far apart. Only when the margins are close can conclusions be made
about the general case with structured uncertainty.

The exact stability and performance analysis for systems with structured uncertainty
requires a new matrix function called the structured singular value (SSV), which is
denoted by pu.

10.2 Structured Singular Value
10.2.1 Definitions of

We shall motivate the definition of the structured singular value by asking the following
question: Given a matrix M € CP*9, what is the smallest perturbation matrix A € C?*?
in the sense of 7(A) such that

det(] - MA) =07
That is, we are interested in finding

Qmin = inf {E(A) : det(J] - MA)=0, A€ (C"x”} .
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It is easy to see that

1

MA
S p(MA)

omin = inf {a : det(] —aMA) =0, 7(A) <1, A € C9%P} =

and

F{ggnsclp(MA) =o(M).

Hence the smallest norm of a “destabilizing” perturbation matrix is 1/a(M) with a
smallest “destabilizing” A:

L,
Ades = Wvlul, det(I - MAdes) =0
where M = G(M)u v} + ouv; + - - - is a singular value decomposition.
So the reciprocal of the largest singular value of a matrix is a measure of the smallest

“destabilizing” perturbation matrix. Hence it is instructive to introduce the following
alternative definition for the largest singuiar value:

1

TM) = e (A) T deld —MA) =0, A ECrr]

Next we consider a similar problem but with A structurally restricted. In particular,
we consider the block diagonal matrix A. We shall consider two types of blocks: repeated
scalar and full blocks. Let S and F represent the number of repeated scalar blocks and
the number of full blocks, respectively. To bookkeep their dimensions, we introduce
positive integers ry,...,7s; m1,...,mp. The ith repeated scalar block is 7; x r;, while
the jth full block is m; x m;. With those integers given, we define A C C**" as

A = {diag [611,,...,8, L5, A1,...,Ap]: 6; € C,A; € C ¥}, (10.1)

For consistency among all the dimensions, we must have

s F
Z i+ ij =n.
=1 7=1

Often, we will need norm-bounded subsets of A, and we introduce the following nota-
tion:
BA={AecA:7(A)<1} (10.2)
B°A={Ae€A:7A) <1} (10.3)
where the superscript “o” symbolizes the open ball. To keep the notation as simple as
possible in equation (10.1), we place all of the repeated scalar blocks first; in actuality,

they can come in any order. Also, the full blocks do not have to be square, but restricting
them as such saves a great deal in terms of notation.
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Now we ask a similar question: Given a matrix M € CP*?, what is the smallest
perturbation matrix A € A in the sense of @(A) such that

det(I - MA)=0?
That is, we are interested in finding
Omin = inf {F(A) : det(l — MA) =0, A € A}.
Again we have

1

AR AN

Omin = inf {a: det(] —aMA) =0, A€ BA} =

Similar to the unstructured case, we shall call 1/ay,i, the structured singular value and
denote it by pa (M).

Definition 10.1 For M € C**" ua (M) is defined as

1
Ha(M) = min {7(A) : A € A,det (I - MA) =0}

(10.4)

unless no A € A makes I — MA singular, in which case pia (M) :=0.

Remark 10.1 Without a loss in generality, the full blocks in the minimal norm A can
each be chosen to be dyads (rank = 1). To see this, assume S = 0 (i.e., all blocks are
full blocks). Suppose that I — M A is singular for some A € A. Then thereisan z € C*
such that M Az = z. Now partition z conformably with A:

T
z2
T = X , r;eC™ i=1,...|F
TF
and let A .
'xi‘gi y  Iq :Ié 07
X ll:l| o
A= fort=1,2,...,F.
0, Z; =0
Define

A = diag{[&l,AQ, ey AF}
Then 7(A) < 7(A), Az = Az, and thus (I — MA)x = (I - MA)z =0 (ie, I — MA
is also singular). Hence we have replaced a general perturbation A that satisfies the
singularity condition with a perturbation A that is no larger [in the 7(-) sense] and has
rank 1 for each block but still satisfies the singularity condition.
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Lemma 10.1 pa{(M) = Jaax p(MA)

In view of this lemma, continuity of the function p:C"*™ — R is apparent. In general,
though, the function x:C**™ —R is not a norm, since it does not satisfy the triangle
inequality; however, for any a € C, p(aM) = |a|u (M), so in some sense, it is related
to how “big” the matrix is.

We can relate fip (M) to familiar linear algebra quantities when A is one of two
extreme sets.

e IfA={6I:6€C} (S=1,F=0,r, =n), then s (M) = p(M), the spectral
radius of M.

Proof. The only A’s in A that satisfy the det(I — MA) = 0 constraint are
reciprocals of nonzero eigenvalues of M. The smallest one of these is associated
with the largest (magnitude) eigenvalue, so, ta (M) = p (M). o

o If A=C"" (S=0,F=1,m;=n), then pa (M) = &(M).
Obviously, for a general A, as in equation (10.1), we must have
{6I,:6€C} Cc A cCC™". (10.5)

Hence directly from the definition of x and from the two preceding special cases, we
conclude that
p(M) < pa(M) <7 (M). (10.6)

These bounds alone are not sufficient for our purposes because the gap between p and
@ can be arbitrarily large.
6 0
A=|"
0 &

for any 8 > 0. Then p(M) = 0 and (M) = 3. But u(M) =0

Example 10.1 Suppose

and consider

0

1) M=
(1) [ 0
since det(I — M A) = 1 for all admissible A.

B

~-1/2 1/2

(2) M= [ ~1/2 1/2

J. Then p(M) = 0 and (M) = 1. Since

61 —62
2 b

it is easy to see that min {max; |6;| : 1+ él;—‘sz =0} =1,s0 (M) =1.

det(I — MA) =1+
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Thus neither p nor @ provide useful bounds even in simple cases. The only time they
do provide reliable bounds is when p = .

