
Chapter 8

Convex Optimization

8.1 Definition
A convex optimization problem (or just a convex problem) is a problem consisting of min-
imizing a convex function over a convex set. More explicitly, a convex problem is of the
form

min f (x)
s.t. x ∈C , (8.1)

where C is a convex set and f is a convex function over C . Problem (8.1) is in a sense
implicit, and we will often consider more explicit formulations of convex problems such
as convex optimization problems in functional form, which are convex problems of the
form

min f (x)
s.t. gi (x)≤ 0, i = 1,2, . . . , m,

hj (x) = 0, j = 1,2, . . . , p,
(8.2)

where f , g1, . . . , gm : �n → � are convex functions and h1, h2, . . . , hp : �n → � are affine
functions. Note that the above problem does fit into the general form (8.1) of convex
problems. Indeed, the objective function is convex and the feasible set is a convex set
since it can be written as

C =

 m⋂
i=1

Lev(gi , 0)

!⋂8 p⋂
j=1

{x : hj (x) = 0}
9

,

which implies that C is a convex set as an intersection of level sets of convex functions,
which are necessarily convex sets, and hyperplanes, which are also convex sets.

The following result shows a very important property of convex problems: all local
minimum points are also global minimum points.

Theorem 8.1 (local=global in convex optimization). Let f : C → � be a convex func-
tion defined on the convex set C . Let x∗ ∈ C be a local minimum of f over C . Then x∗ is a
global minimum of f over C .

Proof. Since x∗ is a local minimum of f over C , it follows that there exists r > 0 such that
f (x) ≥ f (x∗) for any x ∈ C satisfying x ∈ B[x∗, r ]. Now let y ∈ C satisfy y �= x∗. Our
objective is to show that f (y)≥ f (x∗). Let λ ∈ (0,1] be such that x∗+λ(y−x∗) ∈ B[x∗, r ].
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148 Chapter 8. Convex Optimization

An example of such λ is λ = r
‖y−x∗‖ . Since x∗ + λ(y− x∗) ∈ B[x∗, r ]∩C , it follows that

f (x∗)≤ f (x∗+λ(y−x∗)), and hence by Jensen’s inequality

f (x∗)≤ f (x∗+λ(y−x∗))≤ (1−λ) f (x∗)+λ f (y).

Thus, λ f (x∗)≤ λ f (y), and hence the desired inequality f (x∗)≤ f (y) follows.

A slight modification of the above result shows that any local minimum of a strictly
convex function over a convex set is a strict global minimum of the function over the set.

Theorem 8.2. Let f : C →� be a strictly convex function defined on the convex set C . Let
x∗ ∈C be a local minimum of f over C . Then x∗ is a strict global minimum of f over C .

The optimal set of the convex problem (8.1) is the set of all its minimizers, that is,
argmin{ f (x) : x ∈C }. This definition of an optimal set is also valid for general problems.
An important property of convex problems is that their optimal sets are also convex.

Theorem 8.3 (convexity of the optimal set in convex optimization). Let f : C → �
be a convex function defined over the convex set C ⊆�n . Then the set of optimal solutions of
the problem

min{ f (x) : x ∈C }, (8.3)

which we denote by X ∗, is convex. If, in addition, f is strictly convex over C , then there exists
at most one optimal solution of the problem (8.3).

Proof. If X ∗ = �, the result follows trivially. Suppose that X ∗ �= � and denote the optimal
value by f ∗. Let x,y ∈ X ∗ and λ ∈ [0,1]. Then by Jensen’s inequality f (λx + (1 −
λ)y) ≤ λ f ∗ + (1− λ) f ∗ = f ∗, and hence λx+ (1− λ)y is also optimal, i.e., belongs to
X ∗, establishing the convexity of X ∗. Suppose now that f is strictly convex and X ∗ is
nonempty; to show that X ∗ is a singleton, suppose in contradiction that there exist x,y ∈
X ∗ such that x �= y. Then 1

2 x+ 1
2 y ∈C , and by the strict convexity of f we have

f
�

1
2

x+
1
2

y
�
<

1
2

f (x)+
1
2

f (y) =
1
2

f ∗+ 1
2

f ∗ = f ∗,

which is a contradiction to the fact that f ∗ is the optimal value.

Convex optimization problems consist of minimizing convex functions over convex
sets, but we will also refer to problems consisting of maximizing concave functions over
convex sets as convex problems. (Indeed, they can be recast as minimization problems of
convex functions by multiplying the objective function by minus one.)

Example 8.4. The problem
min −2x1+ x2
s.t. x2

1 + x2
2 ≤ 3

is convex since the objective function is linear, and thus convex, and the single inequality
constraint corresponds to the convex function f (x1, x2) = x2

1 + x2
2 − 3, which is a convex

quadratic function. On the other hand, the problem

min x2
1 − x2

s.t. x2
1 + x2

2 = 3
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is nonconvex. The objective function is convex, but the constraint is a nonlinear equality
constraint and therefore nonconvex. Note that the feasible set is the boundary of the ball
with center (0,0) and radius

�
3.

8.2 Examples
8.2.1 Linear Programming

A linear programming (LP) problem is an optimization problem consisting of minimizing
a linear objective function subject to linear equalities and inequalities:

(LP)
min cT x
s.t. Ax≤ b,

Bx= g.

