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Preface

“If quantum mechanics hasn’t profoundly shocked you, you
haven’t understood it yet.”
NIELS BOHR

“The nineteenth century was known as the machine age, the
twentieth century will go down in history as the information
age. I believe the twenty-first century will be the quantum age.”
PAUL DAVIES
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0.1 A taste of quantum mechanics
The physics describing the world we experience everyday is referred to as “classical
physics.” It describes how large objects (i.e., objects made of billions and billions of
atoms) interact with each other. Whether it’s the motion of the planets in our solar
systems, the behaviour of a car when you accelerate, what happens when you play
billiards or how electronic circuits work, classical physics is a set of rules that were
discovered and quantified by the likes of Galileo, Newton and many others.

Classical physics is a tremendously successful theory of nature and has led to
astonishing human feats. We put a man on the moon, built bridges, skyscrapers,
supersonic jets, developed wireless communication, etc. The fascinating part is that
classical physics is not the ultimate description of nature – there is much more to
reality than what we see and experience.

If we try to describe the behaviour of atoms and their constituents (e.g., protons,
neutrons, electrons) using the laws of classical physics, it completely, and I mean
completely, fails. Actually, if we described the motion of electrons around the
nucleus of an atom using classical principles, you can calculate that any atom would
collapse within a tiny fraction of a second. Obviously, the world we live in is made
of stable atoms. . . so what’s going on?

Well, it turns out that classical physics is only an approximation of physics that
works for large objects. In order to describe the behaviour of the building blocks
of nature, we need a radically different approach that, as you’ll learn, leads to
surprising and fascinating new phenomena: welcome to the beautiful world of
quantum mechanics!

Particles behave like waves and waves behave like particles. Electrons tunnel
through barriers. It’s impossible to perform a measurement without perturbing the
environment. Quantum entangled photons are so strongly interconnected that they
behave as one, no matter how far apart they are. These are all part of everyday life in
the quantum world.

Quantum mechanics can be baffling, yes, surprising, definitely, and certainly
counter-intuitive. That’s because quantum mechanics lives outside of our everyday
lives and any attempt to explain quantum phenomena using classical physics fails.
Quantum mechanics just is, and it’s awesome!

Turns out that quantum mechanics isn’t really that complicated, we just need to
experience it and build an intuition about it. Quantum mechanics opens a door
to a world that may surprise you; a world where the rules of the game are different.
Much different.

Developed in the first half of the 20th century by the likes of Max Planck, Erwin
Schrödinger, Werner Heseinberg, Paul Dirac and many others, the theory of quantum
mechanics (also called quantum theory) never ceases to amaze us, even to this day.



0.2: Quantum technologies 7

At the time, quantum mechanics was revolutionary and controversial. Even a genius
like Albert Einstein thought it couldn’t be a serious theory. Unfortunately for him, he
was wrong!

An astonishing amount of experiments have been performed in the last few decades
demonstrating the validity of quantum theory. As a matter of fact, we can safely
claim that quantum theory is the most accurate theory ever developed by mankind.
Every attempt to prove it wrong has failed miserably.

You may have already heard about wave-particle duality. It’s one of the most
quintessential phenomena of quantum. Sometimes an electron (or any other quantum
object) behaves like a particle, sometimes it behaves like a wave. How do you know
when you should treat the electron like a wave, and when you should treat it like a
particle? Part of the beauty of quantum mechanics is that we don’t need to make that
distinction - it’s all contained within the theory.

A final note: Not only does quantum mechanics accurately describe the behaviour
of atoms and molecules, it can actually describe nature at any scale. The only reason
we don’t really need quantum mechanics to describe large objects is because the
quantum effects play such a small role that they can be ignored, and classical physics
represent an accurate approximation. Though that doesn’t mean quantum effects
can’t be observed in larger objects, such as superconductors (material conducting
electricity with zero resistance), nano-size electrical circuits and transistors, just to
name a few.

0.2 Quantum technologies
Quantum mechanics has already had a tremendous impact on our lives. Not only
does it tell us how the world behaves at its core – at the atomic level and beyond –
but it has led to transformative technologies that have shaped, and continue to shape,
the 20th and 21st centuries. The laser, LEDs, magnetic resonance imaging (MRI),
transistors and so much more, all exist because the world behaves according to the
rules of quantum mechanics.

What would a world be like without lasers? Well, there would be no internet. How
about a world with no transistors? Well, every single piece of digital technology –
computers, mp3 players, smartphones, digital cable tv – wouldn’t exist! The world
would be radically different.

Speaking of digital technology, the digital world we now live in has been made
possible thanks largely to information theory. All the digital technology mentioned
above really boils down to one thing: information processing. Yes, their applications
are vastly different from one another, but at their core, in their processor, they
manipulate bits of information.
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A second quantum revolution is underway, the “Quantum Information Revolution”,
where we manipulate information in a quantum mechanical fashion. This revolution
is more than just an idea – small prototypes of quantum computers exist (you’ll even
see some of them at the Institute for Quantum Computing (IQC), stable quantum
cryptography systems are commercially available used by government and banks
around the world, quantum sensors are bursting out of our labs and used in medicine,
material science, resource exploration and other fields.

0.3 Welcome to QCSYS
During the Quantum Cryptography School for Young Students (QCSYS or
“cue-see-sis”), you’ll become familiar with a special type of quantum technology:
quantum cryptography, or more precisely, Quantum Key Distribution (QKD).
Nowadays, when secure information is being sent over the internet (bank
transactions, your password when you log in to your favourite social media website,
etc.) your information remains private. The privacy of the information is ensured by
the fact that no computer on earth can solve, in a reasonable amount of time (e.g.,
hundreds to thousands of years!), a given, really difficult mathematical problem. The
eventual arrival of the ridiculously powerful quantum computer will render these
cryptographic techniques obsolete.

Thankfully, quantum mechanics also comes to the rescue: quantum cryptography.
By exploiting the behaviour of the quantum world, we can secure information such
that the only way for an all-evil eavesdropper to access this information would be to
break the rules of physics. We’re pretty confident nobody can do that. Ever!

During QCSYS, you’ll learn the basic concepts behind quantum cryptography; from
quantum mechanics and classical cryptography, to quantum optics, and of course,
quantum cryptography. QCSYS started in 2007 with many goals and challenges in
mind. Passionate about the science and research we do at IQC, we wanted to share
it with future scientists, mathematicians and engineers (that would be you). Also,
since quantum mechanics and quantum technologies will play a key role in shaping
the technological landscape of the 21st century, we strongly believe it’s important for
the new generation to be “quantum-aware”. Last, but not the least, it was a challenge
we gave ourselves: can we teach quantum mechanics and quantum information to
high school students? Quantum cryptography is a tiny subset of potential quantum
technologies, but it offers a great vehicle to teach young students about technology,
information security, mathematics, quantum mechanics and quantum computing.

We’ll repeat it many times: quantum physics isn’t about mathematics, it’s about the
behaviour of nature at its core. But since mathematics is the language of nature, it’s
required to quantify the prediction of quantum mechanics. This present document
has been put together to ease you into the mathematics of quantum mechanics. We’ll
use special mathematics – complex numbers and linear algebra (vectors and
matrices). Unfortunately, most high school mathematics curricula around the world
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do not teach linear algebra. It’s not very complicated. It’s really just a different and
clever way to add and multiply numbers together, but it’s a very powerful tool.

We don’t claim to cover all of linear algebra in a rigorous way, nor do we claim that
this is the only way to do quantum mechanics. There are different mathematical
approaches, but the one described here is very well suited for quantum information
and quantum cryptography, and fairly simple (we hope) to understand.

I encourage you to read through this book before you come to Waterloo for QCSYS.
Do not panic if it feels like it’s over your head or you’re struggling with some of the
concepts. We’ll spend at least five hours going through the key sections of the book
and work through exercises in groups. QCSYS counsellors, graduate students and I
will be on hand during QCSYS to help you out.

In addition to the mathematics of quantum mechanics, we’ll spend another five hours
exploring the “physics” of quantum mechanics. We’ll first explain the behaviour of
quantum particles without quantifying it. We’ll then consolidate the two so you have
a good understanding of how we use mathematics to model the physical quantum
world. After this introduction, we’ll be ready to learn about cryptography, quantum
optics, quantum cryptography (of course) and even quantum hacking. We’ll also go
in the labs and do some experiments. You’ll even have the chance to build your own
quantum cryptography system!

A little note before getting into the heart of the subject: I would like to thank the
people who helped me put this document together. The starting point of this
mathematical primer was a set of class notes put together a few years ago by a then
graduate student at IQC – Jamie Sikora. Jamie was one of the first teachers of
QCSYS and we owe him greatly. Thanks also to Juan-Miguel Arrazola for providing
great feedback on earlier versions of this book and Jodi Szimanski and Kathryn Fedy
for proofreading and editing.

Finally, welcome to QCSYS, welcome to the Institute for Quantum Computing and
welcome to Waterloo. We sincerely hope you’ll have a great time, learn a lot and
build new friendships that will last forever.

0.4 About the author
Martin Laforest is the Senior Manager, Scientific Outreach at
the Institute for Quantum Computing, University of Waterloo,
Canada. Officially, Martin’s role is to bring science out of the
lab and into peoples lives. Unofficially, he’s the talkative guy
who’s passionate about quantum science and technology and
likes to share it with young minds. Martin leads IQC’s youth
outreach programs including the Undergraduate School on



10 Preface

Experimental Quantum Information Processing (USEQIP) and the Quantum
Cryptography School for Young Students (QCSYS).

Martin has always been fascinated by trying to understand how the world works.
That led him to earn an undergraduate degree in Mathematics and Physics at McGill
University and later, a PhD in quantum physics from the University of Waterloo.
Before starting his current position at IQC, Martin spent two years doing research at
the Delft University of Technology in the Netherlands.

0.5 How to read this book
We understand that a lot of material in this book will be new to you. In order to
make it as easy to read as possible, we came up with a series of notations to help
you. The material in each chapter has been classified using six different categories.
Notice how some of them are numbered for easy reference. We’ll list them below
and use the concept of mathematical sets (which isn’t something we need to know to
understand the rest of the book) to give examples.

Definitions
Since mathematics is a man-made construction, we’ll introduce each new
mathematical concept by highlighting them in a box as follows:

DEFINITION 0.5.1: Mathematical sets. In mathematics, a set is a
collection of distinct objects. A set is also considered an object in its own
right. If we have objects a, b and c, the set containing these three objects,
denoted S, would be written using the following notation:

S = {a,b,c}

Examples
This book includes loads of examples. We believe concrete examples can help
solidify your understanding of new mathematical concepts. Some of them are rather
trivial, some of them are quite hard – designed to make you think a little. Examples
are also highlighted using a box as follows:

EXAMPLE 0.1: Suppose we have the number 42, a cat and planet Mars,
then the collection

S = {42,cat,Mars}

is a set containing 3 objects. Since S is also an object, the collection

S′ = {42,cat,Mars,S}

is a set containing 4 objects.
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You’ll also notice that there aren’t any exercises. This is by design. We’ll spend a lot
of time during QCSYS solving problems in group. You’re therefore strongly
encouraged to try to solve the examples before completely reading through them.

Observations
We use this category to stress intuitive conclusions that can be derived from a
definition or an example. They’ll help further your understanding of certain
applications of new concepts.

Observation 0.5.2: A set must be seen as a collection of object, therefore
it doesn’t matter in which order the objects are listed. That is to say, the sets
{42,cat,Mars} and {cat,42,Mars} are the exact same set.

Notes
We use these to bring your attention to something we want to make sure you didn’t
miss or to give you a little extra information. Notes are written in the outer margin of
the page as you can see on the right.

Food for thought
These are designed to be brain teasers, to make you think a little harder, a little
deeper, maybe even make you obsess. See if you can answer them. Just like notes,
they’re also found in the outer margin as you can see on the right.

Trivia facts
These will give you interesting facts about some concepts you’ve just learned. They
are complementary to the rest of the material and aren’t necessarily needed to
understand the upcoming material. They’re also found in the outer margins.

Finally, one thing you’ll notice is that there are a lot of equations. It’s a mathematics
book after all. Some of the equations will be boxed, for example:

E = mc2

These boxed equations are particularly important, so pay close attention to them.
They’re also summarized at the end of each chapter.

Now, get to the first chapter and have a good read!

Note 0.5.3 Objects in a set don’t have
to be of the same nature. For example,
the set S in Example 0.1 contains a
number, a planet inhabited solely by
robots and the best/worst house pet
there is.

Food for thought We saw that, by
definition, a set is an object on its own
right. Therefore, does the “set of all sets”
exist? Explain why.

Trivia fact Set theory is the modern
study of sets initiated by Georg Cantor
and Richard Dedekind in the 1870s. It’s
commonly employed as a foundational
system for mathematics, that is to say a
series of definition and rules (known as
axioms, or postulates) designed to study
the logical basis of mathematics.





Chapter 1:
Complex numbers

“I tell you, with complex numbers you can do anything.”
JOHN DERBYSHIRE

“Mathematics is the tool specially suited for dealing with
abstract concepts of any kind and there is no limit to its power
in this field.”
PAUL DIRAC
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The number system we all know and love, like 10,−2, 0.3,
√

2,
22
7
, π and of course,

the answer to life, the universe and everything, 42, are known as the real numbers.
Conventionally, we denote the family of all numbers as R.

But, sometimes, real numbers aren’t sufficient. Below is an example that might be all
too familiar.

EXAMPLE 1.1: Recall that the solution to any quadratic equation of the form
ax2 +bx+ c = 0, is given by:

x =
−b±

√
b2−4ac

2a

If we try to solve the quadratic equation x2 +5x+10 = 0 for x, we’ll get:

x =
−5±

√
25−4 ·10
2

=
−5±

√
−15

2

What’s the value for
√
−15? In other words, is there a real number a such that a2 =

−15? It’s not hard to convince yourself that, in fact, no real numbers, being positive
or negative, can satisfy this condition.

Should we just give up? Of course not! We’re doing mathematics: if something
doesn’t exist, we invent it! This is where complex numbers come in. If you pursue
your studies in virtually any field of science and/or engineering, chances are complex
numbers will become your best friends. They have many applications in physics,
chemistry, biology, electrical engineering, statistics, and even finance and economics.
As you’ll learn soon enough, in quantum mechanics, complex numbers are
absolutely everywhere.

1.1 What is a complex number?
In some sense, we’ve already defined what a complex number is. In the example
above, since

√
−15 is not real, then x is certainly not real either. (Adding a real

number with a non-real number cannot give you something real!) So by definition,
we’ll call numbers like this complex numbers.

But of course, being mathematicians-in-training, we’d like to have something more
concrete, better defined. Looking at x again, all the kerfuffle seems to be caused by
the nasty minus sign under the square root. Let’s take care of that.
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DEFINITION 1.1.1: Imaginary unit number. We define the imaginary unit
number i as the square root of -1, that is:

i =
√
−1

This definition might look arbitrary at first, but mathematics is an abstract subject
and as long as we’re consistent, we’re free to define anything we want!

EXAMPLE 1.2: Using our new definition for the square root of -1, it’s now
possible to write:

√
−15 =

√
−1 ·15

=
√
−1
√

15

= i
√

15

≈ 3.87i

DEFINITION 1.1.2: Imaginary numbers. A number is said to be imaginary if
its square is negative.

EXAMPLE 1.3:
√
−15 is an imaginary number because

(√
−15

)2
=−15

EXAMPLE 1.4: Let’s look at the same example using our new notation. i
√

15
is, of course, an imaginary number because:(

i
√

15
)2

= i2 ·
(√

15
)2

=
(√
−1
)2
·15

=−1 ·15

=−15

Now that we’ve defined imaginary numbers, we finally can define complex numbers.

DEFINITION 1.1.3: Complex numbers. A complex number is any number
written in the form:

z = a+bi

where a and b are real numbers. a is known as the “real part” of z, and b as the
“imaginary part”. We also define Re(z) and Im(z) as follows:

Re(z) = a

Im(z) = b

Trivia fact
The use of i to denote the imaginary
unit number is used in most scientific
fields, but if you end up studying electrical
engineering, chances are you’ll know it
as j, since i is a variable denoting the
electrical current. But for now, let’s stick to
our regular convention.
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Trivia fact
Italian mathematician Gerolamo Cardano
is the first known person to have defined
and used complex numbers. That was
waaaay back in the 16th century. Cardano
was trying to solutions to equations of the
form x3 +ax+ c = 0.

The family of all complex numbers is denoted by C. Since a real number is a
complex number without an imaginary part, we have R ⊂ C; this means “R is
included in C.”

EXAMPLE 1.5: Let’s solve again the quadratic equation x2 +5x+10 = 0 for x.

As before, we have:

x =
−5±

√
25−4 ·10
2

=
−5±

√
−15

2

=
−5±

√
15
√
−1

2

=
−5
2
±
√

15
2

i

There’s a very nice way to graphically represent complex numbers as long as you
realize that real numbers and imaginary numbers are exclusive. That is to say, a real
number has no imaginary part, and an imaginary number has no real part. This is
similar to cartesian coordinates (i.e., a point on the x-axis has no y component and
vice versa). For this reason we can use the cartesian plane to represent and visualize
a complex number:

Figure 1.1: Using the complex plane, we can visualize any complex number z as a
point on a two-dimensional plane. Represented here is the number z = 3+5i.
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DEFINITION 1.1.4: Complex plane. We can visualize a complex number as
being a point in the complex plane, such that the x-axis represents the real part of
the number and the y-axis represents the imaginary part.

EXAMPLE 1.6: Looking at Figure 1.1 on previous page, the number z = 3 + 5i
is represented on the cartesian plane. The real part of z, 3, is the projection of
that point on the “real axis”, while the imaginary part of z, 5, is the projection of
z along the “imaginary axis”.

1.2 Doing math with complex numbers
Just like with real numbers, we can add and multiply complex numbers. (We’ll see
later how to divide them.)

DEFINITION 1.2.1: Complex addition and multiplication. Consider the
complex numbers z = a+bi and w = c+di, where a,b,c and d are real numbers.
Then we can define:

1. Complex addition:

z+w = (a+bi)+(c+di)

= (a+ c)+(b+d)i

2. Complex multiplication:

zw = (a+bi)(c+di)

= ac+adi+bci+bdi2

= (ac−bd)+(ad +bc)i (recalling that i2 =−1)

Note 1: In the last step of the multiplication above, we’ve gathered the real part and
the imaginary part together.
Note 2: The method used for the multiplication of two complex numbers is
sometimes also referred to as the FOIL method (First-Outer-Inner-Last).

EXAMPLE 1.7: Consider the following examples using the complex numbers
z = 1+3i and w =−2+ i:

z+w = (1+3i)+(−2+ i)

=−1+4i

zw = (1+3i)(−2+ i)

=−2+ i−6i+3i2
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Food for thought
Referring to the complex plane, what kind
of geometric operation (e.g., translation,
rotation, etc.) does taking the complex
conjugate of a number represent?

Note 1.2.4
The modulus of a complex number is a
similar concept to the absolute value of a
real number.

=−2−5i−3

=−5−5i

Now that we know how to add and multiply complex numbers, we’ll introduce some
useful definitions and properties. They might seem a little arbitrary at first. But as
you’ll soon see, these will become very handy, especially when we start using them
in quantum mechanics.

DEFINITION 1.2.2: Complex conjugate. We define the complex conjugate of
a complex number z = a+bi, denoted z̄ (notice the over bar), as:

z̄ = a−bi

EXAMPLE 1.8: Let’s calculate some complex conjugates:

1. If z = 5+10i, then z̄ = 5−10i
2. If z = 3−2i, then z̄ = 3+2i
3. If z =−3, then z̄ =−3 (the complex conjugate of a real number is itself)
4. If z = 2i = 0 + 2i, then z̄ = −2i (the complex conjugate of an imaginary

number is minus itself)

DEFINITION 1.2.3: Modulus. The modulus (or length) of a complex number
z = a+bi is given by:

|z|=
√

a2 +b2

Since both a and b are real, the modulus is always real and positive.

