Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

136

Christoph M. Hoffmann

Group-Theoretic Algorithms
and Graph Isomorphism

Springer-Verlag
Berlin Heidelberg New York 1982



Editorial Board

W. Braver P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Author

Christoph M. Hoftmann

Purdue University, Dept. of Computer Science
West Lafayette, IN 47907, USA

CR Subject Classifications {1879} 3.15, 5.7, 5.9, 5.32

ISBN 3-540-11493-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-11493-9 Springer-Verlag New York Heidelberg Berlin

This work is subject fo copyright. All rights are reserved, whether the whole or part of the materiai
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort”, Munich.

© by Springer-Verlag Berlin Heidelberg 1982

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210



PREFACE

This monograph develops the recent algebraic approach to Graph Isomorphism
and some of its implications for Computational Complexity. Graph Isomorphism can
be rephrased as a purely algebraic problem that exposes a surprising structural simij-
larity with a number of problems in Group Theory. These problems are easily shown
to be in NP but are not likely NP-complete. Moreover, there is a good possibility that
they are harder than Graph Isomorphism, with respect to polynomial time reduction.
Because of this possibility, the algebraic approach detailed in this book could prove to
be very important for Computational Complexity.

The roots of this approach predate Babai's Colored Graph Automorphism Problem
and my investigation of cone graphs. Nevertheless, these two papers appear to have
been the stimulus leading to the break-through subexponential isomorphism test for
trivalent graphs by Furst, Hoperoft and Luks. That paper already contained many of
the techniques applied later by Luks in his polynomial time isomorphism test for
graphs of fixed valence, most notably the inductive approach to determining
automorphisms. Luks’ contributions have been primarily a novel way for exploiting
the imprimitivity structure of certain permutation groups and his analysis of the
structure of the automorphism groups of graphs of fixed Vélence.

1 give my thanks to Juris Hartmanis for suggesting that this material be brought
together into a systematic survey of the area as it is at present. John Hoperoft's ded-
ication to Computer Science has been exemplary. I wish to thank him for his willing~-
ness to introduce me to Graph Isomorphism. Charles Sims has been my tutor in the
mathematical aspects of this work and has been one of those rare individuals willing
to carefully read the manuscript and make suggestions for improvement. Paul Young
has been exceptionally willing to listen to my ideas and patient enough to criticize
them. Francine Berman contributed by partially relieving my teaching load. Merrick
Furst and Michael 0'Donnell have thoroughly read the manuscript and improved it. I
wish {o thank them all.

It is a pleasure to acknowledge the support of the National Science Foundation
(Grant Nr. MCS 78-01812) which furthered this work. Moreover, the text processing
facilities of the Department of Computer Sciences at Purdue Universily have been

crucial for a timely completion.
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