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Gorenstein projective dimensions of modules

over minimal Auslander-Gorenstein algebras

Shen Li, René Marczinzik, Shunhua Zhang

Abstract

In this article we investigate the relations between the Gorenstein projective di-

mensions of Λ-modules and their socles for minimal n-Auslander-Gorenstein algebras

Λ in the sense of Iyama and Solberg [8]. First we give a description of projective-

injective Λ-modules in terms of their socles. Then we prove that a Λ-module N

has Gorenstein projective dimension at most n iff its socle has Gorenstein projective

dimension at most n iff N is cogenerated by a projective Λ-module. Furthermore,

we show that minimal n-Auslander-Gorenstein algebras can be characterised by the

relations between the Gorenstein projective dimensions of modules and their socles.

Key words and phrases: minimal Auslander-Gorenstein algebras, higher Auslan-

der algebras, Gorenstein projective dimension

1 Introduction

An Artin algebra is called an Auslander algebra if its global dimension is at most

2 and its dominant dimension is at least 2. Auslander established a bijection between

representation-finite algebras and Auslander algebras, given by M ÞÑ EndAM where A is

a representation-finite Artin algebra and M is an additive generator of A. In [6], Iyama

introduced n-Auslander algebras. As a generalisation of Auslander algebras, n-Auslander
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algebras are characterised by having global dimension at most n+1 and dominant dimen-

sion at least n+1. There is a one-to-one correspondence between n-Auslander algebras

and finite n-cluster tilting subcategories, see [6] for details. This is known as the higher

Auslander correspondence. τ -selfinjective algebras were introduced by Auslander and

Solberg in [2]. The endomorphism algebra of some suitable module over a τ -selfinjective

algebra satisfies that the injective dimension of the left (right) regular module is at most

2 and the dominant dimension is at least 2. Thus it can be considered as a general-

isation of Auslander algebras. There also exists a one-to-one correspondence between

τ -selfinjective algebras and algebras with injective dimension of the left (right) regular

module at most 2 and dominant dimension at least 2, see [2] and [9] for details.

In [8], Iyama and Solberg gave a further generalisation and defined the minimal n-

Auslander-Gorenstein algebras. Then they introduced the notion of n-precluster tilting

subcategories and established a one-to-one correspondence between minimal n-Auslander-

Gorenstein algebras and finite n-precluster tilting subcategories. The n-precluster tilting

subcategories generalize and unify two seemingly different concepts, namely n-cluster

tilting subcategories and τ -selfinjective algebras. We refer to [8] for details. See also

[11] for another generalisation and [4] and [12] for examples and applications of minimal

Auslander-Gorenstein algebras.

Definition 1.1. An Artin algebra Λ is called a minimal n-Auslander-Gorenstein algebra

if it satisfies idΛΛ ď n ` 1 ď domdimΛ.

Here id and domdim denote the injective dimension and dominant dimension, respec-

tively. The definition of minimal n-Auslander-Gorenstein algebras is left-right symmetric,

that is Λ is a minimal n-Auslander-Gorenstein algebra if and only if Λop is a minimal

n-Auslander-Gorenstein algebra. Thus a minimal n-Auslander-Gorenstein algebra Λ is

either a self-injective algebra or an (n+1)-Gorenstein algebra satisfying idΛΛ “ n ` 1 “

domdimΛ. Let N be a finitely generated Λ-module. Then the Gorenstein projective

dimension of N is at most n+1 for any Gorenstein algebra of self-injective dimension

n+1. The main aim of this paper is to investigate the relations between the Gorenstein

projective dimensions of N and its socle for minimal n-Auslander-Gorenstein algebras.

First we calculate the Gorenstein projective dimensions of all simple Λ-modules by using
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n-precluster tilting subcategories.

Let A be an Artin algebra. We denote by A-mod the category of finitely generated

left modules. In [7] the functors

τn “ τΩn´1

A : A-mod ÝÑ A-mod and τ´
n “ τ´Ω

´pn´1q
A : A-mod ÝÑ A-mod

are defined as the n-Auslander-Reiten translations.

