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ABSTRACT 

 
Practitioners and teachers should be able to justify their chosen techniques by taking 
into account research results: This is evidence-based practice (EBP). We argue that, 
specifically, statistical practice and statistics education should be guided by evidence, 
and we propose statistical cognition (SC) as an integration of theory, research, and 
application to support EBP. SC is an interdisciplinary research field, and a way of 
thinking. We identify three facets of SC—normative, descriptive, and prescriptive—
and discuss their mutual influences. Unfortunately, the three components are studied 
by somewhat separate groups of scholars, who publish in different journals. These 
separations impede the implementation of EBP. SC, however, integrates the facets 
and provides a basis for EBP in statistical practice and education. 
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1. BACKGROUND 
 
A wide range of research is relevant for improving statistical practice and statistics 

education, but we worry that this research is too fragmented for most effective use. We 
identify three facets of this research, and propose that the concept of statistical cognition 
can help bring these together, and provide a stronger basis for evidence-based practice 
(EBP) in statistics and statistics education. As an introductory example, consider 
confidence intervals (CIs), and three lines of discussion involving them. 

First, for almost a century, mathematical statisticians have been studying CIs—
developing theory and new applications, investigating robustness, and making 
comparisons with other inferential techniques. Second, within statistics, and in research 
fields that use statistics, there has been some discussion about possible misunderstandings 
of CIs; textbook authors also consider how to explain CIs, and possible misconceptions. 
However there has been almost no empirical study of how students and researchers think 
about CIs, or about misconceptions they may have. Third, there have been persistent calls 
for much wider use of CIs, in preference to null hypothesis significance testing (NHST), 
in psychology and other disciplines (e.g., Wilkinson et al., 1999). Reformers have 
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claimed CIs lead to better research decision making than NHST, and that students can 
more easily and successfully learn about CIs than NHST (e.g., Schmidt & Hunter, 1997). 
Our worry is that the evidence base especially for the second and third lines of discussion 
is sadly deficient, and that the three lines are not sufficiently integrated. 

The first discussion, or facet, we referred to above was normative: theory of CIs, and 
techniques for their application, developed within mathematical statistics. The second 
considered how researchers, students, or others think about CIs—their informal statistical 
reasoning. This is the descriptive facet, which focuses on the cognition of using or 
teaching statistics. The third was the recommendation to replace NHST with CIs, and this 
is obviously prescriptive. The prescriptive facet seeks to improve statistical practice, and 
statistics learning. It might, for example, provide evidence about which CI diagrams and 
explanations are most effective in helping students achieve correct conceptualisations, as 
well as about which graphical designs and CI interpretations most successfully 
communicate research results. 

By the 1980s the distinction between normative, descriptive and prescriptive was 
commonplace in judgment and decision making literature. “Decision Making: 
Descriptive, Normative and Prescriptive Interactions” was the name of a conference held 
in Boston at the Harvard Business School in 1983, the product of which was an edited 
book with this title (Bell, Raiffa, & Tversky, 1988). Those authors suggested the 
following taxonomy:  

Descriptive: (1) Decisions people make; (2) How people decide.  
Normative:  (1) Logically consistent decision procedures; (2) How people 

should decide.  
Prescriptive:  (1) How to help people to make good decisions; (2) How to train 

people to make better decisions. (p. 1-2) 
For the purpose of the current discussion, we could substitute “statistical inferences” 

for “decisions.” We are interested in the mutual influences and contributions of these 
three facets, as well as their integration. One motivation for integration is to provide a 
more cohesive and complete evidence base for statistical practice and education.  

Evidence-based practice (EBP) has a long history in medical decision making. The 
Institute of Medicine (2001) defined EBP as “the integration of best research evidence 
with clinical expertise and patient values” (p. 147). Psychology, nursing, social work, and 
other professional disciplines are progressively advocating and adopting EBP (Trinder & 
Reynolds, 2000). Evidence-Based Medicine, Evidence-Based Child Health, Evidence-
Based Communication Assessment and Intervention, Evidence-Based Complementary and 
Alternative Medicine, Evidence-Based Library and Information Practice are all relatively 
new journals aimed to alert professionals to important theoretical and empirical advances 
in their profession that might contribute to improved decision making in their professional 
practice. Similarly, a desire to ensure that students meet high standards has increased the 
demand for EBP in education (Davies, 1999). Statisticians and statistics educators should 
likewise adopt EBP by, wherever possible, using relevant evidence from research to guide 
what they do.  

Within medical EBP, successful implementation of research into practice requires 
integration of three core elements: relevant evidence, the context or environment into 
which the research is to be placed, and the method or way in which the process is 
accomplished (Kitson, Harvey, & McCormack, 1998). There is some correspondence 
between these elements and our normative, descriptive and prescriptive facets, 
respectively. If a statistician is advising a researcher about data analysis for a report, 
normative information about statistics provides the evidence, for example, statistical 
theory about correlation. Descriptive information about likely misunderstandings of 
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correlation by the readers of a journal article is part of the researcher’s context; and 
prescriptive information—if available—suggests how most effectively to present 
correlations and thus provides a method.  

We therefore believe that these three lines of research are necessary to build an 
evidence base for statistical practice and education, and that adoption of EBP directly 
depends on the integration of these fragmented research facets. In this article, we first 
introduce statistical cognition—as a concept and an integrative field—in further detail. 
Second, we explore the interactions among the normative, descriptive, and prescriptive 
facets. Some of these interactions may be obvious, but others are subtle and still others 
virtually missing. Exploring these relationships helps identify gaps in current research, 
and priorities for future research. Third, we describe two examples to illustrate these 
interactions in statistics teaching and practice. We then briefly examine institutional and 
sociological factors that have contributed to the fragmentation of the normative, 
descriptive, and prescriptive facets of research. Finally, we explore how statistical 
cognition may overcome some of the barriers that currently impede integration, and make 
recommendations about how this integrated field should proceed.  
 

