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Abstract

In this article we investigate the relations between the Gorenstein projective di-
mensions of A-modules and their socles for minimal n-Auslander-Gorenstein algebras
A in the sense of Iyama and Solberg [8]. First we give a description of projective-
injective A-modules in terms of their socles. Then we prove that a A-module N
has Gorenstein projective dimension at most n iff its socle has Gorenstein projective
dimension at most n iff NV is cogenerated by a projective A-module. Furthermore,
we show that minimal n-Auslander-Gorenstein algebras can be characterised by the

relations between the Gorenstein projective dimensions of modules and their socles.
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1 Introduction

An Artin algebra is called an Auslander algebra if its global dimension is at most
2 and its dominant dimension is at least 2. Auslander established a bijection between
representation-finite algebras and Auslander algebras, given by M — End4 M where A is
a representation-finite Artin algebra and M is an additive generator of A. In [6], Iyama

introduced n-Auslander algebras. As a generalisation of Auslander algebras, n-Auslander
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algebras are characterised by having global dimension at most n+1 and dominant dimen-
sion at least n+1. There is a one-to-one correspondence between n-Auslander algebras
and finite n-cluster tilting subcategories, see [6] for details. This is known as the higher
Auslander correspondence. 7-selfinjective algebras were introduced by Auslander and
Solberg in [2]. The endomorphism algebra of some suitable module over a 7-selfinjective
algebra satisfies that the injective dimension of the left (right) regular module is at most
2 and the dominant dimension is at least 2. Thus it can be considered as a general-
isation of Auslander algebras. There also exists a one-to-one correspondence between
T-selfinjective algebras and algebras with injective dimension of the left (right) regular

module at most 2 and dominant dimension at least 2, see [2] and [9] for details.

In [8], Iyama and Solberg gave a further generalisation and defined the minimal n-
Auslander-Gorenstein algebras. Then they introduced the notion of n-precluster tilting
subcategories and established a one-to-one correspondence between minimal n- Auslander-
Gorenstein algebras and finite n-precluster tilting subcategories. The n-precluster tilting
subcategories generalize and unify two seemingly different concepts, namely n-cluster
tilting subcategories and T-selfinjective algebras. We refer to [§] for details. See also
[11] for another generalisation and [4] and [12] for examples and applications of minimal

Auslander-Gorenstein algebras.

Definition 1.1. An Artin algebra A is called a minimal n-Auslander-Gorenstein algebra

if it satisfies idpA < n + 1 < domdim A.

Here id and domdim denote the injective dimension and dominant dimension, respec-
tively. The definition of minimal n-Auslander-Gorenstein algebras is left-right symmetric,
that is A is a minimal n-Auslander-Gorenstein algebra if and only if A° is a minimal
n-Auslander-Gorenstein algebra. Thus a minimal n-Auslander-Gorenstein algebra A is
either a self-injective algebra or an (n+1)-Gorenstein algebra satisfying idAyA =n + 1 =
domdim A. Let N be a finitely generated A-module. Then the Gorenstein projective
dimension of N is at most n+1 for any Gorenstein algebra of self-injective dimension
n+1. The main aim of this paper is to investigate the relations between the Gorenstein
projective dimensions of N and its socle for minimal n-Auslander-Gorenstein algebras.

First we calculate the Gorenstein projective dimensions of all simple A-modules by using



n-precluster tilting subcategories.

Let A be an Artin algebra. We denote by A-mod the category of finitely generated
left modules. In [7] the functors

7o =751 Amod — A-mod and T, = T_Q;x(n_l) : A-mod — A-mod

are defined as the n-Auslander-Reiten translations.

Definition 1.2. [8 Definition 3.2]

A subcategory C of A-mod is called an n-precluster tilting subcategory if it satisfies

the following conditions:
(1) C is a generator-cogenerator for A-mod,
(2) T, (C) € C and 7, (C) = C,
(3) Ext4(C,C) = 0 for 0 < i < n,

(4) C is a functorially finite subcategory of A-mod.