Here A ∈�m×n ,b ∈�m ,B ∈�p×n ,g ∈�p ,c ∈�n . This is of course a convex optimiza-
tion problem since affine functions are convex. An interesting observation concerning LP
problems is based on the fact that linear functions are both convex and concave. Consider
the following LP problem:

max cT x
s.t. Ax= b,

x≥ 0.

In the literature the latter formulation is many times called the “standard formulation.”
The above problem is on one hand a convex optimization problem as a maximization
of a concave function over a convex set, but on the other hand, it is also a problem of
maximizing a convex function over a convex set. We can therefore deduce by Theorem
7.42 that if the feasible set is nonempty and compact, then there exists at least one opti-
mal solution which is an extreme point of the feasible set. By Theorem 6.34, this means
that there exists at least one optimal solution which is a basic feasible solution. A more
general result dropping the compactness assumption is called the “fundamental theorem
of linear programming,” and it states that if the problem has an optimal solution, then it
necessarily has an optimal basic feasible solution.

Although the class of LP problems seems to be quite restrictive due to the linearity of
all the involved functions, it encompasses a huge amount of applications and has a great
impact on many fields in applied mathematics. Following is an example of a scheduling
problem that can be recast as an LP problem.

Example 8.5. For a new position in a company, we need to schedule job interviews for
n candidates numbered 1,2, . . . , n in this order (candidate i is scheduled to be the ith
interview). Assume that the starting time of candidate i must be in the interval [αi ,βi ],
where αi < βi . To assure that the problem is feasible we assume that αi ≤ β j for any
j > i . The objective is to formulate the problem of finding n starting times of interviews
so that the minimal starting time difference between consecutive interviews is maximal.

Let ti denote the starting time of interview i . The objective function is the minimal
difference between consecutive starting times of interviews:

f (t) =min{t2− t1, t3− t2, . . . , tn − tn−1},
and the corresponding optimization problem is

max
0
min{t2− t1, t3− t2, . . . , tn − tn−1}

1
s.t. αi ≤ ti ≤βi , i = 1,2, . . . , n.
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Note that we did not incorporate the constraints that ti ≤ ti+1 for i = 1,2, . . . , n − 1
since the feasibility condition will guarantee in any case that these constraints will be
satisfied in an optimal solution. The problem is convex since it consists of maximizing
a concave function subject to affine (and hence convex) constraints. To show that the
objective function is indeed concave, note that by Theorem 7.25 the maximum of convex
functions is a convex function. The corresponding result for concave functions (that can
be obtained by simply looking at minus of the function) is that the minimum of concave
functions is a concave function. Therefore, since the objective function is a minimum of
linear (and hence concave) functions, it is a concave function. In order to formulate the
problem as an LP problem, we reformulate the problem as

maxt,s s
s.t. min{t2− t1, t3− t2, . . . , tn − tn−1}= s ,

αi ≤ ti ≤βi , i = 1,2, . . . , n.
(8.4)

We now claim that problem (8.4) is equivalent to the corresponding problem with an
inequality constraint instead of an equality:

maxt,s s
s.t. min{t2− t1, t3− t2, . . . , tn − tn−1} ≥ s ,

αi ≤ ti ≤βi , i = 1,2, . . . , n.
(8.5)

By “equivalent” we mean that any optimal solution of (8.5) satisfies the inequality con-
straint as an equality constraint. Indeed, suppose in contradiction that there exists an
optimal solution (t∗, s∗) of (8.5) that satisfies the inequality constraints strictly, meaning
that min{t ∗2 − t ∗1 , t ∗3 − t ∗2 , . . . , t ∗n − t ∗n−1}> s∗. Then we can easily check that the solution
(t∗, s̃ ), where s̃ =min{t ∗2 − t ∗1 , t ∗3 − t ∗2 , . . . , t ∗n− t ∗n−1} is also feasible for (8.5) and has a larger
objective function value, which is a contradiction to the optimality of (t∗, s∗). Finally, we
can rewrite the inequality min{t2 − t1, t3 − t2, . . . , tn − tn−1} ≥ s as ti+1 − ti ≥ s for any
i = 1,2, . . . , n− 1, and we can therefore recast the problem as the following LP problem:

maxt,s s
s.t. ti+1− ti ≥ s , i = 1,2, . . . , n− 1,

αi ≤ ti ≤βi , i = 1,2, . . . , n.

8.2.2 Convex Quadratic Problems

Convex quadratic problems are problems consisting of minimizing a convex quadratic
function subject to affine constraints. A general form of problems of this class can be
written as

min xT Qx+ 2bT x
s.t. Ax≤ c,

where Q ∈�n×n is positive semidefinite, b ∈�n ,A ∈�m×n , and c ∈�m . A well-known
example of a convex quadratic problem arises in the area of linear classification and is
described in detail next.

8.2.3 Classification via Linear Separators

Suppose that we are given two types of points in �n : type A and type B. The type A
points are given by

x1,x2, . . . ,xm ∈�n
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Figure 8.1. Type A (asterisks) and type B (diamonds) points.

and the type B points are given by

xm+1,xm+2, . . . ,xm+p ∈�n .

For example, Figure 8.1 describes two sets of points in �2: the type A points are denoted
by asterisks and the type B points are denoted by diamonds. The objective is to find a
linear separator, which is a hyperplane of the form

H (w,β) = {x ∈�n : wT x+β= 0}
for which the type A and type B points are in its opposite sides:

wT xi +β< 0, i = 1,2, . . . , m,

wT xi +β> 0, i = m+ 1, m+ 2, . . . , m+ p.