2. STATISTICAL COGNITION 
 
Cognition is usually defined as the mental processes, representations, and activities 

involved in the acquisition and use of knowledge. Statistical cognition is accordingly 
defined as the processes, representations, and activities involved in acquiring and using 
statistical knowledge. What are the issues relevant in the study of statistical cognition? 
One aspect is how people acquire and use statistical knowledge and how they think about 
statistical concepts—this is the descriptive facet of statistical cognition. The study of how 
people should think about statistical concepts—the normative—is also an important 
aspect of statistical cognition as this is often what we are exposed to (e.g., in school) and 
it is also the standard to which our performance is usually compared. Finally, the question 
of closing the gap between the descriptive (the “is”) and the normative (the “should”)—
the prescriptive—is a critical issue in statistical cognition.  

As such, statistical cognition is a field of theory research and application concerned 
with normative, descriptive, and prescriptive aspects. It focuses on (a) developing and 
refining normative theories of statistics and their application, (b) developing and testing 
theories explaining human thinking about and judgment in statistical tasks, and (c) 
developing and testing pedagogical tools and ways of communication for the benefit of 
practitioners and teachers. 

Statistical reasoning, a term already widely used (Garfield, 2002; Garfield & Gal, 
1999), concerns the mental processes which shape the process and representations of 
statistical cognition. As such, it is concerned mainly with the descriptive facet. However, 
statistical cognition, like mathematical cognition, takes a broader approach encompassing 
normative and prescriptive research, in addition to the descriptive research found in the 
literature on statistical reasoning and in the experimental and educational psychology 
literatures. Statistical cognition therefore integrates the three lines of research we believe 
are needed for effective EBP.  

 
3. THE THREE FACETS OF STATISTICAL COGNITION:  

NORMATIVE, DESCRIPTIVE AND PRESCRIPTIVE 
 

The science of statistics contributes most to the normative facet of statistical 
cognition. It includes simple rules (e.g., the conjunction rule of probability), theorems and 
laws (e.g., Bayes’ theorem, the law of large numbers), as well as models (e.g., for 
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estimation and inference). Statisticians may agree that a particular normative solution to a 
problem is best, or may hold differing views as to which normative model should be 
applied. Both Frequentist and Bayesian approaches have been developed and advocated 
within the normative facet, as has theory for both NHST and estimation. Whether 
consensus or controversy dominates, such rules, models, and approaches comprise the 
normative facet of statistical cognition. 

Dissemination of statistical information (beginning in the 19th century) about many 
aspects of society has increased the need for laypersons as well as professionals to 
understand statistical concepts. Many reports in the mass media (about psychological, 
medical, economic, or political issues) can only be correctly comprehended with an 
understanding of statistics. As early as the beginning of the 20th century, H. G. Wells 
emphasised the importance of teaching statistical reasoning to produce an educated 
citizen, with statistical reasoning being as important as reading and writing (Huff, 1973, 
p. 6). In the early 1980s the concept of ‘statistical numeracy’ was first introduced as a 
sub-category of ‘numeracy’:  

Statistical numeracy requires a feel for numbers, and appreciation of appropriate 
levels of accuracy, the making of sensible estimates, a commonsense approach to the 
use of data in supporting an argument, the awareness of variety of interpretation of 
figures, and a judicious understanding of widely used concepts such as means and 
percentages. (Cockcroft, 1982, paragraph 781)  

The broader term ‘statistical literacy’ (Ben-Zvi & Garfield, 2004; Gal, 2002; Wallman, 
1993) later replaced statistical numeracy, and became an important goal yet to be 
achieved. The need to enhance statistical literacy has been gradually recognised with the 
publication of psychological research assessing intuitive statistical reasoning (e.g., 
Edwards, 1968; Meehl, 1954; Tversky & Kahneman, 1974) and studying the cognitive 
processes involved (e.g., Gilovich, Griffin, & Kahneman, 2002; Kahneman, Slovic, & 
Tversky, 1982; Sedlmeier, 1999). These developments shaped two lines of theory, 
research, and applications: the descriptive and the prescriptive approaches. 

“Man as an intuitive statistician” (Peterson & Beach, 1967) was the first 
comprehensive publication on intuitive statistical reasoning and it opened a long-lasting 
debate about lay persons’ as well as experts’ capabilities. Tversky and Kahneman’s 
(1974) seminal work replaced Peterson and Beach’s optimistic view with the heuristic 
and biases model: Intuitive statistical judgments are often based on a limited number of 
simplifying heuristics rather than on more formal and extensive algorithmic processing. 
These heuristics can give rise to systematic errors, or biases. These lines of research—the 
evaluation of people’s statistical reasoning and the cognitive processes underlying them—
are the core of the descriptive aspect of statistical cognition.  

Statistical education aims to improve statistical reasoning. The best approaches and 
tools for reaching this goal, and the pedagogical prescriptions for the teaching of 
statistics, should be based on the art, science, and profession of teaching. Learning by 
doing (e.g., Glaser & Bassok, 1989; Smith, 1998), authentic learning (e.g., Donovan, 
Bransford, & Pellegrino, 1999; Mehlinger, 1995) and situated cognition (e.g., Brown, 
Collins, & Duguid, 1989) are examples of educational or instructional theories that have 
direct pedagogical recommendations.  

A statistical consultant may advise that a particular model and statistical analysis is 
appropriate for the data of interest—relying on normative considerations. The question 
then becomes how the results will be written up for publication, and that is a question of 
statistical communication: What numerical, graphical or other information should be 
presented so that target readers will understand most accurately what was found and what 
conclusions are justified? Those questions should be in the forefront of the mind of the 
statistical consultant, as well as the researcher, and it is the job—we would argue—of 
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statistical cognition to provide research-based guidance as to how statistical 
communication can be best accomplished. Similarly, the discipline of statistics provides 
much content for the statistics curriculum, but it is the job of statistical cognition to 
provide guidance for teachers on how to best achieve accurate and appropriate statistical 
learning. 