If moreover C admits an additive generator M, we say that C is a finite n-precluster
tilting subcategory. The endomorphism algebra A = Enda (M)° of M is a minimal n-
Auslander-Gorenstein algebra and all minimal n-Auslander-Gorenstein algebras can be

constructed in this way. In particular, A is self-injective if and only if M is projective.

Let M = (—B’;ZIM,- with M; indecomposable be a basic additive generator of an n-
precluster tilting subcategory C in A-mod and A = End (M ). Let S; be the top of the

indecomposable projective A-module Hom 4 (M, M;). We show the following result.
Theorem 1. (Theorem 3.1)
The Gorenstein projective dimension of S; is at most n if M; is a projective A-module.

Otherwise the Gorenstein projective dimension of S; is equal to n+1.

Note that the dominant dimension of a minimal n-Auslander-Gorenstein algebra A is

at least n+1 and there exist projective-injective A-modules. We denote by prinj(A) the



full subcategory of projective-injective A-modules and we denote by GPS"(A) the full
subcategory of A-modules whose Gorenstein projective dimensions are at most n and by

subA the full subcategory of A-modules which can be cogenerated by a finite direct sum

of A.

We prove that a minimal n-Auslander-Gorenstein algebra A can be characterised
by the relations between the Gorenstein projective dimensions of A-modules and their
socles. We also refer to [14] and [15] for other characterisations of minimal n-Auslander-

Gorenstein algebras.
Theorem 2. (Theorem 4.1)

Let A be a (n + 1)-Gorenstein algebra. Then A is a minimal n-Auslander-Gorenstein

algebra if and only if it satisfies prinj(A)={I € A-mod | I is injective and Gpd(socl) < n}.
Theorem 3. (Theorem 4.3)

Let A be an Artin algebra. Then A is a minimal n-Auslander-Gorenstein algebra if

and only if it satisfies GPS™(A) = {N € A-mod | Gpd(socN) < n} = subA.

Theorem 2 and Theorem 3 generalise the main results in [I0] where the results are

proved for the special case of Auslander algebras.

This paper is arranged as follows. In section 2, we fix the notions and recall some
necessary facts. In section 3, we prove Theorem 1 and further results needed in section

4. Section 4 is devoted to the proof of Theorem 2 and Theorem 3.

2 Preliminaries

Throughout this paper, we consider basic Artin algebras. All modules are finitely
generated left modules in case nothing is stated otherwise. For an algebra A, we denote
by A-mod the category of finitely generated left A-modules. For an A-module N, Gpd N
(pdN) is the Gorenstein projective (projective) dimension of N. We denote by Q'N
(Q27'N) the ith syzygy (cosyzygy) of N and by 74 the Auslander-Reiten translation of
A. The composition of morphisms f: X — Y and g: Y — Z is denoted by gf : X — Z.



We follow the standard terminologies and notations used in the representation theory of

algebras, see [I] and [3]. For background on Gorenstein homological algebra we refer to

[5].
First we recall some results about Gorenstein projective dimensions.
Lemma 2.1. [5, Proposition 3.2.2]

Let N be an A-module of finite Gorenstein projective dimension and n be an integer.

Then the following are equivalent:
(1) GpdN < n,
(2) Exty(N,L) =0 fori>=n+1 and any A-module L of finite projective dimension,
(3) Exty(N,A) =0 fori=n+1,
(4) Extzﬂ(N, L) =0 for any A-module L of finite projective dimension.
Consequently, GpdN = sup{i > 0 | Exti (N, A) # 0}.
We remark that in a Gorenstein algebra of self-injective dimension n, every module
has finite Gorenstein projective dimension at most n.