Our underlying assumption is that the two sets of points are linearly separable, meaning
that the above set of inequalities has a solution. The problem is not well-defined in the
sense that there are many linear separators, and what we seek is in fact a separator that
is in a sense farthest as possible from all the points. At this juncture we need to define
the notion of the margin of the separator, which is the distance of the separator from
the closest point, as illustrated in Figure 8.2. The separation problem will thus consist of
finding the separator with the largest margin. To compute the margin, we need to have
a formula for the distance between a point and a hyperplane. The next lemma provides
such a formula, but its proof is postponed to Chapter 10 (see Lemma 10.12), where more
general results will be derived.

Lemma 8.6. Let H (a, b ) = {x ∈�n : aT x= b}, where 0 �= a ∈�n and b ∈�. Let y ∈�n .
Then the distance between y and the set H is given by

d (y, H (a, b )) =
|aT y− b |
‖a‖ .

We therefore conclude that the margin corresponding to a hyperplane H (w,−β)
(w �= 0) is

min
i=1,2,...,m+p

|wT xi +β|
‖w‖ .
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Figure 8.2. The optimal linear seperator and its margin.

So far, the problem that we consider is therefore

max
;

mini=1,2,...,m+p
|wT xi+β|‖w‖

<
s.t. wT xi +β< 0, i = 1,2, . . . , m,

wT xi +β> 0, i = m+ 1, m+ 2, . . . , m+ p.

This is a rather bad formulation of the problem since it is not convex and cannot be easily
handled. Our objective is to find a convex reformulation of the problem. For that, note
that the problem has a degree of freedom in the sense that if (w,β) is an optimal solution,
then so is any nonzero multiplier of it, that is, (αw,αβ) for α �= 0. We can therefore
decide that

min
i=1,2,...,m+p

|wT xi +β|= 1,

and the problem can then be rewritten as

max
5

1
‖w‖

6
s.t. mini=1,2,...,m+p |wT xi +β|= 1,

wT xi +β< 0, i = 1,2, . . . , m,
wT xi +β> 0, i = m+ 1,2, . . . , m+ p.

The combination of the first equality and the other inequality constraints implies that a
valid reformulation is

min 1
2‖w‖2

s.t. mini=1,2,...,m+p |wT xi +β|= 1,
wT xi +β≤−1, i = 1,2, . . . , m,
wT xi +β≥ 1, i = m+ 1,2, . . . , m+ p,
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where we also used the fact that maximizing 1
‖w‖ is the same as minimizing ‖w‖2 in the

sense that the optimal set stays the same. Finally, we remove the problematic “min” equal-
ity constraint and obtain the following convex quadratic reformulation of the problem:

min 1
2‖w‖2

s.t. wT xi +β≤−1, i = 1,2, . . . , m,
wT xi +β≥ 1, i = m+ 1, m+ 2, . . . , m+ p.

(8.6)

The removal of the “min” constraint is valid since any feasible solution of problem
(8.6) surely satisfies mini=1,2,...,m+p |wT xi + β| ≥ 1. If (w,β) is in addition optimal,
then equality must be satisfied. Otherwise, if mini=1,2,...,m+p |wT xi + β| > 1, then a

better solution (i.e., with lower objective function value) will be 1
α (w,β), where α =

mini=1,2,...,m+p |wT xi +β|.

8.2.4 Chebyshev Center of a Set of Points

Suppose that we are given m points a1,a2, . . . ,am in�n . The objective is to find the center
of the minimum radius closed ball containing all the points. This ball is called the Cheby-
shev ball and the corresponding center is the Chebyshev center. In mathematical terms, the
problem can be written as (r denotes the radius and x is the center)

minx,r r
s.t. ai ∈ B[x, r ], i = 1,2, . . . , m.

Of course, recalling that B[x, r ] = {y : ‖y− x‖ ≤ r }, it follows that the problem can be
written as

minx,r r
s.t. ‖x− ai‖ ≤ r, i = 1,2, . . . , m. (8.7)

This is obviously a convex optimization problem since it consists of minimizing a linear
(and hence convex) function subject to convex inequality constraints: the function ‖x−
ai‖− r is convex as a sum of a translation of the norm function and the linear function
−r . An illustration of the Chebyshev center and ball is given in Figure 8.3.
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Figure 8.3. The Chebyshev center (denoted by a diamond marker) of a set of 10 points (aster-
isks). The boundary of the Chebyshev ball is the dashed circle.
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8.2.5 Portfolio Selection

Suppose that an investor wishes to construct a portfolio out of n given assets numbered
as 1,2, . . . , n. Let Yj ( j = 1,2, . . . , n) be the random variable representing the return from
asset j . We assume that the expected returns are known,

μ j =�(Yj ), j = 1,2, . . . , n,

and that the covariances of all the pairs of variables are also known,

σi , j =COV (Yi ,Yj ), i , j = 1,2, . . . , n.

There are n decision variables x1, x2, . . . , xn , where xj denotes the proportion of budget
invested in asset j . The decision variables are constrained to be nonnegative and sum up
to 1: x ∈Δn . The overall return is the random variable,

R=
n∑

j=1

xj Yj ,

whose expectation and variance are given by

�(R) =μT x, �(R) = xT Cx,

where μ= (μ1,μ2, . . . ,μn )
T and C is the covariance matrix whose elements are given by

Ci , j = σi , j for all 1≤ i , j ≤ n. It is important to note that the covariance matrix is always
positive semidefinite. The variance of the portfolio, xT Cx, is the risk of the suggested
portfolio x. There are several formulations of the portfolio optimization problem, which
are all referred to as the “Markowitz model” in honor of Harry Markowitz, who first
suggested this type of a model in 1952.