EXAMPLE 1.9: Let’s calculate the moduli of the following complex numbers.

1. If z = 5+10i, then |z|=
√

52 +102 =
√

125
2. If z = 3−2i, then |z|=

√
32 +(−2)2 =

√
13

3. If z =−3, then |z|=
√
(−3)2 +02 =

√
9 = 3 (This is the absolute value!)

4. If z = 2i, then |z|=
√

02 +22 =
√

4 = 2

Observation 1.2.5: Modulus in the complex plane. By looking at the
representation of a complex number on the complex plane (see Figure 1.2 on page
19), the modulus of the number is simply the distance from the origin 0+ 0i to the
number. (Hence why we also call it the length of the number.)

Observation 1.2.6: Complex conjugate and modulus. Notice the very useful
application of the complex conjugate: Given z = a+bi, we see that:

zz̄ = (a+bi)(a−bi)

= a2 +abi−abi+(−i)ib2
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Figure 1.2: The modulus, or length, of a complex number is the distance between
the origin (0+0i) and the point representing z.

= a2 +b2

= |z|2

⇒ |z|=
√

zz̄

It seems like we’re in good shape to play around with complex numbers, but what if
someone asked you to divide by a complex number? For example, what’s the value
of a number like:

1+ i
2− i

?

First question: Does it even make sense to divide by a complex number? Recall that
just like subtraction is the same thing as addition (i.e., subtraction is really just
adding a negative number), division is the same thing as multiplication. Dividing x
by y is really just a fancy way of saying, “how many times do I have to multiply y to
get x?” Since multiplication is well defined for complex numbers, so is division.

To help you visualize division by complex numbers so that you develop an intuition
about it, we’ll use a little trick.

Observation 1.2.7: Complex division. Since multiplication is well defined for
complex numbers, so is complex division. Given a complex number z = a+bi,
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Trivia fact
We just learned that complex numbers are
essentially an extension of real numbers.
A natural question to ask: Is there an
extension to complex numbers? Turns
out yes! The Quaternions – otherwise
known as H. Quaternions are a number
system extending complex numbers
with the important distinction that they’re
non-commutative, that is, if a and b are
arbitrary quaternion, ab isn’t necessarily
equal to ba. Just like a complex number
can be visualized as being a point of
a plane (i.e., a 2-dimensional surface),
quaternions are points in a 4-dimensional
“hyperspace”. Quaternions are very
useful in applied mathematics, physics,
computer graphics and computer vision.
Is there an extension to quaternions? Of
course there is! The Octonions, or O.
Not only are octonions non-commutative,
they’re are also non-associative, that is if
a,b and c are octonions, then (a+ b)+ c
is not necessarily equal to a + (b + c).
Octonions can be seen as a point in a 8-
dimensional hyperspace. Although not as
studied as quaternions, octonions do have
some applications in string theory and
special relativity.
How about an extension to octonions?
Sadly, it doesn’t exist.

as long as z 6= 0+0i, observe that:

1
z
=

1
z
· z̄

z̄
(we’re just multiplying by 1)

=
z̄
|z|2

=
a−bi

a2 +b2

=
a

a2 +b2 −
bi

a2 +b2

Since the a2 +b2 is a real number, we found a way to express
1
z

in the usual complex

form c+di, where:

c =
a

a2 +b2

d =
−b

a2 +b2

Note that
1
z

is also written as z−1.

EXAMPLE 1.10: We can clean up the fraction
1+ i
2− i

as:

1+ i
2− i

=
(1+ i)
(2− i)

· (2+ i)
(2+ i)

=
1+3i

5

=
1
5
+

3
5

i

Properties 1.2.8: Summary of complex numbers properties. Below is a
summary list of properties for complex numbers. Feel free to prove them for
yourself if you’re not convinced, or refer to appendix A.2 on page 103. Let z
and w be any complex numbers:

1. z+w = w+ z (commutativity of addition)
2. zw = wz (commutativity of multiplication)
3. z+w = z+w
4. zw = z̄w̄
5. zz̄ = z̄z = |z|2

6. z = z
7. |z|= |z|
8. |zw|= |z||w| (known as the triangle inequality)
9. |z+w| ≤ |z|+ |w|

10. z−1 =
1
z
=

z̄
|z|2

when z 6= 0+0i
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1.3 Euler’s formula and the polar form
So far, we’ve explicitly written any complex number z in the form z = a+bi. As you
may have noticed, this form is not particularly well suited for multiplying and
dividing complex numbers (which we do a lot in quantum mechanics). Thankfully,
there’s a different way of handling complex numbers. In order to understand this
method, you’ll need to be familiar with the exponential function ex, as well as
trigonometric functions using radians instead of degrees. If you’re not familiar with
either of those, consult Appendices A.3 and A.4, on pages 107 and 109 respectively,
before continuing.

DEFINITION 1.3.1: Euler’s formula. Euler’s formula is a well-known result for
complex numbers, establishing a deep relationship between trigonometric
functions and complex exponentials. It states that:

eiθ = cosθ + isinθ

where θ is a real number and in radians (i.e., unitless). The proof of Euler’s
formula is not particularly complicated, but it does require the knowledge of
Taylor Series. If you don’t have this knowledge, or you’re curious, visit
Appendix A.5 on page 111.

Observation 1.3.2: Polar form of complex numbers. Any complex number z =
a+bi can be written in the form:

z = |z|eiθ

where |z| is the modulus of z as previously defined on page 18 and θ is the angle
(in radian) between the real axis and the complex number in the complex plane (see
Figure 1.3 on page 22). Therefore:

θ = arctan
(

b
a

)
,or θ = arcsin

(
b
|z|

)
,or θ = arccos

(
a
|z|

)
The angle θ is known as the argument of the complex number.

You can convince yourself that the polar form notation is equivalent by looking at
the representation of z = a+ bi on the complex plane (Figure 1.3 on page 22). We
can see that:

a = |z|cosθ (projection along the real axis)
b = |z|sinθ (projection along the imaginary axis)

By replacing a and b with these equivalent values, we can write:

z = a+bi

= |z|cosθ + i|z|sinθ

= |z|(cosθ + isinθ)
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Figure 1.3: Using Euler’s theorem, you can represent a complex number using its
modulus and its argument (the angle between the real axis and the complex number).Trivia fact

If you use θ = π in Euler’s formula, you
obtain the famous Euler’s identity:

eiπ +1 = 0

Euler’s identity is seen as one of the most
deeply beautiful mathematical equations.
Think about it: it contains one occurrence
of three of the most important arithmetic
operations (multiplication, addition
and exponentiation) and it links five of
the most fundamental and celebrated
mathematical constants:

• The number 0, the additive identity
• The number 1, the multipli-

cative identity
• The number π, because we all

love π and because it’s found
everywhere in nature

• The number e, the base of the
natural logarithm

• The number i, our new best friend
and unit of imaginary numbers

By invoking Euler’s formula, we thus conclude that:

z = |z|eiθ

EXAMPLE 1.11: What’s the polar form of z = 5 − 5i? We first need to find the
modulus of z, which is given by:

|z|=
√

52 +(−5)2

=
√

50

The argument is given by:

θ = arctan
(

5
−5

)
= arctan(−1)

=
3π

4
or

7π

4
(see Appendix A.4 on page 109)

Since the the real part of z is positive and its imaginary is negative, we know that
z lies in the 4th quadrant of the complex plane (refer to Figure 1.3 for reference),
hence:

θ =
7π

4
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Therefore:

5−5i =
√

50ei 7π
4

Observation 1.3.3: Periodicity. Referring to Euler’s formula, the function eiθ is a
periodic function of θ with a period of 2π , that is:

ei(θ±2π) = eiθ

This can be readily proven since:

ei(θ±2π) = cos(θ ±2π)+ isin(θ ±2π)

= cosθ + isinθ

= eiθ

Given that observation, we can always assume that θ has a value between 0 and 2π .

EXAMPLE 1.12: Given the periodicity of complex numbers, the results of the
previous example could also have been written as:

5−5i =
√

50e−i π
4

Observation 1.3.4: Complex conjugate in polar form. Calculating the complex
conjugate in polar form, a little trigonometry shows us that:

eiθ = cosθ + isinθ

= cosθ − isinθ

= cos(−θ)+ isin(−θ)

since cos(−θ) = cosθ , and sin(−θ) =−sinθ

= e−iθ

Therefore, given a complex number z = |z|eiθ , we deduce that:

z̄ = |z|eiθ

= |z| · eiθ

= |z|e−iθ

Even if the exponent of e is complex, all the basic properties of the exponential
function (see Appendix A.3 on page 107) are conserved. The exponential notation is
particularly well suited for multiplying, dividing and inverting complex numbers.

Food for thought
Some people prefer to limit the value of θ

to any number between −π and π. Can
you explain why it’s equivalent?
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Properties 1.3.5: Summary of properties of the polar form. Given two complex
numbers z = |z|eiθ and w = |w|eiφ , below is a list of properties of the polar form:

1. eiθ eiφ = ei(θ+φ) =⇒ zw = (|z|eiθ )(|w|eiφ ) = |z||w|ei(θ+φ)

2. (eiθ )n = einθ , for any number n (i.e., n could be complex!)

3. From the above property⇒ 1
eiθ = (eiθ )−1 = e−iθ

4. |eiθ |= eiθ · eiθ = eiθ e−iθ = ei(θ−θ) = e0 = 1
5. eiθ = e−iθ

6. Since e±2πi = cos(±2π)+ isin(±2π) = 1, then ei(θ±2π) = eiθ · e±2πi = eiθ

EXAMPLE 1.13: Here are a few examples to get used to this new notation:

1. If z = e−i π
2 and w = 4ei π

4 , then:

zw = 4e−i π
2 ei π

4

= 4e−i π
4

= 4
(

cos
π

4
− isin

π

4

)
= 4

(
1√
2
− i

1√
2

)
= 2
√

2(1− i)

2. If z = 2ei π
3 , then:

z4 = 24
(

ei π
3

)4

= 16ei 4π
3

= 16
(

cos
4π

3
+ isin

4π

3

)
= 16

(
−1

2
− i

√
3

2

)
=−8

(
1+ i
√

3
)

3. If z = e−i π
2 and w = 4ei π

4 , then:

w
z
=

4ei π
4

e−i π
2

= 4ei π
4 ei π

2

= 4ei 3π
4

= 4
(

cos
3π

4
+ isin

3π

4

)
= 4

(
− 1√

2
+ i

1√
2

)
=−2

√
2(1− i)
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1.4 Summary

Chapter 1 Summary

Below we’ve listed the key formulas and concepts we’ve learned so far. Let’s assume that
z = a+bi and w = c+di.

Imaginary unit number: i =
√
−1

Complex numbers addition: (a+bi)+(c+di) = (a+ c)+ i(b+d)

Complex numbers multiplication: (a+bi)(c+di) = (ac−bd)+ i(ad +bc)

Complex conjugate: z = a−bi

Modulus of a complex number: |z|=
√

zz =
√

a2 +b2

Euler’s formula: eiθ = cosθ + isinθ

Polar form: z = |z|eiθ

Periodicity of complex numbers: eiθ±2π = eiθ





Chapter 2:
Linear algebra

“How can it be that mathematics, a product of human thought
independent of experience, is so admirably adapted to the
objects of reality?”
ALBERT EINSTEIN

“Algebra is generous; she often gives more than is asked of her.”
D’ALEMBERT
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In the previous section, we became familiar with a new family of numbers – complex
numbers. As you may have noticed so far, although we’ve introduced new
mathematical concepts, we haven’t really introduced new mathematics (e.g., integral
calculus, functional analysis, etc.). We essentially only used addition and
multiplication and expanded from there.

In the next section, we’ll introduce you to the language of quantum mechanics –
linear algebra. Just like complex numbers, the type of linear algebra we’ll introduce
here will necessitate only basic arithmetic, but we’ll use it in clever ways. Welcome
to the wonderful world of vectors and matrices.

Linear algebra is so much more than vectors and matrices, but for the purpose of
QCSYS, that will be plenty! As already mentioned, linear algebra is the language
of quantum mechanics, but also the language of so many other things. Do you want
to be an engineer, physicist, chemist or computer scientist? Learn linear algebra.
Do you want to program video games? You definitely want to be an expert in linear
algebra. You can even write a cookbook in the form of a matrix! (More on that later.)

The point is this: Basic linear algebra is rather simple. Yet it’s so useful for so many
applications. Applications aside, linear algebra is a fascinating, self-contained
mathematical field on its own. But since QCSYS is a multidisciplinary school in
mathematics and physics, we’ll introduce you to the mathematical concepts of linear
algebra, while connecting it to potential applications beyond quantum mechanics.

2.1 Vectors
The starting point of linear algebra is the concept of vectors. In high school physics,
chances are you’ve already seen that concept as being nothing more than “a number
and a direction”. This isn’t false, but it’s definitely not the whole story. It’s a rather
intuitive way of introducing vectors, hence why we’ll use this analogy extensively.

From a mathematical perspective, vectors are just a way of stacking numbers
together in a column or a row. For example:[

2
3

]
,

 i
3
−3


[

5 2.1
]
,
[
−3 1

2 4
]

The first two vector examples are naturally referred to as column vectors and the
last two as row vectors. Unless otherwise specified, when we refer to a vector, we’re
referring to a column vector.

Since we’re mathematicians-in-training, we want to come up with a rigorous
definition for this new concept.
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DEFINITION 2.1.1: Vectors. A vector is a column of numbers (any numbers,
even complex). The amount of numbers is referred to as the dimension of the
vector. For example, a 2-dimensional vector looks like:

~v =

[
v1

v2

]

More generally, a n-dimension vector takes the form:

~v =


v1

v2
...

vn


v1 is referred to as the first component of~v, v2 as the second component, and so
on and so forth.

Notice the arrow on the v. This is a widely-accepted convention to stress the fact that
~v refers to a vector. If we only consider the n-dimensional real vectors (i.e., v1 and
v2 can only be real), we say the vectors lie in Rn. If we also consider the complex
vectors of n-dimensions, we say they lie in Cn.

Even if you’ve never explicitly learned about vectors until now, you’ve already seen
them. A 2-dimensional vector of real numbers is analogous to the cartesian
coordinates. If you refer to Figure 2.1 on page 30, the vector:

~v =

[
1
2

]
is equivalent to the (1,2) coordinates. It’s also the mathematical way of representing
the point on the cartesian plane you would end up at if you were starting from the
origin, then move 1 along the x-axis and then 2 along the y-axis.

Observation 2.1.2: Spatial coordinates. A 3-dimensional vector of real numbers is
analogous to the spatial coordinates in three dimensions. You can always think of a
vector with n numbers as a point in n-dimensional “hyperspace”.

Let’s try to add a little bit of abstraction: already, by using our knowledge and
intuition about 2- and 3-dimensional space, it hints to the fact that each component
of a vector can be used to represent quantities that are “exclusive” or “independent”
of each other.

Observation 2.1.3: Vector components. Each component in a vector represents
the value of some property that is unrelated and/or independent of the other
properties. Too abstract? Refer to the 3-dimensional world: each component of a
3-dimensional vector represents a position along the x, y and z-axis respectively. For
example, if you’re on the x-axis, you don’t have any y or z coordinates. If you’re on

Food for thought
What vector would you use to represent
the origin of the cartesian plane?
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Figure 2.1: The cartesian coordinates or a point on a 2-dimensional surface can be
written as a 2-dimensional vector.

the y-axis, you don’t have any x or z coordinates, etc. Hence those x, y and z
properties are independent of each other.

For simplicity, we’ll generally use 2- and 3-dimensional vectors from now on, but
everything we explain below applies to vectors of arbitrary sizes.

In the coming pages, we’ll extensively use the cartesian plane as an analogy to
develop our intuition about vectors, but we’ll then rigorously define these new
concepts so they can be applied to complex vectors of arbitrary dimensions.

Since we just defined a new mathematical concept, it’s natural to ask the question:
can we add and multiply vectors? The question of multiplying vectors is quite subtle
and we’ll discuss it a little later. But when it comes to adding vectors, there’s
something intuitive to it. Let’s use the two following vectors:

~v =

[
3
1

]
and ~w =

[
1
2

]

Observation 2.1.4: Adding vectors. Imagine the vectors~v and ~w above represent
two different movements on a 2-dimensional plane. For example,~v can be thought as
moving along the x-axis by 3 and along the y-axis by 1. Similarly for ~w. Adding two
vectors is essentially the same thing as saying:

Start at the origin. Move along x by 3, then along y by 1. After that,
move along x by 1, and then along y by 2. Your final position will be at
4 along x and at 3 along y.
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Observation 2.1.5: Parallelogram technique. If we added a little more
mathematical rigour to our intuition, adding two vectors can be done geometrically
by using the parallelogram technique (i.e., putting the second vector at the end of
the first). See Figure 2.2 where we’ve used the parallelogram technique to add~v and
~w as defined above.

Figure 2.2: You can use the parallelogram technique to visualize vector addition
in 2-dimensions.

In some sense, we’ve already defined vector addition using our intuition. We’ll give
it a rigorous definition so that it holds for vectors of any dimensions, including
complex vectors.

DEFINITION 2.1.6: Vector Addition. Adding vectors is easy, just add each
corresponding component! If~v and ~w are complex vectors written explicitly as:

~v =

[
v1

v2

]
and ~w =

[
w1

w2

]

adding them gives:

~v+~w =

[
v1 +w1

v2 +w2

]
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Note 2.1.7
You cannot add vectors of different
dimensions. For example, given:

~v =
[

1
−2

]
, and ~w =

 1
3
2


What is~v+~w? The answer doesn’t
exist. (Or if you prefer, the answer is
not defined.)

Even more generally, if~v and ~w are arbitrary n-dimensional vectors, the jth

component of~v+~w, denoted (~v+~w) j is given by:

(~v+~w) j = v j +w j

EXAMPLE 2.1: Adding the vectors:

~v =

[
i
2

]
and ~w =

[
3
−100

]

will give you:

~v+~w =

[
i+3

2−100

]
=

[
3+ i
−98

]

Earlier, we mentioned that vector multiplication is a little tricky. Multiplying vectors
together is, but multiplying vectors by a scalar (i.e., just a number) is also intuitive.

Observation 2.1.8: Multiplying a vector by a number. As before, suppose you
start at the origin of the cartesian plane and move 1 along the x-axis and 2 along the
y-axis. You find yourself in position:

~v =

[
1
2

]

What if you repeat this procedure twice? Then you’ll be in:[
2
4

]
= 2

[
1
2

]
= 2~v

Three times? You’ll end up at:[
3
6

]
= 3

[
1
2

]
= 3~v

Refer to Figure 2.3 on page 33 for visuals.

Based on the intuitive description above, we can generalize vector scalar
multiplication so it applies to complex vectors of any dimensions:

DEFINITION 2.1.9: Vector Scalar Multiplication. You can scale a vector by
just multiplying each entry by the scalar (the number). If we have:

~v =

[
v1

v2

]
and c (a number)
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Figure 2.3: Scaling a vector by a positive number doesn’t change its direction.

then the scalar multiplication of~v and c gives:

c~v =

[
cv1

cv2

]

In other words, for vectors of any dimensions:

(c~v) j = cv j

EXAMPLE 2.2:

700

[
1
2

]
=

[
700

1400

]

This is the same as if we’d asked you to move by the vector~v 700 times!

Observation 2.1.10: Scalar multiplication of a vector by a positive real number
doesn’t change its orientation, only its length. See Figure 2.3 above.

Observation 2.1.11: Scalar multiplication of a vector by a negative number inverts
its direction. See Figure 2.4 on page 34.

So far, we’ve mainly used examples with real vectors and scalars. What about
complex vectors and scalars? All the arithmetic is exactly the same, except that an
intuitive understanding of what’s going on might be outside of human perception!