The next lemma, gives relations between Gorenstein projective dimensions of the three

modules in a short exact sequence.
Lemma 2.2. [5, Corollary 3.2.4]
Let0 > X - Y — Z — 0 be a short exact sequence in A-mod. Then we have
(1) GpdY < max{GpdX, GpdZ},
(2) GpdX < max{GpdY,GpdZ — 1},
(3) GpdZ < max{GpdY, GpdX + 1}.
Let C be a finite n-precluster tilting subcategory in A-mod and M be a basic additive

generator of C, namely C =addM. In [§], Iyama and Solberg generalised the Auslander

correspondence to the following higher version.



Theorem 2.3. [8, Theorem 4.5]

There is a bijection between equivalence classes of finite n-precluster tilting subcate-
gories C and Morita-equivalence classes of minimal n-Auslander-Gorenstein algebras A,

where the correspondence is given by M — A = End (M ).

For an n-precluster tilting subcategory C in A-mod, we have C1"~1 =17=1 C where
Ct"~1 = {X € A-mod | Ext4(C,X) = 0for0 < i < n} and *"~!C is defined similarly.
Let Z(C) = ¢t~ 1 =In=1 ¢ and U(C) = Z(C)/[C]. We know that C < Z(C). Moreover,
Z(C) has a structure of a Frobenius category and the projective-injective objects are
precisely objects in C. Thus U(C) is a triangulated category. Furthermore, if C is a finite
n-precluster tilting subcategory with an additive generator M and A=End (M), we

have

Theorem 2.4. [8, Theorem 4.7]

Let GP(A) be the subcategory of A-mod consisting of all Gorenstein projective A-
modules. Then Z(C) and GP(A) are equivalent via the functor Homa (M, —). Moreover

Hom 4 (M, —) induces a triangle equivalence between U(C) and GP(A).

Let B be a subcategory of A-mod. A complex X*® = (Xi, di)iez of A-modules is called
Hom 4 (B, —)-exact (Hom(—, B)-exact) if X* is exact and for any Y € B, Hom4(Y, X*)
(Hom4(X*,Y)) is also exact.

The next lemma shows that for any A-module X, there exists a Hom4(C, —)-exact

Z(C)-resolution (Homy4(—,C)-exact Z(C)-coresolution).
Lemma 2.5. [8, Corollary 3.16]
Let C be an n-precluster tilting subcategory and X in A-mod. Then

(1) For any 0 <i < n—1, there exists a Hom4(C, —)-exact sequence
0—C, 4 fro1 o fite Cis fi+1 Ziﬁ’ci—l fi—1 “‘LCOA -0

with Z; in Z(C) and C; in C for any j. Moreover Imf; is in CY for any j.



(2) For any 0 <i<mn—1, there exists a Hom4(—,C)-ezact sequence

0—>Xf—0>00f—1> fi71 CZ*ILZZ fiJrl Ci+1 fi+2 fn71 C«nfl_)o

with Z* in Z(C) and C7 in C for any j. Moreover Tmf7 is in C for any j.

In [8], Iyama and Solberg introduced a higher Auslander-Reiten theory for n-precluster

tilting subcategories.
Definition 2.6. [8, Definition 5.1]

Let A be an Artin algebra, X and Y be A-modules and n be a non-zero element in

Ext3 (X,Y).

(1) We say that n is a right n-fold almost split extension of X if for any A-module Z

and a non-zero element & in Ext’y (X, Z), there exists a morphism f : Z —'Y such that
n = f¢.

(2) We say that n is a left n-fold almost split extension of Y if for any A-module Z
and a non-zero element & in Ext’i(Z,Y), there exists a morphism g : X — Z such that
n=£g.

(3) We say that n is an n-fold almost split extension if it is a right n-fold almost split

extension of X and a left n-fold almost split extension of Y.

Let X and Y be indecomposable A-modules. If n € Ext’i(X,Y) is an n-fold almost

split extension, we have Y = 7, X and X =7, Y.

We denote by P(A) (Z(A)) the full subcategory of A-mod consisting of all projec-
tive (injective) modules. The following result shows that there exist n-fold almost split

extensions in Z(C).
Theorem 2.7. [8 Theorem 5.10]

Let C be an n-precluster tilting subcategory in A-mod, X be an indecomposable mod-
ule in Z(C)\P(A), and Y := 7,(X) be the corresponding indecomposable module in
Z(C\Z(A).