One formulation of the problem is to find a portfolio minimizing the risk under the
constraint that a minimal return level is guaranteed:

min xT Cx
s.t μT x≥ α,

eT x= 1,
x≥ 0,

(8.8)

where e is the vector of all ones and α is the minimal return value. Another option is to
maximize the expected return subject to a bounded risk constraint:

max μT x
s.t xT Cx≤β,

eT x= 1,
x≥ 0,

(8.9)

where β is the upper bound on the risk. Finally, a third option is to write an objective
function which is a combination of the expected return and the risk:

min −μT x+ γ (xT Cx)
s.t eT x= 1,

x≥ 0,
(8.10)
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where γ > 0 is a penalty parameter. Each of the three models (8.8), (8.9), and (8.10) de-
pends on a certain parameter (α,β, or γ ) whose value dictates the tradeoff level between
profit and risk. Determining the value of each of these parameters is not necessarily an
easy task, and it also depends on the subjective preferences of the investors. The three
models are all convex optimization problems since xT Cx is a convex function (its associ-
ated matrix C is positive semidefinite). The model (8.10) is a convex quadratic problem.

8.2.6 Convex QCQPs

A quadratically constrained quadratic problem, or QCQP for short, is a problem consist-
ing of minimizing a quadratic function subject to quadratic inequalities and equalities:

(QCQP)
min xT A0x+ 2bT

0 x+ c0
s.t. xT Ai x+ 2bT

i x+ ci ≤ 0, i = 1,2, . . . , m,
xT A j x+ 2bT

j x+ c j = 0, j = m+ 1, m+ 2, . . . , m+ p.

Obviously, QCQPs are not necessarily convex problems, but when there are no equal-
ity constrainers (p = 0) and all the matrices are positive semidefinite, Ai � 0 for i =
0,1, . . . , m, the problem is convex and is therefore called a convex QCQP.

8.2.7 Hidden Convexity in Trust Region Subproblems

There are several situations in which a certain problem is not convex but nonetheless can
be recast as a convex optimization problem. This situation is sometimes called “hidden
convexity.” Perhaps the most famous nonconvex problem possessing such a hidden con-
vexity property is the trust region subproblem, consisting of minimizing a quadratic func-
tion (not necessarily convex) subject to an Euclidean norm constraint:

(TRS) min{xT Ax+ 2bT x+ c : ‖x‖2 ≤ 1}.
Here b ∈ �n , c ∈ �, and A is an n × n symmetric matrix which is not necessarily pos-
itive semidefinite. Since the objective function is (possibly) nonconvex, problem (TRS)
is (possibly) nonconvex. This is an important class of problems arising, for example, as
a subroutine in trust region methods, hence the name of this class of problems. We will
now show how to transform (TRS) into a convex optimization problem. First, by the
spectral decomposition theorem (Theorem 1.10), there exist an orthogonal matrix U and
a diagonal matrix D= diag(d1, d2, . . . , dn) such that A=UDUT , and hence (TRS) can be
rewritten as

min{xT UDUT x+ 2bT UUT x+ c : ‖UT x‖2 ≤ 1}, (8.11)

where we used the fact that ‖UT x‖= ‖x‖. Making the linear change of variables y=UT x,
it follows that (8.11) reduces to

min{yT Dy+ 2bT Uy+ c : ‖y‖2 ≤ 1}.
Denoting f=UT b, we obtain the following formulation of the problem:

min
∑n

i=1 di y2
i + 2

∑n
i=1 fi yi + c

s.t.
∑n

i=1 y2
i ≤ 1.

(8.12)

The problem is still nonconvex since some of the di s might be negative. At this point,
we will use the following result stating that the signs of the optimal decision variables are
actually known in advance.
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Lemma 8.7. Let y∗ be an optimal solution of (8.12). Then fi y∗i ≤ 0 for all i = 1,2, . . . , n.

Proof. We will denote the objective function of problem (8.12) by f (y) ≡∑n
i=1 di y2

i +
2
∑n

i=1 fi yi + c . Let i ∈ {1,2, . . . , n}. Define the vector ỹ to be

ỹ j =
)

y∗j , j �= i ,
−y∗i , j = i .

Then obviously ỹ is also a feasible solution of (8.12), and since y∗ is an optimal solution
of (8.12), it follows that

f (y∗)≤ f (ỹ),

which is the same as

n∑
i=1

di (y
∗
i )

2+ 2
n∑

i=1

fi y∗i + c ≤
n∑

i=1

di (ỹi )
2+ 2

n∑
i=1

fi ỹi + c .

Using the definition of ỹ, the above inequality reduces after much cancelation of terms to

2 fi y∗i ≤ 2 fi (−y∗i ),

which implies the desired inequality fi y∗i ≤ 0.

As a direct result of Lemma 8.7 we have that for any optimal solution y∗, the equality
sgn(y∗i ) =−sgn( fi ) holds when fi �= 0 and where the sgn function is defined to be

sgn(x) =
(

1, x ≥ 0,
−1, x < 0.