Each of the three approaches has theory, research, and applications rooted primarily 
in different disciplines (statistics, psychology, education). As we have indicated, we 
believe there has been insufficient interaction between them. We hope that statistical 
cognition can encourage closer collaboration among the approaches, and thus develop a 
body of research that can support EBP in statistics. This body of research should focus on 
projects like statistical reasoning of laypersons as well as experts; developmental aspect 
of statistical reasoning along the life span; cognitive, social and neurological processes 
that underlie statistical reasoning; and testing the efficiency of instructional techniques, 
approaches, and tools. 

Figure 1 illustrates in a schematic way the three facets of statistical cognition, and the 
arrows indicate paths of influence. The normative facet (N) specifies what statistical 
techniques can correctly be applied in a given situation; it is potentially informed by the 
full body of knowledge that is mathematical statistics. The descriptive facet (D) 
comprises knowledge of how people think about statistical concepts, what messages they 
receive when inspecting a statistical presentation, and their statistical misconceptions and 
biases. Psychology has provided most of the information in D, yet this information is 
scanty and there are many important gaps that need further research. The prescriptive 
facet (P) comprises knowledge about how to achieve successful statistical communication 
and education. This knowledge, such as it is, has largely come from psychology and 
education, and again much additional knowledge is needed in this facet. The contribution 
of the normative facet (N) to the prescriptive (P) is large and probably straightforward to 
grasp: It is probably most natural and common to base advice or teaching on statistical 
theory. There can perhaps (the dotted arrow) be influence in the reverse direction, when 
experience with advising or teaching (that’s P) prompts development of additional theory 
(N). The next sections will focus on the two-way influences between N and D, and 
between D and P. We consider both the known and the potential contributions relevant to 
each arrow. 
 

 
 

Figure 1. Schematic relations between the proposed three facets of statistical cognition  
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4. CONTRIBUTION OF THE NORMATIVE TO THE DESCRIPTIVE 
 

The normative rules, theories, and models of the science of statistics are the standards 
recommended for summarizing data, interpreting it, and evaluating hypotheses. These are 
the norms used by professionals when analysing empirical research or advising 
researchers. However, these norms have also been used as standards to which intuitive 
statistical reasoning (of laypeople and experts) is compared. For example, people’s 
performance in solving conjunction tasks has been compared to the predictions of the 
conjunction rule: P(A&B)≤P(A) and P(A&B)≤P(B) (Tversky & Kahneman, 1983). 
Normative standards have been used similarly in research on people’s judgments of 
disjunctive probabilities (Bar-Hillel & Neter, 1993), conditional probabilities (Pollatsek, 
Well, Konold, Hardiman, & Cobb, 1987), effects of sample size (Bar-Hillel, 1979), 
judgment of randomness (Falk & Konold, 1994, 1997), interpreting p-values in 
hypothesis testing (Falk, 1986; Oakes, 1986)—to mention but a few cases. 

A normative model can thus provide a theoretical framework for describing how 
people should perform a task. It can also identify a set of logically possible deviations 
from the model, which can be tested empirically. Such an approach was used by 
Fischhoff and Beyth-Marom (1983). They adopted Bayesian inference as a general 
framework for characterizing people’s hypothesis evaluation behaviour in terms of its 
consistency with or departures from the model. They identified the kinds of systematic 
deviations from the Bayesian model that could, in principle, be observed, and presented 
evidence demonstrating their actual existence. Normative models provide a reference for 
the evaluation of people’s performance in statistical tasks (the descriptive facet).  

The choice of the appropriate normative model may seem obvious, but sometimes is 
debatable, or may be thrown into doubt after further consideration of descriptive results. 
Gigerenzer (1991), for example, argued that probability theory is imposed as a norm for 
judgments about a single event in research on the conjunction fallacy, and this would be 
considered misguided by statisticians who hold that probability theory is about repeated 
events. A further example is Cohen’s (1979) questioning of the choice of a Bayesian 
model as a normative standard in Tversky and Kahneman’s (1974) descriptive work; he 
suggested an alternative normative Baconian model. Thus, the choice of a normative 
standard to which people’s performance is compared must be made with much care, being 
sure that the assumptions underlying the normative model (e.g., random sampling), are 
also part of the judgmental task performed by people. 
 

5. CONTRIBUTION OF THE DESCRIPTIVE TO THE NORMATIVE 
 

How can judgmental tasks, and people’s performance of them, contribute to the 
relevant normative model? The historical account of NHST, empirical research on the 
understanding of p-values and, more generally, of people’s intuitive inferential reasoning, 
provides one example of such a contribution.  

NHST in its contemporary form (a hybrid of two schools of thought, one associated 
with Fisher, the other with Neyman and Pearson) was gradually applied in empirical 
research from 1940 (Hubbard & Ryan, 2000). There has been controversy about NHST 
since its inception, and the number of published works critical of it has increased 
dramatically since then (Anderson, Burnham, & Thompson, 2000). 

The most common arguments against NHST refer to a catalogue of misconceptions 
about p-values. This catalogue (which is descriptive) has been built over many years from 
teachers’ observations (e.g., Schmidt & Hunter, 1997), surveys of journal reporting 
practices (e.g., Finch, Cumming, and Thomason, 2001; Fidler et al., 2005) and empirical 
studies with researchers and students (Haller & Krauss, 2002; Kalinowski, Fidler, & 
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Cumming, 2008; Oakes, 1986). That the misconceptions are widespread and robust is 
well known and often demonstrated. They have also been compiled and summarised 
often. Kline (2004), for example, listed five common fallacies in the interpretation of p-
values and eight common fallacies in reaching conclusions after deciding to reject or 
failing to reject the null hypothesis based on a p-value. 