Trivia fact
We saw that adding two vectors together
was very intuitive when we think about
vectors describing position on the
cartesian plane. Multiplying a vector by
a number is also intuitive. But what does
it mean to multiply a vector by another
vector? There’s not much intuition about
it. But again, we’re doing math, so if
something doesn’t exist, we invent it!
There’s a mathematical operation out
there called the cross product, also
known as vector product, denoted
~v×~w or~v∧~w which is only defined for 3-
dimensional vectors. It’s an operation that
takes two vectors as inputs and outputs a
third one that is perpendicular to the plane
form by the input vectors. It sounds a little
arbitrary, but it turns out that the cross
product is extremely useful in physics,
engineering, and of course, mathematics.
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Figure 2.4: Scaling a vector by a negative number inverts its direction.

Note 2.1.12
Soon, we’ll learn an operation called
the inner product, also known as the
scalar product or dot product. It’s a type
of multiplication of two vectors, but the
result is a scalar number. You’ll see that
this concept is very useful, especially in
quantum mechanics.

Just like trying to visualize a 4- or 1,300-dimensional vector might prove to be
impossible! But yet, mathematically, these concepts are sound.

Properties 2.1.13: Properties of vector addition and scalar multiplication. Let
~v, ~w and~u be vectors, and c and d be scalars. Then vector addition and scalar
multiplication have the following properties (feel free to prove them if you’re not
fully convinced):

1. ~v+~w = ~w+~v (commutativity)
2. ~v+(~w+~u) = (~v+~w)+~u (associativity)
3. c(~v+~w) = c~v+ c~w (distributivity of scalar multiplication)
4. (c+d)~v = c~v+d~v (distributivity of scalar addition)
5. There exists a unique additive zero, denoted~0 such that~v +~0 = ~v for any

vector~v.
6. For any vector~v, there exists an additive inverse −~v such that~v+(−~v) =~0.

These are similar properties to real and complex numbers. (Numbers are actually
vectors of dimension 1.)

The last two properties might seem obvious. We added them because we’re just
about to define the notion of vector space, which doesn’t only apply to vectors, but
potentially any other king of mathematical objects such as functions.
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DEFINITION 2.1.14: Vector space. The less abstract definition: The collection
of all the complex vectors of a given dimension with vector addition and scalar
multiplication, is called a vector space. If we use the set of all n-dimensional
vectors, we can call it a n-dimensional vector space.

The abstract definition: Take a collection of mathematical objects (known as a
set) with a well-defined addition and scalar multiplication. If:

1. The set is closed under addition and scalar multiplication, that’s the result
of adding two arbitrary objects from the set, or the scalar multiplication of
any objects, is also in the set;

2. The set, the addition and scalar multiplication follow all the properties
listed in Properties 2.1.13 above.

We call such a set a vector space. Not using this definition, vector space can be
of an infinite dimension (but this is beyond the scope of this book).

2.2 Matrices
Now that vectors have no more secrets for us, let’s increase the complexity a little
bit by introducing the concept of matrices. As you’ll see, vectors and matrices play
very well with each other.

DEFINITION 2.2.1: Matrices. A matrix is a box of numbers (real or complex).
Some examples are:

M =

[
a b
c d

]
, N =

[
3 3 −1+2i
1 −3 0

]
, P =

 2 −1
−1+2i 3
−3 −3+ i


Given any matrix Q, we denote the element Qi j as the number in the ith row and
the jth column. If a matrix has m rows and n columns, the convention is to say
that it is an m × n matrix, or a m × n dimensional matrix. A square matrix is, as
the name suggests, a matrix with the same number of rows and columns. M is an
example of a square matrix.

EXAMPLE 2.3: Referring to the matrix N and P we’ve explicitly written above,
N12 = 3 and P31 =−3. Of course, P23 is not defined as P only has 2 columns.

At first glance, there doesn’t seem to be much intuition about matrices. As we’ll see
soon enough, a matrix can be thought of as a mathematical object “acting on
vectors”. So bear with us for a couple pages so we can introduce some concepts,
and then we’ll build some intuition.

Food for thought
Is the set of all polynomials of degree
2, that is any function of the form P(x) =
ax2+bx+c, using usual arithmetic addition
and scalar multiplication, a vector space?
Explain why.

Trivia fact
You may have heard before that Einstein
developed the idea that we don’t live
in a 3-dimensional world, but in a 4-
dimensional world (time being the
4th dimension.) Turns out that in the
Theory of Relativity, time must be treated
on the same footing as space (and
vice versa) and we need to use a 4-
dimensional vector space to describe how
measurements of space and time by two
observers are related.

Note 2.2.2
A vector can also be thought of as a
n×1 matrix.
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DEFINITION 2.2.3: Matrix addition and scalar multiplication. Similar to
vector addition, adding two matrices, as long as both matrices have the same
dimensions, consists of adding each corresponding matrix element. Similarly,
scalar multiplication is simply the scaling of all the elements of the matrix.
Addition is only defined for matrices of the same dimensions. In other words,
given matrices M,N and scalar c, we define:

(M+N)i j = Mi j +Ni j

(cM)i j = c(Mi j)

EXAMPLE 2.4:[
3 3 −1+2i
1 −3 0

]
+

[
2 −1 i
0 2+3i −3

]

=

[
3+2 3−1 (−1+2i)+ i
1+0 −3+(2+3i) 0−3

]

=

[
5 2 −1+3i
1 −1+3i −3

]

As for scalar multiplication:

2

[
3 3 −1+2i
1 −3 0

]
=

[
6 6 −2+4i
2 −6 0

]

We discussed that vector multiplication was not very well defined, but how about
matrix multiplication? Turns out we can define a way to multiply matrices that’s
suitable. It’ll sound a little bit arbitrary at first, but we’ll then work through some
examples. We won’t necessarily try to explain where the definition comes from, but
we’ll justify that it leads to things that make sense!

We’ll first start by giving the rigorous definition of matrix multiplication and then
give a visual, step-by-step example. First: Look at the definition. Try to make some
sense of it. Look at the example. Then come back to the definition and try to fully
understand what’s going on.

DEFINITION 2.2.4: Matrix multiplication. Given 2 matrices M and N, as long
as the number of columns in M is the same as the number of rows in N, we can
define a multiplication operation on matrices. Let’s assume that the number of
columns in M and the number of rows in N is n. The i, j component of MN,
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(MN)i j is given by:

(MN)i j =
n

∑
k=1

MikNk j

= Mi1N1 j +Mi2N2 j + . . .+MinNn j

Observation 2.2.5: Suppose M is an m× n matrix and N is an n× l matrix, that is i
only goes from 1 to m, k from 1 to n and j from 1 to l then from the definition above,
NM will give you a m× l matrix.

EXAMPLE 2.5: Although the definition of matrix multiplication can be a little
confusing, an explicit multiplication might clarify this simple task. We’ll
multiply the two following matrices:

M =

[
a b c
d e f

]
, N =

 g h
j k
l q


1. Since A is a 2×3 matrix and B is a 3×2 matrix, we expect the result of the

multiplication to be a 2×2 matrix, that is:

[
a b c
d e f

]  g h
j k
l q

=

[ ]

2. Find the (MN)11 element of the resulting matrix the following way:[
a b c
d e f

]  g h
j k
l q

 =

[
ag+b j+ cl

]

Explicitly, we’ve done:

(MN)11 = M11N11 +M12N21 +M13N31

= ag+b j+ cl

3. Similarly, the (MN)12 element is:[
a b c
d e f

]  g h
j k
l q

 =

[
ag+b j+ cl ah+bk+ cq

]



38 Chapter 2: Linear algebra

Food for thought
Can we perform the multiplication NM?
Explain why.

Note 2.2.6
When we multiply a vector by a matrix, we
often refer to this as the “matrix acting on
the vector”, or “applying the matrix to the
vector” and also as “the matrix operating
on the vector”. The latter explains why we
often refer to matrices as operators.

4. And so on:[
a b c
d e f

]  g h
j k
l q

 =

[
ag+b j+ cl ah+bk+ cq
dg+ e j+ f l

]

5. And so forth:[
a b c
d e f

]  g h
j k
l q

 =

[
ag+b j+ cl ah+bk+ cq
dg+ e j+ f l dh+ ek+ f q

]

EXAMPLE 2.6:[
2 3 i
3 −2 1

] 0 1
0 12
3 −2

=

[
2 ·0+3 ·0+ i ·3 2 ·1+3 ·12+ i · (−2)
3 ·0−2 ·0+1 ·3 3 ·1−2 ·12+1 · (−2)

]

=

[
3i 38−2i
3 −23

]

Observation 2.2.7: Matrices as functions on vectors. Since a vector is also a
matrix that has only one column, we can think of matrices as functions on vectors,
e.g., m× n matrix maps an n-dimensional vector to an m-dimensional vector. For
example, given the vector and matrix:

~v =

[
2
1

]
, P =

 2 −1
−1+2i 3
−3 −3+ i


Since P is a 3×2 matrix and~v is a 2×1 vector (matrix) we have that P maps~v to:

P~v =

 2 −1
−1+2i 3
−3 −3+ i


[

2
1

]

=

 2 ·2+(−1) ·1
(−1+2i) ·2+3 ·1

(−3) ·2+(−3+ i) ·1


=

 3
1+4i
−9+ i


which is a 3× 1 vector (matrix), as expected. This is not unlike a function on real
numbers, e.g., f (x) = x2 + 3. A scalar function f takes a number as an input and
gives you a number as an output. A m × n matrix works exactly like a scalar
function, but it takes an n-dimensional vector as an input and outputs an
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m-dimensional vector, i.e., it’s a function between an n-dimensional vector space to
an m-dimensional vector space.

EXAMPLE 2.7: Consider:

~v =

[
3
2

]
and M =

[
1 0
0 −1

]

The matrix M acts as:

M~v = M

[
3
2

]

=

[
1 0
0 −1

][
3
2

]

=

[
3
−2

]

If you visualize~v as a vector in the cartesian plane (see Figure 2.5 below), the
matrix M performs a reflection of the x-axis of the cartesian plane.

Figure 2.5: The matrix M as defined in Example 2.7 acting on a vector in the
cartesian plane performs a reflection about the x-axis.

EXAMPLE 2.8: Similarly, consider:

N =

[
−1 0
0 1

]
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Food for thought
Can you think of a 2× 2 matrix that would
represent a reflection of the axis making a
45◦ angle with the x-axis?

Food for thought
Why does investigating commutativity
of matrix multiplication only make sense
when we consider two square matrices
of the same dimensions?

The matrix N acts as:

N~v = M

[
v1

v2

]

=

[
−1 0
0 1

][
v1

v2

]

=

[
−v1

v2

]

The matrix N performs a reflection about the y-axis of the cartesian plane!

EXAMPLE 2.9: Given:

M =

[
1 3
4 7

]
and v =

 1
−4
3


You can’t perform the multiplication M~v since the matrix is a 2×2 and the vector
is 3×1. This multiplication is undefined.

Observation 2.2.8: Non-commutativity of matrix multiplication. An interesting
property of matrix multiplication is its non-commutativity. In mathematics, we say
an operation is commutative if the order of operations is irrelevant. For example, if a
and b are any scalar number, then a+b = b+a and ab = ba.

Clearly, matrix addition and matrix scalar multiplication are commutative operations,
but what about matrix multiplication? First, we must notice that asking the question
about commutativity only makes sense for square matrices. Let’s look at the
following example:

M =

[
1 2
3 1

]
, N =

[
4 3
2 1

]

Multiplying in two different orders will give:

MN =

[
1 2
3 1

][
4 3
2 1

]

=

[
8 5

14 10

]

NM =

[
4 3
2 1

][
1 2
3 1

]

=

[
13 9
5 5

]
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These are clearly not the same matrices, therefore MN 6= NM. (There are cases
where matrices will commute, but in general they do not.)

Observation 2.2.9: Composition of functions. Often in mathematics, we need to
do a composition of function, that is, applying a function g on an input, then apply
another function f using the first output as input, and so on. Abstractly, we denote
the composition of function f and g as f ◦g and it’s defined as:

f ◦g(x) = f (g(x))

Transposing this to matrices and vectors, say that f (~v) = M~v and g(~v) = N~v for any
vector~v of the right dimension, we have:

f ◦g(~v) = f (g(~v))

= f (N~v)

= MN~v

Therefore, applying the function f after the function g, is the same as applying the
operator N, and then the operator M. The resulting operator will be given by:

f ◦g = MN

EXAMPLE 2.10: Given the function f represented by matrix M and function g
by matrix N, where:

M =

[
3 1 2i
1 −3 0

]
and N =

 4 0
−i 5
−3 −3


First thing to notice is that since M is a 2 × 3 matrix and N is a 3 × 2 matrix, the
multiplication MN is well defined. If we want to evaluate the composition of
function f ◦g(~v) on vector:

~v =

[
3
2

]

we can use two methods:

1. We can evaluate g(~v) first and then f (g(~v)):

g(~v) = N~v

=

 4 0
−i 5
−3 −3


[

3
2

]

=

 12
10−3i
−15


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And then we have:

f (g(~v)) = Mg(~v)

=

[
3 1 2i
1 −3 0

] 12
10−3i
−15


=

[
46−33i
−18+9i

]

2. We could evaluate f ◦g = MN first, and then apply this matrix to~v:

MN =

[
3 1 2i
1 −3 0

] 4 0
−i 5
−3 −3


=

[
12−7i 5−6i
4+3i −15

]

Therefore we have:

f ◦g(~v) = MN~v

=

[
12−7i 5−6i
4+3i −15

][
3
2

]

=

[
46−33i
−18+9i

]

Remember, matrices do not commute under matrix multiplication, therefore it’s
crucial to understand that matrix composition goes from right to left, that is, the
rightmost matrix is the one being applied first.

Now we’re in a position to verify whether or not matrix multiplication as previously
defined makes sense from an intuitive perspective. We investigate one example. Of
course, that’s not enough to prove that the definition is rigorous, but at least it’ll tell
us whether we’re on the right path.

EXAMPLE 2.11: Recall Example 2.7 and 2.8 on page 39 where we’ve showed
that matrices:

M =

[
1 0
0 −1

]
and N =

[
−1 0
0 1

]

represent the reflection of any vector~v in the cartesian plane about the x- and
y-axis respectively. Let’s use the vector:

~v =

[
2
4

]
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Figure 2.6: Performing a reflection about the x-axis and then the y-axis.

If we refer to Figure 2.6, you can convince yourself that performing a reflection
about the x-axis and then about y-axis will give you:

−~v =

[
−2
−4

]

Let’s see now if the math holds up. As we did for the composition of function,
there are two ways of calculating the final vector:

1. Perform the first reflection, then the second, that is:

M~v =

[
1 0
0 −1

][
2
4

]

=

[
2
−4

]

N

[
2
−4

]
=

[
−1 0
0 1

][
2
−4

]

=

[
−2
−4

]
=−~v
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2. Find the composition of the functions, NM (recall, since we do the x
reflection first, M has to be the rightmost matrix), then apply it to~v, that is:

NM =

[
−1 0
0 1

][
1 0
0 −1

]

=

[
−1 0
0 −1

]

=⇒

[
−1 0
0 −1

][
2
4

]
=

[
−2
−4

]

Both methods yield the same results, so our definition of matrix multiplication is
on the right path.

Figure 2.7: Performing a reflection about the 45◦-axis and then the y-axis.

EXAMPLE 2.12: Let’s kick it up a notch. A few moments ago you (hopefully)
figured out that a reflection about the axis making a 45◦ angle with the x-axis is
given by:

P =

[
0 1
1 0

]

We’ll do the same exercise as above, but we’ll first do a reflection about this axis,
then a reflection about the y axis. Let’s use our trusted vector~v as defined above
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again. Refer to Figure 2.7 above to see the geometric approach. After these two
operations, we expect the final vector ~w to be:

~w =

[
−4
2

]

Let’s check if the math holds up again:

1. Perform the first reflection about the 45◦ axis, then about the y axis.
We get:

P~v =

[
0 1
1 0

][
2
4

]
(reflection about the 45◦ axis)

=

[
4
2

]

N

[
4
2

]
=

[
−1 0
0 1

][
4
2

]
(reflection about the y axis)

=

[
−4
2

]

2. Find the composition of the function NP, then apply it to~v, that is:

NM =

[
−1 0
0 1

][
0 1
1 0

]

=

[
0 −1
1 0

]

=⇒

[
0 −1
1 0

][
2
4

]
=

[
−4
2

]

There you go. Our definition of matrix multiplication seems to be holding up
quite well!

Properties 2.2.10: Properties of matrix arithmetic. For the sake of listing
properties of matrix addition and multiplication, we’ll assume the dimensions
of M, N and P are compatible for the given operations performed:

1. M+N = N +M
2. (M+N)+P = M+(N +P)
3. c(M+N) = cM+ cN for any scalar c
4. (c+d)M = cM+dM, for any scalar c and d
5. c(MN) = (cM)N = M(cN) = (MN)c, for any scalar c
6. (MN)P = M(NP)
7. (M+N)P = MP+NP
8. M(N +P) = MN +MP
9. MN 6= NM, in most cases

Food for thought
In this case, what would have happened
if we did the matrix multiplication in the
wrong order?

Food for thought
Do all the m× n matrices form a vector
space if we use matrix addition and
scalar multiplication?
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To finish this section, we’d like to highlight a very important, yet very simple,
mathematical concept that applies to vectors and matrices which makes them so
useful and practical. This is the concept of linearity.

DEFINITION 2.2.11: Linearity. In mathematics, the concept of linearity plays a
very important role. Mathematically, a linear function, or linear map, or linear
operator, f is a function that satisfies:

1. f (x+ y) = f (x)+ f (y), for any input x and y
2. f (cx) = c f (x) for any input x and any scalar c

Put into words, the first condition means that the output of a function acting on a
sum of inputs is just equal to the sum of the individual outputs. The second condition
implies that the output of a scaled input, is just the scaled output of the original
input. Linearity is found everywhere, as the example below shows.

EXAMPLE 2.13: Imagine that we charged you $100/day to attend QCSYS (but
we don’t, because we’re nice that way!) How much will it cost you if:

1. QCSYS is 5 days long? $500.
2. QCSYS is 20 days long? $2,000.
3. You decided to come for 5 days, but then we extended the offer to stay 2

extra days (at full price)? $700.
4. You come for 5 days, and then decide to stay twice as long (at full price)?

$1,000.

What you just did intuitively is to use the concept of linearity. Let’s put some
mathematical rigour into this. Let f be the function giving the cost of your stay
as a function of the number of days x you stay. You can convince yourself that:

f (x) = 100x

It’s easy, from the definition of linearity, to show that f is indeed a linear
function, e.g.,

• f (x+ y) = 100(x+ y) = 100x+100y = f (x)+ f (y)
• f (cx) = 100cx = c(100x) = c f (x)

To reconcile with our intuition, we can think of the four different scenarios above
in the following way:

1. f (x), for x = 5
2. f (x), for x = 20
3. f (x+ y), for x = 5 and y = 2
4. f (2x), for x = 5
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EXAMPLE 2.14: Are matrices, when seen as a function from vectors to vectors,
linear? If we define a function from n-dimensional vectors to m-dimensional
vectors using an m×n matrix M, e.g.,

f (~v) = M~v, for~v ∈ Rn

then using the properties of matrix arithmetics listed above, it’s straightforward
to show that matrices can be thought of as linear functions, e.g.,

• f (~v+~w) = M(~v+~w) = M~v+M~w = f (~v)+ f (~w)
• f (c~v) = M(c~v) = cM~v = c f (~v)

Hence the term “linear” algebra!

EXAMPLE 2.15: The function f (x) = x2, for x being any scalar real or complex,
isn’t linear because:

f (x+ y) = (x+ y)2

= x2 +2xy+ y2

but:

f (x)+ f (y) = x2 + y2

Therefore:

f (x+ y) 6= f (x)+ f (y)

Similarly:

f (cx) = c2x2

6= c f (x), for c being any scalar

Why are we teaching you about linearity you may ask? Turns out that quantum
mechanics is driven by linear processes and as we’ll see in the next chapter, it will
give rise to, let’s just say, surprising results!