When fi = 0, we have the property that both y∗ and ỹ are optimal (see the proof of Lemma
8.7), and hence the sign of y∗ can be chosen arbitrarily. As a consequence, we can make
the change of variables yi =−sgn( fi )

�zi (zi ≥ 0), and problem (8.12) becomes

min
∑n

i=1 di zi − 2
∑n

i=1 | fi |�zi + c
s.t.

∑n
i=1 zi ≤ 1,

z1, z2, . . . , zn ≥ 0.
(8.13)

Obviously this is a convex optimization problem since the constraints are linear and the
objective function is a sum of linear terms and positive multipliers of the convex functions
−�zi . To conclude, we have shown that the nonconvex trust region subproblem (TRS)
is equivalent to the convex optimization problem (8.13).

8.3 The Orthogonal Projection Operator
Given a nonempty closed convex set C , the orthogonal projection operator PC :�n → C
is defined by

PC (x) = argmin{‖y−x‖2 : y ∈C }. (8.14)

The orthogonal projection operator with input x returns the vector in C that is closest
to x. Note that the orthogonal projection operator is defined as a solution of a convex
optimization problem, specifically, a minimization of a convex quadratic function subject
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to a convex feasible set. The first orthogonal projection theorem states that the orthogo-
nal projection operator is in fact well-defined, meaning that the optimization problem in
(8.14) has a unique optimal solution.

Theorem 8.8 (first projection theorem). Let C be a nonempty closed convex set. Then
problem (8.14) has a unique optimal solution.

Proof. Since the objective function in (8.14) is a quadratic function with a positive definite
matrix, it follows by Lemma 2.42 that the objective function is coercive and hence, by
Theorem 2.32, that the problem has at least one optimal solution. In addition, since the
objective function is strictly convex (again, since the objective function is quadratic with
positive definite matrix), it follows by Theorem 8.3 that there exists only one optimal
solution.

The distance function was already defined in Example 7.29 as

d (x,C ) =min
y∈C
‖x− y‖.

Evidently, the distance function, in the case where C is a nonempty closed and convex
set, can also be written in terms of the orthogonal projection as follows:

d (x,C ) = ‖x− PC (x)‖.
Computing the orthogonal projection operator might be a difficult task, but there are

some examples of simple sets on which the orthogonal projection can be easily computed.

Example 8.9 (projection on the nonnegative orthant). Let C = �n
+. To compute the

orthogonal projection of x ∈ �n onto �n
+, we need to solve the convex optimization

problem
min

∑n
i=1(yi − xi )2

s.t. y1, y2, . . . , yn ≥ 0. (8.15)

Since this problem is separable, meaning that the objective function is a sum of functions
of each of the variables, and the constraints are separable in the sense that each of the
variables has its own constraint, it follows that the ith component of the optimal solution
y∗ of problem (8.15) is the optimal solution of the univariate problem

min{(yi − xi )
2 : yi ≥ 0},

which is given by y∗i = [xi ]+, where for a real number α ∈�, [α]+ is the nonnegative part
of α:

[α]+ =
(
α, α≥ 0,
0, α < 0.

We will extend the definition of the nonnegative part to vectors, and the nonnegative part
of a vector v ∈�n is defined by

[v]+ = ([v1]+, [v2]+, . . . , [vn]+)
T .

To summarize, the orthogonal projection operator onto �n
+ is given by

P�n
+
(x) = [x]+.

Example 8.10 (projection on boxes). A box is a subset of �n of the form

B = [�1, u1]× [�2, u2]× · · · × [�n , un] = {x ∈�n : �i ≤ xi ≤ ui },
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where �i ≤ ui for all i = 1,2, . . . , n. We will also allow some of the ui ’s to be equal to∞
and some of the �i ’s to be equal to−∞; in these cases we will assume that∞ or−∞ are
not actually contained in the intervals. A similar separability argument as the one used
in the previous example, shows that the orthogonal projection is given by

y= PB (x),

where

yi =

⎧⎨
⎩

ui , xi ≥ ui ,
xi , �i < xi < ui ,
�i , xi ≤ �i ,

for any i = 1,2, . . . , n.

Example 8.11 (projection onto balls). Let C = B[0, r ] = {y : ‖y‖ ≤ r }. The optimiza-
tion problem associated with the computation of PC (x) is given by

min
y
{‖y−x‖2 : ‖y‖2 ≤ r 2}. (8.16)

If ‖x‖ ≤ r , then obviously y = x is the optimal solution of (8.16) since it corresponds to
the optimal value 0. When ‖x‖ > r , then the optimal solution of (8.16) must belong to
the boundary of the ball since otherwise, by Theorem 2.6, it would be a stationary point
of the objective function, that is, 2(y−x) = 0, and hence y= x, which is impossible since
x /∈C . We thus conclude that the problem in this case is equivalent to

min
y
{‖y−x‖2 : ‖y‖2 = r 2},

which can be equivalently written as

min
y
{−2xT y+ r 2+ ‖x‖2 : ‖y‖2 = r 2},

The optimal solution of the above problem is the same as the optimal solution of

min
y
{−2xT y : ‖y‖2 = r 2}.

By the Cauchy–Schwarz inequality, the objective function can be lower bounded by

−2xT y≥−2‖x‖‖y‖=−2r‖x‖,
and on the other hand, this lower bound is attained at y= r x

‖x‖ , and hence the orthogonal
projection is given by

PB[0,r ] =
)

x, ‖x‖ ≤ r,
r x
‖x‖ , ‖x‖> r.