Definition 1.2. [8, Definition 3.2]

A subcategory C of A-mod is called an n-precluster tilting subcategory if it satisfies

the following conditions:

p1q C is a generator-cogenerator for A-mod,

p2q τnpCq Ď C and τ´
n pCq Ď C,

p3qExtiApC, Cq “ 0 for 0 ă i ă n,

p4q C is a functorially finite subcategory of A-mod.

If moreover C admits an additive generator M , we say that C is a finite n-precluster

tilting subcategory. The endomorphism algebra Λ “ EndApMqop of M is a minimal n-

Auslander-Gorenstein algebra and all minimal n-Auslander-Gorenstein algebras can be

constructed in this way. In particular, Λ is self-injective if and only if M is projective.

Let M “ ‘t
i“1

Mi with Mi indecomposable be a basic additive generator of an n-

precluster tilting subcategory C in A-mod and Λ “ EndApMqop. Let Si be the top of the

indecomposable projective Λ-module HomApM,Miq. We show the following result.

Theorem 1. (Theorem 3.1)

The Gorenstein projective dimension of Si is at most n if Mi is a projective A-module.

Otherwise the Gorenstein projective dimension of Si is equal to n+1.

Note that the dominant dimension of a minimal n-Auslander-Gorenstein algebra Λ is

at least n+1 and there exist projective-injective Λ-modules. We denote by prinj(Λ) the
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full subcategory of projective-injective Λ-modules and we denote by GPďnpΛq the full

subcategory of Λ-modules whose Gorenstein projective dimensions are at most n and by

subΛ the full subcategory of Λ-modules which can be cogenerated by a finite direct sum

of Λ.

We prove that a minimal n-Auslander-Gorenstein algebra Λ can be characterised

by the relations between the Gorenstein projective dimensions of Λ-modules and their

socles. We also refer to [14] and [15] for other characterisations of minimal n-Auslander-

Gorenstein algebras.

Theorem 2. (Theorem 4.1)

Let Λ be a pn ` 1q-Gorenstein algebra. Then Λ is a minimal n-Auslander-Gorenstein

algebra if and only if it satisfies prinjpΛq=tI P Λ-mod | I is injective and GpdpsocIq ď nu.

Theorem 3. (Theorem 4.3)

Let Λ be an Artin algebra. Then Λ is a minimal n-Auslander-Gorenstein algebra if

and only if it satisfies GPďnpΛq “ tN P Λ-mod | GpdpsocNq ď nu “ subΛ.

Theorem 2 and Theorem 3 generalise the main results in [10] where the results are

proved for the special case of Auslander algebras.

This paper is arranged as follows. In section 2, we fix the notions and recall some

necessary facts. In section 3, we prove Theorem 1 and further results needed in section

4. Section 4 is devoted to the proof of Theorem 2 and Theorem 3.

2 Preliminaries

Throughout this paper, we consider basic Artin algebras. All modules are finitely

generated left modules in case nothing is stated otherwise. For an algebra A, we denote

by A-mod the category of finitely generated left A-modules. For an A-module N , GpdN

ppdNq is the Gorenstein projective (projective) dimension of N . We denote by ΩiN

pΩ´iNq the ith syzygy (cosyzygy) of N and by τA the Auslander-Reiten translation of

A. The composition of morphisms f : X Ñ Y and g : Y Ñ Z is denoted by gf : X Ñ Z.
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We follow the standard terminologies and notations used in the representation theory of

algebras, see [1] and [3]. For background on Gorenstein homological algebra we refer to

[5].

First we recall some results about Gorenstein projective dimensions.

Lemma 2.1. [5, Proposition 3.2.2]

Let N be an A-module of finite Gorenstein projective dimension and n be an integer.

Then the following are equivalent:

p1q GpdN ď n,

p2q ExtiApN,Lq “ 0 for i ě n ` 1 and any A-module L of finite projective dimension,

p3q ExtiApN,Aq “ 0 for i ě n ` 1,

p4q Extn`1

A pN,Lq “ 0 for any A-module L of finite projective dimension.