2.3 Complex conjugate, transpose and
conjugate transpose

To finish this section, we’ll introduce a couple of other concepts related to matrices
and vectors. They’ll become very handy soon enough!

Food for thought
Is the function f (x) = 3x+10 linear? Why?
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DEFINITION 2.3.1: Matrix/vector complex conjugate. The complex conjugate
of a matrix (or vector) is defined as taking the complex conjugate on all its
entries. For example if:

~v =

[
a
b

]
, M =

[
c d
f g

]

then:

~v =

[
ā
b̄

]
, M =

[
c̄ d̄
f̄ ḡ

]

The general definition, for vectors and matrices of any dimensions, would be:(
~v
)

i = vi,
(
M
)

i j = Mi j

EXAMPLE 2.16:

M =

[
1 e−i π

5

3− i 10

]
=⇒ M =

[
1 ei π

5

3+ i 10

]

DEFINITION 2.3.2: Matrix/vector transpose. The transpose of a matrix M,
denoted Mt is such that the nth row of Mt is the same as the nth column of M.
Note that the transpose of an m× n matrix is an n×m matrix. It follows that
the transpose of a column vector~v, denoted~v t is just a row vector with the same
entries as~v. For example, if:

~v =

[
a
b

]
, M =

[
c d
f g

]

then:

~v t =
[

a b
]
, Mt =

[
c f
d g

]

The general definition, for vectors and matrices of any dimensions, would be:(
~v t)

i = vi,
(
M t)

i j = M ji

Note that the transpose of a scalar (e.g., 1×1 matrix/vector) is itself.

EXAMPLE 2.17: Given the following vector and matrix:

~v =

 1
3

1+3i

 , and M =

 2 i
0 0

ei π
3 4i


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then:

~vt =
[

1 3 1+3i
]
, and Mt =

[
2 0 ei π

3

i 0 4i

]

In even more detail, here’s the step-by-step solution to find M t :

1. Since M is a 3×2 matrix, then Mt must be 2×3:

M =

 2 i
0 0

ei π
3 4i

 , Mt =

[ ]

2. The first column of M becomes the first row of Mt :

M =

 2 i
0 0

ei π
3 4i

 , Mt =

[
2 0 ei π

3
]

3. The second column of M becomes the second row of Mt :

M =

 2 i
0 0

ei π
3 4i

 , Mt =

[
2 0 ei π

3

i 0 4i

]

DEFINITION 2.3.3: Matrix/vector conjugate transpose. The conjugate
transpose of a matrix M or a vector~v, denoted M† (“M dagger”) and~v†

respectively, is given by taking the complex conjugate, and then the transpose.
That is:(

M†)
i j = M ji

The dagger subscript is usually preferred by physicists, while mathematicians will
often use a superscripted *. It’s been a long-standing debate between the two camps!

EXAMPLE 2.18: If:

~v =

[
1+ i

3

]
, M =

[
i 3−2i
−2 1−4i

]

then:

~v† =
[

1− i 3
]
, M† =

[
−i −2

3+2i 1+4i

]

Properties 2.3.5: Summary of properties. Following is a list of properties of the
complex conjugate, the transpose and the conjugate transpose (“the dagger”) of
matrix/vectors. Feel free to prove them as an exercise.

Note 2.3.4
Taking the complex conjugate and then
the transpose is the same as taking the
transpose then the complex conjugate.
That is to say:

M† = (M)t = Mt
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Note 2.4.2
The inner product is only defined for
vectors of the same dimension.

Let M and N be any matrices/vectors compatible for multiplication, then:

1. MN = M N
2. (MN)t = NtMt (notice the reversal of the multiplication order)
3. (MN)† = N†M† (notice the reversal of the multiplication order)
4. (M) = M
5. (Mt)t = M
6. (M†)† = M

2.4 Inner product and norms
In this section, we’ll concentrate on defining some concepts that are mostly
applicable for vectors. These concepts can be generalized to matrices, functions and
beyond, but we’ll restrict ourselves to the explicit definition applied to vectors.

In the previous section, we’ve briefly discussed the notation of multiplying vectors.
As we’ll soon see, the inner product is a very useful definition in linear algebra.

DEFINITION 2.4.1: Inner product. The inner product, also known as the dot
product or the scalar product, of two vectors~v and ~w is a mathematical operation
between two vectors of the same dimension that returns a scalar number. It is
denoted~v•~w.

To take the inner product of two vectors, first take the complex conjugate of the
first vector, then multiply each of the corresponding numbers in both vectors and
then add everything. That is to say, if~v and ~w are n-dimensional vectors,

~v•~w =
n

∑
j=1

v jw j

Explicitly, for vectors:

~v =


v1

v2
...

vn

 and ~w =


w1

w2
...

wn


the inner product of~v and ~w gives:

~v•~w = v1w1 + v2w2 + . . .+ vnwn
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EXAMPLE 2.19: If we have:

~v =

[
i

2+ i

]
, and ~w =

[
2
−1

]

then:

~v•~w = (−i) ·2+(2− i) · (−1)

=−2− i

Observation 2.4.3: Inner product as matrix multiplication. Taking the inner
product of~v and ~w is the same as doing a matrix multiplication between~v† and ~w:

~v†~w =
[

v1 v2 . . . vn

]
w1

w2
...

wn


= v1 ·w1 + v2 ·w2 + . . .+ vnwn

=~v•~w

In other words:

~v•~w =~v†~w

Properties 2.4.4: Properties of the inner product. Let~u,~v and ~w be vectors of
the same dimension, a and b be scalars and M a matrix of suitable dimensions. The
inner product has the following properties (feel free to prove these as an exercise):

1. ~v• (a~w) = a(~v•~w)
2. (a~v)•~w = ā(~v•~w) (notice the complex conjugate of a)
3. ~v• [(a+b)~w] = (a+b)~v•~w = a(~v•~w)+b(~v•~w)
4. [(a+b)~v]•~w = (ā+ b̄)~v•~w = ā(~v•~w)+ b̄(~v•~w)
5. (~u+~v)•~w =~u•~w+~v•~w
6. ~u• (~v+~w) =~u•~v+~u•~w
7. ~v•~w = ~w•~v
8. ~v• (M~w) = (M†~v)•~w

EXAMPLE 2.20: Let’s prove the above Property 7. We need to first make a
crucial observation: Since ~w•~v is a scalar number, taking its transpose will not
change anything (recall that the transpose of a scalar is itself). Therefore:

~w•~v = ~w•~v t

= (~w•~v)† (by definition of the conjugate transpose)

=
(
~w†~v

)†
(recall Observation 2.4.3)

=~v† (~w†)†
(recall Property 2.3.5-3)
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=~v†~w

=~v•~w

EXAMPLE 2.21: Let’s now prove the above Property 8:

~v• (M~w) =~v†(M~w) (recall Observation 2.4.3)

= (~v†M)~w

=
(
M†~v

)†
~w (Property 2.3.5-3))

= (M†~v)•~w

DEFINITION 2.4.5: Hilbert space. Recall the definition of vector space on page
35. A vector space with a well-defined inner product is called a Hilbert space.
Therefore, the collection of all n-dimensional vectors with the inner product
defined above form a Hilbert space.

Now that we’ve defined the inner product, we can, just as any mathematician likes to
do, start expanding our bag of definitions.

DEFINITION 2.4.6: Orthogonal vectors. We say that two vectors are
orthogonal, or perpendicular, if their inner product is 0.

EXAMPLE 2.22: The vectors:[
i
i

]
and

[
1
−1

]

are orthogonal because:

[
i
i

]
•

[
1
−1

]
=
[
−i −i

][
1
−1

]
=−i+ i

= 0

Observation 2.4.7: Angle between orthogonal vectors. If we refer back to the
intuitive representation of a 2-dimensional real vector as a point on the cartesian
plane, we see that orthogonal vectors always have an angle of 90◦ between them.
For example, given the vector:

~v =

[
1
2

]
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then both vectors:

~w =

[
−4
2

]
and ~u =

[
2
−1

]

are orthogonal to~v. See Figure 2.8 below for visualization. Looking at it from a
mathematical approach, we have that:

~v•~w =
[

1 2
][
−4
2

]
= (−1) ·4+2 ·2

= 0

~v•~u =
[

1 2
][

2
−1

]
= 1 ·2+2 · (−1)

= 0

From visualizing vectors as part of the cartesian plane, the concept of length is
rather intuitive. That is, some vectors are longer than others. Let’s define that
concept properly:

Figure 2.8: 2-dimensional visualization of orthogonal vectors.
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DEFINITION 2.4.8: Vector Norm. The norm (or length) of a n-dimensional
vector~v, denoted ‖~v‖ is given by:

‖~v‖=
√
~v•~v

=
√
~v†~v

=
√
|v1|2 + |v2|2 + . . .+ |vn|2

A vector with norm 1 is called a unit vector. Based on this definition, given a
scalar c, we also have:

‖c~v‖= |c|‖~v‖

EXAMPLE 2.23: To find how long the vector is:

~v =

 1
−2
i


we just need to plug and chug!

‖v‖=
√
|1|2 + |−2|2 + |i|2

=
√

6

EXAMPLE 2.24: The norm of the vector:

~v =

[
v1

v2

]

is:

‖~v‖=
√
|v1|2 + |v2|2

Referring back to the cartesian representation of a vector, this definition of length
is intuitive (i.e., it represents the distance from the origin to that point).

DEFINITION 2.4.9: Unit vectors, normalizing. By definition, unit vectors have

norm equal to 1. Normalizing a nonzero vector~v means to scale by
1
‖~v‖

to make

it have unit length. This is readily seen since:∥∥∥∥ ~v
‖~v‖

∥∥∥∥= 1
‖~v‖
‖~v‖ , since

1
‖~v‖

is a positive scalar

= 1
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EXAMPLE 2.25: Let’s normalize the following vector:

~v =

[
1
−2

]

Since ‖~v‖=
√
|1|2 + |−2|2 =

√
5, we can scale it by 1/

√
5 to get the unit vector:

1√
5
~v =

1√
5

[
1
−2

]
=

[
1/
√

5
−2/
√

5

]

2.5 Basis
A very important concept in linear algebra is that of basis (bases in plural). A basis
is a finite set of vectors that can be used to describe any other vectors of the same
dimension. For example, any 2-dimensional vectors~v can be decomposed as:

~v =

[
v1

v2

]

= v1

[
1
0

]
+ v2

[
0
1

]

The set:{[
1
0

]
,

[
0
1

]}

is a basis for vectors of dimension 2 and v1 and v2 are the coefficients of each basis
vector. This example clearly relates to the cartesian plane, where we can always
describe any point on the plane as “how much of x” and “how much of y”.

EXAMPLE 2.26: We can also write any 2-dimensional vector as:[
v1

v2

]
=

v1 + v2√
2

[
1/
√

2
1/
√

2

]
+

v1− v2√
2

[
1/
√

2
−1/
√

2

]

In this example, the basis is given by the set:{
1√
2

[
1
1

]
,

1√
2

[
1
−1

]}

and the coefficients are
v1 + v2√

2
and

v1− v2√
2

Can you think of a different basis? The fact of the matter is, there’s an infinite
number of them! As any decent mathematician would (and let’s face it, by now
we’re more than decent!), we’ll put some mathematical rigour into it, but first, let’s
introduce a couple of new concepts.

Trivia fact
If you feel up to the task, you can prove
that for any n-dimensional vector~v and ~w,
the following inequality is always true:

|~v•~w| ≤ ||~v|| · ||~w||

This result is known as the Cauchy-
Schwartz inequality and is considered to
be one of the most important inequalities
in all of mathematics. Not only has this
result had a huge impact on mathematics,
it turns out that the famous Heisenberg
uncertainty principle, ∆x∆p ≤ h̄

2 , a very
physical phenomena, is derived from the
Cauchy-Schwartz inequality.
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Note 2.5.2
For n-dimensional vectors, you cannot
have a set of more than n linearly
independent vectors.

Food for thought
There is a rigorous proof for the statement
in the Note above. Can you think of how
we would write this proof?

DEFINITION 2.5.1: Linear combination. A linear combination is a
combination of any number of vectors using vector addition and scalar
multiplication. For example, if we use the n-dimensional vectors ~v1,~v2, . . . ,~vk

and scalars c1,c2, . . . ,ck, a linear combination looks like:

c1~v1 + c2~v2 + · · ·+ ck~vk

DEFINITION 2.5.3: Linearly dependent/independent vectors. We say that a set
of vectors is linearly dependent if at least one of the vectors can be written as a
linear combination of the others. Otherwise they’re linearly independent.

EXAMPLE 2.27: Given the three vectors:~v1 =

 1
1
1

 , ~v2 =

 1
0
1

 , ~v3 =

 3
2
3




These vectors are linearly dependent since:

~v3 = 2~v1 +~v2

DEFINITION 2.5.4: Basis. Any set of n linearly independent vectors in Cn (or
Rn) is called a basis of Cn (or Rn).

EXAMPLE 2.28: The set given by:~v1 =

 1
1
1

 , ~v2 =

 1
0
1

 , ~v3 =

 3
2
3




is not a basis for R3 since, as previously shown, they’re linearly dependent.

EXAMPLE 2.29: The set given by:{
~v1 =

[
1
1

]
, ~v2 =

[
1
0

]}

is a basis for R2 since there are two of them and they’re linearly independent.

Observation 2.5.5: Basis vectors to describe any vectors. Let {~v1,~v2, . . . ,~vn} be a
basis for n-dimensional vectors. By the very definition of a basis, we can argue that
any n-dimensional vector ~w can be written as a linear combination of the basis vectors
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{~v1,~v2, . . . ,~vn}. To see this fact, consider the set:

{~w,~v1,~v2, . . . ,~vn}

Since this set has n+ 1 vectors, it cannot be a linearly independent set (recall Note
2.5.2 on page 56). By assumption, we know that {~v1,~v2, . . . ,~vn} are linearly
independent, therefore there must exist scalar coefficients c1, . . . ,cn such that:

~w = c1~v1 + c2~v2 + · · ·+ cn~vn

Since ~w was any arbitrary vector, we conclude that {~v1,~v2, . . . ,~vn} can be used to
describe any other n-dimensional vector by using appropriate coefficients in a
linear combination.

EXAMPLE 2.30: Using the basis{
~v1 =

[
1
i

]
, ~v2 =

[
1
2

]}

we’ll find a way to rewrite the vector:

~w =

[
3

1+ i

]

as a linear superposition of ~v1 and ~v2. To do this, we’ll need to solve a simple
system of two equations and two unknowns:

[
3

1+ i

]
= c1

[
1
i

]
+ c2

[
1
2

]

=

[
c1 + c2

ic1 +2c2

]
=⇒ c1 + c2 = 3 (4)

ic1 +2c2 = 1+ i (�)

Performing 2× (4)− (�) gives us (2− i)c1 = 5− i, which implies that

c1 =
5− i
2− i

=
5− i
2− i

· 2+ i
2+ i

=
11
5

+
3i
5

(recall how to divide by complex numbers)

By reinserting our result for c1 into (4), we get:

c2 = 3− c1

=
4
5
− 3i

5
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You can verify for yourself that the result:

~w =

(
11
5

+
3i
5

)
~v1 +

(
4
5
− 3i

5

)
~v2

is correct.

Observation 2.5.6: Action of matrices on basis vectors. Because of the linearity
of matrix multiplication, knowing the “action” of a matrix M on each vector of a
given basis of Cn is enough to determine the action of M on any vectors in Cn. To
see this, let’s use the basis {~v1, . . .~vn}. Then any vector ~w can be written as:

~w = c1~v1 + c2~v2 + · · ·+ cn~vn

The action of M on ~w can be evaluated directly since:

M~w = M (c1~v1 + c2~v2 + · · ·+ cn~vn)

= c1M~v1 + c2M~v2 + · · ·+ cnM~vn

Since we know the results for all M~vi, we therefore know the output M~w.

EXAMPLE 2.31: If we’re given:

M

[
1
0

]
=

[
i
3

]
and M

[
0
1

]
=

[
2
0

]

then we can calculate that:

M

[
5

1+ i

]
= M

(
5

[
1
0

]
+(1+ i)

[
0
1

])

= 5M

[
1
0

]
+(1+ i)M

[
0
1

]

= 5

[
i
3

]
+(1+ i)

[
2
0

]

=

[
2+7i

15

]

DEFINITION 2.5.7: Orthonormal basis. We say a basis is orthonormal if
each vector has norm 1 and each pair of vectors are orthogonal.

EXAMPLE 2.32: The sets below are three different orthonormal bases for C2:{
~v1 =

[
1
0

]
, ~v2 =

[
0
1

]}
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{
~w1 =

1√
2

[
1
1

]
, ~w2 =

1√
2

[
1
−1

]}
{
~u1 =

1√
2

[
1
i

]
, ~u2 =

1√
2

[
1
−i

]}

You better start liking these bases, because they’ll show up everywhere in
quantum mechanics!

DEFINITION 2.5.8: Standard (canonical) basis. When we explicitly write a
vector, we’re implicitly using the standard basis (also known as the canonical
basis), e.g.,

v1

v2
...

vn

= v1


1
0
...
0

+ v2


0
1
...
0

+ . . .+ vn


0
0
...
1


In quantum information, for reasons we’ll understand shortly, we often refer to
the standard basis as the computational basis.

Observation 2.5.9: Change of basis. Given an arbitrary vector~x:

~x =

[
x1

x2

]
As we just explained, using x1 and x2 to explicitly write~x as a column vector is the
same as saying that~x was written as a linear combination of the standard basis using
coefficients x1 and x2. How do we write this vector as a linear combination of
different basis vectors, say {~w1, ~w2} as defined above? This is referred to as a
change of basis. There’s actually a systematic way of doing this using a change of
basis matrix, It turns out that for small dimensions, it’s easier and much quicker to
attack the problem head-on.

Notice that if we can find how to write each of the standard basis vectors using the
new basis, then we’ll just need to use substitution to get the job done. In our case,
it’s easy to find that:[

1
0

]
=

1√
2
(~w1 + ~w2) and

[
0
1

]
=

1√
2
(~w1− ~w2)

By basic substitution, we get:[
x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
=

x1√
2
(~w1 + ~w2)+

x2√
2
(~w1− ~w2)
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=

(
x1 + x2√

2

)
~w1 +

(
x1− x2√

2

)
~w2

=
1√
2

[
x1 + x2

x1− x2

]
{w1,w2}

On the last line, that notation was used to stress the fact that the vector is explicitly
written in the {w1,w2} basis.

Observation 2.5.10: Reconstructing a matrix. Imagine your friend just found the
most amazing, perfect n× n matrix that unlocks the secrets of the universe, but your
friend refuses to show it to you (what a friend!). On the other hand, they’re willing to
give you a little taste: they agree to apply the matrix for n, and only n, input vectors
of your choice and give you the corresponding outputs. Turns out, if you choose the
input vectors wisely, you can reconstruct this amazing matrix.

Given an arbitrary basis for n-dimensional vectors, and if you know the “action” of
a matrix M on every vector of a given basis, it’s possible to explicitly reconstruct
M. Without loss of generality, we only need to consider the standard basis (if you
know the action of the matrix on a different basis, then we just need to perform a
change of basis as described above, or use the linearity of matrix multiplication to
find the action on the standard basis). Also, for simplicity, we’ll consider only the
2× 2 matrix case, but the generalization to any dimension is easy. Starting from the
most general matrix:

M =

[
a b
c d

]

we can observe that:[
a b
c d

][
1
0

]
=

[
a
c

]
and

[
a b
c d

][
0
1

]
=

[
b
d

]

Since we can ask our friend about the output for each standard basis, we can
therefore deduce all the elements of M. Just to make things even more obvious,
note that the first column of M is the vector that we’ll get if we apply M to the
first standard basis vector and the second column of M is the vector that we’ll
get if we apply M to the second standard basis. This observation is valid for any
n×n matrix.