There are certainly advocates of statistical reform who believe that such 
misconceptions are the overwhelming, if not sole, problem with NHST. Rossi (1997), for 
example, stated “whereas some see significance testing as inherently flawed, I believe the 
problem is better characterised as the misuse of significance testing” (p. 175). However, 
there are others who hold the position that, even if used and interpreted properly, NHST 
contributes little knowledge and “is not the way any [proper] science is done” (Cohen, 
1994, p. 999). A stronger expression of this position is that the procedure is itself 
fundamentally flawed; that NHST has a “flawed logical structure” (Falk & Greenbaum, 
1995, p. 75). 

There is also a third position, which draws the previous two together, and illustrates 
how the descriptive can contribute to the normative. This is the position that NHST is so 
widely misinterpreted precisely because the underlying logic is flawed. As Kline (2004) 
explained, “false beliefs may not be solely the fault of the users of statistical tests. … This 
is because the logical underpinnings of contemporary NHST are not entirely consistent” 
(p. 9). Kline is referring to the conflicting Fisherian and Neyman-Pearsonion paradigms 
that have become the institutionalised hybrid of NHST. Schmidt and Hunter (1997) 
provided another illustration of how descriptive considerations have challenged the 
normative status of NHST: “Any teacher of statistics knows that it is much easier for 
students to understand point estimates and CIs than significance testing with its strangely 
inverted logic” (p. 56). For these critics, challenges to the normative status of NHST have 
(at least in part) emerged from descriptive work on misconceptions. 

Another alternative to NHST is Bayesian hypothesis testing, which differs from 
NHST in its interpretation of probability, and on these three principles: (1) Prior 
probabilities have to be taken into account; (2) alternative hypotheses play a role in the 
testing of a null hypothesis; and (3) the focus of analysis is P(H|D), and not P(D|H), 
where H is a hypothesis and D some data. We believe Bayesian methods have not been 
widely accepted at least in part because of users’ misconceptions. That is, that their 
normative status has been in part determined by obstacles that are descriptive in nature. 
Research on the base rate fallacy (Bar-Hillel, 1980) demonstrated how people tend to 
ignore base-rates, thus behaving like null hypothesis statistical testers. Research on 
pseudo-diagnosticity (Beyth-Marom, 1990; Beyth-Marom & Fischhoff, 1983) indicated 
that people often base their updating of a hypothesis on the magnitude of P(D|H), 
ignoring P(D|~H), thus again behaving like null hypothesis statistical testers. There is also 
overwhelming evidence that people often confuse P(H|D) and P(D|H) and use, 
incorrectly, P(D|H) as their estimate of P(H|D) (Eddy, 1982; Haller & Krauss, 2002; 
Oakes, 1986). Thus, although people demonstrate severe misconceptions of the NHST 
model, by ignoring base rates and the relevance of alternative hypotheses, and by using 
P(D|H) for P(H|D), their intuitions remain more in line with the NHST model than the 
Bayesian one.  

Descriptive findings also shed light on the history and development of normative 
models in science more broadly. Research on the perception of different scientific 
concepts (e.g., in physics, mathematics, and biology) by laypersons and experts has 
repeatedly shown that intuitive concepts deviate systematically from normative ones. 
Often the intuitive beliefs were similar to earlier, and now discredited, scientific theories. 
Erickson (1980), for example, investigated the change of children’s viewpoints about heat 
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from a Caloric viewpoint to a Kinetic one. This developmental change has its counterpart 
in the evolution of physics. Perhaps a parallel in statistical inference is yet to occur: 
Researchers’ intuitions, and their statistical practices, are both still largely at the NHST 
stage; advancement to, for example, Bayesian thinking, and Bayesian techniques, is still 
largely for the future. (We recognise that development of Bayesian methods pre-dated 
development of NHST; it is widespread adoption that is the focus here.)  

Naïve statistical concepts can thus influence the normative theories of statistics; first, 
by offering insight into their evolution and, second, by questioning their validity and 
contributing to their development and change. 
 

6. CONTRIBUTION OF THE DESCRIPTIVE TO THE PRESCRIPTIVE 
 

The idea that descriptive should influence prescriptive may be familiar, but we 
believe that fully exploiting the potential contribution of the descriptive facet to the 
prescriptive is the most serious challenge in the triangle of Figure 1. Many practitioners 
and teachers of statistics, and authors of statistical textbooks, are only vaguely aware of 
the substantial cognitive literature on statistical reasoning and the contributions it can 
make.  

Students young or old don’t enter the learning arena ‘tabula rasa’ (Pinker, 2002), but 
already holding beliefs about scientific concepts and processes. They also have everyday 
meanings for words that are used in a more specialized way in science. These beliefs 
might help or hinder learning depending on their consistency or discrepancy with what is 
taught. 

From this perspective, educators have been interested in students’ ‘preconceptions’, 
‘naïve conceptions’, or ‘naïve theories’. If those were found to be inconsistent with 
formal concepts to be taught they were regarded as ‘misconceptions’ or ‘alternative 
conceptions’. Misconceptions may come from strong word association, confusion, 
conflict, or lack of knowledge (Fisher, 1985). They usually share the following 
characteristics: (a) they are at variance with normative conceptions held by experts in the 
field; (b) they tend to be pervasive (shared by many different individuals), and (c) they 
are often highly resistant to change, at least by traditional teaching methods. Thus, special 
teaching methods have to be developed. For example, some educators recommend that 
teachers should be given numerous examples of how to identify misconceptions held by 
pupils and strategies to change them (Lawrenz, 1986; Smith & Anderson, 1984). Others 
have suggested starting the teaching with students’ ideas and then devising teaching 
strategies to take some account of them (Engel Clough & Wood-Robinson, 1985). 