Consequently, GpdN “ supti ě 0 | ExtiApN,Aq ‰ 0u.

We remark that in a Gorenstein algebra of self-injective dimension n, every module

has finite Gorenstein projective dimension at most n.

The next lemma gives relations between Gorenstein projective dimensions of the three

modules in a short exact sequence.

Lemma 2.2. [5, Corollary 3.2.4]

Let 0 Ñ X Ñ Y Ñ Z Ñ 0 be a short exact sequence in A-mod. Then we have

p1q GpdY ď maxtGpdX,GpdZu,

p2q GpdX ď maxtGpdY,GpdZ ´ 1u,

p3q GpdZ ď maxtGpdY,GpdX ` 1u.

Let C be a finite n-precluster tilting subcategory in A-mod and M be a basic additive

generator of C, namely C “addM . In [8], Iyama and Solberg generalised the Auslander

correspondence to the following higher version.
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Theorem 2.3. [8, Theorem 4.5]

There is a bijection between equivalence classes of finite n-precluster tilting subcate-

gories C and Morita-equivalence classes of minimal n-Auslander-Gorenstein algebras Λ,

where the correspondence is given by M ÞÑ Λ “ EndApMqop.

For an n-precluster tilting subcategory C in A-mod, we have CKn´1 “Kn´1 C where

CKn´1 “ tX P A-mod | ExtiApC,Xq “ 0 for 0 ă i ă nu and Kn´1C is defined similarly.

Let ZpCq “ CKn´1 “Kn´1 C and UpCq “ ZpCq{rCs. We know that C Ď ZpCq. Moreover,

ZpCq has a structure of a Frobenius category and the projective-injective objects are

precisely objects in C. Thus UpCq is a triangulated category. Furthermore, if C is a finite

n-precluster tilting subcategory with an additive generator M and Λ=EndApMqop, we

have

Theorem 2.4. [8, Theorem 4.7]

Let GPpΛq be the subcategory of Λ-mod consisting of all Gorenstein projective Λ-

modules. Then ZpCq and GPpΛq are equivalent via the functor HomApM,´q. Moreover

HomApM,´q induces a triangle equivalence between UpCq and GPpΛq.

Let B be a subcategory of A-mod. A complex X‚ “ pXi, diqiPZ of A-modules is called

HomApB,´q-exact (HomAp´,Bq-exact) if X‚ is exact and for any Y P B, HomApY,X‚q

pHomApX‚, Y qq is also exact.

The next lemma shows that for any A-module X, there exists a HomApC,´q-exact

ZpCq-resolution (HomAp´, Cq-exact ZpCq-coresolution).

Lemma 2.5. [8, Corollary 3.16]

Let C be an n-precluster tilting subcategory and X in A-mod. Then

p1q For any 0 ď i ď n ´ 1, there exists a HomApC,´q-exact sequence

0 Ñ Cn´1

fn´1

ÝÝÝÑ ¨ ¨ ¨
fi`2

ÝÝÝÑ Ci`1

fi`1

ÝÝÝÑ Zi
fiÝÑ Ci´1

fi´1

ÝÝÝÑ ¨ ¨ ¨
f1
ÝÑ C0

f0
ÝÑ X Ñ 0

with Zi in ZpCq and Cj in C for any j. Moreover Imfj is in CKj for any j.
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p2q For any 0 ď i ď n ´ 1, there exists a HomAp´, Cq-exact sequence

0 Ñ X
f0

ÝÑ C0 f1

ÝÑ ¨ ¨ ¨
f i´1

ÝÝÝÑ Ci´1 f i

ÝÑ Zi f i`1

ÝÝÝÑ Ci`1 f i`2

ÝÝÝÑ ¨ ¨ ¨
fn´1

ÝÝÝÑ Cn´1 Ñ 0

with Zi in ZpCq and Cj in C for any j. Moreover Imf j is in KjC for any j.

In [8], Iyama and Solberg introduced a higher Auslander-Reiten theory for n-precluster

tilting subcategories.