(1) For each 0 < i < n — 1, an n-fold almost split extension in Ext"y(X,Y") can be

represented as
with Z; in Z(C) and C; in C for any j.
(2) The following sequences are exact.

0 — Homx4(C,Y) — Homyu(C,Cp—1) — -+ — Homa(C, Cy1+1) — Homy(C, Z;)

— Hom4(C,Cj—1) — -+ — Homy(C,Cy) — rad4(C, X) — 0,

0 — Hom4(X,C) — Homy(Cp,C) — -+ — Homy(C;—1,C) — Hom4(Z;,C)

— Homy (Cy11,C) — -+ > Homy (Cp,—1,C) — rad4(Y,C) — 0.

(3) If X and Y do not belong to C, then the n-fold almost split extension in (1) can

be given as a Yoneda product of a minimal Z(C)-resolution of X
0—>QZZ(C)(X) —>CZ'_1 - C() —>X—>O,
an almost split sequence in Z(C)

—(n—i—1 i
0— Qzgc) V) > 2 - Vz(ey(X) =0,

and a minimal Z(C)-coresolution of Y

0-Y—->Chqg—-— i+1_’Q;EZ;i71)(Y)—>O

where Q’?Z(C) (Q;jl(c)) is the kth (Ith) syzygy (cosyzygy) with respect to the minimal Z(C)-

resolution (Z(C)-coresolution).



3 Gorenstein projective dimensions of modules over mini-

mal Auslander-Gorenstein algebras

In this section, we investigate the relations between the Gorenstein projective dimen-

sions of modules over minimal Auslander-Gorenstein algebras and their socles.

Let A be an Artin algebra and C be a finite n-precluster tilting subcategory in A-mod
with a basic additive generator M. Then we have C =addM and A = Enda (M) is
a minimal n-Auslander-Gorenstein algebra. Since the socle of a A-module is the direct
sum of its simple submodules, we first calculate the Gorenstein projective dimensions of

all simple A-modules.

Theorem 3.1. Let M = @®._;M; with M; indecomposable and S; be the top of the

indecomposable projective A-module Hom g (M, M;). Then we have

(1) If M; is a projective A-module, then the Gorenstein projective dimension of S; is

at most n,

(2) If M; is a non-projective A-module, then the Gorenstein projective dimension of

S; is equal to n+1.

Proof. (1) Assume M; is a projective A-module, then the inclusion f : radM; — M; is a
right almost split morphism. We claim that ImHom 4 (M, f) = rad4 (M, M;).

Let h € rada(M;, M;), then h is not a retraction. Since f is a right almost split
morphism, there exists g : M; — radM; such that h = fg eImHoma(Mj, f). Thus
rada(M;, M;) <ImHoma(Mj, f). For the reverse inclusion, assume first j # 4, then
rad(M;, M;) = Homa(M;, M;) and clearly ImHom 4 (Mj, f) < rada(M;, M;). If j = 4,
let h eImHom 4(M;, f), then there exists g : M; — radM; such that h = fg. h is not an
isomorphism otherwise f is a retraction which contradicts the fact that f is right almost
split. Thus h € rad(M;, M;). Then we get ImHoma (M, f) = @,_ ImHom(M;, f) =
@ﬁzlradA(Mj,Mi) = rad 4 (M, M;) and a short exact sequence

0 — Homy (M, radM;) — Hom (M, M;) — S; — 0.



Now consider radM;, by Lemma 2.5(1), there exists a long exact sequence
0-Ch1— - —>Cs41 > Zs > Cs 1 — - — Cy—radM; — 0

with Z; in Z(C) for some 0 < s <n —1 and C} in C for any j. Applying Hom (M, —),

we get the following long exact sequence

0 — Homu(M,Cp—1) = --- —» Homa (M, Cs41) — Homa (M, Z5) —

Homy(M,Cs_1) — ---Homu (M, Cy) — Hom 4 (M, radM;) — 0.