Most research on naïve conceptions and misconceptions—the descriptive element of 
statistical cognition—originated in cognitive psychology: how people reason under 
uncertainty. As uncertainty and statistical information surrounds us, efficiently coping 
with it is essential for our everyday conduct. Moreover, statistical reasoning is a tool used 
by experts in carrying out and interpreting research. Thus teaching of (normative) 
statistics is essential in schools—for the developing of good statistical reasoning—and in 
university—for doing research and interpreting its results. However, there is evidence 
(e.g., Abelson, 1995; Sedlmeier & Gigerenzer, 1989), as well as widespread classroom 
experience, to suggest that the teaching of statistics is often not very successful. In a 
literature review of the teaching of statistical reasoning to students at college and 
precollege levels, Garfield and Ahlgren (1988) concluded, two decades ago, that “little 
seems to be known about how to teach probability and statistics effectively” (p. 45). More 
recent research has had some impact on college teaching, but many courses remain 
unaffected by its outcomes (Garfield, Hogg, Schau, & Whittinghill, 2002; Ben-Zvi & 
Garfield, 2004). In other sciences, at least some educators are aware of the relevance of 
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misconceptions (the descriptive facet) to the effective teaching of science (the prescriptive 
facet), but it seems that statistical instructors are less often aware of students’ statistical 
misconceptions, and have few instructional tools designed to overcome them. Cognitive 
psychology, however, can offer considerable research on naïve conceptions and 
misconceptions, and how people reason under uncertainty—the descriptive element of 
statistical cognition. 

Descriptive research on informal statistical reasoning might contribute to statistics 
teaching not only by identifying misconceptions, but also by describing the processes 
underlying them. This research can guide the development of effective teaching 
strategies. In his book Improving statistical reasoning: Theoretical models and practical 
implications Sedlmeier (1999) identified four descriptive explanatory models of statistical 
reasoning, and derived from them implications for statistical teaching. According to 
Sedlmeier’s ‘adaptive algorithms’ explanation, the human mind is equipped with 
evolutionarily acquired cognitive algorithms that are able to solve complicated statistical 
tasks. These algorithms work for frequencies, but not for probabilities or percentages. The 
instructional implication is that to improve performance we should teach people how to 
translate from the format given in the task (e.g., probabilities) into natural frequencies 
(Gigerenzer & Hoffrage, 1995).  

The heuristics and biases cognitive psychology literature has adopted dual-process 
theory (Sloman, 1996; Stanovich & West, 2000), which identifies two quite different 
cognitive modes, System 1 (S1) and System 2 (S2), approximately corresponding to the 
common sense notions of intuitive and analytical thinking. The two systems differ in 
various ways, most notably on the dimension of accessibility: how fast and how easily 
things come to mind. Many of the non-normative answers people give to statistical (as 
well as other) questions can be explained by the quick and automatic responses of S1, and 
the frequent failure of S2 to intervene in its role as critic of S1. Based on this dual-process 
theory, Kahneman in his Nobel Prize lecture set an agenda for research: 

To understand judgment and choice we must study the determinants of high 
accessibility, the conditions under which S2 will override or correct S1, and the rules 
of these corrective operations. Much is known of each of the three questions, all of 
which are highly relevant to the teaching of statistical reasoning. (Kahneman, 2003, p. 
716) 

Leron and Hazzan (2006) demonstrated how dual-process theory and empirical results 
from heuristic and biases research might shed light on mathematics education. They 
argued that the most important educational implication is “to train people to be aware of 
the way S1 and S2 operate, and to include this awareness in their problem solving 
toolbox” (p. 123). Such a toolbox is relevant also for statistical reasoning.  

Communication of statistical information in newspapers and magazines, as well as in 
statistical textbooks and courses, includes many words used for statistical concepts that 
are also used in common language, such as ‘or’, ‘chance’, ‘randomness’, ‘confidence’, 
‘precision’, and ‘correlation’. Often, the meaning in everyday language is similar to the 
technical meaning in the science of statistics. However, sometimes the two concepts do 
not overlap. For example, Beyth-Marom (1982) showed how laypersons interpret 
correlation between two asymmetric variables, such as ‘pneumonia: pneumonia vs. no 
pneumonia’, where the values have differential status, and the variable has the name of 
one of its values. Participants interpret such correlations as the tendency of the two 
‘present’ values to coexist, thus interpreting relationship between variables as a 
relationship between values, and ignoring all other information relevant for the evaluation 
of statistical correlation. This everyday interpretation of correlation is consistent with the 
Oxford English Dictionary (2007) definition of correlation as “a mutual relationship.” 
This dictionary, as well as The American Heritage (2000) and Webster’s Online (2007) 
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dictionaries, present two or more definitions of correlation: one specific for statistics 
(mentioning variables) and the other the common everyday interpretation (mentioning 
entities or things). Falk and Konold (1994, 1997) showed a similar phenomenon in the 
perception of randomness.  

When ordinary language is used for reasoning, conceptions and misconceptions are 
often shaped by the nature of the social interaction and the conversation taking place 
(Grice, 1975). “Respondents [students] deviate from the judgments predicted by the 
normative model considered relevant by the experimenter [teacher] by using rules of 
conversational inference very different than those assumed by the experimenter [teacher]” 
(Hilton, 1995, p. 266). Recognition of linguistic and conversational factors, as well as 
being alert to possible discrepancies between statistical and conversational meanings, is 
likely to have practical pedagogical implications for improving statistical understanding.  