Definition 2.6. [8, Definition 5.1]

Let A be an Artin algebra, X and Y be A-modules and η be a non-zero element in

ExtnApX,Yq.

p1q We say that η is a right n-fold almost split extension of X if for any A-module Z

and a non-zero element ξ in ExtnApX,Zq, there exists a morphism f : Z Ñ Y such that

η “ fξ.

p2q We say that η is a left n-fold almost split extension of Y if for any A-module Z

and a non-zero element ξ in ExtnApZ, Y q, there exists a morphism g : X Ñ Z such that

η “ ξg.

p3q We say that η is an n-fold almost split extension if it is a right n-fold almost split

extension of X and a left n-fold almost split extension of Y .

Let X and Y be indecomposable A-modules. If η P ExtnApX,Y q is an n-fold almost

split extension, we have Y “ τnX and X “ τ´
n Y .

We denote by PpAq pIpAqq the full subcategory of A-mod consisting of all projec-

tive (injective) modules. The following result shows that there exist n-fold almost split

extensions in ZpCq.

Theorem 2.7. [8, Theorem 5.10]

Let C be an n-precluster tilting subcategory in A-mod, X be an indecomposable mod-

ule in ZpCqzPpAq, and Y :“ τnpXq be the corresponding indecomposable module in

ZpCqzIpAq.
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p1q For each 0 ď i ď n ´ 1, an n-fold almost split extension in ExtnApX,Y q can be

represented as

0 Ñ Y Ñ Cn´1 Ñ ¨ ¨ ¨ Ñ Ci`1 Ñ Zi Ñ Ci´1 Ñ ¨ ¨ ¨ Ñ C0 Ñ X Ñ 0

with Zi in ZpCq and Cj in C for any j.

p2q The following sequences are exact.

0 Ñ HomApC, Y q Ñ HomApC, Cn´1q Ñ ¨ ¨ ¨ Ñ HomApC, Ci`1q Ñ HomApC, Ziq

Ñ HomApC, Ci´1q Ñ ¨ ¨ ¨ Ñ HomApC, C0q Ñ radApC,Xq Ñ 0,

0 Ñ HomApX, Cq Ñ HomApC0, Cq Ñ ¨ ¨ ¨ Ñ HomApCi´1, Cq Ñ HomApZi, Cq

Ñ HomApCi`1, Cq Ñ ¨ ¨ ¨ Ñ HomApCn´1, Cq Ñ radApY, Cq Ñ 0.

p3q If X and Y do not belong to C, then the n-fold almost split extension in p1q can

be given as a Yoneda product of a minimal ZpCq-resolution of X

0 Ñ Ωi
ZpCqpXq Ñ Ci´1 Ñ ¨ ¨ ¨C0 Ñ X Ñ 0,

an almost split sequence in ZpCq

0 Ñ Ω
´pn´i´1q
ZpCq pY q Ñ Zi Ñ Ωi

ZpCqpXq Ñ 0,

and a minimal ZpCq-coresolution of Y

0 Ñ Y Ñ Cn´1 Ñ ¨ ¨ ¨ Ñ Ci`1 Ñ Ω
´pn´i´1q
ZpCq pY q Ñ 0

where Ωk
ZpCq pΩ´l

ZpCqq is the kth plthq syzygy (cosyzygy) with respect to the minimal ZpCq-

resolution pZpCq-coresolutionq.
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3 Gorenstein projective dimensions of modules over mini-

mal Auslander-Gorenstein algebras

In this section, we investigate the relations between the Gorenstein projective dimen-

sions of modules over minimal Auslander-Gorenstein algebras and their socles.

Let A be an Artin algebra and C be a finite n-precluster tilting subcategory in A-mod

with a basic additive generator M . Then we have C “addM and Λ “ EndApMqop is

a minimal n-Auslander-Gorenstein algebra. Since the socle of a Λ-module is the direct

sum of its simple submodules, we first calculate the Gorenstein projective dimensions of

all simple Λ-modules.

