Hamiltonian Paths in Directed Graphs

A Hamiltonian path in a directed graph is a directed path that goes through each node exactly
once.

The decision problem: Given a directed graph G and nodes s and t in this graph, is there a Hamil-
tonian path from s tot in G?

The corresponding language:

HAMPATH = {(G, s,t) | G is a directed graph having a Hamiltonian path from s to ¢}

Brute-force (deterministic) decider for HAMPATH: Given directed graph G having m nodes, try
every sequence of m — 2 (or, if s = ¢, m — 1) distinct nodes 71,79, .., 7, all different from s and ¢,
and test whether (s,71), (r1,72),..., (1, t) are all directed edges in G.

There are (m — 2)! sequences of m — 2 distinct nodes, so this is clearly not a polytime decider for
HAMPATH.

Ezample: Does this directed graph have a Hamiltonian path from s to 7

Yes:

Hamiltonian Paths (Continued)

The decision problem: Given a directed graph G and nodes s and t in this graph, is there a Hamil-
tonian path from s tot in G?

The corresponding language:

HAMPATH = {(G, s,t) | G is a directed graph having a Hamiltonian path from s to t}

Theorem. HAMPATH € NP.

Proof. Here is a nondeterministic polytime decider for HAMPATH:

Npampara = “On input (G, s,t), where G is a directed graph with nodes s and ¢:
1. Nondeterministically create a permutation rq,79,...,7; of all nodes
in G not in {s,t}.
2. Check that (s,r1), (r1,72),..., (T, t) are all directed edges in G.
If they all are, accept; otherwise, reject.”

One way to implement stage 1, using a two-tape NTM:
e First mark s and ¢.

e Then repeatedly select an unmarked node nondeterministically and mark it and copy it to
tape 2.

e Repeat this process until there are no unmarked nodes. At this point tape 2 contains the
nondeterministically re-ordered list of nodes r1,7o,..., k.

Correctness of Ngayparm: If there is a Hamiltonian path from s to ¢, the branch of the computation
tree generating a corresponding ordering of nodes for this path will accept on such a branch. If
there is no Hamiltonian path then no ordering will work and all computation branches will reject.

Time complexity of Nyayparh:

e Stage 1 can clearly be implemented in (nondeterministic) time polynomial in the number of
nodes of G.

e Stage 2 also can clearly be implemented in time polynomial in the number of edges, which is
at worst quadratic in the number of nodes.

Therefore NgaypaTy is a nondeterministic polytime decider for HAMPATH, which proves that
HAMPATH € NP.

Polynomial Time Verification

Note that the nondeterministic decider for HAMPATH really just consists of two stages: a stage
that nondeterministically “guesses” an answer, followed by a deterministic stage that verifies the
correctness of the guess.

Definition. A verifier for a language L is a (deterministic) algorithm V' where
L = {w |V accepts (w, c) for some string c}

The string c is called a certificate or proof of membership in L; it represents extra information that
the verifier can use to decide whether w is a member in L.

The running time of a verifier is measured only in terms of the length of w, not the length of (w, c).
A polynomial time (polytime) verifier is a verifier that runs in time polynomial in the length of w.
A language L is polynomially verifiable if it has a polytime verifier.

For the languages we’re dealing with that correspond to questions of the form Does this problem
have a solution?, the certificate is typically a such a solution (however obtained), if any exists.
Being able to answer the yes/no question given a solution is then simply a matter of verifying that
the solution is valid (or not).

Alternative Characterization of NP

Theorem. L € NP iff L is polynomially verifiable.

Proof. First suppose there is an NTM N that decides L in (nondeterministic) polynomial time.
Consider the following TM:

V = “On input (w,c), where w and c are strings:
1. Simulate N on input w, but interpret every symbol in ¢ as a particular direction to go
in N’s nondeterministic computation tree.
2. If this branch of N’s computation accepts, accept; otherwise, reject.”

In stage 1 the string c¢ is interpreted as the contents of the address tape as used in the 3-tape
deterministic TM simulation of an NTM.

This clearly runs in polynomial time. Also, if there is some accepting branch of N’s computation
tree when presented with input w, then there is a certificate ¢ corresponding to that branch and
V will then accept (w,c). If N rejects w, then all branches reject, so V' will not accept (w,c) for
any c.

Now suppose there is a polytime verifier V for L that runs in time n*. Consider the following NTM:

N = “On input w of length n:
1. Nondeterministically select a string ¢ of length at most n*.
2. Run V on input (w,c). If it accepts, accept; otherwise, reject.”