However, the bounds can be refined by considering transformations on M that do
not affect pia (M), but do affect p and . To do this, define the following two subsets
of C**":

U ={UeA: UU"=1I,} (10.7)
D - diag [Dla---,DSaIdIImn---:dF—lImp_”ImF] e (10.8)
D, eC:i*" D; =D} > 0,d; € R,d; >0
Note that for any A € A,U € U, and D € D,
U ed UAeA AUeA c{UA)=7(AU)=7(4) (10.9)
DA = AD. (10.10)
Consequently, we have the following:
Theorem 10.2 ForallU € Y and D € D
pa(MU) = pa (UM) = pia (M) = pa (DMD™1). (10.11)

Proof. Forall D € D and A € A,
det (I — MA) = det (I — MD7'AD) = det (I- DMD‘IA)

since D commutes with A. Therefore pua(M) = pa(DMD™!'). Also, for each
Uel, det(I-MA) =0 ifand only if det(/ —MUU*A) = 0. Since U*A € A
and 7 (U*A) =7 (A), we get pa (MU) = pa (M) as desired. The argument for UM is
the same. ]

Therefore, the bounds in equation (10.6) can be tightened to

_ - -1
r(}lea&cp(UM) < AIrel%xAp(AM) = pa(M) < 15211'30' (DMD™Y) (10.12)

where the equality comes from Lemma 10.1. Note that the last element in the D matrix
is normalized to 1 since for any nonzero scalar v, DMD~! = (YD) M ('yD)_l.

Remark 10.2 Note that the scaling set D in Theorem 10.2 and in inequality (10.12)
is not necessarily restricted to being Hermitian. In fact, it can be replaced by any set of
nonsingular matrices that satisfy equation (10.10). However, enlarging the set of scaling
matrices does not improve the upper-bound in inequality (10.12). This can be shown
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as follows: Let D be any nonsingular matrix such that DA = AD. Then there exist a
Hermitian matrix 0 < R = R* € D and a unitary matrix U such that D = UR and

inf7 (DMD™') = infg (URMR™'U*) = inf 5 (RMR™).
D D RED
Therefore, there is no loss of generality in assuming D to be Hermitian. ' <

10.2.2 Bounds

In this section we will concentrate on the bounds
< < inf7 -1y,
max p(UM) < pa (M) _[1)1611;)0(DMD )

The lower bound is always an equality (Doyle [1982]).
Theorem 10.3 glgacp(MU) = Ua (M)

Unfortunately, the quantity p (UM) can have multiple local maxima, that are not global.
Thus local search cannot be guaranteed to obtain y, but can only yield a lower bound.
For computation purposes one can derive a slightly different formulation of the lower
bound as a power algorithm that is reminiscent of power algorithms for eigenvalues and
singular values (Packard and Doyle [1988a, 1988b]). While there are open questions
about convergence, the algorithm usually works quite well and has proven to be an
effective method to compute p.

The upper-bound can be reformulated as a convex optimization problem, so the
global minimum can, in principle, be found. Unfortunately, the upper-bound is not
always equal to p. For block structures A satisfying 25 + F < 3, the upper-bound is
always equal to pa (M), and for block structures with 25 + F > 3, there exist matrices
for which g is less than the infimum. This can be summarized in the following diagram,
which shows for which cases the upper-bound is guaranteed to be equal to p. See
Packard and Doyle [1993] for details.

Theorem 10.4 pa (M) = gxelt;JE(DMD_l) if2S+F <3

F= 0 1 2 3 4
S=
0 yes | yes | yes | no
1 yes | yes | no | no | no
2 no | mo | mo | no | no

Several of the boxes have connections with standard results.

e §=0,F=1: pa(M) =5 (M).
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¢ S=1,F=0: ua(M)=p(M)= li)relfDE (DMD™'). This is a standard result in
linear algebra. In fact, without a loss in generality, the matrix M can be assumed
in Jordan canonical form. Now let
A 1 ] 1
A1l k
Jl oo e, ’ Dl .
Al kM2
A k-t

e Cmxm,

Then inf o(DyiDY) = lim D,JiD7Y) = |Al. (Note that by Re-
DyeCm1 X™ k—o0

mark 10.2, the scaling matrix does not need to be Hermitian.) The conclusion
follows by applying this result to each Jordan block.

That p equals to the preceding upper-bound in this case is also equivalent to the
fact that Lyapunov asymptotic stability and exponential stability are equivalent
for discrete time systems. This is because p(M) < 1 (exponential stability of a
discrete time system matrix M) implies for some nonsingular D € C**"

#(DMD™ ') <1 or (D™Y*M*D*DMD™!' -1<0,
which, in turn, is equivalent to the existence of a P = D*D > 0 such that
M*PM -P<0
(Lyapunov asymptotic stability).
e S=0, F=2: This case was studied by Redheffer [1959].

e S =1, F =1: This is equivalent to a state-space characterization of the H
norm of a discrete time transfer function.

e S =2, F =0: This is equivalent to the fact that for multidimensional systems
(two dimensional, in fact), exponential stability is not equivalent to Lyapunov
stability.

¢ S =0, F >4 : For this case, the upper-bound is not always equal to u. This
is important, as these are the cases that arise most frequently in applications.
Fortunately, the bound seems to be close to u. The worst known example has a
ratio of i over the bound of about .85, and most systems are close to 1.

The preceding bounds are much more than just computational schemes. They are
also theoretically rich and can unify a number of apparently different results in linear
systems theory. There are several connections with Lyapunov asymptotic stability,
two of which were hinted at previously, but there are further connections between the
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upper-bound scalings and solutions to Lyapunov and Riccati equations. Indeed, many
major theorems in linear systems theory follow from the upper-bounds and from some
results of linear fractional transformations. The lower bound can be viewed as a natural
generalization of the maximum modulus theorem.