Theorem 3.1. Let M “ ‘t
i“1

Mi with Mi indecomposable and Si be the top of the

indecomposable projective Λ-module HomApM,Miq. Then we have

p1q If Mi is a projective A-module, then the Gorenstein projective dimension of Si is

at most n,

p2q If Mi is a non-projective A-module, then the Gorenstein projective dimension of

Si is equal to n+1.

Proof. p1q Assume Mi is a projective A-module, then the inclusion f : radMi Ñ Mi is a

right almost split morphism. We claim that ImHomApM,fq “ radApM,Miq.

Let h P radApMj ,Miq, then h is not a retraction. Since f is a right almost split

morphism, there exists g : Mj Ñ radMi such that h “ fg PImHomApMj , fq. Thus

radApMj ,Miq ĎImHomApMj , fq. For the reverse inclusion, assume first j ‰ i, then

radpMj ,Miq “ HomApMj ,Miq and clearly ImHomApMj , fq Ď radApMj ,Miq. If j “ i,

let h PImHomApMi, fq, then there exists g : Mi Ñ radMi such that h “ fg. h is not an

isomorphism otherwise f is a retraction which contradicts the fact that f is right almost

split. Thus h P radApMi,Miq. Then we get ImHomApM,fq “ ‘t
j“1

ImHomApMj , fq “

‘t
j“1

radApMj ,Miq “ radApM,Miq and a short exact sequence

0 Ñ HomApM, radMiq Ñ HomApM,Miq Ñ Si Ñ 0.
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Now consider radMi, by Lemma 2.5(1), there exists a long exact sequence

0 Ñ Cn´1 Ñ ¨ ¨ ¨ Ñ Cs`1 Ñ Zs Ñ Cs´1 Ñ ¨ ¨ ¨ Ñ C0 Ñ radMi Ñ 0

with Zs in ZpCq for some 0 ď s ď n ´ 1 and Cj in C for any j. Applying HomApM,´q,

we get the following long exact sequence

0 Ñ HomApM,Cn´1q Ñ ¨ ¨ ¨ Ñ HomApM,Cs`1q Ñ HomApM,Zsq Ñ

HomApM,Cs´1q Ñ ¨ ¨ ¨HomApM,C0q Ñ HomApM, radMiq Ñ 0.

According to Theorem 2.4, we know that the following long exact sequence is a Gorenstein

projective resolution of Si.

0 Ñ HomApM,Cn´1q Ñ ¨ ¨ ¨ Ñ HomApM,Cs`1q Ñ HomApM,Zsq Ñ

HomApM,Cs´1q Ñ ¨ ¨ ¨HomApM,C0q Ñ HomApM,Miq Ñ Si Ñ 0

Thus GpdSi ď n.

p2q AssumeMi is not projective. By Theorem 2.7(1), the n-fold almost split extension

in ExtnApMi, τnMiq can be represented as

0 Ñ τnMi
f
ÝÑ Cn´1 Ñ ¨ ¨ ¨ Ñ Cs`1 Ñ Zs Ñ Cs´1 Ñ ¨ ¨ ¨ Ñ C0 Ñ Mi Ñ 0 p˚q

with Zs in ZpCq for some 0 ď s ď n ´ 1 and Cj in C for any j.

Claim 1: f : τnMi Ñ Cn´1 is not a section. Otherwise there exists g : Cn´1 Ñ τnMi

such that gf “ idτnMi
. Since C is closed under τn and Mi is indecomposable, τnMi P C

is also indecomposable. Applying HomAp´, τnMiq to p˚q, according to Theorem 2.7(2),

the following sequence is exact.

0 Ñ HomApMi, τnMiq Ñ HomApC0, τnMiq Ñ ¨ ¨ ¨ Ñ HomApCs´1, τnMiq Ñ HomApZs, τnMiq

Ñ HomApCs`1, τnMiq Ñ ¨ ¨ ¨ Ñ HomApCn´1, τnMiq
HomApf,τnMiq
ÝÝÝÝÝÝÝÝÝÑ radApτnMi, τnMiq Ñ 0.

Then HomApf, τnMiqpgq “ gf “ idτnMi
P radApτnMi, τnMiq, a contradiction.
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Applying HomApM,´q to p˚q, by Theorem 2.7(2) again, the following long exact

sequence is exact.