According to Theorem 2.4, we know that the following long exact sequence is a Gorenstein

projective resolution of .S;.
0 - Homu(M,Cp—1) = --- —» Homa (M, Cs41) — Homa (M, Z5) —
Homa(M,Cs_1) — ---Homa (M, Cy) — Homyu (M, M;) — S; — 0
Thus GpdS; < n.
(2) Assume M; is not projective. By Theorem 2.7(1), the n-fold almost split extension
in Ext"} (M;, 7, M;) can be represented as

OHTnMii’ 1> —>Csy1 > 2Zs —>Csq1— -+ —>Co— M —0 (%)

with Zg in Z(C) for some 0 < s <n —1 and Cj in C for any j.

Claim 1: f:7,M; — C,_1 is not a section. Otherwise there exists g : Cj,_1 — 7, M;
such that gf = id,, az. Since C is closed under 7,, and M; is indecomposable, 7, M; € C
is also indecomposable. Applying Hom 4 (—, 7,,M;) to (*), according to Theorem 2.7(2),

the following sequence is exact.

0 — Homy (M;, 7, M;) — Hom4(Co, 7, M;) — - -+ — Homy (Cs_1, 7, M;) — Homy(Zs, 7, M;)

Hom 4 (f, 70 M;)
_

— Hom g (Csq1, 70 M;) — « -+ — Homy (Cp—1, 7, M;) rad A (7, M;, 7, M;) — 0.

Then Homa(f, 7,M;)(g) = gf = ids, um;, € rada(m,M;, 7, M;), a contradiction.
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Applying Homy (M, —) to (x), by Theorem 2.7(2) again, the following long exact

sequence is exact.

0 —» Homy (M, 1,M;) — Homy(M,Cp—1) — --+ —> Homg (M, Cs11) — Hom 4 (M, Z)

— Homy(M,Cs—1) — -+ — Homu (M, Cy) — rad 4 (M, M;) — 0,

Then we get a Gorenstein projective resolution of .S;.

Hom 4 (M, f)

0 — Homy (M, 7, M;) Homy (M, Cp—1) — -+ = Homy (M, Csy1) — Homy (M, Zs)

— Homyg(M,Cs—1) — -+ — Homy (M, Cy) — Homy (M, M;) — S; — 0(xx)

Claim 2: ExtXH(Si,A) # 0. Otherwise suppose EX‘GXH(SZ-,A) = 0. Note that
Homy (M, Z,) e+ A since Hom 4 (M, Z,) is Gorenstein projective. Applying Homy (—, A)
to (##), by dimension shifting, we get Homa (M, f) is a section. Since Hom (M, —)
is an equivalence between Z(C) and GP(A), there exists g : Cp,—1 — 7, M; such that
Hom4 (M, g)Hom (M, f) = Homa(M, gf) = idtom 4(M,r,01;)- Thus gf = id,, as; and f is

a section, which contradicts Claim 1.
Thus ExtXH(Si,A) # 0 and by Lemma 2.1, GpdS; = n + 1.

O

It is known that the socle of a A-module N coincides with the socle of its injective
envelope I(N). Next we investigate the injective modules over the minimal n-Auslander-

Gorenstein algebra A and give a description of all the projective-injective A-modules.

Theorem 3.2. Let A be a minimal n-Auslander-Gorenstein algebra. Then an injective
A-module I is projective if and only if the Gorenstein projective dimension of its socle is

at most n, that is prinj(A)={I € A-mod | I is injective and Gpd(socI) < n}.

Proof. Consider the short exact sequence 0 — socA — A — A/socA — 0. If A/socA is a
Gorenstein projective A-module, so is socA. Otherwise Gpd(socA) = Gpd(A/socA)—1 <

n since A is an (n + 1)-Gorenstein algebra.