Of course, one of the most important uses of the upper-bound is as a computational
scheme when combined with the lower bound. For reliable use of the p theory, it is
essential to have upper and lower bounds. Another important feature of the upper-
bound is that it can be combined with He, controller synthesis methods to yield an ad
hoc p-synthesis method. Note that the upper-bound when applied to transfer functions
is simply a scaled Ho, norm. This is exploited in the D — K iteration procedure to
perform approximate u synthesis (Doyle [1982]), which will be briefly introduced in
Section 10.4.

The upper and lower bounds of the structured singular value and the scaling matrix
D can be computed using the MATLAB command

> [bounds,rowd] = mu(M,blk)

where the structure of the A is specified by a two-column matrix blk. for example, a

(6, 0 0 0 o0 o
0 & 0 0 0 0

A; 0 0 0
0 Ay 0 0
0 0 &I 0
0 0 0 A |

o O O O
oS O O O

61,62,65,€ C, Az € (C2X3,A4 € Csxs,As € 1
can be specified by

[2 0]
11
blk=| 2 3
3 3
30
-21a

Note that A; is not required to be square. The outputs of the program include a 2 x 1
vector bounds containing the upper and lower bounds of i (M) and the row vector
rowd containing the scaling D. The D matrix can be recovered by

> [D¢, D] = unwrapd(rowd, blk)

where D, and D, denote the left and right scaling matrices used in computing the
upper-bound inf E(DgM D~ 1) when some full blocks are not necessarily square and
they are equal if all full blocks are square.
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Example 10.2 Let

[ 2 2j 0 -1 —-1+3; 2435 ]
347 2—-3 =145 2435 —-14j 1 -1+
347 J 2425 -1425 3-3 3 —-1+7
M=| -14j -1-3j J 0 1-j 2—3 2425
3 j 1+ 35 14y 3j —j
1 3+25 2425 3 1425 2435 =1+425
245 -1-3j -1 3+3; 2+3j 25 1-j5 |
and
' 511
)
A={A= 2 . 8,8, € C,A3 € C?3 A, € C*X1
Az
\ A4
2 0
11 .
Then blk = 5 3 and the MATLAB program gives bounds = [ 10.5955 10.5518 ]
2 1
and
Dy
0.7638
D[ =
0.880913
1.0293
D,
D, = 0.7638 _
0.88091,
1.02931,
where

D [ 1.0260 — 0.0657j  0.2174 — 0.3471j ]
1= .

—0.0701 + 0.38715 —0.4487 — 0.6953;
In fact, D, and D, can be replaced by Hermitian matrices without changing the upper-
bound by replacing D; with
. 1.0992 0.0041 — 0.0591;
7| 0.0041 + 0.0591j 0.9215
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since D; = Ulbl and

0.9155 — 0.0713j 0.2365 — 0.31775
—0.1029 + 0.38245 —0.5111 — 0.7629;

is a unitary matrix.

10.2.3 Well-Posedness and Performance for Constant LFTs

Let M be a complex matrix partitioned as

Mu M
M= u 12 (10.13)
M21 M22

and suppose there are two defined block structures, A; and A, which are compatible
in size with M), and Ms,, respectively. Define a third structure A as

|

Now we may compute p with respect to three structures. The notations we use to keep
track of these computations are as follows: p (-) is with respect to Ay, ps () is with
respect to Az, and Ua () is with respect to A. In view of these notations, u; (M),
2 (Ma2), and pa (M) all make sense, though, for instance, u; (M) does not.

A; O
0 A,

A € A, A € Ay } (10.14)

This section is interested in following constant matrix problems:

o Determine whether the LFT F,(M,A;) is well-defined for all A, € A, with
7(A2) < B (< B).

e If so, determine how “large” F,(M,A;) can get for this norm-bounded set of
perturbations.

Let Az € Az. Recall that Fy (M, A,) is well-defined if I — My A, is invertible. The
first theorem is nothing more than a restatement of the definition of .

Theorem 10.5 The linear fractional transformation Fy (M, Ay) is well-defined
(a) for all Ay € BA; if and only if uo (Mag) < 1.
(b) for all Ay € B®A, if and only if py (Ma) < 1.

As the “perturbation” A, deviates from zero, the matrix 7, (M, As) deviates from
M. The range of values that u; (F (M, Az)) takes on is intimately related to pa (M),
as shown in the following theorem:
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Theorem 10.6 (main loop theorem) The following are equivalent:

p2 (M22) <1, and

pa (M) <1 =

ATAX (Fe(M,A2)) <1

po (Maz) <1, and

pa(M) <1 =
sup  p1 (Fe (M, A2)) < 1.
AL€BOA,

Proof. We shall only prove the first part of the equivalence. The proof for the second
part is similar.

< Let A; € A; be given, with 7 (4;) < 1, and define A = diag [A;, Az]. Obviously
A € A. Now

- M A —Mi2A
det (I — MA) = det I=Mud 2= (10.15)
~Ma Ay I — Myl
By hypothesis I — MasAs is invertible, and hence det (I — MA) becomes
det (I — Mas o) det (I ~ MiiAy = MisAs (I — MaaAg) ™! M21A1) .
Collecting the A; terms leaves
det (I — MA) =det (I — MaxAg)det (I — F¢ (M, D) Ay). (10.16)

But puy (Fe(M,Ay)) < 1and Ay € BAy, s0 I —F,(M,A2)A; must be nonsingular.
Therefore, I — M A is nonsingular and, by definition, pua (M) < 1.

= Basically, the argument above is reversed. Again let A; € BA; and
Ay € BA;, be given, and define A = diag [A;, Az]. Then A € BA and, by hypothesis,
det (I — MA) # 0. It is easy to verify from the definition of u that (always)

p (M) > max {p (M11), po (Ma2)}.

We can see that o (Mao) < 1, which gives that I— Moo Ao is also nonsingular. Therefore,
the expression in equation (10.16) is valid, giving

det (I - MggAg)det (I - .7:@ (M, Az)Al) = det (I-— MA) -',é 0.