This NTM accepts w iff there is a certificate ¢ such the verifier V' accepts (w,c). Stage 2 clearly
runs in polynomial time. To see that stage 1 can be implemented to run in polynomial time,
consider the process of generating each symbol in ¢. This can clearly be done in polynomial time.
Even if generating the various symbols (say, nearer the beginning compared to nearer the end)
takes different amounts of time, as long as each is polynomial in 7, the overall time is the sum of
n* polynomials, which is itself a polynomial. Therefore this NTM is a nondeterministic polytime
decider for L.

HAMPATH Revisited

The decision problem: Given a directed graph G and nodes s and t in this graph, is there a Hamil-
tonian path from s tot in G?

The corresponding language:

HAMPATH = {(G, s,t) | G is a directed graph having a Hamiltonian path from s to t}

Theorem. HAMPATH € NP.

Proof. This time we use a polytime verifier. First, let the certificate ¢ be a list r1,79,...,7; of all
nodes in G not in {s,t}, where k =m — 2 (or m — 1 if s = ¢) and m is the number of nodes in G.

Viamparag = “On input ((G, s,1),c):
1. Check that (s,71), (r1,72),..., (1, 1) are all directed edges in G.
If they all are, accept; otherwise, reject.”

Note that this is just the second stage of the NTM Ngappary that we used to prove this theorem
earlier.

We already showed that this runs in time polynomial in the size of G, so it’s a polytime verifier for
HAMPATH, giving an alternative proof that HAMPATH € NP.

Hamiltonian Paths in Undirected Graphs
A Hamiltonian path in a undirected graph is, of course, a path (now undirected) that goes through
each node exactly once.

The decision problem: Given an undirected graph G and nodes s and t in this graph, is there a
Hamiltonian path from s tot in G?

The corresponding language:

UHAMPATH = {(G, s,t) | G is a undirected graph having a Hamiltonian path from s to ¢}

Ezample: Does this undirected graph have a Hamiltonian path from s to ¢?

Yes:

S
S |

/

-——-=O

|
7 |
|

Theorem. UHAMPATH € NP.

Proof. Clearly membership in this language can be verified in polynomial time given a certificate
consisting of a list of all nodes different from s and ¢, just as with HAMPATH.

Cliques in an Undirected Graph

A clique in an undirected graph G is a subgraph H such that for every pair of distinct nodes in H
there is an edge in G. A k-clique is a clique containing k nodes.

The decision problem: Given an undirected graph G and a natural number k, does G contain a
clique of size k?

The corresponding language:

CLIQUE = {(G,k) | G is a undirected graph having a k-clique}

Ezample: Does this graph have a 4-clique?

Yes:

Theorem. CLIQUE € NP.

Proof. To verify membership in this language, use a certificate consisting of a list of k distinct
nodes that are claimed to form a k-clique. Verification requires checking that every pair of distinct
nodes in the given certificate has an edge in G. Let m denote the number of nodes in G. Since
(G, k) should obviously be rejected if £ > m, the only interesting case to consider is when k£ < m.
In this case the number of pairs of distinct nodes in the certificate must be O(m?2). Checking that
each of these has an edge in G can obviously be done in polynomial time, so checking all O(m?) of
them can be done in polynomial time.

The Vertex Cover Problem

Given an undirected graph G, a vertex cover of G is a set S of nodes such that every edge in G is
connected to at least one node in S.

The decision problem: Given an undirected graph G and a natural number k, does G have a vertex
cover of size k?

The corresponding language:

VERTEX-COVER = {(G,k) | G is a undirected graph having a k-node vertex cover}

Ezample: Does this graph have a 4-node vertex cover?

Yes:

Theorem. VERTEX-COVER € NP.

Proof. To verify membership in this language, use a certificate consisting of a list of k distinct
nodes that are claimed to form a vertex cover. Verification consists simply of checking that every
edge does, indeed, include at least one node in the given list, and this can obviously be done in
polynomial time.

Factoring Integers

An integer is composite if it is not prime — i.e. if it has any integer factors other than itself and 1.
The decision problem: Given a natural number k, is k composite?

The corresponding language:

COMPOSITES = {(k) | k = pq where p and g are integers > 1}

Brute-force approach: Try every integer p from 2 up to! vk and see if it divides evenly into k. The
number of tests is O(v/k), which is exponential in the length n of the base-b representation of k for
b > 2. This is not a polytime algorithm.

Theorem. COMPOSITES € NP.

Proof. Use one of the factors as the certificate. Verification involves simply performing the integer
division and seeing whether the remainder is zero, which can be done in polynomial time.