A further contribution of D to P is developmental research on statistical reasoning, 
beginning with Piaget and Inhelder (1975). The introduction of statistics into the school 
curriculum has prompted more attention to understanding developmental aspects of 
statistical literacy. A number of models of cognitive development in probability and 
statistics have been proposed (Biggs & Collis, 1991; Jones, Langrall, Thornton, & Mogill, 
1997; Mooney, 2002; Watson & Callingham, 2003). According to these, instructional 
materials should be appropriate for students’ age and cognitive development. For 
example, the model suggested by Jones and his colleagues (1997, 1999) includes four 
statistical concepts, the comprehension of which develops through four levels. Kafoussi 
(2004) used this model to guide the development of children’s instructional activities, and 
then the analysis of their understanding of probability.  

In our view, the substantial amount of cognitive knowledge on informal statistical 
reasoning has the potential to guide development of effective strategies for improving the 
statistical understanding of students and also researchers. 
 

7. CONTRIBUTIONS OF THE PRESCRIPTIVE TO THE DESCRIPTIVE 
 

We argued above that research on intuitive statistical reasoning (the descriptive facet) 
can guide instructional recommendations, and the design of teaching strategies, materials, 
and tools (the prescriptive facet). Evaluation of these prescriptive procedures gives 
information about their practical effectiveness, and also tests the underlying descriptive 
theory, enhancing or weakening its validity. Prescriptive research can thus contribute to 
the descriptive. For example, Sedlmeier’s (1999) training program mentioned above 
demonstrated how the descriptive facet can influence the prescriptive. Sedlmeier used 
evaluation of his training programs (part of the prescriptive facet) to test the descriptive 
theories, thus demonstrating the interplay between the descriptive and prescriptive facets 
of statistical cognition. Statistical classrooms are the arena where the prescriptive is 
introduced, and where descriptive theories can be tested and be refined by evaluating the 
influence of different training programs. 
 

8. INTEGRATION OF THE THREE FACETS IN STATISTICAL  
EDUCATION AND PRACTICE: TWO EXAMPLES 

 
Statistics textbooks are based on the normative facet, but often incorporate also the 

author’s descriptive and prescriptive ideas. Teachers and statistical consultants often use, 
in addition to the textbook and their statistical expertise, various pedagogical strategies to 
help students and researchers understand statistical concepts. They may consider the 
intuitive perceptions students and clients have at the start. They thus call on their own 
descriptive and prescriptive ideas in their efforts to assist the students and researchers 
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achieve good understanding. Do these ideas reflect their clients’ conceptions and 
misconceptions? Research evidence can shed light on the validity of these professionals’ 
mis/conceptions.  
 
8.1. CORRELATION BETWEEN TWO DICHOTOMOUS VARIABLES 
 

Consider, as a first example, descriptive research on a basic topic: correlation between 
two dichotomous variables. We will mention the normative model, describe research 
results from the descriptive facet and discuss possible implications for teaching, thus 
illustrating the mutual influence of the three facets of statistical cognition, and the 
research needed for EBP. 

Adults’ perception of the correlation between dichotomous variables had been 
examined in a number of studies (Beyth-Marom, 1982; Jenkins & Ward, 1965; Shaklee & 
Tucker, 1980; Smedslund, 1963; Ward & Jenkins, 1965). Usually, participants were given 
pairs of values, and asked to estimate the direction and/or strength of the relationship 
between the variables. Most research evidence found estimates were biased relative to the 
normative measure, which is based on the difference between two conditional 
probabilities. Participants’ estimates were a function of the way data were presented (trial 
by trial, as a list of data pairs, or in a summary table); of the instructions given; and of 
whether asymmetric or symmetric variables were used (Beyth-Marom, 1982).  

Task instructions were varied because the experimenters recognised that technical and 
lay usage of correlation, and other terms, may be very different. The kind of explanation 
participants were given was found to influence the estimates given, thus indicating how 
sensitive people are to language usage. 

The asymmetric-symmetric distinction refers to whether the two values of the variable 
were different or similar. In the asymmetric case (e.g., pneumonia vs. no pneumonia; 
symptom present vs. symptom absent) one value has a lower status than the other, 
whereas in the symmetric case (e.g., gender: male, female), the values have a similar 
status. In the asymmetric case, the name of the variable is like the name of one of its two 
values (variable ‘pneumonia’, values ‘pneumonia’ and ‘no pneumonia’). With symmetric 
variables, the name of the variable (‘gender’) differs from the name of its two values 
(‘male’, ‘female’). Furthermore, in the asymmetric case, the two values may be described 
as ‘occurrence’, ‘non-occurrence’. A ‘non-occurrence’ or ‘negative’ event has less impact 
on people’s attention than a positive event (Nisbett & Ross, 1980). Participants’ 
perception of correlation was much more biased for asymmetric variables, for which they 
tended to perceive only one or two cells of the full 2×2 table that is required for the 
normative assessment of correlation. With symmetric variables they tended to take 
account of all four cells—although not necessarily using the correct formula. 

This research on naïve perceptions of correlation has a number of pedagogical 
implications: 

 1. When trying to explain a statistical concept, like correlation, teachers as well as 
students have to be aware of any different connotations a term may have in day to 
day language and in statistics. 

2. The comprehension of correlation depends on a clear perception of the difference 
between variables and values. 

3. It may be better first to use symmetric variables and then, after students 
understand that all four cells are relevant for the assessment of correlation, 
present examples involving asymmetric variables. Discussion of those might 
highlight the importance of the alternative values (‘no symptom’, ‘no 
pneumonia’) in estimating correlations and in other statistical tasks; and  
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4. Table format should be used at first, because students understand this format best. 
Then, later, students can work with other data presentation formats, perhaps by 
creating the 2×2 table themselves.  

Pedagogical implications such as these illustrate how D can make a valuable contribution 
to P. These implications should shape training; the training should then be evaluated, 
thereby testing the validity of students’ intuitive conceptions and the validity of the 
pedagogical implications. This demonstrates the pathway by which P may influence D.  