0 Ñ HomApM, τnMiq Ñ HomApM,Cn´1q Ñ ¨ ¨ ¨ Ñ HomApM,Cs`1q Ñ HomApM,Zsq

Ñ HomApM,Cs´1q Ñ ¨ ¨ ¨ Ñ HomApM,C0q Ñ radApM,Miq Ñ 0,

Then we get a Gorenstein projective resolution of Si.

0 Ñ HomApM, τnMiq
HomApM,fq
ÝÝÝÝÝÝÝÑ HomApM,Cn´1q Ñ ¨ ¨ ¨ Ñ HomApM,Cs`1q Ñ HomApM,Zsq

Ñ HomApM,Cs´1q Ñ ¨ ¨ ¨ Ñ HomApM,C0q Ñ HomApM,Miq Ñ Si Ñ 0p˚˚q

Claim 2: Extn`1

Λ
pSi,Λq ‰ 0. Otherwise suppose Extn`1

Λ
pSi,Λq “ 0. Note that

HomApM,Zsq PK Λ since HomApM,Zsq is Gorenstein projective. Applying HomΛp´,Λq

to p˚˚q, by dimension shifting, we get HomApM,fq is a section. Since HomApM,´q

is an equivalence between ZpCq and GPpΛq, there exists g : Cn´1 Ñ τnMi such that

HomApM,gqHomApM,fq “ HomApM,gfq “ idHomApM,τnMiq. Thus gf “ idτnMi
and f is

a section, which contradicts Claim 1.

Thus Extn`1

Λ
pSi,Λq ‰ 0 and by Lemma 2.1, GpdSi “ n ` 1.

It is known that the socle of a Λ-module N coincides with the socle of its injective

envelope IpNq. Next we investigate the injective modules over the minimal n-Auslander-

Gorenstein algebra Λ and give a description of all the projective-injective Λ-modules.

Theorem 3.2. Let Λ be a minimal n-Auslander-Gorenstein algebra. Then an injective

Λ-module I is projective if and only if the Gorenstein projective dimension of its socle is

at most n, that is prinjpΛq=tI P Λ-mod | I is injective and GpdpsocIq ď nu.

Proof. Consider the short exact sequence 0 Ñ socΛ Ñ Λ Ñ Λ{socΛ Ñ 0. If Λ{socΛ is a

Gorenstein projective Λ-module, so is socΛ. Otherwise GpdpsocΛq “ GpdpΛ{socΛq´1 ď

n since Λ is an pn ` 1q-Gorenstein algebra.

If I is a projective-injective Λ-module, then socI PaddpsocΛq. Thus GpdpsocIq ď n.

11



Conversely, suppose I is an indecomposable injective Λ-module with GpdpsocIq ď n.

Since idΛΛ ď n ` 1 ď domdimΛ, there exists a minimal injective coresolution of Λ

0 Ñ Λ Ñ I0 Ñ I1 Ñ ¨ ¨ ¨ Ñ In`1 Ñ 0

with Ij projective for all 0 ď j ď n. GpdpsocIq “ s ď n implies that ExtsΛpsocI,Λq ‰ 0.

Because of ExtsΛpsocI,Λq “ HomΛpsocI, Isq, we know that socI is contained in socIs.

Thus I is a direct summand of Is and I is projective since Is is a projective Λ-module.

Since the minimal n-Auslander-Gorenstein algebra Λ is either a self-injective algebra

or an (n+1)-Gorenstein algebra, the Gorenstein projective dimensions of Λ-modules are

at most n+1. Now we show the relations between the Gorenstein projective dimensions

of Λ-modules and their socles.

Theorem 3.3. Let Λ be a minimal n-Auslander-Gorenstein algebra and N be a Λ-

module. Then the following are equivalent:

p1q The Gorenstein projective dimension of N is at most n,

p2q The Gorenstein projective dimension of socpNq is at most n,

p3q N is cogenerated by a finite direct sum of Λ.