!The largest integer < the square root of an integer can be found by a polytime algorithm, but a simpler way to
get a reasonable upper bound on this square root is to extract the left half of its base-b representation (for b > 2).

Satisfiability of Boolean Formulas

A Boolean formula is a legal expression involving
e Boolean constants

0 (representing FALSE)
1 (representing TRUE)

e Boolean variables
e AND (written as A)
e OR (written as V)

e NOT (written using overbar)

A Boolean variable can take on one of two possible values:
e ((representing FALSE)
e 1 (representing TRUE)
Given any assignment of 0/1 values to each of its variables, a Boolean formula can then be evaluated,

yielding either 0 or 1. The value of the formula is determined through the use of these familiar
truth tables:

o
= kS]]

Boolean formulas also use parentheses for grouping, but they can be omitted when there’s no
chance of ambiguity. For example, A and V are associative and this allows omission of parentheses
in certain expressions without leading to ambiguity.

Example of a Boolean formula: ¢ = (x1 Ax2) V (z1 VT3) V z3

The assignment of values ;7 = 0, zo = 1, 3 = 0 makes ¢ evaluate to

(OAL)VOVO)VO=0Vv(OV1)VO=0VvIVO=0VOVO0=0.
An assignment of values to the variables of a Boolean formula that cause it to evaluate to 1 is called
a satisfying assignment for that formula. A formula is satisfiable if it has a satisfying assignment.

The above formula ¢ is satisfiable because it is easy to check that x1 = 0, 29 = 1, z3 = 1 is a
satisfying assignment for it.

Example of an unsatifiable formula: ¢ =z AT

10

Satisfiability of Boolean Formulas (Continued)

The satisfiability problem: Given a Boolean formula ¢, is ¢ satisfiable?

The corresponding language:

SAT = {{(¢) | ¢ is a satisfiable Boolean formula}

Brute-force (deterministic) decider for SAT: Try every possible assignment of 0/1 values to all the
variables.

If there are m variables, there are 2™ possible assignments of values to try. Therefore this is not a
polytime decider.

Theorem. SAT € NP.

Proof. We use a polytime verifier for which the certificate ¢ is an assignment of 0/1 values to all
the variables.

Vsar = “On input ((¢), c):
1. Evaluate ¢ by substituting for all its variables according to the assignment c.
2. If the resulting value is 1, accept; otherwise, reject.”

Evaluation of a Boolean formula can be done in time polynomial in the size of the formula. This is
so because once the 0/1 values have been substituted in, the expression can be simplified one step
at a time just as was done in the example on the previous page. The number of such steps is on the
order of the size of the formula (since each step eliminates at least one of the Boolean operators A,
V, and negation from the expression), and each step can easily be done in polynomial time.

11

3SAT

Now we define what turns out to be a useful sublanguage of SAT in which all the formulas have a
special form.

First:
e A literal is a single Boolean variable or its negation, as in z or 7.
e A clause consists of one or more literals joined by V operators, as in £1 VT3 or £1 VT2V Z3VZTs.

e A Boolean formula is in conjunctive normal form (CNF) if it consists of one or more clauses
joined by A operators, as in

(iL‘l VTV x3 V:II_4) N (xz V.’E_g) NT1.
e A Boolean formula is a 3CNF formula if it is in CNF and every clause has exactly 3 literals,

as in
(1 VI3 Va3) AN(za VI3 VT A(z3V 3 Vay) AN(T2V 3V xy).

The decision problem: Given a SCNF formula ¢, is ¢ satisfiable?

The corresponding language:

3SAT = {(¢) | ¢ is a satisfiable 3CNF Boolean formula}

Theorem. 3SAT € NP.

Proof. Clearly the verifier Vgar is a polytime verifier for 3SAT as well.

Useful observation: To be a satisfying assignment for any CNF formula, an assignment must make
every clause TRUE; if any single clause is FALSE, the whole formula is FALSE. Furthermore, any
clause is TRUE exactly when at least one of its literals is TRUE.

12

The $64,000 Question

Here’s a list of all the languages shown to be in NP in this handout:
HAMPATH
UHAMPATH
CLIQUE
VERTEX-COVER
COMPOSITES
SAT
3SAT

Are any of the languages on this list decidable in polynomial time?

With the exception of COMPOSITES, for which a polytime algorithm was first discovered in 2002,
no one knows. A lot of research has been done on these and many other languages in NP to try to
either:

e find a polytime algorithm for them; or

e prove that no such polytime algorithm exists.

This is where the theory of NP-completeness comes in ...

13