It is unfortunate, although valuable, that the examination of issues in terms of our 
three facets identifies gaps in research knowledge that is essential for the effective 
adoption of EBP. 
  
8.2. CONFIDENCE INTERVALS 
 

For our second example, CIs, we focus on statistical practice—in particular, the 
formulation of advice for researchers. We have already introduced this example, but here 
we offer a quick review of the three facets of CI research. Normative research includes CI 
theory in mathematical statistics, and presentations intended to help researchers use CIs 
for data analysis (e.g., Altman, Machin, Bryant, & Gardner, 2000). The descriptive facet 
includes study of how researchers understand and interpret CIs. Prescriptive research 
includes study of how best to improve statistical practice: It provides evidence about what 
graphical design for CI figures and what wording used to interpret CIs most successfully 
communicate research results. 

Now consider what research is available on CIs. Normative information is abundant, 
and journals continue to publish further theoretical results and applied techniques. In stark 
contrast, there is very little descriptive evidence about people’s CI thinking. Cumming, 
Williams, and Fidler (2004) found that many researchers in psychology, behavioural 
neuroscience, and medicine hold the misconception that a 95% CI is also a 95% 
prediction interval for a replication mean, whereas a 95% CI has an average 83% chance 
of including the mean of a replication experiment. Belia, Fidler, Williams, and Cumming 
(2005) reported evidence of further misconceptions widely held by researchers about 95% 
CIs. These are some of the very few examples of descriptive research on CIs.  

The next step is to suggest improved guidance for researchers and better graphical 
conventions for presenting CIs in figures and study whether these improvements are 
effective in overcoming those misconceptions: That, of course, is prescriptive research. 

Cumming and Finch (2005) described a number of rules of eye, intended as simple 
guidelines for interpretation of 95% CIs shown in figures. Use of these rules would 
overcome misconceptions identified by Belia et al. (2005). Cumming (2007) presented 
figures and simulations to illustrate the relation between CIs and p-values; these were also 
intended to overcome some of the problems identified by Belia et al. The rules of eye, and 
illustrations of how CIs and p-values relate, are within the prescriptive facet, but need to 
be evaluated and found effective to become part of that facet’s contribution to the EBP of 
statistics.  

Our CI example identifies the importance of all three facets and their interactions, and 
emphasises the deficiencies of current descriptive and prescriptive knowledge. 
Considering statistical practice, there is some descriptive research identifying problems, 
but almost no prescriptive research showing what changes in practice, or what guidance 
to researchers, can be effective in overcoming those problems. It is especially important 
to expand descriptive and prescriptive knowledge about CIs because, as we mentioned 
earlier, persisting criticism of NHST is leading to recommendations that CIs be much 
more widely used in psychology and other disciplines (Cumming & Fidler, in press; 
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Fidler & Cumming, 2008). This highly desirable reform of statistical practice is being 
hampered by lack of evidence about effective ways to overcome CI misconceptions. 
 

9. BARRIERS TO INTEGRATION 
 

Despite the mutual influence of the three facets of statistical cognition and the 
obvious need for integration, their current state of fragmentation is a major obstacle to 
building a cohesive evidence base for statistical practice and education. Below are some 
quotations that illustrate the fragmentation; they will be familiar to many readers. 

1. “… the almost universal reliance on merely refuting the null hypothesis … is 
basically unsound, poor scientific strategy and one of the worst things that ever 
happened in the history of psychology” (Meehl, 1978, p. 817). 

2.  “The believer in the law of small numbers … rarely attributes a deviation of 
results from expectations to sampling variability, because he finds a causal 
‘explanation’ for any discrepancy” (Tversky & Kahneman, 1982, p. 29). 

3.  “[Statistical] power is neglected by psychologists because, given their typically 
mistaken understanding of statistical significance, it is an unnecessary concept” 
(Oakes, 1986, p. 83). 

4.  “Activities specifically designed to help develop students’ statistical reasoning 
should be carefully integrated into statistics courses” (Garfield, 2002). 

5. “Since it appears that in judging randomness, subjects attend to the complexity of 
sequences, it might be possible to foster a more intuitive, yet mathematically 
sound, conception of randomness if it is introduced via the complexity 
interpretation” (Falk & Konold, 1994, p. 10). 

The first quotation is an example of the vast literature that advocates reform of 
statistical inferences practices, questioning the normative justification of NHST. The next 
two describe people’s intuitive perceptions (laypersons’ as well as experts’) of three 
statistical concepts: sampling, statistical power, and statistical significance. The fourth 
makes a prescriptive recommendation about the teaching of statistics. The final quotation 
integrates descriptive and prescriptive lines of research about randomness. 

Normative, descriptive and prescriptive lines of research often study the same 
substantive content (e.g., CIs, correlation, randomness). However, the three lines of 
research have different goals, and are usually carried out by different scholars and 
published in different types of journals.  

 
The Goals. Normative research aims to progress statistical theory, descriptive 

research aims to understand informal statistical reasoning, and prescriptive research aims 
to develop and evaluate improved strategies for teaching and practicing statistics. 

 
The Scholars. Who are the people involved in this immense activity? Statisticians and 

mathematicians develop the science of statistics and so are most often responsible for the 
normative perspective. Cognitive psychologists contribute descriptive knowledge by 
studying how people reason statistically, interpret statistical concepts, make sense of 
statistical data; they describe people’s correct or incorrect intuitions. Psychologists and 
educators in general, and teachers of statistics in particular, are often involved in studies 
aimed at improving statistical reasoning by suggesting new tools and methods of 
instruction (usually suggested by educators) or de-biasing techniques to overcome 
misconceptions (usually recommended by psychologists).  