That is GPďnpΛq “ tN P Λ-mod | GpdpsocNq ď nu “ subΛ.

Proof. p1q ùñ p2q : Assume GpdN ď n. Consider the short exact sequence 0 Ñ socN Ñ

N Ñ N{socN Ñ 0. By Lemma 2.2, we have GpdpsocNq ď maxtGpdN,GpdpN{socNq ´

1u ď n.

p2q ùñ p3q : If GpdpsocNq ď n, we know that GpdpsocIpNqq ď n where IpNq is the

injective envelope of N . By Theorem 3.2, IpNq is projective. Thus N is cogenerated by

a projective Λ-module.

p3q ùñ p1q : N is cogenerated by a projective Λ-module P and we can get a short

exact sequence 0 Ñ N Ñ P Ñ P {N Ñ 0. If P {N is a Gorenstein projective module, so
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is N . Otherwise GpdN “ GpdpP {Nq ´ 1 ď n.

It follows that a Λ-module N has the highest Gorenstein projective dimension n+1

if and only if its socle socN has the highest Gorenstein projective dimension n+1. Thus

the Gorenstein projective dimensions of Λ-modules with highest Gorenstein projective

dimension are determined by the Gorenstein projective dimensions of their socles.

4 Characterizations of minimal Auslander-Gorenstein al-

gebras

In [15], Pressland and Sauter proved a new characterization of minimal n-Auslander-

Gorenstein algebras by using shifted and coshifted tilting modules. Minimal 1-Auslander-

Gorenstein algebras can be characterised by the existence of a special tilting-cotilting

module or that the Gorenstein projective modules category is an abelian category, see

[14] and [9] for details. In this section, we prove that minimal n-Auslander-Gorenstein

algebras can be characterised by the relations between the Gorenstein projective dimen-

sions of modules and their socles.

Our first characterisation of minimal n-Auslander-Gorenstein algebras is given in

terms of projective-injective modules.

Theorem 4.1. Let Λ be a (n+1)-Gorenstein algebra. Then Λ is a minimal n-Auslander-

Gorenstein algebra if and only if it satisfies prinjpΛq=tI P Λ-mod | I is injective and

GpdpsocIq ď nu.

Proof. If Λ is a minimal n-Auslander-Gorenstein algebra, it satisfies prinjpΛq=tI P

Λ-mod | I is injective and GpdpsocIq ď nu by Theorem 3.2.

Conversely, since Λ is an (n+1)-Gorenstein algebra, it satisfies idΛΛ “ n ` 1. We
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only need to show domdimΛ ě n ` 1. Consider the minimal injective coresolution of Λ

0 Ñ Λ
f0
ÝÑ I0

f1
ÝÑ I1 Ñ ¨ ¨ ¨

fn
ÝÑ In

fn`1

ÝÝÝÑ In`1 Ñ 0.

Note that I0 is the injective envelope of Λ and GpdpsocΛq ď n, we have GpdpsocI0q “

GpdpsocΛq ď n. Thus I0 is a projective Λ-module by our assumption and then GpdpImf1q ď

1. Now consider the short exact sequence

0 Ñ socpImf1q Ñ Imf1 Ñ Imf1{socpImf1q Ñ 0.

According to Lemma 2.2, GpdpsocpImf1qq ď maxtGpdpImf1q,GpdpImf1{socpImf1qq ´

1u ď n. Because I1 is the injective envelope of Imf1, GpdpsocI1q ď n and I1 is projective.

Then we have GpdpImf2q ď 2. Continuing this procedure, we can get that Ij is projective

for j “ 0, 1, . . . , n. Thus domdimΛ ě n ` 1. This completes our proof.

Recall that an Artin algebra Γ is called an n-Auslander algebra if it satisfies gldimΓ ď

n ` 1 ď domdimΓ. Here gldim denotes global dimension.

For algebras of finite global dimension, Gorenstein projective modules coincide with

projective modules. Specialising Theorem 4.1 to algebras of finite global dimension, we

obtain:

Corollary 4.2. Let Γ be an Artin algebra with global dimension n+1. Then Γ is an

n-Auslander algebra if and only if it satisfies prinjpΓq=tI P Γ-mod | I is injective and

pdpsocIq ď nu.