Obviously, I — F;(M,A2)A; is nonsingular for all A; € BA,, which indicates that
the claim is true. a

Remark 10.3 This theorem forms the basis for all uses of x in linear system robustness
analysis, whether from a state-space, frequency domain, or Lyapunov approach. O
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The role of the block structure A, in the main loop theorem is clear — it is the
structure that the perturbations come from; however, the role of the perturbation struc-
ture A, is often misunderstood. Note that i (-) appears on the right-hand side of
the theorem, so that the set A; defines what particular property of F; (M, A) is
considered. As an example, consider the theorem applied with the two simple block
structures considered right after Lemma 10.1. Define A, := {61], : 6, € C}. Hence,
for A € C**™, uy (A) = p(A). Likewise, define Ay = C™*™; then for D € C™*™,
u2 (D) =3 (D). Now, let A be the diagonal augmentation of these two sets, namely

A = 61[11 Onxm
Omxn A2
Let Ac C**", B e C*™ C € C™*"* and D € C™*™ be given, and interpret them as
the state-space model of a discrete time system

16 € C, A € (mem} C C(n+m)x(n+m).

Tyl = Az + Buy,
Yk = Cz¢ + Duy.

Let M € C(ntm)x(n+m) he the block state-space matrix of the system

A B
C D

M=

Applying the theorem with these data gives that the following are equivalent:
e The spectral radius of A satisfies p (4) < 1, and

ma.xE(D+C&1 (I—Aél)_lB) <1 (10.17)
yapst

e The maximum singular value of D satisfies (D) < 1, and

max p(A+19A2 (I—DAz)—‘c) <1 (10.18)
AzecﬂleTI
7(A2)<1

e The structured singular value of M satisfies

pa(M) < 1. (10.19)

The first condition is recognized by two things: The system is stable, and the || - ||
norm on the transfer function from u to y is less than 1 (by replacing 6; with %):

1Glleo := maxa-(D +C (2 — A)" B) — max E(D+Cél (I - A6)~" B) .
et ed

1;__3
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The second condition implies that (I — DAy)™" is well defined for all 7(A2) <1 and
that a robust stability result holds for the uncertain difference equation

Thp1 = (A + BAy (I — DAy c) Zk

where Ay is any element in C™*™ with (Az) < 1, but otherwise unknown.

This equivalence between the small gain condition, |G|l < 1, and the stability
robustness of the uncertain difference equation is well-known. This is the small gain
theorem, in its necessary and sufficient form for linear, time invariant systems with one
of the components norm bounded, but otherwise unknown. What is important to note
is that both of these conditions are equivalent to a condition involving the structured
singular value of the state-space matrix. Already we have seen that special cases of p are
the spectral radius and the maximum singular value. Here we see that other important
linear system properties — namely, robust stability and input-output gain — are also
related to a particular case of the structured singular value.

Example 10.3 Let M, A;, and A, be defined as in the beginning of this section. Now
suppose pa(Mas) < 1. Find

Amax i (Fe (M, Ag)).

This can be done iteratively as follows:

max p (Fe(M,A2)) =«

A2€BA;
<= max p | Fe Mifo Mife , Ag =1
AeBA; M21 M22
Mll/a M12/a
= pa(M) =1
M21 M22

Hence

Az€BA; Moy Moy

max p1 (Fe(M,Aq)) = {a: ua (M) ([ My /o M/a ]) :1}.

For example, let Ay = 615, Ay € C2%2:
0.1 0.2 1 0 1 2 0.

, B= , C= , D= 5 0 .
1 0 11 1 3 0 08

Qmax = sup p(A+ BAy(I - DAS)™I0).
F(A2)<1

A=

Find
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Define A = 85y . Then a bisection search can be done to find
2
Ala Bla
Qmax = { O : M =1; =21.77.
{ Ha (M) ( c D ) }

Related MATLAB Commands: unwrapp, muunwrap, dypert, sisorat

10.3 Structured Robust Stability and Performance

10.3.1 Robust Stability

The most well-known use of i as a robustness analysis tool is in the frequency domain.
Suppose G(s) is a stable, real rational, multi-input, multioutput transfer function of
a linear system. For clarity, assume G has g; inputs and p; outputs. Let A be a
block structure, as in equation (10.1), and assume that the dimensions are such that
A Cc CinXPr, We want to consider feedback perturbations to G that are themselves
dynamical systems with the block diagonal structure of the set A.

Let M (A) denote the set of all block diagonal and stable rational transfer functions
that have block structures such as A.

M(A) :={A(") € RHoo : A(So) € A for all s, € Ty}

Theorem 10.7 Let 8 > 0. The loop shown below is well-posed and internally stable
for all A(:) € M (A) with || Al < % if and only if

sup fia(G(jw)) < B.
wER

w €1
T A
+

€2 + w2

C

G(s)

Proof. (<=) Suppose Sup, g, ta(G(s)) < B. Then det(I — G(s)A(s)) # 0 for all

s € C4 U {00} whenever ||A||_, < 1/8 (i.e., the system is robustly stable). Now it is
sufficient to show that

sup pa(G(s)) = sup pa(G(jw)).
seCy w€R
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It is clear that

sup pa(G(s)) = sup pa(G(s)) 2 sup pa(G(jw)).
seCy s€Cy w

Now suppose sup,ec, pa(G(s)) > B; then by the definition of u, there is an s, €
C, U{oo} and a complex structured A such that 7(A) < 1/8 and det(I — G(s,)A) = 0.
This implies that there is a 0 < & < 00 and 0 < @ < 1 such that det(] — G(jO)aA) =
0. This, in turn, implies that ua(G(j&)) > B since 7(alA) < 1/8. In other words,
sup,ec, #a(G(s)) < sup, pa(G(jw)). The proof is complete.