 
The Journals. Normative issues are mostly published in statistical journals, or in 

journals that focus on statistics and research methods in a particular discipline. 
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Statisticians publish in statistical journals (e.g., Statistical Science), while psychologists 
who are interested in normative issues often publish in the specialized psychological 
journals (e.g., Psychological Methods). Descriptive research on statistical reasoning often 
appears in psychology journals (e.g., Journal of Behavioral Decision Making, Cognitive 
Psychology), while prescriptive research is mostly seen in specialist statistics education 
journals (e.g., The Journal of Statistics Education, Statistics Education Research Journal, 
Teaching Statistics). These journals not only publish prescriptive research, but also to 
some extent have an agenda of integrating descriptive research, which is a laudable goal.  

Regardless of the debate over when the modern era of statistical theory began, it is 
obvious that the normative tradition has a much longer history than either the descriptive 
or prescriptive traditions. Descriptive research dates back at least to the 1960s (e.g., 
Rosenthal & Gaito, 1963; Peterson & Beach, 1967). Prescriptive research on statistical 
practice and education is more recent, with formal societies and dedicated journals dating 
from around the mid 1980s.  

We have demonstrated how often research in each of the three facets depends on the 
others and influences them. The organizational and sociological barriers between the 
three lines of research need to be removed, if EBP is to be achieved.  
 

10. CONCLUSIONS 
 

We have proposed the term statistical cognition for an integrative field that 
incorporates three lines of research. Interaction between the normative and prescriptive 
facets may seem relatively straightforward, so we focussed attention on the mutual 
contributions of the normative and descriptive facets, and the descriptive and prescriptive 
facets.  

We discussed how normative models have been used as standards to which intuitive 
statistical reasoning (identified by descriptive research) is compared, with mismatches of 
varying extents emerging. The normative thus serves as a theoretical framework for 
describing how people should perform statistical tasks. We discussed NHST, CIs and 
Bayesian Hypothesis Testing as examples of how descriptive research on people’s 
perception of statistical concepts can affect the normative status of models; this illustrates 
the contribution of descriptive research to the normative facet of statistical cognition.  

Descriptive research on statistical reasoning aims to describe cognitive processes and 
misconceptions, and to detect developmental barriers to statistical reasoning. It can thus 
guide prescriptive investigations designed to identify the most efficient statistical training 
program. Conversely, prescriptive research on the effectiveness of the training program 
and teaching strategies, and the cognitive changes they elicit, provides empirical tests of 
descriptive models of people’s statistical reasoning, thus enhancing or weakening their 
validity. 

We used correlation as an example of how a statistical concept can be studied from all 
three perspectives of statistical cognition—its normative status, how people interpret it, 
and how it should be presented and explained—in order to improve statistics education 
and advising. We used CIs as an example of how research in all three facets might 
contribute to improving statistical practice. Finally, we identified barriers that we believe 
have hampered the interactions and synergies that are needed for EBP.  

EBP is the key to better statistical practice and statistics education. It offers a number 
of advantages that should motivate its widespread adoption. Successful EBP 

• ensures that consumers (in the fields we are discussing: researchers and 
students) get the best a discipline can offer; 
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• improves the efficiency of use of scarce resources, notably the time of 
teachers and other professionals; 

• draws out practical implications from existing research for teachers and 
practitioners; 

• guides the planning of future research; and  
• encourages future research to generate practical implications. 

A fear about EBP is that it might lead to a mechanistic, one-size-fits-all approach that 
marginalises the expertise and judgment of the teacher or statistician. However, recall the 
definition we quoted of medical EBP: “the integration of best research evidence with 
clinical expertise and patient values.” We endorse this approach to EBP, which makes 
explicit the need for relevant expertise—of the teacher, statistician, or researcher—to 
ensure that lessons from the research evidence are applied appropriately, for maximum 
effect in a particular situation. Many factors influence decision making in statistical 
teaching and statistical consulting: statistical theory, ideology, values, clients, and 
personality factors. Even so, EBP can flourish.  

In medicine, EBP has been primarily concerned with encouraging practitioners to 
make more use of research evidence that is already available. By contrast, in education 
greater emphasis has been placed on the absence of good quality research that can support 
EBP (Hargreaves, 1996). Davies (1999) emphasized that EBP in education should both 
draw on evidence from existing world-wide research and literature on education, and also 
encourage and guide further educational research.  

In statistics education, there is already considerable descriptive and prescriptive 
research, and some integration of these two—for example in SERJ. However, there are 
also many gaps in the evidence needed to guide and justify EBP, and great scope for 
improved integration. It is not surprising that new research fields develop and specialize, 
building their own institutions, journals, and cultures. However, to adopt EBP in a 
thorough way requires reintegration, which both facilitates mutual contributions, and 
helps identify serious gaps in current knowledge. Reintegration is essential—and we 
believe the umbrella of statistical cognition can be very helpful—for building a cohesive 
and complete evidence base. 

Why should labelling this integration and introducing the umbrella term help? It may, 
for example, help remind researchers, as they embark on a prescriptive or normative 
research program, to think also of relevant descriptive research that impacts on their 
goals—and vice versa. The term ‘statistical cognition’ in particular highlights the 
importance of a cognitive evidence base as well as a statistical and a pedagogical one. 

For statistical practice, and especially for the reformed practice needed in psychology 
and other disciplines still over-reliant on NHST, the descriptive evidence base is very 
sparse, and very little prescriptive research has been conducted. There is enormous scope 
for a statistical cognition perspective to encourage and guide research, and to build the 
integrated evidence base needed for improved statistical practice and statistics education. 
The organizational and sociological factors responsible for the barriers between the three 
facets should now be exploited to overcome them. We look forward to further discussion 
of statistical cognition—and perhaps to the emergence of an international conference and 
a journal titled Statistical Cognition—and the potential we believe it has to energise and 
support the expansion of EBP in statistical practice and statistics education. 
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