8.4 CVX
CVX is a MATLAB-based modeling system for convex optimization. It was created by
Michael Grant and Stephen Boyd [19]. This MATLAB package is in fact an interface
to other convex optimization solvers such as SeDuMi and SDPT3. We will explore here
some of the basic features of the software, but a more comprehensive and complete guide
can be found at the CVX website (CVXr.com). The basic structure of a CVX program is
as follows:
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cvx_begin
{variables declaration}
minimize({objective function}) or maximize({objective function})
subject to
{constraints}
cvx_end

Variables Declaration

The variables are declared via the command variable or variables. Thus, for example,

variable x(4);
variable z;
variable Y(2,3);

declares three variables:

• x, a column vector of length 4,

• z, a scalar,

• Y, a 2× 3 matrix.

The same declaration can be written as

variables x(4) z Y(2,3);

Atoms

CVX accepts only convex functions as objective and constraint functions. There are sev-
eral basic convex functions, called “atoms,” which are embedded in CVX. Some of these
atoms are given in the following table.

function meaning attributes

norm(x,p) p
�∑n

i=1 |xi |p (p ≥ 1) convex
square(x) x2 convex

sum_square(x)
∑n

i=1 x2
i convex

square_pos(x) [x]2+ convex, nondecreasing
sqrt(x)

�
x concave, nondecreasing

inv_pos(x) 1
x (x > 0) convex, nonincreasing

max(x) max{x1, x2, . . . , xn} convex, nondecreasing

quad_over_lin(x,y) ‖x‖2

y (y > 0) convex

quad_form(x,P) xT Px (P� 0) convex

In addition, CVX is aware that the function x p for an even integer p is a convex func-
tion and that affine functions are both convex and concave.

Operations Preserving Convexity

Atoms can be incorporated by several operations which preserve convexity:

• addition,

• multiplication by a nonnegative scalar,
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• composition of a nondecreasing convex function with a convex function,

• composition of a convex function with an affine transformation.

CVX is also aware that minus a convex function is a concave function. The constraints
that CVX is willing to accept are inequalities of the forms

f(x)<=g(x)
g(x)>=f(x)

where f is convex and g is concave. Equality constraints must be affine, and the syntax
is (h and s are affine functions)

h(x)==s(x)

Note that the equality must be written in the format ==. Otherwise, it will be interpreted
as a substitution operation.

Example 8.12. Suppose that we wish to solve the least squares problem

min‖Ax−b‖2,

where

A=

⎛
⎝1 2

3 4
5 6

⎞
⎠ , b=

⎛
⎝7

8
9

⎞
⎠ .

We can find the solution of this least squares problem by the MATLAB commands

>> A=[1,2;3,4;5,6];b=[7;8;9];
>> x=(A’*A)\(A’*b)
x =

-6.0000
6.5000

To solve this problem via CVX, we can use the function sum_square:

cvx_begin
variable x(2)
minimize(sum_square(A*x-b))
cvx_end

The obtained solution is as expected:

>> x
x =

-6.0000
6.5000

We can also solve the problem by noting that

‖Ax−b‖2 = xT AT Ax− 2bT Ax+ ‖b‖2
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and writing the following commands:

cvx_begin
variable x(2)
minimize(quad_form(x,A’*A)-2*b’*A*x)
cvx_end

However, the following program is wrong and CVX will not accept it:

cvx_begin
variable x(2)
minimize(norm(A*x-b)^2)
cvx_end

The reason is that the objective function is written as a composition of the square function
which is not nondecreasing with the function norm(Ax-b). Of course, we know that
the image of ‖Ax− b‖ consists only of nonnegative values and that the square function
is nondecreasing over that domain. However, CVX is not aware of that. If we insist on
making such a decomposition we can use the function square_pos – the scalar function
ϕ(x) = max{x, 0}2, which is convex and nondecreasing, and write the legitimate CVX
program:

cvx_begin
variable x(2)
minimize(square_pos(norm(A*x-b)))
cvx_end

It is also worth mentioning that since the problem of minimizing the norm is equivalent
to the problem of minimizing the squared norm in the sense that both problems have the
same optimal solution, the following CVX program will also find the optimal solution,
but the optimal value will be the square root of the optimal value of the original problem:

cvx_begin
variable x(2)
minimize(norm(A*x-b))
cvx_end

Example 8.13. Suppose that we wish to write a CVX code that solves the convex opti-
mization problem

min
�

x2
1 + x2

2 + 1+ 2max{x1, x2,0}
s.t. |x1|+ |x2|+ x2

1
x2
≤ 5

1
x2
+ x4

1 ≤ 10
x2 ≥ 1
x1 ≥ 0.

(8.17)

In order to write the above problem in CVX, it is important to understand the reason why�
x2

1 + x2
2 + 1 is convex since writingsqrt(x(1)^2+x(2)^2+1) in CVX will result in

an error message. Since the expression is written as a composition of an increasing concave
function with a convex function, in general it does not result in a convex function. A valid
reason why

�
x2

1 + x2
2 + 1 is convex is that it can be rewritten as ‖(x1, x2,1)T ‖. That is, it

is a composition of the norm function with an affine transformation. Correspondingly,
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the correct syntax in CVX will be norm([x;1]). Overall, a CVX program that solves
(8.17) is

cvx_begin
variable x(2)
minimize(norm([x;1])+2*max(max(x(1),x(2)),0))
subject to
norm(x,1)+quad_over_lin(x(1),x(2))<=5
inv_pos(x(2))+x(1)^4<=10
x(2)>=1
x(1)>=0
cvx_end

Example 8.14. Suppose that we wish to find the Chebyshev center of the 5 points

(−1,3), (−3,10), (−1,0), (5,0), (−1,−5).