If I is a projective-injective A-module, then socI eadd(socA). Thus Gpd(socl) < n.

11



Conversely, suppose [ is an indecomposable injective A-module with Gpd(socI) < n.

Since idpA < n + 1 < domdimA, there exists a minimal injective coresolution of A

with I; projective for all 0 < j < n. Gpd(socl) = s < n implies that Ext} (socl,A) # 0.
Because of Ext} (socI,A) = Homp (socl, ), we know that socl is contained in socls.

Thus [ is a direct summand of I, and I is projective since I is a projective A-module.

O

Since the minimal n-Auslander-Gorenstein algebra A is either a self-injective algebra
or an (n+1)-Gorenstein algebra, the Gorenstein projective dimensions of A-modules are
at most n+1. Now we show the relations between the Gorenstein projective dimensions

of A-modules and their socles.

Theorem 3.3. Let A be a minimal n-Auslander-Gorenstein algebra and N be a A-

module. Then the following are equivalent:
(1) The Gorenstein projective dimension of N is at most n,
(2) The Gorenstein projective dimension of soc(N) is at most n,
(3) N is cogenerated by a finite direct sum of A.
That is GPS"(A) = {N € A-mod | Gpd(socN) < n} = subA.
Proof. (1) = (2) : Assume GpdN < n. Consider the short exact sequence 0 — socN —

N — N/socN — 0. By Lemma 2.2, we have Gpd(socN) < max{GpdN, Gpd(NN /socN) —

1} < n.

(2) = (3) : If Gpd(socN) < n, we know that Gpd(socI(N)) < n where I(N) is the
injective envelope of N. By Theorem 3.2, I(N) is projective. Thus N is cogenerated by

a projective A-module.

(3) = (1) : N is cogenerated by a projective A-module P and we can get a short

exact sequence 0 > N — P — P/N — 0. If P/N is a Gorenstein projective module, so

12



is N. Otherwise GpdN = Gpd(P/N) —1 < n.

O

It follows that a A-module N has the highest Gorenstein projective dimension n+1
if and only if its socle soc/N has the highest Gorenstein projective dimension n+1. Thus
the Gorenstein projective dimensions of A-modules with highest Gorenstein projective

dimension are determined by the Gorenstein projective dimensions of their socles.

4 Characterizations of minimal Auslander-Gorenstein al-

gebras

In [15], Pressland and Sauter proved a new characterization of minimal n-Auslander-
Gorenstein algebras by using shifted and coshifted tilting modules. Minimal 1-Auslander-
Gorenstein algebras can be characterised by the existence of a special tilting-cotilting
module or that the Gorenstein projective modules category is an abelian category, see
[14] and [9] for details. In this section, we prove that minimal n-Auslander-Gorenstein
algebras can be characterised by the relations between the Gorenstein projective dimen-

sions of modules and their socles.

Our first characterisation of minimal n-Auslander-Gorenstein algebras is given in

terms of projective-injective modules.

Theorem 4.1. Let A be a (n+1)-Gorenstein algebra. Then A is a minimal n-Auslander-
Gorenstein algebra if and only if it satisfies prinj(A)={I € A-mod | I is injective and
Gpd(socl) < n}.

Proof. If A is a minimal n-Auslander-Gorenstein algebra, it satisfies prinj(A)={I €

A-mod | I is injective and Gpd(socI) < n} by Theorem 3.2.

Conversely, since A is an (n+1)-Gorenstein algebra, it satisfies idpyA = n + 1. We

13



only need to show domdim A > n + 1. Consider the minimal injective coresolution of A
ALy I o,

Note that Ij is the injective envelope of A and Gpd(socA) < n, we have Gpd(socly) =
Gpd(socA) < n. Thus Ij is a projective A-module by our assumption and then Gpd(Imf;) <

1. Now consider the short exact sequence
0 — soc(Imf1) — Imf; — Imf;/soc(Imf;) — 0.

According to Lemma 2.2, Gpd(soc(Imf;)) < max{Gpd(Imfi), Gpd(Imf;/soc(Imf1)) —
1} < n. Because I; is the injective envelope of Imf;, Gpd(socl;) < n and I; is projective.
Then we have Gpd(Imfy) < 2. Continuing this procedure, we can get that I; is projective
for j =0,1,...,n. Thus domdim A > n + 1. This completes our proof.