EXAMPLE 2.33: Suppose we know that:

M

[
1
1

]
=

[
2
i

]
and M

[
1
−1

]
=

[
1−3i
2+ i

]

then we can deduce that

M

[
1
0

]
= M

(
1
2

[
1
1

]
+

1
2

[
1
−1

])
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=
1
2

(
M

[
1
1

]
+M

[
1
−1

])

=
1
2

[
3−3i
2+2i

]

Similarly:

M

[
0
1

]
= M

(
1
2

[
1
1

]
− 1

2

[
1
−1

])

=
1
2

(
M

[
1
1

]
−M

[
1
−1

])

=
1
2

[
1+3i
−2

]

We conclude that:

M =
1
2

[
3−3i 1+3i
2+2i −2

]

2.6 Inner product as projection
We already saw that the inner product can be used to calculate the norm of a vector,
but it also has a lot of other applications, one of which is to perform the projection
of a vector onto another vector.

EXAMPLE 2.34: Referring to Figure 2.1 on page 30, the projection of~v along x
is 1 and along y, 2.

Observation 2.6.2: Inner product vs. projection. Referring to Figure 2.1 again,
notice that:[

1
0

]
•~v =

[
1 0

][
1
2

]
= 1

= projection of~v along the x-axis[
0
1

]
•~v =

[
0 1

][
1
2

]
= 2

= projection of~v along the y-axis

Note 2.6.1
When working with the complex plane, or
with the cartesian plane for that matter,
we’ve already used the term “projection”.
Implicitly, projecting a vector~v along the
x-axis just means that we’re interested
in how much of the vector is “along” x.
Similarly with projection along y-axis.
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The idea of projection can be generalized for any vector, in any dimension. We’ll
work our way to the formal definition step-by-step. For now, let’s stick to the
cartesian planes as they offer a nice visual. Let’s use vectors:

~v =

[
2

2
√

3

]
and ~w =

[
2
−2

]
Refer to Figure 2.9 below for a visual. You can convince yourself that~v makes an
angle of π

3 (or 60◦) with the x-axis and ~w makes an angle of −π

4 (−45◦).

{

Figure 2.9: The projection of~v onto ~w is given by the component of~v along ~w.

DEFINITION 2.6.3: Orthogonal projection. The projection P~v,~w of~v onto ~w is
given by the component of~v along the direction of ~w. Since we define it as the
component along ~w, P~v,~w is a scalar number.

Here’s an easy trick to find that component: place a ruler perpendicular to the
direction of ~w (that direction is given by the long, dashed black line in Figure 2.9
above) and move the ruler along that line until you find the point representing~v.
Draw a line with your ruler (short dashed orange line) and the intersection of the two
lines is the desired component P~v,~w. Notice that in our current example, the
component we’re interested in is actually along the opposite direction of ~w – that is
the direction of −~w. P~v,~w is therefore a negative number.

Again referring to Figure 2.9 above, basic trigonometry tells us that:∣∣P~v,~w∣∣= ||~v||cos
(

5π

12

)
= ||~v||cos75◦ (if you prefer to work in degrees)
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≈
√

16 ·0.259

≈ 1.035

=⇒ P~v,~w ≈−1.035

Observation 2.6.4: Inner product vs. projection revisited. The vector ~w above is
parallel to the unit vector:

~u =
1
||~w||

~w

=
1√
2

[
1
−1

]
~u can be obtained simply by normalizing ~w (see Definition 2.4.9 on page 54). Do
you think it’s a coincidence that:

~u•~v = 1
||~w||

~w•~v

=
1√
2

[
1 −1

][
2

2
√

3

]

=
1√
2
(2−2

√
3)

≈−1.035?

The observation made above is not a coincidence at all and can readily be seen as a
consequence of the properties of the inner product and the definition of a basis. To
see this, let’s suppose that~u⊥ is any unit vector that is perpendicular to~u, and hence
perpendicular to ~w. We’ve seen in the previous section that the set {~u,~u⊥} forms an
orthonormal basis for 2-dimensional vectors. Therefore we can write:

~v = c1~u+ c2~u⊥

where c1 is the component of~v along~u (and ~w), i.e., the projection P~v,~w of~v along
~w, and c2 is the component of~v along~u⊥, i.e., the projection of~v along any vectors
perpendicular to~v. We therefore have:

~u•~v = c1~u•~u+ c2~u•~u⊥
= c1 since~u•~u = 1 and~u•~u⊥ = 0

= P~v,~w

Using the cartesian plane, we essentially worked our way toward the formal
definition of an orthogonal projection in any dimension.

DEFINITION 2.6.5: Orthogonal projection revisited. Given n-dimensional
vectors~v,~w in Cn, the projection of~v onto ~w, P~v,~w is given by:

P~v,~w =
1
||~w||

~w•~v

Food for thought
Can you find an explicit representation
for ~u⊥?
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In other words, the projection is given by the inner product between the unit
vector along ~w and~v.

EXAMPLE 2.35: In the 3-dimensional complex vector space, the projection of:

~v =

 1
e−i π

4

2


along:

~w =

 i
2
−i


is given by:

P~v,~w =
1√
6

 i
2
−i

•
 1

e−i π
4

2

 , since ||~w||=
√

6

=
1√
6

[
−i 2 i

] 1
e−i π

4

2


(do not forget the complex conjugate of the first vector)

=
1√
6
(−i+2e−i π

4 +2i)

=
1√
6
(i+2cos

π

4
−2isin

π

4
)

(remembering Euler’s formula)

=
1√
6

(√
2+ i(1−

√
2)
)

This definition of projection is actually quite intuitive. If we pick any orthonormal
basis {u1, . . . ,un} such that one of the basis vectors, say, u1 is the unit vector
pointing in the direction of ~w, then we can write:

~v = c1~u1 + . . .+ cn~un

such that:

1
||~w||

~w•~v = ~u1 •~v

= c1~u1 • ~u1 + c2~u1 • ~u2 + . . .+ ~u1 • ~un

= c1, since ~u1 • ~u j = 0 except if j = 1

= P~v,~w
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Observation 2.6.6: Writing a vector using projection. In previous sections, we
rewrote a given vector as a linear combination of other vectors a few times. In
Example 2.27 and Observation 2.5.9 on pages 56 and 59 respectively, we found the
coefficients of the combination by inspection, while in Example 2.30 on page 57, we
used a more systematic, yet cumbersome method.

The inner product now gives us a systematic and simple method to write any
n-dimensional vector~v as a linear combination of vectors belonging to an
orthonormal basis {~u1, . . . , ~un}. As we’ve seen many times already, we can always
find coefficient c1, . . . ,cn such that:

~v = c1~u1 + c2~u2 + . . .+ cn~un

If we perform the inner product of ~u j with~v, we have:

~u j •~v = c1~u j • ~u1 + c2~u j • ~u2 + . . .+ c j~u j • ~u j + . . .+ cn~u j • ~un

= c1 ·0+ c2 ·0+ . . .+ c j ·1+ . . .+ . . .cn ·0

(since ~uk • ~u j = 0 except if k = j)

= c j

If we perform this inner product for each basis vector, we can easily find all the
coefficients of the linear combinations, and we conclude that:

~v = (~u1 •~v)~u1 +(~u2 •~v)~u2 + . . .+(~un •~v)~un

since c j = ~u j •~v

EXAMPLE 2.36: We’ll rewrite the vector:

~v =

[
3+ i
1− i

]

as a linear combination of:{
~u1 =

1√
2

[
1
i

]
, ~u2 =

1√
2

[
1
−i

]}

First, convince yourself that {~u1, ~u2} is an orthonormal basis for C2. From there,
we just need to crunch the numbers:

~u1 •~v =
1√
2

[
1 −i

][
3+ i
1− i

]
(again, don’t forget the complex conjugate of the first vector)

=
√

2

~u2 •~v =
1√
2

[
1 i

][
3+ i
1− i

]
= 2
√

2+
√

2i
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Note 2.7.2
The identity is only defined for
square matrices.

Food for thought
Can you explain the note above, given
the definition of identity?

We therefore conclude that:

~v =
√

2~u1 +
(

2
√

2+
√

2i
)
~u2

2.7 Special matrices
Now that we know pretty much everything we need to know about vectors, let’s go
back to matrices for a moment. A lot of “families” of matrices exist, i.e., matrices
that share special properties. There are a few special types of matrices that play an
important role in quantum information. Below are a few examples.

DEFINITION 2.7.1: Identity matrix. The n × n identity matrix, often denoted
by 1l and sometimes by I, is defined such that for every n × n matrix M, and any
vector~v in Cn, we have:

1lM = M1l = M and 1l~v =~v

In other words, this matrix performs no actions when operating on any vector or
matrix; the output is always the same as the input. It’s similar to the number 1 in
scalar multiplication. (Remember that scalar numbers are 1-dimensional
vectors/matrices.)

It’s easy to observe that 1l is the matrix with only 1s along the diagonal, e.g.,

1l =


1 0 . . .

0 1 . . .
...

...
. . .



EXAMPLE 2.37: In 3 dimensions, the 3× 3 matrix with only 1s on the diagonal
is the identity, since: 1 0 0

0 1 0
0 0 1


 v1

v2

v3

=

 v1

v2

v3


and:  1 0 0

0 1 0
0 0 1


 m11 m12 m13

m21 m22 m23

m31 m32 m33

=

 m11 m12 m13

m21 m22 m23

m31 m32 m33


 m11 m12 m13

m21 m22 m23

m31 m32 m33


 1 0 0

0 1 0
0 0 1

=

 m11 m12 m13

m21 m22 m23

m31 m32 m33


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DEFINITION 2.7.3: Unitary matrices. A unitary matrix, U , is a matrix
that satisfies:

UU† =U†U = 1l

EXAMPLE 2.38: The following matrices, which will soon become your best
friends, are unitary:

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
R =

[
cosθ −sinθ

sinθ cosθ

]

Observation 2.7.4: Unitary matrices preserve the inner product. If the same
unitary matrix U is applied to any two vectors ~v1 and ~v2, the inner product is
preserved. That is if:

~w1 =U~v1 and ~w2 =U~v2

then:

~w1 • ~w2 = (U~v1)• (U~v2)

= (U~v1)
†U~v2

= (~v1
†U†)(U~v2) (recalling that (MN)† = N†M†)

= ~v1
†(U†U)~v2

= ~v1
†1l~v2

= ~v1
†~v2

= ~v1 •~v2

Observation 2.7.6: Rotation matrix. The matrix R defined above represents a
rotation in R2. Notice:

R

[
1
0

]
=

[
cosθ

sinθ

]
and R

[
0
1

]
=

[
−sinθ

cosθ

]

Since both basis vectors are rotated by an angle θ , then any vector in R2 will be
rotated by θ . See Figure 2.7 on page 68 for visuals.

2.8 The cooking matrix
“At the beginning of the chapter, you said that you could write a
cookbook using matrices. What’s up with that?”

So far we’ve mostly used concrete examples that we were already familiar with
(cartesian and spacial coordinates). Just to show you how versatile matrices and

Note 2.7.5
From Observation 2.7.4, unitary
matrices also preserve the length (or
norm) of vectors.

‖U~v‖=
√
(U~v)• (U~v)

=
√
~v•~v

= ‖~v‖

Trivia fact
Unitary matrices are very useful in
physics and many other fields as they
represent reversible processes. If you
think of the unitary matrix U as operating
on a vector~v, then U† undoes what U did
(since U†U = 1l). We’ll learn soon enough
that quantum mechanical processes are
reversible, and hence unitary matrices will
be very important.
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Figure 2.10: The matrix R, as defined in Observation 2.7.6 on page 67, rotates any
vectors by an angle θ .

vectors can be, we’ll write a small cookbook using only numbers in a matrix to show
you an example of applied linear algebra.

To make things simple, we’ll use a finite number of ingredients, say sugar, flour, salt,
milk and water, and we’ll use three different dough recipes:

Sugar Flour Salt Milk Water
(cup) (cup) (tsp) (cup) (cup)

Pizza 0 2 1 0 1
Cake 1 1 0 0.5 0
Bagel 1 1 2 0.25 0.25

Obviously, we must stress the fact that that these are not real recipes and you should
not try this at home. They would taste terrible! But for the purpose of this example,
these are our recipes.

First, we need to determine the input and output vectors and which operation the
cookbook matrix M will represent. Our input shall be the answer to “what recipes do
you want to make?”. The output, a list of ingredients.

Each dough is independent of each other, so we can assign each dough to a basis
vector. Since there are three of them, we’ll need at least, and no more, than three
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basis vectors. A 3-dimensional vector space will work just fine and we’ll assign:

−−−→
pizza =

 1
0
0

 , −−→
cake =

 0
1
0

 , −−−→
bagel =

 0
0
1


Since each ingredient is independent of each other (you wouldn’t use salt to replace
water, would you?), we’ll also assign each ingredient a basis vector. Since there are
five ingredients, we’ll need five basis vectors. Therefore, we can assign:

−−−→sugar =


1
0
0
0
0

 ,
−−−→
f lour =


0
1
0
0
0

 ,
−→
salt =


0
0
1
0
0

 ,
−−→
milk =


0
0
0
1
0

 , −−−→water =


0
0
0
0
1



From the recipes, we know the actions of the cookbook matrix M, e.g.,

M
−−−→
pizza =


0
2
1
0
1

 , M
−−→
cake =


1
1
0

0.5
0

 , M
−−−→
bagel =


1
1
2

0.25
0.25



From this, if you remember Observation 2.5.10 on page 60, we can give the explicit
form of M:

M =


0 1 1
2 1 1
1 0 2
0 0.5 0.25
1 0 0.25


This is our cookbook!

Suppose, you want to do two pizzas, half a cake and two bagels, here’s what you’d
need to buy:

0 1 1
2 1 1
1 0 2
0 0.5 0.25
1 0 0.25



 2
0.5
3


=


3.5
7.5
7
1

2.75


You’ll need to get 3.5 cups of sugar, 7.5 cups of flour, 7 tbs of salt, 1 cup of milk and
2.75 cups of water. Isn’t that the most nerd-tastic way of cooking and getting your
grocery list ready?!
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2.9 Summary

Chapter 2 Summary

Below we summarize the most important concepts in linear algebra as a quick reference.
Let~v, ~w, M and N be vectors and matrices of suitable dimensions and c a scalar:

Vector addition: (~v+~w) j = v j +w j

Vector scalar multiplication: (c~v) j = cv j

Matrix addition: (M+N)i j = Mi j +Ni j

Matrix scalar multiplication: (cM)i j = c(Mi j)

Matrix multiplication: (MN)i j = ∑
k

MikNk j

Matrix/vector complex conjugate:
(
M
)

i j = Mi j

Matrix/vector transpose:
(
M t)

i j = M ji

Matrix/vector conjugate transposed:
(
M†)

i j = M ji

Inner/Scalar/Dot product: ~v•~w =~v†~w =
n

∑
j=1

v jw j

Norm of a vector: ‖~v‖=
√
~v•~v

Projection of~v onto ~w: P~v,~w =
1
||~w||

~w•~v

Unitary matrices: Any matrices U such that U†U =UU† = 1l
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Quantum mechanics

“Quantum physics thus reveals a basic oneness of the universe.”
ERWIN SCHRÖDINGER

“The“paradox” is only a conflict between reality and your
feeling of what reality ought to be.”
RICHARD FEYNMAN
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Now that we’ve learned and mastered the beautiful concepts of complex numbers
and linear algebra, it’s time to explore how it applies to quantum mechanics. For
now, we’ll take a purely mathematical approach, but never forget that:

Quantum mechanics is not about mathematics. Quantum mechanics
describes the behaviour of atoms, molecules, photons, even nano-scale
electrical circuits. But we use mathematics to quantify and model these
physical phenomena.

During QCSYS, we’ll also teach you quantum mechanics from a qualitative,
phenomenological approach. You’ll even do a few experiments to investigate some
of the quintessential quantum phenomena, such as the wave-particle duality and the
Heisenberg uncertainty principle. By the end of these lectures, we’ll reconcile both
the mathematical and the phenomenological approach. But for now, we’ll introduce
how the different concepts of linear algebra we just learned will be used to quantify
quantum mechanics.

3.1 Mathematical postulates of
quantum mechanics

As we mentioned in the preface of this book, quantum mechanics refers to the
description of the behaviour of the building blocks of nature: atoms, molecules,
photons, etc. Turns out that there are five “simple” postulates that fully encapsulate
the mathematical modelling of quantum mechanics. We’re just stating them here and
will go into detail about each of them and explain the new terminology used. These
postulates can take different equivalent forms depending on who you talk to, but for
the sake of QCSYS, we’ll work with the postulates below:

Postulates of Quantum Mechanics

1. The state (or wavefunction) of individual quantum systems is described by
unit vectors living in separate complex Hilbert spaces. (Recall the definition of
Hilbert space on page 52.)

2. The probability of measuring a system in a given state is given by the modulus
squared of the inner product of the output state and the current state of the
system. This is known as Born’s rule. Immediately after the measurement, the
wavefunction collapses into that state.

3. Quantum operations are represented by unitary operators on the Hilbert space
(a consequence of the Schrödinger equation).

4. The Hilbert space of a composite system is given by the tensor product (aka
Kronecker product) of the separate, individual Hilbert spaces.

5. Physical observables are represented by the eigenvalues of a Hermitian
operator on the Hilbert Space.
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For the sake of simplicity, we won’t cover the last postulate as it’s not really needed
during QCSYS. To do so, we’d need to introduce a few more mathematical concepts
and let’s be honest, we’ve learned quite enough so far! If you’re curious about it,
we’ll be more than happy to discuss it with you during the mentoring sessions.

Also, note that in the first part of this book, we’ve introduced the notion of vector
space using finite dimension vectors and matrices. This is a natural way to proceed.
Referring to postulate 1, finite dimension vectors are a great way to represent the
state of quantum systems when the physical variables only have discrete
possibilities, e.g., being here or there, up or down, left or right, etc. This treatment of
quantum mechanics is often referred to as “matrix mechanics” and is very well
suited to quantum information and quantum cryptography.

But what about when we want to describe physical quantities that have continuous
values, such as the position of a particle along a line? In this case, we need a vector
space of infinite and continuous dimension. Turns out that it’s possible to define a
Hilbert space on the set of continuous functions, e.g., f (x) = x3 + 2x+ 1. This is
referred to as “wave mechanics” and we won’t cover it in this book. However, we’ll
show you the example of a particle in a box during the QCSYS lectures. This
example will require the wave mechanics treatment of quantum mechanics.

3.2 New notation: the braket notation
Before getting into the the heart of the mathematics of quantum mechanics, we’ll
introduce a new notation widely used in physics. In Chapter 2, we used the vector
and matrix notations that are widely used in mathematics, but when physicists play
with vectors to describe a quantum system, they like to change it around a little and
use what we call the braket notation. Note that everything we’ve defined so far,
including vector addition, matrix multiplication, inner product, projections, is exactly
the same. The only thing that changes is how we write down the variable.

DEFINITION 3.2.1: The “ket”. When using a vector~v to represent a quantum
state, we’ll use a different notation known as “ket”, written |v〉 (“ket v”). This is
a notation commonly used in quantum mechanics and doesn’t change the nature
of the vectors at all. That is, both notations below are equivalent:

|v〉=

[
v1

v2

]
←→~v =

[
v1

v2

]

DEFINITION 3.2.2: The “bra”. The conjugate transpose of a “ket” |v〉 is
denoted by:

〈v|= (|v〉)†
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Note 3.2.4
The braket notation follows naturally from
the geometry of our notation, e.g.,

|v〉 • |w〉= (|v〉)†|w〉
= 〈v||w〉
= 〈v|w〉

Trivia fact
The braket notation was introduce by
Paul Dirac in 1939 and is also known as
the Dirac notation. Dirac is notoriously
known in history for having an odd
and peculiar personality. One story:
when Dirac first met the young Richard
Feynman, he said after a long silence, “I
have an equation. Do you have one too?”