Recall that the problem of finding the Chebyshev center of a set of points a1,a2, . . . ,am is
given by (see Section 8.2.4)

minx,r r
s.t. ‖x− ai‖ ≤ r, i = 1,2, . . . , m,

and thus the following code will solve the problem:

A=[-1,-3,-1,5,-1;3,10,0,0,-5];
cvx_begin
variables x(2) r
minimize(r)
subject to
for i=1:5

norm(x-A(:,i))<=r
end
cvx_end

This results in the optimal solution

>> x
x =

-2.0002
2.5000

>> r
r =

7.5664

To plot the 5 points along with the Chebyshev circle and center we can write

plot(A(1,:),A(2,:),’*’)
hold on
plot(x(1),x(2),’d’)
t=0:0.001:2*pi;
xx=x(1)+r*cos(t);
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yy=x(2)+r*sin(t);
plot(xx,yy)
axis equal
axis([-11,7,-6,11])
hold off

The result can be seen in Figure 8.4.
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Figure 8.4. The Chebyshev center (diamond marker) of 5 points (in asterisks).

Example 8.15 (robust regression). Suppose that we are given 21 points in �2 generated
by the MATLAB commands

randn(’seed’,314);
x=linspace(-5,5,20)’;
y=2*x+1+randn(20,1);
x=[x;5];
y=[y;-20];
plot(x,y,’*’)
hold on

The resulting plot can be seen in Figure 8.5. Note that the point (5,−20) is an outlier; it is
far away from all the other points and does not seem to fit into the almost-line structure
of the other points. The least squares line, also called the regression line, can be found by
the commands (see also Chapter 3)

A=[x,ones(21,1)];
b=y;
u=A\b;
alpha=u(1);beta=u(2);
plot([-6,6],alpha*[-6,6]+beta);
hold off

resulting in the line plotted in Figure 8.6. As can be clearly seen in Figure 8.6, the least
squares line is very much affected by the single outlier point, which is a known drawback
of the least squares approach. Another option is to replace the l2-based objective function
‖Ax− b‖2

2 with an l1-based objective function; that is, we can consider the optimization
problem

min‖Ax−b‖1.
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Figure 8.5. 21 points in the plane. The point (5,−20) is an outlier.
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Figure 8.6. 21 points in the plane along with their least squares (regression) line.

This approach has the advantage that it is less sensitive to outliers since outliers are not
as severely penalized as they are penalized in the least squares objective function. More
specifically, in the least squares objective function, the distances to the line are squared,
while in the l1-based function they are not. To find the line using CVX, we can run the
commands

plot(x,y,’*’)
hold on
cvx_begin
variable u_l1(2)
minimize(norm(A*u_l1-b,1))
cvx_end
alpha_l1=u_l1(1);
beta_l1=u_l1(2);
plot([-6,6],alpha_l1*[-6,6]+beta_l1);
axis([-6,6,-21,15])
hold off

and the corresponding plot is given in Figure 8.7. Note that the resulting line is insensitive
to the outlier. This is why this line is also called the robust regression line.
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Figure 8.7. 21 points in the plane along with their robust regression line.

Example 8.16 (solution of a trust region subproblem). Consider the trust region sub-
problem (see Section 8.2.7)

min x2
1 + x2

2 + 3x2
3 + 4x1 x2+ 6x1x3+ 8x2 x3+ x1+ 2x2− x3

s.t. x2
1 + x2

2 + x2
3 ≤ 1,

which is the same as
min xT Ax+ 2bT x
s.t. ‖x‖2 ≤ 1,

where

A=

⎛
⎝1 2 3

2 1 4
3 4 3

⎞
⎠ , b=

⎛
⎜⎝

1
2

1

− 1
2

⎞
⎟⎠ .

The problem is nonconvex since the matrix A is not positive definite:

>> A=[1,2,3;2,1,4;3,4,3];
>> b=[0.5;1;-0.5];
>> eig(A)

ans =

-2.1683
-0.8093
7.9777

It is therefore not possible to solve the problem directly using CVX. Instead, we will use
the technique described in Section 8.2.7 to convert the problem into a convex problem,
and then we will be able to solve the transformed problem via CVX. We begin by com-
puting the spectral decomposition of A,

[U,D]=eig(A);

and then compute the vectors d and f in the convex reformulation of the problem:

f=U’*b;
d=diag(D);
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We can now use CVX to solve the equivalent problem (8.13):

cvx_begin
variable z(3)
minimize(d’*z-2*abs(f)’*sqrt(z))
subject to
sum(z)<=1
z>=0
cvx_end

The optimal solution is then computed by yi =−sgn( fi )
�zi and then x=Uy:

>> y=-sign(f).*sqrt(z);
>> x=U*y
x =

-0.2300
-0.7259
0.6482

Exercises
8.1. Consider the problem

(P)
min f (x)
s.t. g (x)≤ 0

x ∈X ,

where f and g are convex functions over �n and X ⊆�n is a convex set. Suppose
that x∗ is an optimal solution of (P) that satisfies g (x∗)< 0. Show that x∗ is also an
optimal solution of the problem

min f (x)
s.t. x ∈X .