Recall that an Artin algebra I' is called an n-Auslander algebra if it satisfies gldim I" <

n + 1 < domdimI'. Here gldim denotes global dimension.

For algebras of finite global dimension, Gorenstein projective modules coincide with
projective modules. Specialising Theorem 4.1 to algebras of finite global dimension, we

obtain:

Corollary 4.2. Let I' be an Artin algebra with global dimension n+1. Then I' is an
n-Auslander algebra if and only if it satisfies prinj(I')={I € T'-mod | I is injective and
pd(socl) < n}.

Now we prove another characterization of minimal n-Auslander-Gorenstein algebras.
Theorem 4.3. Let A be an Artin algebra. Then A is a minimal n-Auslander-Gorenstein

algebra if and only if it satisfies GPS"(A) = {N € A-mod | Gpd(socN) < n} = subA.

Proof. If A is a minimal n-Auslander-Gorenstein algebra, it satisfies GPS"(A) = {N €
A-mod | Gpd(socN) < n} = subA by Theorem 3.3.
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Conversely, let X be a A-module and P(X) be its projective cover. Then we obtain
a short exact sequence 0 - Y — P(X) — X — 0. Since Y € subA, by assumption, we
have GpdY < n and thus GpdX < n+1. This implies that A is an m-Gorenstein algebra

with idpA=m <n + 1.

First assume idpyA < n+ 1. Let I be an indecomposable injective A-module, we know
that Gpdl < idpA < n. Then [ € subA and [ is projective. Thus A is a self-injective

algebra.

If idpA = n + 1, there exists a minimal injective coresolution of A

0-AL I I e o,

By assumption, A € subA implies Gpd(socA) < n. Since I is the injective envelope of
A, we have Gpd(socly) < n. By assumption again, Iy € subA and thus I is a projective
A-module. Then we get Gpd(Imf;) < 1. So Imf; € GPS™(A) and Gpd(soc(Imf;)) < n.
Note that I; is the injective envelope of Im f1, we have I is projective and Gpd(Im f2) < 2.
Continuing this procedure, we get all I;(0 < j < n) are projective and thus domdim A >

n + 1. It follows that A is a minimal n-Auslander-Gorenstein algebra.

O

Immediately, we have the following corollary.

Corollary 4.4. Let T’ be an Artin algebra and PS"™(T') be the subcategory of T'-modules
whose projective dimensions are at most n. Then I' is an n-Auslander algebra if and only

if it satisfies PS"(I') = {N € I'-mod | pd(socN) < n} = subl.

Our results in this section generalise the main theorems in [L0], where the theorems

were proved for the special case of Auslander algebras.

We give two counterexamples to questions that might arise that we found using the
GAP-package QPA, see [16]. We remark that we use right modules in those counterex-
amples since QPA always uses right modules. Both examples are Nakayama algebras.

We refer to [3] and [I3] for the basics and homological algebra of Nakayama algebras.
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One might ask whether in a minimal n-Auslander-Gorenstein algebra of infinite global di-
mension, a module IV has projective dimension n+1 if and only if its socle has projective

dimension n+1. The following example shows that this does not hold in general.

Example 4.5. Let A be the Nakayama algebra with Kupisch series [3, 3, 4] and simple
modules numbered from 1 to 3. Then A is a minimal 1-Auslander-Gorenstein algebra with
infinite global dimension. The right module N := e;A/e;J? has projective dimension 2,

but its socle has infinite projective dimension.

One might ask whether in a higher Auslander algebra it holds that a module N has
projective dimension 2 if and only if its socle has projective dimension 2, as a generali-
sation of Theorem B in [10] from Auslander algebras to higher Auslander algebras. The

next example shows that this is not true in general.