〈v| is called “bra v”. Again, we stress the fact that this is just a notation and
doesn’t change the meaning of the conjugate transpose.

DEFINITION 3.2.3: The “braket”. Given two vectors |v〉 and |w〉, we use the
following notation for the inner product:

〈v|w〉= |v〉 • |w〉

〈v|w〉 is known as the braket of |v〉 and |w〉.

Observation 3.2.5: Complex conjugate of a braket. If you recall one of the
properties of the inner product, namely,~v•~w = ~w•~v, you can readily see that:

〈w|v〉= 〈v|w〉

EXAMPLE 3.1: Let:

|v〉= 1√
2

[
1
i

]
and |w〉= i√

2

[
1
1

]

We can calculate the inner product:

〈w|v〉= −i
2

[
1 1

][
1
i

]

=
−i
2
(1+ i)

=
1− i

2

Similarly, we can also calculate:

〈v|w〉= i
2

[
1 −i

][
1
1

]

=
i
2
(1− i)

=
1+ i

2

We can observe that, as proved above, 〈w|v〉= 〈v|w〉

3.3 Single quantum state and the qubit
Now that the new notation is out of the way, we’ll now look in detail at Postulate 1
of quantum mechanics as stated at the beginning of this chapter:

Postulate 1: The state of individual quantum systems are described
by unit vectors living in separate complex Hilbert spaces.
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First and foremost, we need to explain what we actually mean by state.

DEFINITION 3.3.1: Quantum states. The collection of all relevant physical
properties of a quantum system (e.g., position, momentum, spin, polarization) is
known as the state of the system.

Now you may wonder, how do we represent a physical state using vectors? The key
point here is to understand the concept of exclusive states.

DEFINITION 3.3.2: Exclusive states. When modelling the state of a given
physical quantity (position, spin, polarization), two states are said to be exclusive
if the fact of being in one of the states with certainty implies that there are no
chances whatsoever of being in any of the other states.

EXAMPLE 3.2: 1 particle, 3 boxes. Imagine this hypothetical situation: we
have a single quantum particle, and three quantum boxes. The whole system
behaves quantum mechanically. If I know for certain that the particle is in box 1,
then it’s certainly not in box 2 or 3.

EXAMPLE 3.3: Moving particle. Imagine a particle that can move horizontally,
vertically and diagonally. These three states are definitely not exclusive since
moving diagonally can be thought of as moving horizontally and vertically at the
same time.

If you recall the concept of orthogonal vectors and projection (see Definitions 2.4.6
and 2.6.3 on pages 52 and 62 respectively), it wasn’t unlike the concept of
exclusivity (i.e., a given vector has no component along any of its orthogonal
vectors). Therefore it makes sense to establish a connection between exclusive states
and orthogonal vectors.

Given a quantum system with n exclusive states, each state will be
represented by a vector from an orthonormal basis of a n-dimensional
Hilbert space.

EXAMPLE 3.4: From the “1 particle, 3 boxes” example above, the state of the
electron can be in either box 1, 2, and 3 represented by the quantum state |1〉, |2〉
and |3〉 respectively. Explicitly, we can write:

|1〉=

 1
0
0

 |2〉=

 0
1
0

 |3〉=

 0
0
1


From now on, when speaking of a quantum system, we will use the words “vector”
and “state” interchangeably. Quantum states also use the braket notation to
emphasize they’re quantum states.
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Note 3.3.4
For the rest of this book, we’ll always
assume that the quantum system we
speak of is a qubit, i.e., it has only two
exclusive states. But bear in mind that
everything we’ll discuss extends to
quantum systems of any dimensions in
a straightforward manner.

We’ll now introduce the abstract concept of the quantum bit, or qubit. Qubits only
have two distinct (exclusive) states, which is the starting point of everything in
quantum information. But note that all the mathematical treatments we’ll discuss can
be applied to any quantum system with any number of discrete physical states.

But before we introduce the formal definition of a qubit, a quick note about the bit.
In your cell phone, your computer, or pretty much any digital electronic device you
have, the information is treated using the simplest alphabet of all: the binary system.
In binary, we only have two “letters” – 0 and 1. This basic unit of classical
information is know as a bit. Physically, a bit is implemented by a transistor in a
processor, or a tiny magnet in your hard drive. In your computer, each bit is either in
the state 0, or in the state 1.

Just like the bit is the basic unit of classical information, the qubit is the basic unit of
quantum information.

DEFINITION 3.3.3: Qubit. In quantum information, we’re using quantum bits,
or qubits. Like the classical bit, a qubit only has two exclusive states,
“quantum-0” and “quantum-1”. But unlike the classical bit, the qubit behaves
according to the laws of quantum mechanics. As we’ll see during QCSYS, this
new behaviour will allow us to do very amazing things.

Since a qubit only has two different exclusive states, the state/vector representing the
quantum-0 and the quantum-1 should be 2-dimensional. The vectors |0〉 and |1〉 are
conventionally represented by the vectors:

|0〉=

[
1
0

]
and |1〉=

[
0
1

]
This basis is known as the computational basis.

We typically use the computational basis {|0〉, |1〉} to represent the two exclusive
states of a quantum system that we use as our quantum-0 and quantum-1. For
example, if we use the energy of an electron in an atom as our quantum bit, we could
say that the ground state (lowest energy) is our quantum-0, and an excited state
(higher energy) is our quantum-1. Since the ground and excited states are mutually
exclusive, we could represent:

ground state↔ |0〉=

[
1
0

]
excited state↔ |1〉=

[
0
1

]
During QCSYS, we’ll see how the states of qubits are used to perform quantum
cryptography. For this particular case, we like to use the polarization of a photon as
our qubit. By the end of the QCSYS, you’ll be experts at this!

Observation 3.3.5: Both states at once. Here’s where the fun starts. Let’s define
the state |+〉 and |−〉 with the vectors:

|+〉= 1√
2

[
1
1

]
and |−〉= 1√

2

[
1
−1

]
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If we look a little closer, we see that:

|±〉= 1√
2
(|0〉± |1〉)

The above tells us that the states |±〉 are linear combinations of the computational
basis (i.e., the quantum-0 and quantum-1). In quantum mechanics, we call that a
quantum superposition (rigorously defined below). So would that mean that my
system is in both 0 and 1? Actually, yes (kind of)! Is that mathematical trickery, or
can we really do that in a lab? We can certainly do that in a lab, and you’ll
experience it firsthand! Welcome to the world of quantum mechanics!

DEFINITION 3.3.6: Quantum superposition principle. If a quantum system
can be in the state |0〉, and can also be in |1〉, then quantum mechanics allows
the system to be in any arbitrary state

|ψ〉= a|0〉+b|1〉

=

[
a
b

]

We say that |ψ〉 is in a superposition of |0〉 and |1〉 with probability
amplitudes a and b. We’ll see in the next section why it’s called an amplitude.

EXAMPLE 3.5: The state |0〉 is a superposition of |+〉 and |−〉 since:

|0〉= 1√
2
|+〉+ 1√

2
|−〉

3.4 Quantum measurement
Now that we know how to represent the state of a given quantum system, we’ll
investigate Postulate 2 of quantum mechanics:

Postulate 2: The probability of measuring a system in a given state is
given by the modulus squared of the inner product of the output state
and the current state of the system (Born’s rule). Immediately after the
measurement, the wavefunction collapses into that state.

As we just saw, it’s possible for a quantum mechanical system to be in a super-
position of exclusive states, say |ψ〉 = a|0〉+ b|1〉. You might wonder: if I actually
perform a measurement to see if the system is in |0〉 or in |1〉, what will I measure?
You’ll measure either |0〉 or |1〉, but which one? With what probability?

DEFINITION 3.4.1: Born’s Rule. Suppose we have a quantum state |ψ〉 and an
orthonormal basis {|φ1〉, . . . , |φn〉}. Then we can measure |ψ〉 with respect to this

Note 3.3.7
ψ is the greek letter “psi” (silent “p”)
and is commonly used to denote a
quantum state. We love to use Greek
letters to denote quantum states. Refer
to Appendix A.1 for the complete list of
Greek letters.

Trivia fact
Even if Erwin Schrödinger was one of the
fathers of the mathematical formulation
of quantum mechanics, the superposition
principle left him baffled. To show the
absurdity of such a concept, he applied it
to an everyday object and asked: can a
cat be both dead and alive? Hence was
born the famous Schrödinger’s Cat.
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Note 3.4.4
If you recall the definition of the
superposition principle on page 77, a
and b were called probability
amplitudes. The reason for such a
name is that they don’t quite represent
a probability, but their modulus squared
does give us the probability.

orthonormal basis, i.e., we “ask” the quantum system which one of these states
it’s in. The probability of measuring the state |φi〉, P(φi), is given by:

P(φi) = |〈φi|ψ〉|2

DEFINITION 3.4.2: Wave collapse. After the measurement is performed the
original state collapses in the measured state, i.e., we’re left with one of the states
|φ1〉, . . . , |φn〉.

DEFINITION 3.4.3: Quantum measurement. From a mathematical point
of view, applying Born’s rule and then the wave collapse correspond to a
quantum measurement.

EXAMPLE 3.6: Suppose we have |ψ〉 = |+〉 (as defined in Observation 3.3.5 on
page 76) and we measure it in the orthonormal basis {|φ0〉= |0〉, |φ1〉= |1〉}.
Then the state would collapse to:{

|0〉 with probability |〈0|+〉|2 = 1/2,
|1〉 with probability |〈1|+〉|2 = 1/2

This is like flipping a coin. If we decide to measure in the basis {|+〉, |−〉}, then
the outcome state will be:{

|+〉 with probability |〈+|+〉|2 = 1,
|−〉 with probability |〈−|+〉|2 = 0

EXAMPLE 3.7: If we treat the general case of a qubit in an unknown quantum
state |ψ〉 = a|0〉 + b|1〉 and we measure in the computational basis, the outcome
will be:{

|0〉 with probability |〈0|ψ〉|2 = |a|2,
|1〉 with probability |〈1|ψ〉|2 = |b|2

EXAMPLE 3.8: What if we measure the system in the basis {|+〉, |−〉}?
Note that:

〈±|ψ〉= 1√
2

[
1 ±1

][
a
b

]

=
a±b√

2
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which implies that the outcome will be the state:

|±〉 with probability
|a±b|2

2

Observation 3.4.6: Probabilism. In the last two examples, we saw that measuring
in two different bases yields probabilistic measure. You can actually show that the
only time we’ll get a deterministic result is when we measure in a basis that includes
the state |ψ〉. But since |ψ〉 was an arbitrary (unknown) state to begin with, we
conclude measuring an unknown quantum state will always yield a random result.

What the superposition principle and Born’s rule are actually telling us is that
quantum mechanics is inherently random. When you have an unknown quantum
superposition, it’s impossible to predict precisely which outcome you’ll measure.
You can only predict the probability of the outcome.

EXAMPLE 3.9: To relate Example 3.6 on page 78 to physics, think about the
following scenario: We prepare an atom in a superposition of the ground and
excited states. (Recall our assignment of the computational basis for the ground
and excited state of an atom on page 76.) Say the way we carried out the
experiment leads to a superposition which mathematical representation is given
by |+〉, i.e., the atom is in a superposition of ground and excited states. If we
measure the atom to investigate its state, there is a 50% probability of measuring
the atom in its ground state, and a 50% probability of measuring it in its excited
state. If the measurement gives us the ground state for example, then right after
the measurement, the state has collapsed into the ground state.

DEFINITION 3.4.7: Quantum measurement (alternative). Suppose we have a
quantum state |ψ〉 and an orthonormal basis {|φ1〉, . . . , |φn〉}. We can explicitly
write the state using the orthonormal basis, i.e.,

|ψ〉= c1|φ1〉+ c2|φ2〉+ . . .+ cn|φn〉

The probability of measuring each state |φi〉 is given by:

P(φi) = |ci|2

After the measurement, the state of the system collapses into |φi〉.

EXAMPLE 3.10: Let’s show that our two definitions of quantum measurements
are equivalent. Starting with the fact that we can always write any state |ψ〉 using
the orthonormal basis {|φ1〉, . . . , |φn〉}, i.e.,

|ψ〉= c1|φ1〉+ c2|φ2〉+ . . .+ cn|φn〉

Note 3.4.5
In Example 3.8 above, we used the
explicit representation of the vector
to perform the inner product, but we
could have done everything in braket
notation, e.g.,

〈±|ψ〉= 1√
2
(〈0|± 〈1|)(a|0〉+b|1〉)

=
1√
2
(a〈0|0〉+b〈0|1〉

±a〈1|0〉±b〈1|1〉)

=
a±b√

2

Food for thought
In Observation 3.4.6, we said that “the
only time we’ll get a deterministic result is
when we measure in a basis that includes
the state |ψ〉”. Can you explain why?
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Trivia fact
Born’s rule was formulated in 1926 by
German physicist Max Born. Although
incredibly successful at predicting
experimental results, we had to wait until
2010 for a group of experimentalists
(led by Raymond Laflamme, Thomas
Jennewein and Gregor Weihs from the
Institute for Quantum Computing. Go
IQC!) to directly put it to the test. They
showed that Born’s rule is accurate to at
least 1%. Since then, further experiments
have shown the accuracy to be within a
whopping 0.001%.

we can then apply Born’s rule and get that the probability of measuring the state
|φ1〉 is given by:

P(φi) = |〈φi|ψ〉|2

= |〈φi|(c1|φ1〉+ c2|φ2〉+ . . .+ cn|φn〉)|2

= |c1〈φi|φ1〉+ c2〈φi|φ2〉+ . . .+ ci〈φi|φi〉+ . . .+ cn〈φi|φn〉|2

Since {|φ1〉, . . . , |φn〉} is an orthonormal basis, all the inner products are 0, except
with 〈φi|φi〉, therefore:

P(φi) = |ci|2

which shows that both our definitions are equivalent.

EXAMPLE 3.11: Given the quantum state:

|ψ〉= 1√
2

[
1
i

]

what’s the probability of measuring it in the state |+〉? We can use either method
to find it out.

1. First method:

P(+) = |〈+|ψ〉|2

=

∣∣∣∣∣12
[

1 1
][

1
i

]∣∣∣∣∣
2

=
1
4
|1+ i|2

=
1
4
(1+ i)(1− i)

(recalling that |z|2 = zz̄ for complex numbers)

=
1
2

2. Second method: We already know that |+〉 and |−〉 form an orthonormal
basis, therefore we need to write |ψ〉 in this basis. Moreover, observe that:

|0〉= 1√
2
(|+〉+ |−〉) , and |1〉= 1√

2
(|+〉− |−〉)

therefore:

|ψ〉= 1√
2
(|0〉+ i|1〉)

=
1
2
(|+〉+ |−〉+ i|+〉− i|−〉)
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=
1+ i

2
|+〉+ 1− i

2
|−〉

The probability of measuring + is thus given by:

P(+) =
1
4
|1+ i|2

=
1
4
(1+ i)(1− i)

=
1
2

Observation 3.4.8: Requirement for unit norm. At this point, it becomes clear
why quantum states must be unit vectors. If we write our quantum state using any
orthonormal basis:

|ψ〉= c1|φ1〉+ c2|φ2〉+ . . .+ cn|φn〉

then the modulus of |ψ〉 is given by:

|||ψ〉||=
√
|c1|2 + |c2|2 + . . .+ |cn|2

Since |ci|2 is the probability of measuring the state |ψ〉 in the state |φi〉, then the
norm of a quantum state is simply the sum of the probability of measure each |φi〉.
Since our measurement must give us something, then the sum of the probabilities
must be 1. Hence the need for a unit vector.

3.5 Quantum operations
So far, we’ve learned how to calculate the measurement probability given the state
of a system. But how do we create that state? In other words, is it possible, given a
known initial state, to transform it into any other states? This answer is “yes” and the
mathematical representation is known as a quantum operation.

Postulate 3: Quantum operations are represented by unitary operators
on the Hilbert space.

DEFINITION 3.5.1: Quantum operations. A quantum operation transforms a
quantum state to another quantum state, therefore, we must have it so that the
norm of the vector is preserved (recall, quantum states must have norm 1). If you
recall Note 2.7.5 on page 67, the mathematical representation of any quantum
operation can therefore be represented by a unitary matrix. Similarly, any unitary
matrix represents a possible quantum operation.

Refer back to Section 2.7 on page 66 for the properties of unitary matrices.
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EXAMPLE 3.12: The following are some popular quantum operations:

1l =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]

These are called the Pauli matrices. Another important quantum operation is the
Hadamard matrix defined as:

H =


1√
2

1√
2

1√
2
− 1√

2

=
1√
2

[
1 1
1 −1

]

EXAMPLE 3.13: What would be the final state if we perform:

1. 1l on the state |0〉?
2. X on the state |1〉?
3. Z on the state |+〉?
4. H on the state |1〉?

To find the final state, we just need to carry the matrix multiplication:

1. 1l|0〉=

[
1 0
0 1

][
1
0

]
=

[
1
0

]
= |0〉

2. X |1〉=

[
0 1
1 0

][
0
1

]
=

[
1
0

]
= |0〉

3. Z|+〉=

[
1 0
0 −1

][
1/
√

2
1/
√

2

]
=

1√
2

[
1
−1

]
= |−〉

4. H|1〉= 1√
2

[
1 1
1 −1

][
0
1

]
=

1√
2

[
1
−1

]
= |−〉

EXAMPLE 3.14: The Hadamard matrix defined above is very useful in quantum
information. Let’s see how it acts on some on our favourite quantum states:

1. H|0〉= 1√
2

[
1 1
1 −1

][
1
0

]
=

1√
2

[
1
1

]
= |+〉

2. H|1〉= |−〉, as seen above

3. H|+〉= 1
2

[
1 1
1 −1

][
1
1

]
=

[
1
0

]
= |0〉

4. H|−〉= 1
2

[
1 1
1 −1

][
1
−1

]
=

[
0
1

]
= |1〉

You should memorize these four results as we’ll use them over, and over, and
over, and over again!
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Observation 3.5.2: The power of symbolic notation. Sometimes, calculating the
results of a quantum operation using only symbolic notation can provide us with
some insight. Let’s look at the third calculation above:

H|+〉= 1√
2

H (|0〉+ |1〉)

=
1√
2
(H|0〉+H|1〉)

=
1√
2
(|+〉+ |−〉)

=
1
2
(|0〉+|1〉+|0〉−|1〉)

= |0〉

Notice the notations highlighted above in colour. The signs in front on both |0〉 are
the same, while the signs in front of both |1〉 are opposite. This is an example of
quantum interference. |0〉 undergoes constructive interference and |1〉 undergoes
destructive interference. Interference is a property of waves and what you just saw
is an example of the wave-particle duality inherent to quantum mechanics.

Observation 3.5.3: If one implements several quantum operations one after the
other, say U1,U2, . . .Um (where the Ui’s are labelled in chronological order) then the
matrix representation of the combined quantum operation Utot , is given by:

Utot =Um . . .U2U1

Notice that the order of the multiplication goes from right to left in chronological
order. The reason for the reversal is quite simple. After the first operation, the state
is now U1|ψ〉, so the second operation will be applied on this state to give U2U1|ψ〉,
and so on, and so forth.

In the lab, quantum operations are performed in various ways, depending on the
quantum system you’re trying to manipulate. If our qubit is represented by the
polarization of a photon, we use quarter and half wave plates (essentially a piece of
glass). If we use the ground and excited states of an atom, we can use a laser pulse.
There are many different types of qubits and many different ways to perform
operations. During QCSYS, you’ll have the opportunity to learn how we do it with
photons in a hands-on experiment, but you’ll also learn how we do it with other type
of qubits.