8.2. Let C = B[x0, r ], where x0 ∈ �n and r > 0 are given. Find a formula for the
orthogonal projection operator PC .

8.3. Let f be a strictly convex function over �m and let g be a convex function over
�n . Define the function

h(x) = f (Ax)+ g (x),

where A ∈ �m×n . Assume that x∗ and y∗ are optimal solutions of the uncon-
strained problem of minimizing h. Show that Ax∗ =Ay∗.

8.4. For each of the following optimization problems (a) show that it is convex,
(b) write a CVX code that solves it, and (c) write down the optimal solution (by
running CVX).

(i)
min x2

1 + 2x1x2+ 2x2
2 + x2

3 + 3x1− 4x2

s.t.
�

2x2
1 + x1 x2+ 4x2

2 + 4+ (x1−x2+x3+1)2

x1+x2
≤ 6

x1, x2, x3 ≥ 1.
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(ii)
max x1+ x2+ x3 + x4
s.t. (x1− x2)2+(x3+ 2x4)4 ≤ 5

x1+ 2x2+ 3x3+ 4x4 ≤ 6
x1, x2, x3, x4 ≥ 0.

(iii)
min 5x2

1 + 4x2
2 + 7x2

3 + 4x1 x2+ 2x2 x3+ |x1− x2|
s.t. x2

1+x2
2

x3
+(x2

1 + x2
2 + 1)4 ≤ 10

x3 ≥ 10.

(iv)
min

�
x2

1 + x2
2 + 2x1+ 5+ x2

1 + 2x1x2+ x2
2 + 2x1+ 3x2

s.t. x2
1

x1+x2
+
�

x2
1

x2
+ 1

�8 ≤ 100

x1+ x2 ≥ 4
x2 ≥ 1.

(v)

min |2x1+ 3x2+ x3|+ x2
1 + x2

2 + x2
3 +

�
2x2

1 + 4x1x2+ 7x2
2 + 10x2+ 6

s.t. x2
1+1
x2
+ 2x2

1 + 5x2
2 + 10x2

3 + 4x1 x2+ 2x1 x3+ 2x2 x3 ≤ 7
x1 ≥ 0
x2 ≥ 1.

For this problem also show that the expression inside the square root is always
nonnegative, i.e., 2x2

1 + 4x1 x2+ 7x2
2 + 10x2+ 6≥ 0 for all x1, x2.

(vi)
min 1

2x2+3x3
+ 5x2

1 + 4x2
2 + 7x2

3 +
x2

1+x1+1
x2+x3

s.t. max
�

x1+ x2, x2
3

	
+(x2

1 + 4x1 x2+ 5x2
2 + 1)2 ≤ 10

x1, x2, x3 ≥ 0.1.

(vii)
min

�
2x2

1 + 3x2
2 + x2

3 + 4x1x2+ 7+(x2
1 + x2

2 + x2
3 + 1)2

s.t. (x1+x2)
2

x3+1 + x8
1 ≤ 7

x2
1 + x2

2 + 4x2
3 + 2x1 x2+ 2x1 x3+ 2x2 x3 ≤ 10

x1, x2, x3 ≥ 0.

(viii)
min x4

1+2x2
1 x2

2+x4
2

x2
1+2x1 x2+x2

2
+
�

x2
3 + 1

s.t. x2
1 + x2

2 + 2x2
3 + 2x1 x2+ 2x1 x3+ 2x2 x3 ≤ 100

x1+ x2+ x3 = 2
x1+ x2 ≥ 1.

(ix)
min x4

1
x2

2
+ x4

2
x2

1
+ 2x1 x2+ |x1 + 5|+ |x2 + 5|+ |x3 + 5|

s.t.
&�

x2
1 + x2

2 + x2
3 + 1

�2+ 1
'2
+ x4

1 + x4
2 + x4

3 ≤ 200
max

�
x2

1 + 4x1 x2+ 9x2
2 , x1, x2

	≤ 40
x1 ≥ 1
x2 ≥ 1.
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(x)
min (x1+ x2+ x3)

8+ x2
1 + x2

2 + 3x2
3 + 2x1x2+ 2x2 x3+ 2x1x3

s.t. (|x1− 2x2|+ 1)4+ 1
x3
≤ 10,

2x1+ 2x2+ x3 ≤ 1,
0≤ x3 ≤ 1.

8.5. Suppose that we are given 40 points in the plane. Each of these points belongs to
one of two classes. Specifically, there are 19 points of class 1 and 21 points of class
2. The points are generated and plotted by the MATLAB commands

rand(’seed’,314);
x=rand(40,1);
y=rand(40,1);
class=[2*x<y+0.5]+1;
A1=[x(find(class==1)),y(find(class==1))];
A2=[x(find(class==2)),y(find(class==2))];
plot(A1(:,1),A1(:,2),’*’,’MarkerSize’,6)
hold on
plot(A2(:,1),A2(:,2),’d’,’MarkerSize’,6)
hold off

The plot of the points is given in Figure 8.8. Note that the rows of A1 ∈ �19×2

are the 19 points of class 1 and the rows of A2 ∈�21×2 are the 21 points of class 2.
Write a CVX-based code for finding the maximum-margin line separating the two
classes of points.
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Figure 8.8. 40 points of two classes: class 1 points are denoted by asterisks, and class 2 points
are denoted by diamonds.