(=>) Suppose sup,eg Ha (G(jw)) > B. Then there is a 0 < w, < oo such that
pa (G(jw,)) > B. By Remark 10.1, there is a complex A, € A that each full block
has rank 1 and 7(A.) < 1/8 such that I — G(jw,)A, is singular. Next, using the same
construction used in the proof of the small gain theorem (Theorem 8.1), one can find a
rational A(s) such that ||A(s)||, = 7(Ac) < 1/8, A(jw,) = A,, and A(s) destabilizes
the system. a

Hence, the peak value on the p plot of the frequency response determines the size
of perturbations that the loop is robustly stable against.

Remark 10.4 The internal stability with a closed ball of uncertainties is more compli-
cated. The following example is shown in Tits and Fan [1995]. Consider

1 0 -1
Gls) = s+111 0 :l
and A = §(s)I. Then
1
S G(j =5 ——— = G(j0)) = 1.
sup ta (G(3w)) SUD ] Ha (G(50))

On the other hand, ua (G(s)) < 1 for all s # 0,s € C,, and the only matrices in the
form of I' = yI, with || < 1 for which

det(I — G(O)T) = 0

are the compler matrices +jI,. Thus, clearly, (I — G(s)A(s))™! € RH for all real
rational A(s) = 6(s)l; with ||6]|,, < 1 since A(0) must be real. This shows that
sup,er Ha(G(jw)) < 1 is not necessary for (I — G(s)A(s))™' € RHo with the closed
ball of structured uncertainty |[Afl,, < 1. Similar examples with no repeated blocks are
generated by setting G(s) = s%lM , where M is any real matrix with pya (M) =1 for
which there is no real A € A with @(A) = 1 such that det( — M A) = 0. For example,
let

0 g 8 &1
M=|+ a B .\ 8 , §,€C
0 -7 7 s
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with 742 = 1 and 3% + 202 = 1. Then it is shown in Packard and Doyle [1993] that
Ua(M) =1 and all A € A with (A) = 1 that satisfy det(] — MA) = 0 must be
complex. o

Remark 10.5 Let A € RH be a structured uncertainty and

G11(s) Gia(s)
Ga(s) Gaa(s)

Then F,(G,A) € RHo does not necessarily imply (I — G11A)~! € RHo, whether A
is in an open ball or is in a closed ball. For example, consider

Ao
—_ 1 '
Glay=1 0 310
1 00
& . 1
and A = with [|A]l,, < 1. Then Fu(G,A) = 151 € RHo for all
T 141

admissible A (||A[l,, < 1) but (I = G1;A)™! € RH is true only for ||All,, <0.1. ©

10.3.2 Robust Performance

Often, stability is not the only property of a closed-loop system that must be robust to
perturbations. Typically, there are exogenous disturbances acting on the system (wind
gusts, sensor noise) that result in tracking and regulation errors. Under perturbation,
the effect that these disturbances have on error signals can greatly increase. In most
cases, long before the onset of instability, the closed-loop performance will degrade to
the point of unacceptability (hence the need for a “robust performance” test). Such
a test will indicate the worst-case level of performance degradation associated with a
given level of perturbations.

Assume G, is a stable, real-rational, proper transfer function with g; + g2 inputs
and p; + p2 outputs. Partition G, in the obvious manner

Gu G2 ]

G =
»(2) [G21 Gao

so that G1; has ¢, inputs and p; outputs, and so on. Let A C C*P1 be a block
structure, as in equation (10.1). Define an augmented block structure:

A 0
Ap:= A €A A e C2¥P2 Y
i {[ 0 As ] =& Ae }

The setup is to address theoretically the robust performance questions about the
following loop:
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=1

The transfer function from w to z is denoted by F,, (Gp, A).

A(s)

Gyp(s)

Theorem 10.8 Let 3 > 0. For all A(s) € M(A) with [|Al|,, < 5, the loop shown
above is well-posed, internally stable, and || F, (Gp, A)||l . < B if and only if

sup pp , (Gp(jw)) < B.
weR

Note that by internal stability, sup,cr Ha(G11(jw)) < B, then the proof of this
theorem is exactly along the lines of the earlier proof for Theorem 10.7, but also appeals
to Theorem 10.6. This is a remarkably useful theorem. It says that a robust performance
problem is equivalent to a robust stability problem with augmented uncertainty A, as
shown in Figure 10.5.

Ay

Gp(s)

Figure 10.5: Robust performance vs robust stability

Example 10.4 We shall consider again the HIMAT problem from Example 9.1. Use
the SIMULINK block diagram in Example 9.1 and run the following commands to get
an interconnection model G, an Ho, stabilizing controller K and a closed-loop transfer
matrix G,(s) = F¢(G, K). (Do not bother to figure out how hinfsyn works; it will be
considered in detail in Chapter 14.)
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> [A,B,C,D] = linmod(‘aircraft’)
> G = pck(A, B, C,D);
> [K, Gp,] = hinfsyn(G, 2,2,0,10,0.001, 2);

which gives v = 1.8612 = ||G,|| , a stabilizing controller K, and a closed loop transfer
matrix Gp:

[ n
21 P2
22 d; Gpun Gpi2
""" = Gy(s) » Gp(s) = :
e dy Gp2a1 Gp22
€2 n
n2
2 , . . . .
maximum singular value
15¢
e —— S— .
N
! AN
\
\
\,
AN
N\,
.
0.5¢ —— ]
//f”’
/
T — /
0 L e . B——
10° 10°? 107 10° 10’ 10° 10

frequency (rad/sec)
Figure 10.6: Singular values of Gp(jw)
Now generate the singular value frequency responses of G,:
> w=logspace(-3,3,300);
> Gpf = frsp(Gp,w); % Gpf is the frequency response of Gp;

> [u,s,v] = vavd(Gpf);
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> vplot('liv,m’,s)

The singular value frequency responses of G, are shown in Figure 10.6. To test the
robust stability, we need to compute ||Gp11l|,:

> Gpi1 =sel(Gp,1:2,1:2);
> norm_of_Gyi1;, = hinfnorm(Gp11,0.001);

which gives [|Gpi1ll,, = 0.933 < 1. So the system is robustly stable. To check the
robust performance, we shall compute the pa,(Gp(jw)) for each frequency with