3.6 Multiple quantum states
Playing around with one qubit is fun. As you’ll see during QCSYS, manipulating
and measuring one qubit at a time allows us to perform quantum cryptography. But
what if we want to build a quantum computer? A one-qubit quantum computer is not
really powerful, if powerful at all! In this section, we’ll start playing with multiple

Food for thought
We’ve already seen in Example 3.6 on
page 78 that measuring the state |+〉,
and similarly |−〉 in the {|0〉, |1〉} basis
leads to a 50% probability of measuring
each state. Therefore, you can think of the
Hadamard operation on the states |0〉 of
|1〉 as the quantum version of a coin flip.
Say you only have the ability to perform
a measurement in the {|0〉, |1〉} basis, but
you can perform any quantum operation
you desire. How is a quantum coin flip
different than a classical coin flip?
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Note 3.6.1
Let’s use the symbol ⊗ to denote the
abstract mathematical operation of joining
the two separate Hilbert spaces of qubit 1
and qubit 2.

qubits at once, i.e., a composite system. We’ll need more fancy mathematics to talk
about multiple quantum states, but nothing you can’t handle!

Postulate 4: The Hilbert space of a composite system is given by the
tensor product (also known as the Kronecker product) of the separate,
individual Hilbert spaces.

Before giving you the explicit representation of the tensor/Kronecker product, let’s
discuss some physical properties of composite quantum systems. This should lead
us to some abstract properties about the mathematical operation needed to treat
the behaviour of multiple quantum systems as one, bigger quantum system. For
simplicity, we’ll consider a composite system of two qubits, but the generalization to
multiple quantum systems of different dimensions is straightforward.

Properties 3.6.2: Joint quantum systems must follow the following properties:

1. Dimensions:
The first observation to make is that we should be able to see a composite
system made of two qubits (2 dimensions each) as a single quantum system
with 4 dimensions. This follows from the fact that since each qubit has two
exclusive states each (|0〉2 and |1〉2), then the full system will have 4 distinct
states namely:

|00〉4 = |0〉2⊗|0〉2←→ qubit 1 in |0〉2 and qubit 2 in |0〉2
|01〉4 = |0〉2⊗|1〉2←→ qubit 1 in |0〉2 and qubit 2 in |1〉2
|10〉4 = |1〉2⊗|0〉2←→ qubit 1 in |1〉2 and qubit 2 in |0〉2
|11〉4 = |1〉2⊗|1〉2←→ qubit 1 in |1〉2 and qubit 2 in |1〉2

Note: We’ve added the extra subscript 2 and 4 to explicitly denote the fact that
they’re vectors of dimensions 2 and 4 respectively.
Using the same argument as in Section 3.3 on page 74, it would make sense to
explicitly have:

|00〉4 =


1
0
0
0

 , |01〉4 =


0
1
0
0

 , |10〉4 =


0
0
1
0

 , |11〉4 =


0
0
0
1


2. Measurement probabilities

Now, we’ll introduce some arguments about probability. Let’s assume that
qubit 1 is in |ψ1〉2 and qubit 2 in is |ψ2〉2, such that the joint, 4-dimensional
state is abstractly given by |Ψ〉4 = |ψ1ψ2〉4 = |ψ1〉2⊗ |ψ2〉2. Since the joint
system can be seen as a single, larger system of higher dimension, Born’s rule
still applies. Therefore, the probability of measuring qubit 1 in |φ1〉 and qubit 2
in |φ2〉, i.e., measuring the joint system in |Φ〉4 = |φ1φ2〉4 = |φ1〉2⊗|φ2〉2 will
be given by:



3.6: Multiple quantum states 85

P(Φ) = |〈Φ|4|Ψ〉4|2

= |〈φ1φ2|4|ψ1ψ2〉4|2

=
∣∣[〈φ1|2⊗〈φ2|2

][
|φ1〉2⊗|φ2〉2

]∣∣2
But, if we think of each qubit as their own separate system, then the
probability of measuring qubit 1 in |φ1〉2 and the probability of measuring
qubit 2 in |φ〉2 is given by P(φ1) = |〈φ1|ψ1〉|2 and P(φ2) = |〈φ2|ψ2〉|2

respectively. Basic probability theory tells us that the probability of two
independent things happening is given by the product of the individual
probability1, then we must have that:

P(Φ) = P(φ1)P(φ2)

which essentially means that we must have:∣∣[〈φ1|2⊗〈φ2|2
][
|φ1〉2⊗|φ2〉2

]∣∣2 = |〈φ1|ψ1〉|2|〈φ2|ψ2〉|2

3. Joint quantum operations
A final physical argument has to do with quantum operations. If U1 is a
unitary operator on qubit 1 and U2 is a unitary operator on qubit 2, then the
joint operation U1⊗U2 must have the property that:[

U1⊗U2
]
|ψ1ψ2〉4 =

[
U1⊗U2

][
|ψ1〉2⊗|ψ2〉2

]
=
[
U1|ψ1〉2

]
⊗
[
U2|ψ2〉2

]
In other words, the resulting joint state after applying the joint quantum
operation,

[
U1⊗U2

]
|ψ1ψ2〉4 must be equal to the joint state of the individual

state after the individual operations, U1|ψ1〉2 and U2|ψ2〉2 respectively.

Now we’d like to have an explicit representation of the operator ⊗, so that we can
have an explicit representation of states like |ψ1ψ2〉 and operators U1⊗U2. This is
where the Kronecker, or tensor, product comes in.

DEFINITION 3.6.3: Kronecker product for vectors. The Kronecker product
(also referred as the tensor product) is a special way to join vectors together to
make bigger vectors. Suppose we have the two vectors:

~v =

[
v1

v2

]
and ~w =

[
w1

w2

]

1E.g., if the probability of me eating a sandwich tomorrow is 1/4 and the probability of the Toronto
Blue Jays winning tomorrow’s game is 1/10 (they’re not very good!), then since me eating a sandwich has
nothing to do with the result of the baseball game, the probability of me eating a sandwich and the Jays to
win the game is 1/40.
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The Kronecker product is defined as:

~v⊗~w =

[
v1

v2

]
⊗

[
w1

w2

]
=


v1

[
w1

w2

]
v2

[
w1

w2

]
=


v1w1

v1w2

v2w1

v2w2


From the definition of the Kronecker product, it’s straightforward to show that
Property 1 is satisfied. Property 2 is also easy to show, but a little more tedious. Feel
free to do it yourself. We’ll see an example in a few pages showing that it’s satisfied.

EXAMPLE 3.15: The Kronecker (tensor) product of the following two vectors:

~v =

[
2
−3

]
and ~w =

[
1
2

]

is given by:

~v⊗~w =

[
2
−3

]
⊗

[
1
2

]

=


2·
[

1
2

]
−3·

[
1
2

]


=


2
4
−3
−6



EXAMPLE 3.16: Similarly, the Kronecker (tensor) product can readily be
extended to vectors of any dimension. For example, the Kronecker product
of the following two vectors:

~v =

 1
−1
2

 and ~w =

[
3
4

]

is given by:

~v⊗~w =

 1
−1
2

⊗[ 3
4

]
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=



1·
[

3
4

]
−1·

[
3
4

]
2·
[

3
4

]



=



3
4
−3
−4
6
8


Notice that the final vector is 6-dimensional, as expected from Property 1.

From now on, we’ll drop the subscript of the bras and kets representing the
dimensionality of the vectors, as this dimensionality will be obvious from the
context.

DEFINITION 3.6.4: Multiple qubits. If we have two qubits with individual
states |ψ〉 and |φ〉, their joint quantum state |Ψ〉 is given by:

|Ψ〉= |ψ〉⊗ |φ〉

where ⊗ represents the Kronecker product.

Notice that the state of two qubits is given by a 4-dimensional vector. In general,
any 4-dimensional unit vector can represent the state of 2 qubits. Note that this
definition naturally extends to any number of qubits. For example, if we have n
qubits with individual states |ψ1〉, . . . , |ψn〉, the joint state will be given by
|ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉. The final vector will have a dimension of 2n. Similarly,
any 2n-dimensional unit vector can be seen as a n qubit state.

EXAMPLE 3.17: Using the explicit definition of the Kronecker product, we
see that:

|0〉⊗ |0〉=

[
1
0

]
⊗

[
1
0

]
=


1·
[

1
0

]

0 ·

[
1
0

]
=


1
0
0
0



|0〉⊗ |1〉=

[
1
0

]
⊗

[
0
1

]
=


1·
[

0
1

]

0 ·

[
0
1

]
=


0
1
0
0



Trivia fact
As you can see from Definition 3.6.4,
every time a qubit is added to a system,
the dimension of the vector doubles. This
grows really fast, e.g., the dimension of
a 10-qubit system is 210 = 1024, that of a
20-qubit system is 220 = 1048576, and so
on. This shows that quantum mechanics
is extremely hard to simulate on a regular
computer, as there isn’t enough memory
available. As a matter of fact, if we wanted
to just write down the state of roughly 235
qubits, there would not be enough atoms
in the universe to do so!
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|1〉⊗ |0〉=

[
0
1

]
⊗

[
1
0

]
=


0·
[

1
0

]

1 ·

[
1
0

]
=


0
0
1
0



|1〉⊗ |1〉=

[
0
1

]
⊗

[
0
1

]
=


0·
[

0
1

]

1 ·

[
0
1

]
=


0
0
0
1


which is in agreement with our intuitive argument in Property 1.

Before going any further, let’s introduce a couple of friends we’ll become very
familiar with. Please meet Alice and Bob! Who are they? Well, often in quantum
information, when we talk about two qubits, we often say the first qubit belongs to
party A and the second belongs to B. But since we’re friendly with our qubits, we
gave them names: Alice and Bob! So let’s take a look at a few examples with Alice
and Bob.

EXAMPLE 3.18: If Alice has the quantum state |ψ〉 = |0〉 and Bob has the state
|φ〉= |+〉 then their combined state is given by:

|ψ〉⊗ |φ〉= |0〉⊗ |+〉

=

[
1
0

]
⊗ 1√

2

[
1
1

]

=
1√
2


1
1
0
0



EXAMPLE 3.19: We’re going to introduce a new qubit whom we’ll call Charlie.
Suppose Alice is in the state |ψ〉 = |+〉, Bob in the state |φ〉 = |+〉 and their new
pal, Charlie, is in |χ〉= |−〉 then their combined state is given by:

|ψ〉⊗ |φ〉⊗ |χ〉= |+〉⊗ |+〉⊗ |−〉

=
1√
2

[
1
1

]
⊗ 1√

2

[
1
1

]
⊗ 1√

2

[
1
−1

]

=
1
2


1
1
1
1

⊗ 1√
2

[
1
−1

]
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=
1

2
√

2



1
−1
1
−1
1
−1
1
−1



EXAMPLE 3.20: If |Ψ〉 = |+ 1〉 and |Φ〉 = |1−〉, we can calculate the outcome
probability of measuring the state |Ψ〉 in the state |Φ〉 in two ways. Let’s first
write those vectors explicitly:

|Ψ〉= 1√
2

[
1
1

]
⊗

[
0
1

]
=

1√
2


0
1
0
1

 and

|Φ〉=

[
0
1

]
⊗ 1√

2

[
1
−1

]
=

1√
2


0
0
1
−1


1. We will compute directly using Born’s rule:

P(Φ) = |〈Φ|Ψ〉|2

=

∣∣∣∣∣∣∣∣∣∣

1
2

[
0 1 0 1

]
0
0
1
−1


∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣−1
2

∣∣∣∣2 = 1
4

2. Using the inner product property of the Kronecker product (Property 2):

P(Φ) = |〈+1|1−〉|2

= |〈+|1〉|2 · |〈1|−〉|2

=

∣∣∣∣∣∣
1√
2

[
1 0

][
0
1

]∣∣∣∣∣∣
2

·

∣∣∣∣∣ 1√
2

[
0 1

][
1
−1

]∣∣∣∣∣
2

=

∣∣∣∣ 1√
2

∣∣∣∣2 · ∣∣∣∣ 1√
2

∣∣∣∣2 = 1
4
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Trivia fact The concept of
entanglement baffled Einstein so much
that he questioned the validity and
completeness of quantum mechanics.
In a highly regarded article he published
in 1935 with his colleagues Podolsky
and Rosen, he presented a thought
experiment which revealed consequences
of quantum mechanics that seemed
unreasonable and unphysical. This is
known as the “EPR paradox”. Sadly for
Einstein, although the thought experiment
was correct, his conclusions were wrong!
Subsequent work by theorist John
Bell in the 1960s and experiments by
Alain Aspect in the 1980s showed that
entanglement was indeed a real physical
phenomena, hence shattering forever our
concept of physical reality.

EXAMPLE 3.21: Similar example than the previous one, but this time suppose
|Ψ〉= |01〉 and |Φ〉= |1−〉. We can conclude right away that P(Φ) = 0. Why? If
we calculate the probability using the second method above, we don’t have to
explicitly carry out the inner product. Since:

P(Φ) = |〈01|1−〉)|2 = |〈0|1〉|2 · |〈1|−〉|2

and we already know that 〈1|0〉= 0, then the joint probability must be 0.

Actually, the braket notation is particularly well suited to carry out inner
products without having to explicitly do the calculations.

Observation 3.6.5: Interesting two-qubit states. Not every 4-dimensional vector
can be written as a Kronecker product of two 2-dimension vectors, e.g., you can have
a two-qubit state |Ψ〉 such that:

|Ψ〉 6= |ψ〉|φ〉, for any one-qubit state |ψ〉 and |φ〉

These types of states (called entangled states) are very intriguing and play a
fundamental role in quantum mechanics.

DEFINITION 3.6.6: Separable state. If a two-qubit state can be written as:

|Ψ〉= |ψ〉|φ〉, for some one-qubit state |ψ〉 and |φ〉,

then we say that |Ψ〉 is a separable state. In any other case, we call them
entangled states.

DEFINITION 3.6.7: Quantum entanglement. If a two-qubit quantum state |Ψ〉
cannot be written as |ψ〉 ⊗ |φ〉 for any possible choice of |ψ〉 and |φ〉, then |Ψ〉 is
said to be entangled.

Entanglement is a fascinating property of quantum mechanics that’s completely
counter-intuitive. Physically, entangled qubits have a well-defined joint state, yet
they do not have a well-defined individual state! It’s widely accepted that the
phenomenon of quantum entanglement is what makes quantum physics intrinsically
different than classical physics. During QCSYS, we’ll investigate some of these
amazing properties and we’ll even use entanglement to do quantum cryptography.

EXAMPLE 3.22: Are |Φ〉 = 1
2 (|00〉+ |01〉 − |10〉 − |11〉) and |Ψ〉 = 1√

2
(|00〉+

|11〉) separable quantum states?

1. Let’s do the case of |Φ〉 first. Assume that |Φ〉 is separable; therefore there
must exist two vectors:

|ψ〉=

[
ψ1

ψ2

]
and |φ〉=

[
φ1

φ2

]
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such that |Φ〉= |ψ〉|φ〉. Explicitly writing the vectorsgives us the equality:

1
2


1
1
−1
−1

=


ψ1φ1

ψ1φ2

ψ2φ1

ψ2φ2


A quick look at the situation tells us the that ψ1 = φ1 = φ2 = 1/

√
2 and

ψ2 =−1/
√

2 is a solution. Therefore:

|Φ〉= 1√
2

[
1
−1

]
⊗ 1√

2

[
1
1

]
= |−+〉

and |Φ〉 is thus separable.
2. We’ll apply the same technique for the case of |Ψ〉. Assume that |Ψ〉 is

separable, therefore:

1√
2


1
0
0
1

=


ψ1φ1

ψ1φ2

ψ2φ1

ψ2φ2


This tells us that ψ1φ2 = 0 which implies that either ψ1 = 0 or φ2 = 0. If
ψ1 = 0 then, ψ1φ1 = 0, which is a contradiction. Therefore we must have
φ2 = 0, which would imply that ψ2φ2 = 0, which is also a contradiction.
We thus conclude that |Ψ〉 is not separable.

EXAMPLE 3.23: We could have done the example above without ever looking
at the explicit representation of the state. The case of |Ψ〉, for example. We want
to know if two states exist, |ψ〉 = ψ1|0〉 + ψ2|1〉 and |φ〉 = φ1|0〉 + φ2|1〉, such
that |ψ〉⊗ |φ〉= |Ψ〉. Can we solve:

1√
2
(|00〉+ |11〉) = (ψ1|0〉+ψ2|1〉)⊗ (|φ1|0〉+φ2|1〉〉)

= ψ1φ1|00〉+ψ1φ2|01〉+ψ2φ1|10〉+ψ2φ2|11〉?

This leads us to the same four equations to be satisfied, that is:

ψ1φ1 =
1√
2

ψ1φ2 = 0

ψ2φ1 = 0

ψ2φ2 =
1√
2
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EXAMPLE 3.24: Given the two-qubit state |Ψ〉 = 1
2 (|00〉+ |01〉 − |10〉+ |11〉)

and |Φ〉 = 1√
6
(|00〉 + i|01〉 + 2|10〉), what is the probability of measuring the

system in |Φ〉 given that it is originally in |Ψ〉?

You can verify for yourself that neither of these states are separable. Therefore,
we won’t be able to use the second method in Example 3.20 on page 89 directly.
We can still evaluate the probability without explicitly writing down the vectors.

1. Let’s do it explicitly first:

|Ψ〉= 1
2


1
1
−1
1

 and |Φ〉= 1√
6


1
i
2
0


If our quantum system is prepared in |Ψ〉, then Born’s rule tells us that the
probability of measuring it in the state |Φ〉 is given, by P(Φ) = |〈Φ|Ψ〉|2:

〈Φ|Ψ〉= 1
2
√

6

[
1 −i 2 0

] 
1
1
−1
1


=

1− i−2
2
√

6

=
−1− i
2
√

6

=⇒ P(Φ) =

∣∣∣∣−1− i
2
√

6

∣∣∣∣2 = 1
12

2. For the implicit method, we just carry on the abstract multiplication:

〈Φ|Ψ〉= 1
2
√

6

[
〈00|+ i〈01|+2〈10|

][
|00〉+ |01〉− |10〉+ |11〉

]
The key observation here is that the inner product is written using an
orthormal basis, so we only need to multiply the coefficient of the same
terms, i.e., the coefficient of 〈00| with the coefficient of |00〉, then the
coefficient of 〈01| with the coefficient of |01〉 and so on. In the blink of an
eye, we conclude that:

〈Φ|Ψ〉= (1− i−2)
2
√

6

=
−1− i
2
√

6

=⇒ P(Φ) =
1

12
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The second method used above is actually much quicker than writing things down
explicitly. With a little bit of practice, and you’ll get plenty during QCSYS, you’ll be
able to evaluate measurement probability without writing anything down!

DEFINITION 3.6.8: Bell’s states. The following two-qubit states are known as
the Bell’s states. They represent an orthonormal, entangled basis for two qubits:

|Φ+〉= 1√
2
(|00〉+ |11〉)

|Φ−〉= 1√
2
(|00〉− |11〉)

|Ψ+〉= 1√
2
(|01〉+ |10〉)

|Ψ−〉= 1√
2
(|01〉− |10〉)

Now that we’ve covered how to represent the state of multiple qubits and how to
predict the measurement probabilities, let’s investigate how to represent a quantum
operation on multiple qubits.