Now we prove another characterization of minimal n-Auslander-Gorenstein algebras.

Theorem 4.3. Let Λ be an Artin algebra. Then Λ is a minimal n-Auslander-Gorenstein

algebra if and only if it satisfies GPďnpΛq “ tN P Λ-mod | GpdpsocNq ď nu “ subΛ.

Proof. If Λ is a minimal n-Auslander-Gorenstein algebra, it satisfies GPďnpΛq “ tN P

Λ-mod | GpdpsocNq ď nu “ subΛ by Theorem 3.3.
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Conversely, let X be a Λ-module and P pXq be its projective cover. Then we obtain

a short exact sequence 0 Ñ Y Ñ P pXq Ñ X Ñ 0. Since Y P subΛ, by assumption, we

have GpdY ď n and thus GpdX ď n`1. This implies that Λ is an m-Gorenstein algebra

with idΛΛ “ m ď n ` 1.

First assume idΛΛ ă n`1. Let I be an indecomposable injective Λ-module, we know

that GpdI ď idΛΛ ď n. Then I P subΛ and I is projective. Thus Λ is a self-injective

algebra.

If idΛΛ “ n ` 1, there exists a minimal injective coresolution of Λ

0 Ñ Λ
f0ÝÑ I0

f1ÝÑ I1 Ñ ¨ ¨ ¨
fn
ÝÑ In

fn`1

ÝÝÝÑ In`1 Ñ 0.

By assumption, Λ P subΛ implies GpdpsocΛq ď n. Since I0 is the injective envelope of

Λ, we have GpdpsocI0q ď n. By assumption again, I0 P subΛ and thus I0 is a projective

Λ-module. Then we get GpdpImf1q ď 1. So Imf1 P GPďnpΛq and GpdpsocpImf1qq ď n.

Note that I1 is the injective envelope of Imf1, we have I1 is projective and GpdpImf2q ď 2.

Continuing this procedure, we get all Ijp0 ď j ď nq are projective and thus domdimΛ ě

n ` 1. It follows that Λ is a minimal n-Auslander-Gorenstein algebra.

Immediately, we have the following corollary.

Corollary 4.4. Let Γ be an Artin algebra and PďnpΓq be the subcategory of Γ-modules

whose projective dimensions are at most n. Then Γ is an n-Auslander algebra if and only

if it satisfies PďnpΓq “ tN P Γ-mod | pdpsocNq ď nu “ subΓ.

Our results in this section generalise the main theorems in [10], where the theorems

were proved for the special case of Auslander algebras.

We give two counterexamples to questions that might arise that we found using the

GAP-package QPA, see [16]. We remark that we use right modules in those counterex-

amples since QPA always uses right modules. Both examples are Nakayama algebras.

We refer to [3] and [13] for the basics and homological algebra of Nakayama algebras.
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One might ask whether in a minimal n-Auslander-Gorenstein algebra of infinite global di-

mension, a module N has projective dimension n+1 if and only if its socle has projective

dimension n+1. The following example shows that this does not hold in general.

Example 4.5. Let Λ be the Nakayama algebra with Kupisch series [3, 3, 4] and simple

modules numbered from 1 to 3. Then Λ is a minimal 1-Auslander-Gorenstein algebra with

infinite global dimension. The right module N :“ e1Λ{e1J
2 has projective dimension 2,

but its socle has infinite projective dimension.

One might ask whether in a higher Auslander algebra it holds that a module N has

projective dimension 2 if and only if its socle has projective dimension 2, as a generali-

sation of Theorem B in [10] from Auslander algebras to higher Auslander algebras. The

next example shows that this is not true in general.

Example 4.6. Let Γ be the Nakayama algebra with Kupisch series [3, 3, 3, 3, 2, 1] and

simple modules numbered from 1 to 6. Then Γ is a 2-Auslander algebra. Let N be the

right module e3Γ{e3J
2. Then N has projective dimension 2, but its socle has projective

dimension 1.
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