A
2Xx2 X2
Ap = , AeC*) A fE X2,
Af
Maximum Singular Value and mu
2 T T T T
73
[
I 1
maximum singular value :" 1
[
i 1
[
1.5¢ ’,' | R
i i
i i
| \
P
[
[
\ / i
1 \ i E
J -.\
o """ mu bounds ‘\\
\
.
0.5 L - A i L ; " ;
107 107 107 10° 10" 107 10’

frequency (rad/sec)
Figure 10.7: pa,(Gp(jw)) and 7(Gp(jw))

> blk=(2,2;4,2];

> [bnds,dvec,sens,pvec]=mu(Gpf,blk);

> vplot('liv,m’, vnorm(Gpf), bnds)

> title('Maximum Singular Value and mu')

> xlabel('frequency(rad/sec)’)
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> text(0.01,1.7 maximum singular value’)

> text(0.5,0.8,' mu bounds’)

The structured singular value pa,(Gp(jw)) and 7(Gp(jw)) are shown in Figure 10.7.
It is clear that the robust performance is not satisfied. Note that

Gon1 Gp12
max [[Fu(Gp, A <9 <= supua P r <1
lAj,. <1 17u(Cpr Al w i Gpa1/y Gpa2/v
Using a bisection algorithm, we can also find the worst performance:

Gy, Al = 12.7824.
s 17y, D), = 1278

10.3.3 Two-Block u: Robust Performance Revisited
Suppose that the uncertainty block is given by

A= |
2

| €7

with ||All,, < 1 and that the interconnection model G is given by

G11(s) Gra(s)

Gls) = Ga1(s) Gaafs)

] € RH.

Then the closed-loop system is well-posed and internally stable iff sup,, ua (G(jw)) < 1.

Let
Dw:[d‘”l Il, d, e R,.

Then
DL,,G(jw)D;1 =

Gu(jw) duGra(jw)
£Gn(jw)  Gn(w) |

Hence, by Theorem 10.4, at each frequency w

G1(jw)  duGra(jw) D .

%Gm(]'w) G22(jw) (1020

pa(Glw)) = o7 (

Since the minimization is convex in logd, (see, Doyle [1982]), the optimal d, can
be found by a search; however, two approximations to d, can be obtained easily by
approximating the right-hand side of equation (10.20):

‘J_' . —_ - - — e o — - - -~ . e

Lo
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(1) Note that

(GGl GGl
HalGl)) < 8, ([;};namumu 1G] D

IA

. . . 1 ) .
\/ ot (16l + & 161G + g 16 o)l + IGa(i)l )

\/IIG11(jw)||2 + |G (jw)lI* + 2 Gra(jw)l| G ()l

with the minimizing d, given by

ﬁ%g—:% if Gi2#0 & Ga #0,
do =4 0 if Goy =0, (10.21)

o0 if G12 =0.

(2) Alternative approximation can be obtained by using the Frobenius norm:

Ha(GGw)) < inf

Gu(jw)  duGra(jw)
alw—Gzl(jw) Gaa(jw)

F

. N . 1 . ,
\/d inf (ncuow)né + 2 Gra(i)lF + 3 G2 ()5 + nanuw)n%)

\/llGu(jw)II"} + 1G22 ()l + 2[1Gr2(j)l|  1Gar (G

with the minimizing d, given by

G2 (Gw)ll ;
] TCutaly f Gi2z#0 & G #£0,
d, = 0 if Gg; =0, (1022)
o if G12 =0.

It can be shown that the approximations for the scalar d,, obtained previously are exact
for a 2 x 2 matrix G. For higher dimensional G, the approximations for d, are still
reasonably good. Hence an approximation of p can be obtained as

Gu(jw) &WGIZ(].“‘)) l)

. . 10.23
f;Gzl(Jw) G22(jw) ( )

pa(Glw)) < 6’(
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or, alternatively, as

Ha(G(jw)) <7 ( (10.24)

Gu(jw) duGra(jw)
f:Gzl(jw) G22(jw) .

We can now see how these approximated p tests are compared with the sufficient
conditions obtained in Chapter 8.

Example 10.5 Consider again the robust performance problem of a system with out-
put multiplicative uncertainty in Chapter 8 (see Figure 8.10):

Then it is easy to show that the problem can be put in the general framework by
selecting
- W2 T,W, - W2 T,W4
G(s) =
WCSOWI WeSoWd

and that the robust performance condition is satisfied if and only if
[WoToWh |, <1 (10.25)

and
1Fu(G, Q)] <1 (10.26)

for all A € RH,, with ||A|l,, < 1. But equations (10.25) and (10.26) are satisfied iff
for each frequency w
) <1.

Note that, in contrast to the sufficient condition obtained in Chapter 8, this condition is
an exact test for robust performance. To compare the u test with the criteria obtained
in Chapter 8, some upper-bounds for p can be derived. Let

d, = “WeSoWI ” .
¢ W2 T, W4||

Then, using the first approximation for p, we get

(G( . )) lIlf _ _W2T0W1 _deZToWd
w = g
HalGl doeR, LW.S W,  W.S.Wa

pa(Giw)) < \/ IW2To Wi * + (|WeSeWal|* + 2 |WoT, Wal| [[W,S,Wi |

\/||W2T0W1 I + W SoWall® + 26(Wi Wa) [|Wo T W | [|W So W
IWeToWrll + k(Wi Wa) [We S, W]

IN A

i i
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where W, is assumed to be invertible in the last two inequalities. The last term is
exactly the sufficient robust performance criteria obtained in Chapter 8. It is clear that
any term preceding the last forms a tighter test since (W, 'Wy;) > 1. Yet another
alternative sufficient test can be obtained from the preceding sequence of inequalities:

pa (G(jw)) <\ KW Wa)(IWa T Wa || + [WeSoWal))-

Note that this sufficient condition is not easy to get from the approach taken in Chapter 8
and is potentially less conservative than the bounds derived there.