DEFINITION 3.6.9: Unitary matrices acting on two qubits. Suppose we have
two unitary matrices U1 and U2. Then:

U =U1⊗U2

is a bigger matrix which satisfies the following rule (Property 3 on page 85):

U(|ψ〉⊗ |φ〉) = (U1⊗U2)(|ψ〉⊗ |φ〉) =U1|ψ〉⊗U2|φ〉

EXAMPLE 3.25: Recall the matrices defined in Example 3.12 on page 82. If we
apply the unitary matrix U = X⊗Z to the state |0+〉, we get:

U |0+〉= (X⊗Z)(|0〉⊗ |+〉)

= X |0〉⊗Z|+〉

= |1〉⊗ |−〉 (verify that for yourself)

=
1√
2


0
0
1
−1



DEFINITION 3.6.10: Kronecker product for matrices. We can generalize the
Kronecker product to matrices. Suppose we have the two matrices:

M =

[
m1 m2

m3 m4

]
and N =

[
n1 n2

n3 n4

]
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The Kronecker product is defined as:

M⊗N =


m1

[
n1 n2

n3 n4

]
m2

[
n1 n2

n3 n4

]

m3

[
n1 n2

n3 n4

]
m4

[
n1 n2

n3 n4

]


=


m1n1 m1n2 m2n1 m2n2

m1n3 m1n4 m2n3 m2n4

m3n1 m3n2 m4n1 m4n2

m3n3 m3n4 m4n3 m4n4



EXAMPLE 3.26: Using the above definition for the Kronecker product of two
matrices, we could find the same result by performing the calculation explicitly:

X⊗Z =

[
0 1
1 0

]
⊗

[
1 0
0 −1

]

=


0 ·

[
1 0
0 −1

]
1 ·

[
1 0
0 −1

]

1 ·

[
1 0
0 −1

]
0 ·

[
1 0
0 −1

]


=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


Applying this unitary operation on the state:

|0+〉= 1√
2


1
1
0
0


yields:

X⊗Z|0+〉=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0




1
1
0
0



=
1√
2


0
0
1
−1


= |1−〉
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Observation 3.6.11: Arbitrary two-qubit operation. Similar to the state
representation of multiple qubits, not every 4×4 unitary matrix can be written as
the Kronecker product of two 2× 2 matrices. On the other hand, any 4× 4 unitary
matrix can be thought of as a quantum operation of two qubits. If the operation
cannot be written as a Kronecker product of two matries, we say that this is an
entangling operation.

More generally, any 2n×2n matrix can be seen as a quantum operation on n qubits.

EXAMPLE 3.27: Take the two-qubit quantum operation represented by the
following matrix:

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


You can verify for yourself that U is a unitary matrix and therefore represents a
valid quantum operation (recall Definition 3.5.1 on page 81). You can prove for
yourself that no 2×2 matrices V1 and V2 such that U =V1⊗V2 exist.

Imagine the following situation: Start with two qubits in the joint state
|ψ0〉= |00〉. First, you apply a Hadamard operation on the first qubit (recall

the Hadamard matrix from Example 3.12 on page 82) and then you applied the
operation U . What would be the final state? There are several ways of finding
out the final state, so we’ll investigate a few of them.

1. Explicit calculation: The Hadamard is a one-qubit operation, but we want
to apply it to a two-qubit state, how is that done? First, you have to realize
that applying the Hadamard to the first qubit only is the exact same thing
as saying “apply the Hadamard to the first qubit and nothing to the second
qubit”. Recall from Definition 2.7.1 on page 66 that the identity matrix
applied to any vectors always returns the same vector. That is to say, from
a quantum operation perspective, the identity operation is just like doing
nothing! Therefore, applying a Hadamard on only the first qubit is
equivalent to the quantum operation on two qubits given by:

H⊗1l =
1√
2

[
1 1
1 −1

]
⊗

[
1 0
0 1

]

=
1√
2


1

[
1 0
0 1

]
1

[
1 0
0 1

]

1

[
1 0
0 1

]
−1

[
1 0
0 1

]

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=
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


Therefore, right after that operation, the qubits will be in the state:

|ψ1〉= (H⊗1l) |00〉

=
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1
0
0
0



=
1√
2


1
0
1
0


After applying the operation U , the final state will be given by:

|ψ2〉=U |ψ1〉

=
1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
0
1
0



=
1√
2


1
0
0
1


=

1√
2
(|00〉+ |11〉)

= |Φ+〉 (recalling the notation for Bell’s states)

2. Explicit calculation revisited: Instead of calculating the state at each stage,
we could instead calculate the matrix that represents both operations first,
and then apply it to the initial state. From Observation 3.5.3 on page 83,
recall that if we apply the operator U1 followed by the operator U2, the
quantum operator describing the overall operation is represented by
Utot = U2U1 (notice the order of the indices). In our case, U1 = H ⊗ 1l and
U2 =U , therefore:

Utot =
1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


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=
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


From there, we can directly calculate the final state:

|ψ2〉=U(H⊗1l)|00〉

=
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0




1
0
0
0



=
1√
2


1
0
0
1


3. Explicit calculation revisited again: By using the properties of the

Kronecker product, we wouldn’t need to explicitly find the matrix form
of H⊗1l. Instead, we could have gone this way:

|ψ1〉= (H⊗1l) |00〉

= H|0〉⊗1l|0〉

=
1√
2

[
1 1
1 −1

][
1
0

]
⊗

[
1 0
0 1

][
1
0

]

=
1√
2

[
1
1

]
⊗

[
1
0

]

=
1√
2


1
0
1
0


Then we can explicitly apply the operator U to find the final state.

4. A bit more implicit: Remember the property of the Hadamard matrix we
saw in Example 3.14 on page 82, namely that H|0〉 = |+〉. Using this fact,
we could have performed the above calculation as:

|ψ1〉= (H⊗1l) |00〉

= H|0〉⊗1l|0〉

= |+〉|0〉

=
1√
2
(|0〉+ |1〉) |0〉

=
1√
2
(|00〉+ |10〉)
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Food for thought
In quantum information, the matrix U
as defined above is referred to as a
controlled-NOT, or CNOT. Can you
explain why?

Food for thought
In light of Example 3.27, suppose you’d
like to measure a two-qubit state in the
Bell basis, but unfortunately, you can
only perform a measurement in the
computational basis. How would you
solve that conundrum?

=
1√
2


1
0
1
0


5. Fully implicit: In the method above, we found the intermediate state

without ever multiplying matrices and vectors. Can we implicitly apply
the operator U in an implicit manner as well? Since we cannot write
U = V1 ⊗ V2 for any matrices V1 and V2, our first instinct would be to say
no. But look carefully at U , specifically, look at how it operates on the
computational, or standard basis states (look back at Observation 2.5.10 on
page 60). You’ll find that:

U |00〉= |00〉

U |01〉= |01〉

U |10〉= |11〉

U |11〉= |10〉

Therefore, we could continue the calculation above as:

|ψ2〉=U |ψ1〉

=
1√
2

U (|00〉+ |10〉)

=
1√
2
(U |00〉+U |10〉)

=
1√
2
(|00〉+ |11〉)

3.7 Observables
The last and final postulate needed to complete quantum theory has to do with the
concepts on observables:

Postulate 5: Physical observables are represented by the eigenvalues
of a Hermitian operator on the Hilbert space.

As a quick side note, a hermitian operator is any operator, or matrix, that’s its own
conjugate transpose.That is, an operator V such that V † =V.

As mentioned at the beginning of this section, we won’t go into too much detail
about the notion of observables as the details are a bit beyond the scope of this
book. But don’t worry, it won’t affect our appreciation of quantum mechanics and
quantum information.

By now, we’re really good at calculating the probability of finding a quantum system
in a certain state (Born’s rule). But what does it mean to “measure to be in a given
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state?” In real life, we cannot measure states, but we can measure physical quantities
like magnetic fields, position, polarization, momentum, spin, etc., in other words,
we’re looking for an observable. The fifth postulate of quantum mechanics says that
for a given physically meaningful quantity with multiple possible values, there’s a
hermitian operator that associates the mutually exclusive states of the system with
the possible value of the measurements.

EXAMPLE 3.28: Recall that we can build a qubit using the ground state |g〉 of
an atom and its excited state |e〉. In principle, |g〉 and |e〉 can be represented
using any orthonormal basis vectors, not necessarily the standard basis. If the
ground state has energy (the observable) Eg and the excited state has energy Ee,
we can define a hermitian energy operator V such that:

V |g〉= Eg|g〉

V |e〉= Ee|e〉

That is to say, the operator applied to the corresponding state returns the values
of the observable times the state. Another side note, Eg and Ee are referred to as
the eigenvalue of V with corresponding eigenvectors, or eigenstates, |g〉 and |e〉.
(More on that some other time!)
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3.8 Summary

Chapter 3 Summary

Find the key formulas and concepts we have learned in this section in the list below:

Quantum states: Any unit vectors of appropriate dimension

Quantum bit/qubit: A two-level, or two dimensional, quantum system

Born’s rule: P(φ) = |〈φ |ψ〉|2

State collapse: If measured in |φ〉, the system collapses in |φ〉

Quantum operator: Any unitary matrix of appropriate dimension

Multiple qubits: |ψ1ψ2〉= |ψ1〉⊗ |ψ2〉

Born’s rule for multiple qubits: P(Φ) = |〈φ1φ2|ψ1ψ2〉|2 = |〈φ1|ψ1〉|2|〈φ2|ψ2〉|2

Quantum entanglement: |Ψ〉 6= |φ〉⊗ |ψ〉 for any |φ〉 and |ψ〉



Appendices

“The development of quantum mechanics early in the twentieth
century obliged physicists to change radically the concepts they
used to describe the world.”
ALAIN ASPECT

“As far as the laws of mathematics refer to reality, they are
not certain; and as far as they are certain, they do not refer
to reality.”
ALBERT EINSTEIN
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A.1 Greek letters

Lower Upper Name Lower Upper Name

α A Alpha ν N Nu
β B Beta ξ Ξ Xi
γ Γ Gamma o O Omicron
δ ∆ Delta π Π Pi
ε E Epsilon ρ P Rho
ζ Z Zeta σ Σ Sigma
η H Eta τ T Tau
θ Θ Theta υ ϒ Upsilon
ι I Iota φ Φ Phi
κ K Kappa χ X Chi
λ Λ Lambda ψ Ψ Psi
µ M Mu ω Ω Omega
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A.2 Properties of complex numbers: Proofs
In Section 1.2 starting on page 17, we stated the following properties of
complex numbers:

1. z+w = w+ z (commutativity of addition)
2. z+w = z+w
3. zw = wz (commutativity of multiplication)
4. zw = zw
5. zz̄ = z̄z = |z|2

6. z = z
7. |z|= |z|
8. |zw|= |z||w|
9. |z+w| ≤ |z|+ |w|

10. z−1 =
1
z
=

z̄
|z|2

when z 6= 0+0i

We strongly encourage you to prove these properties for yourself. If you have any
difficulties, refer to the proofs below.

Just assume that z = a+bi and w = c+di

Property A.1: z+w = w+ z

Proof :

z+w = (a+bi)+(c+di)

= a+bi+ c+di

= (c+di)+(a+bi)

= (c+di)+(a+bi)

= w+ z

Property A.2: z+w = z+w

Proof :

z+w = (a+bi)+(c+di)

= (a+ c)+(b+d)i

= (a+ c)− (b+d)i

= (a−bi)+(c−di)

= z+w

Property A.3: zw = wz

Proof : On one hand, we have:

zw = (a+bi)(c+di)

= ac+adi+bci+bdi2

= (ac−bd)+(ad +bc)i, since i2 =−1
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On the other hand, we have:

wz = (c+di)(a+bi)

= ca+ cbi+dai+bdi2

= (ca−db)+(da+bc)i

= (ac−bd)+(ad +bc)i

Since both results are the same, that concludes our proof.

Property A.4: zw = zw

Proof : On one hand, we have:

zw = (a+bi)(c+di)

= (ac−bd)+(ad +bc)i

= (ac−bd)− (ad +bc)i

On the other hand, we have:

zw = (a+bi)(c+di)

= (a−bi)(c−di)

= ac−adi−bci+bdi2

= (ac−bd)− (ad +bc)i

Since both results are the same, that concludes our proof.

Property A.5: zz = zz = |z|2

Proof :

zz = (a+bi)(a−bi)

= a2−abi+bai−b2ii

= a2−abi+abi+b2

= a2 +b2

= |z|2, since |z|=
√

a2 +b2

We already know that zz = zz by Property 3, so we’re done.

Property A.6: z = z

Proof :

z = a+bi

= a−bi

= a+bi

= z

Property A.7: |z|= |z|
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Proof :

|z|= |a−bi|

=
√

a2 +(−b)2

=
√

a2 +b2

= |z|

Property A.8: |zw|= |z||w|
Proof :

|zw|2 = |(a+bi)(c+di)|2

= |(ac−bd)+(ad +bc)i|2

= (ac−bd)2 +(ad +bc)2

= a2c2−2abcd +b2d2 +a2d2 +2abcd +b2c2

= a2c2 +b2d2 +a2d2 +b2c2

= a2c2 +a2d2 +b2c2 +b2d2 (just moving things around)

= a2(c2 +d2)+b2(c2 +d2) (by factoring out a2 and b2)

= (a2 +b2)(c2 +d2) (by factoring out (c2 +d2))

= |z|2|w|2

=⇒ |zw|= |z||w|

Property A.9: |z+w| ≤ |z|+ |w|
Proof : That one is a little trickier, but let’s do it.

|z+w|2 = |(a+ c)+(b+d)i|2

= (a+ c)2 +(b+d)2

= a2 +2ac+ c2 +b2 +2bd +b2

= (a2 +b2)+2(ac+bd)+(c2 +d2) (just moving things around)

= |z|2 +2(ac+bd)+ |w|2

Now, the critical observation is that (ac+ bd) is actually the real part of zw since
zw= (ac+bd)+(−ad+bc)i, i.e., (ac+bd) = Re(zw). The other critical observation
is that the real part of a complex number, will always be smaller or equal than the
length, or modulus, of that number, take for example Re(z) = a≤

√
a2 +b2.

Therefore, we have that:

Re(zw)≤ |zw|

= |z||w|, (using Property 8)

= |z||w|, (using Property 7)
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If we put our two results together, we have:

|z+w|2 = |z|2 +2(ac+bd)+ |w|2

≤ |z|2 +2|z||w|+ |w|2

= (|z|+ |w|)2

=⇒ |z+w| ≤ |z|+ |w|

Property A.10: z−1 =
1
z
=

z̄
|z|2

when z 6= 0+0i

Proof :

1
z
=

1
z
· z̄

z̄
(we’re just multiplying by 1!)

=
z̄
|z|2
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A.3 Euler number and exponential
functions

Euler number e and the exponential functions ex play a central role in mathematics.
In order to fully grasp the beauty of these two concepts, some knowledge of
derivative and integral calculus is needed. Since we don’t assume you know
calculus, we won’t go into the details of what the function is, but focus instead on
how we can use it.

In general, an exponential function refers to any function of the form f (x) = ax

where a is a constant which can be any number (real or complex) and x is a real or a
complex variable. The notation ax refers to multiplying a by itself x times.

EXAMPLE A.1: Let’s see a few examples where the exponent is an integer.

1. 24 = 2 ·2 ·2 ·2 = 8
2. (−3.1)3 = (−3.1) · (−3.1) · (−3.1) = 29.79
3. (2i)5 = 2i ·2i ·2i ·2i ·2i = 32(i5) = 32i

Although we can explicitly and exactly evaluate an exponential function when the
exponent is a real integer, we have methods to compute the exponential function for
any real and complex exponent. (You’ll see an example below.)

Exponential functions are particularly well suited to model mathematical situations
where a constant change in the independent variable x makes the dependant variable
f (x) undergo a proportional change (i.e., its value gets multiplied by a fixed
amount). Take the function f (x) = 2x for example. Every time x increases by 1, the
value of f (x) doubles.

Properties A.1: Some properties, without proofs, of exponential functions:

1. a0 = 1
2. axay = ax+y

3. axy = (ax)y

4.
(a

b

)x
=

ax

bx

5. a−1 =
1
a

(this is actually a consequence of Properties 1 and 2)

6. a−x = (a−1)x =

(
1
a

)x

=
1
ax

It’s now time to introduce Euler’s number e, which has the value:

e = 2.7182818284590452353602874713527 . . .

The value of e seems to come out of nowhere, but the function f (x) = ex has some
very nice properties. First, the rate of change of that function at any point x is



108 Appendices

actually ex. If you’re familiar with the concept of the slope of a curve, then the slope
of ex is ex. If you’re familiar with calculus and derivatives, then it means that:

d
dx

ex = ex

Moreover, ex has a very nice series expansion that can be used to evaluate its value
for any x:

ex =
∞

∑
n=0

xn

n!

= 1+ x+
x2

2!
+

x3

3!
+

x4

4!
. . .

Since this series converges very rapidly, we can evaluate ex for any real or complex x
by only adding a few terms.
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A.4 Radians
When you learned trigonometric functions – cosine, sine, tangent – chances are, you
learned to evaluate them using angles given in degrees. The fact that the full circle is
split into 360 degrees or slices, is actually a completely arbitrary system of units that
has nothing to do with anything and is more of a nuisance than anything else!

Again, as mathematicians in training, we’re attracted to mathematical beauty,
simplicity and logic. Therefore we’re going to define a new way to split the circle:
the radian. We know that the circumference of a circle with radius r is given by 2πr
and we’ll try to define our angle units in a way that relates to the circumference.

Definition A.1: Radians. Refer to Figure A.1. The angle subtended at the
centre of a circle, measured in radians, is equal to the ratio of the length of the
enclosed arc to the length of the circle’s radius. In other words:

θrad =
l
r

where r is the circle radius and l is the arc subtended by the angle.

Figure A.1: An angle in radian can be defined as the ratio of the the length of the
subtended arc l and the radius r.

This might be a little abstract, but at least the definition depends on properties of the
circle, and not some arbitrary numbers. From the above definition and the value of
the circumference of the circle, it follows that:

full circle↔ 2π rad

Note that even though rad is a unit of measure, since it’s defined as a ratio of two
lengths, it’s dimensionless. Therefore, we usually don’t use the rad.
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Since we have the equivalence 360◦↔ 2π , we can convert an angle given in degrees,
say θ ◦ into its radian equivalent, θ , using this simple proportionality relation:

θrad =
θ ◦

360◦
×2π

The first term above is the fraction of the full circle the angle subtends and since we
know that the full circle is 2π radian, than we multiply that ratio by 2π to get the
radian angle equivalent. From this you can calculate that:

1rad ≈ 57.3◦

Here is a quick reference table to help you:

Degrees Radians cosθ sinθ tanθ

0 0 1 0 0

30 π

6

√
3

2
1
2

1√
3

45 π

4
1√
2

1√
2

1

60 π

3
1
2

√
3

2

√
3

90 π

2 0 1 ∞

135 3π

4 − 1√
2

1√
2

-1

180 π -1 0 0
225 5π

4 − 1√
2
− 1√

2
1

270 3π

2 0 -1 −∞

315 7π

4
1√
2

− 1√
2

-1
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A.5 Proof of Euler’s theorem

Theorem A.1: Euler’s formula. We’d like to prove that:

eiθ = cosθ + isinθ

where θ is in radians.
Proof : The Taylor series of basic functions are:

sinx =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
− x7

7!
. . .

cosx =
∞

∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
. . .

ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+

x4

4!
. . .

Note that we can break the Taylor series of the exponential functions into even and
odd exponents:

ex = ∑
neven

xn

n!
+ ∑

nodd

xn

n!

=
∞

∑
n=0

x2n

(2n)!
+

∞

∑
n=0

x2n+1

(2n+1)!

By observing the pattern: i2 =−1, i3 =−i, i4 = 1, i5 = i . . ., we see that:

i2n = (−1)n, for n = 0,1,2, . . .

i2n+1 = i(−1)n, for n = 0,1,2, . . .

Putting all this together, we have:

eiθ =
∞

∑
n=0

(iθ)2n

(2n)!
+

∞

∑
n=0

(iθ)2n+1

(2n+1)!

=
∞

∑
n=0

(−1)nθ 2n

(2n)!
+

∞

∑
n=0

i(−1)nθ 2n+1

(2n+1)!

=
∞

∑
n=0

(−1)nθ 2n

(2n)!
+ i

∞

∑
n=0

(−1)nθ 2n+1

(2n+1)!

= cosθ + isinθ
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