Example 4.6. Let I" be the Nakayama algebra with Kupisch series [3, 3, 3, 3, 2, 1] and
simple modules numbered from 1 to 6. Then I' is a 2-Auslander algebra. Let N be the
right module e3I'/e3J2. Then N has projective dimension 2, but its socle has projective

dimension 1.

Acknowledgements

We are thankful to Steffen Koenig for useful comments. This paper was written when
the first author was visiting University of Stuttgart from October 2017 to September
2018. He would like to thank Prof. Steffen Koenig and the rest of the IAZ for their
warm hospitality and kind help. This work is supported by the National Natural Science
Foundation of China (11671230, 11601274, 11371165).

References

[1] I.Assem, D.Simson, A.Skowronski, Elements of the representation theory of asso-
ciative algebras. Vol.1. Techniques of representation theory. London Mathematical

Society Student Texts, 65. Cambridge University Press, Cambridge, 2006.

16



2]

[14]

M.Auslander, @.Solberg, Gorenstein algebras and algebras with dominant dimen-

sion at least 2, Comm. Algebra 21(11), 3897-3934 (1993).

M.Auslander, I.Reiten, S.O.Smalg, Representation Theory of Artin Algebras, Cam-
bridge Studies in Advanced Math, 36. Cambridge University Press, Cambridge,
1995.

A.Chan, O.Iyama, R.Marczinzik, Auslander-Gorenstein algebras from Serre-formal

algebras via replication, larXiv:1707.03996.
X.Chen, Gorenstein Homological Algebra of Artin Algebras, larXiv:1712.04587v1.
O.Iyama, Auslander correspondence, Adv. Math 210 (2007), 51-82.

O.Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal sub-

categories, Adv. Math 210 (2007), no.1, 22-50.

O.Iyama, ©.Solberg, Auslander-Gorenstein algebras and precluster tilting, Adv.
Math 326 (2018), 200-240.

F. Kong, Characterizing when the category of Gorenstein projective modules is an

abelian category, Algebr Represent Theor 17 (2014), 1289-1301.

S.Li, S.Zhang, A new characterization of Auslander algebras. J. Algebra Appl. 16,
1750219 (2017).

R.Marczinzik, Finitistic Auslander algebras, larXiv:1701.00972.

R.Marczinzik, Auslander-Gorenstein algebras, standardly stratified algebras and

dominant dimensions, arXiv:1610.02966.

R.Marczinzik, Upper bounds for the dominant dimension of Nakayama and related

algebras, J. Algebra 496 (2018) 216-241.

V.C.Nguyen, I.Reiten, G.Todorov, S.Zhu, Dominant dimension and tilting modules,
arXiv:1706.00475.

17


http://arxiv.org/abs/1707.03996
http://arxiv.org/abs/1712.04587
http://arxiv.org/abs/1701.00972
http://arxiv.org/abs/1610.02966
http://arxiv.org/abs/1706.00475

[15] M.Pressland, J.Sauter, Special tilting modules for algebras with positive dominant

dimensions, larXiv:1705.03367.

[16] The QPA-team, QPA - Quivers, path algebras and representations - a GAP pack-
age, Version 1.25; 2016 (https://folk.ntnu.no/oyvinso/QPA/).

18


http://arxiv.org/abs/1705.03367

Shen Li: School of Mathematics, Shandong University, PR China
E-mail address: fbljs603@163.com

René Marczinzik: Institute of algebra and number theory, University of Stuttgart,

Germany
E-mail address: marczire@mathematik.uni-stuttgart.de
Shunhua Zhang: School of Mathematics, Shandong University, PR China

E-mail address: shzhang@sdu.edu.cn

19



	1 Introduction
	2 Preliminaries
	3 Gorenstein projective dimensions of modules over minimal Auslander-Gorenstein algebras
	4 Characterizations of minimal Auslander-Gorenstein algebras