Next we consider the skewed specification problem, but first the following lemma is
needed in the sequel.

Lemma 10.9 Suppose =01 > 02> ...> 0m =g >0, then

. \2 1 _
dg}Rerm?x{(dor,) + o) =

Proof. Consider a function y = z + 1/z; then y is a convex function and the maxi-
mization over a closed interval is achieved at the boundary of the interval. Hence for
any fixed d

+

@ | ol
alfia

. 1 1 1
max {(dai)2 + W} = max {(dﬁ)2 + @ (de)® + @} .

Then the minimization over d is obtained iff

1 1
i 2 — ={(d 2 -
which gives d* = ﬁ The result then follows from substituting d. O

Example 10.6 As another example, consider again the skewed specification problem
from Chapter 8. Then the corresponding G matrix is given by

oo [ -WRTW —WaKS,W
| WS PW,  W.S,Ws |

So the robust performance specification is satisfied iff

- % _du o
pa(GGw) = nf 7 ([ W TRl sl ]) <1
wER Y

iWCSonl WeS, Wy
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for all w > 0. As in the last example, an upper-bound can be obtained by taking
i = [|WeS, PW1||
v W2 K SoWal|

ta (G(jw)) < /K(W7 PW1)([WoT, Wi | + W S, W)

In particular, this suggests that the robust performance margin is inversely proportional
to the square root of the plant condition number if Wy = I and W; = I. This can be
further illustrated by considering a plant-inverting control system.

To simplify the exposition, we shall make the following assumptions:

Then

We=w,I, WdZI, W1 =I, W2='thy

and P is stable and has a stable inverse (i.e., minimum phase) (P can be strictly proper).
Furthermore, we shall assume that the controller has the form

K(s) = P~(s)l(s)

where [(s) is a scalar loop transfer function that makes K(s) proper and stabilizes
the closed loop. This compensator produces diagonal sensitivity and complementary
sensitivity functions with identical diagonal elements; namely,

1 I(s)

SO=S,'=TI(S)I, Tozn:l-}-l(s)‘

Denote ) (s)
S
=TTy =T

and substitute these expressions into G; we get

—wer] —wTP!
wseP wsel ’

The structured singular value for G at frequency w can be computed by

—wytl  —wyT(dP)7! ])

Ha(Gw)) = dielg+ﬁ ([ wsedP wgel

Let the singular value decomposition of P(jw) at frequency w be
P(jw) =ULV*, ¥ =diag(o1,02,...,0m)

with ¢y =7 and o,, = g, where m is the dimension of P. Then

—wt]  —wr(dX) ! ])

Gli = inf 7
Ha (G(Gw)) dlériha ([ weedX weel
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since unitary operations do not change the singular values of a matrix. Note that

—wyr]  —wyT(dX)?

= Pidiag(My, M>,..., M,,)P.
weedy weel 1diag(Mi, Mo )P

where P, and P, are permutation matrices and where

M, = [ — T —’th(dO’i)—l :| .

weedo; Ws€
Hence
' ) _ —wyr —wyr(doi)”!
G = inf max&
pa(G(jw)) dl€R+ i ([ wsedo; wse

inf ma.x'a'([ T ] [ 1 (do;)™! ])
deRy 1 wsedo;

inf max /(1 + |do;|~2)(|wsedo;|? + |weT|?)
deR+ 7

Il

2
Wy T

d(f,‘

inf max \/lwseP + |weT|? + |wsedoi|? +
deR4 1

Using Lemma 10.9, it is easy to show that the maximum is achieved at either @ or g
and that optimal d is given by

2 _ |wer|
|lwseloga’
so the structured singular value is
. 1
pa (Gjw)) = \/|wse|2 + lweT|? + |wse||weT|[(P) + m] (10.27)

Note that if |w,e| and |w,7| are not too large, which is guaranteed if the nominal
performance and robust stability conditions are satisfied, then the structured singular
value is proportional to the square root of the plant condition number:

pa (G(jw)) = VlwseljweT|k(P) . (10.28)

This confirms our intuition that an ill-conditioned plant with skewed specifications is
hard to control.
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10.3.4 Approximation of Multiple Full Block p

The approximations given in the last subsection can be generalized to the multiple-block
p problem by assuming that M is partitioned consistently with the structure of

A= diag(Al,Ag, e ,AF)

so that
My, My -+ My
My My - Mp
M= . ) .
Mgy Mpy -+ Mpr
and
D=diag(d11,...,dp_11,I).
Now .
DMD™! = [M,,d] dr = 1.
Hence
d.
< . — -1 - —_ it
kA < pLTOMD™ = ot 7 [
F F
e d; . 2 d?
< lyég)tf[llMull d—j] 5521;’\‘,223 1IIMUII
<

jnf J > E l|M35113

=1 j=1
An approximate D can be found by solving the following minimization problem:
d?
. 2
jnf Z Z 1511 z
i=1 j=1
or, more conveniently, by minimizing

F F 2
Jnf 33 IM, 1%

i=1 j=1

Sl

with dp = 1. The optimal d; minimizing the preceding two prdblems satisfies, respec-

tively,
Yo 1M ||? a2
¥ 1M5)1% /d2°

E =

=1,2,...,F-1 (10.29)
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and R
Y i | M|l &
> ik 1M 5 /2

Using these relations, dy can be obtained by iterations.

di =

=1,2,...,F—1. (10.30)

Example 10.7 Consider a 3 x 3 complex matrix

1+j 10-25 —20j
M=\ 5 34+ -1+3j
-2 J 4-7

with structured A = diag(,, 2, 63). The largest singular value of M is 3(M) = 22.9094
and the structured singular value of M computed using the p Analysis and Synthesis
Toolbox is equal to its upper-bound:

pA(M) = [i)xét;) F7(DMD™') = 11.9636

with the optimal scaling Dopy = diag(0.3955,0.6847,1). The optimal D minimizing
F F &2
. 2 4
jnf ; ; 1M1 25

is Dubopt = diag(0.3212,0.4643,1), which is solved from equation (10.29). Using this
Dgybopt, We obtain another upper-bound for the structured singular value:

pA (M) < T(Deubopt M D} ,) = 12.2538.

One may also use this Dgybopt as an initial guess for the exact optimization.

10.4 Overview of p Synthesis

This section briefly outlines various synthesis methods. The details are somewhat com-
plicated and are treated in the other parts of this book. At this point, we simply want
to point out how the analysis theory discussed in the previous sections leads naturally
to synthesis questions.
From the analysis results, we see that each case eventually leads to the evaluation
of
M|, a=2, 00,o0r u (10.31)
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for some transfer matrix M. Thus when the controller is put back into the problem, it
involves only a simple linear fractional transformation, as shown in Figure 10.8, with

M =Fy(G,K) = G11 + G2 K(I — G2 K)"1Gyy

Gu G
where G = u 2 s chosen, respectively, as
Ga1 Ga2o
P, P
¢ nominal performance only (A =0): G = 2T
Ps; Py
P, P
¢ robust stability only: G = 13
P; Py
Py Py bg
e robust performance: G=P = | Py Py | Pa3
P31 Piy o P
z w

Il

Figure 10.8: Synthesis framework

Each case then leads to the synthesis problem

mKi’n |Fe(G, K)||, fora=2, oo, or p, (10.32)

which is subject to the internal stability of the nominal.

The solutions of these problems for a@ = 2 and oo are the focus of the rest of this
book. The a = 2 case was already known in the 1960s, and the result presented in this
book is simply a new interpretation. The two Riccati solutions for the a = oo case were
new products of the late 1980s.

The synthesis for the a = p case is not yet fully solved. Recall that g may be
obtained by scaling and applying ||-||., (for F < 3 and S = 0); a reasonable approach
is to “solve”

. . -1
min D,Dl‘r}gHm “D}}(G, K)D ”oo (10.33)
by iteratively solving for K and D. This is the so-called D-K iteration. The stable and
minimum phase scaling matrix D(s) is chosen such that D(s)A(s) = A(s)D(s). [Note

T J— . - . - —— PURP RPN
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that D(s) is not necessarily belonging to D since D(s) is not necessarily Hermitian,
see Remark 10.2.] For a fixed scaling transfer matrix D, ming ||D.7-'e(G,K)D'1”c>o is
a standard Ho, optimization problem that will be solved later in this book. For a
given stabilizing controller K, infp p-1en.. ||DFe(G, K )D7||__ is a standard convex
optimization problem and it can be solved pointwise in the frequency domain:

sup inf_ 7 [DuFu(G, K)(jw)DZ'] .

Indeed,

. -1 _ . — . 1
D,DI”I}fE'Hm “D]:g(G, K)D ”oo = sgp Dlwnef'DU [DuFe(G, K)(jw)Dg ]
This follows intuitively from the following arguments: The left-hand side is always no
smaller than the right-hand side, and, on the other hand, given the minimizing D,
from the right-hand side across the frequency, there is always a rational function D(s)

uniformly approximating the magnitude frequency response D,.
Note that when S = 0 (no scalar blocks),

D, = diag(d{1,...,d%_I,I) €D,

which is a block diagonal scaling matrix applied pointwise across frequency to the fre-
quency response F¢(G, K)(jw).

«— D D'l“"'—

K

Figure 10.9: p synthesis via scaling

D-K iterations proceed by performing this two-parameter minimization in sequential
fashion: first minimizing over K with D fixed, then minimizing pointwise over D with K
fixed, then again over K, and again over D, etc. Details of this process are summarized
in the following steps:

(i) Fix an initial estimate of the scaling matrix D, € D pointwise across frequency.

(ii) Find scalar transfer functions di(s),d;1(s) € RH for i =1,2,...,(F — 1) such
that |d;(jw)| =~ d¢. This step can be done using the interpolation theory (Youla
and Saito [1967)); however, this will usually result in very high-order transfer
functions, which explains why this process is currently done mostly by graphical
matching using lower-order transfer functions.
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(iii) Let
D(s) = diag(dy(s)],...,dr-1(s)I,I).

Construct a state-space model for system
. D(s) D-1(s)
G = G 3
(5) [ ; ] (3) [ ;

as shown in Figure 10.9.

(iv) Solve an H-optimization problem to minimize
7m0

over all stabilizing K’s. Note that this optimization problem uses the scaled
version of G. Let its minimizing controller be denoted by K.

(v) Minimize &[D,,F¢(G, K)D;'] over D, pointwise across frequency.! Note that
this evaluation uses the minimizing K from the last step, but that G is not scaled.
The minimization itself produces a new scaling function. Let this new function
be denoted by D,,.

(vi) Compare D,, with the previous estimate D,,. Stop if they are close, but otherwise
replace D, with D,, and return to step (ii).

With either K or D fixed, the global optimum in the other variable may be found
using the p and H., solutions. Although the joint optimization of D and K is not
convex and the global convergence is not guaranteed, many designs have shown that
this approach works very well (see, e.g., Balas [1990]). In fact, this is probably the
most effective design methodology available today for dealing with such complicated
problems. Detailed treatment of x analysis is given in Packard and Doyle [1993]. The
rest of this book will focus on the M, optimization, which is a fundamental tool for I
synthesis.

Users are encouraged to try the following demo programs from the u toolbox:
> himat x1, himat_x2, himat_x3, himat_x4, himat_x5, himat_x6

Related MATLAB Commands: musynfit, musynflp, muftbtch, dkit

10.5 Notes and References

This chapter is partially based on the lecture notes given by Doyle [1984] and partially
based on the lecture notes by Packard [1991] and the paper by Doyle, Packard, and

1The approximate solutions given in the preceding section may be used.




