
An Introduction to Computational Intelligence Techniques
for Robot Control

John A. Bullinaria  &  Xiaoli Li

Centre of Excellence for Research in Computational Intelligence and Applications (Cercia),
School of Computer Science, The University of Birmingham,

Birmingham, B15 2TT, UK

Abstract:  The application of computational intelligence techniques to the
field of industrial robot control is discussed.  The core ideas behind using
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are presented, along with a selection of specific real-world applications.
Their practical advantages and disadvantages relative to more traditional
approaches are made clear.
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1.  Introduction

Autonomous robots are playing an increasingly important role in industry to meet the high demands of
automated systems, and are expected to have a capability to sense environmental information, process
that information, and perform appropriate actions for a wide range of tasks.  A major challenge for
these robots is that traditional control techniques generally require an accurate mathematical model of
the system and its environment, and inaccurate modeling will naturally have a direct negative effect on
their performance.  For this reason, computational intelligence techniques are now regularly being
employed, particularly neural computation (Miller, et al., 1990, Lewis et al., 1998), evolutionary
computation (Davidor, 1991) and fuzzy logic (Lee, 1990), since they provide powerful tools for the
realization of better and more efficient control systems without the need for accurate models.  These
techniques all employ a general control framework, with associated parameters that are adapted to
optimize the relevant performance measures.  These measures can cover the obvious requirements of
speed and accuracy, as well as other important requirements such as stability, reliability and safety.
There is already an enormous literature on this subject.  In this paper we shall explain the general
principles involved, with particular reference to existing applications of these techniques in industrial
robotics, and our own research in this area.  Throughout we shall identify the advantages and
disadvantages of each technique compared with other approaches.

2.  Traditional Robot Control Techniques

Perhaps the obvious process for programming robot controllers would be to build a model of the
system and its environment, and then use appropriate planning techniques to design a program for the
controller which perfectly carries out the desired tasks in the fixed environment.  Typically this would
involve controlling the position of, and forces exerted by, a robot manipulator, with constraints on the
paths travelled and smoothness of movements.  Clearly, such model-based methods will not be well
suited to autonomous robots that work in dynamical environments with unknown details, and have to
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cope with factors such as unpredictable payload variations, plant degradation, and so on.  To
overcome this limitation, a sensor-based approach is a natural alternative.  The robot will collect data
from its environment in real time, and process that data to generate appropriate actions.  The obvious
disadvantage of such sensor-based methods is that the robot needs to sense accurate data in the
unknown environment.  A mixture of model-based and sensor-based methods is an ideal compromise,
combining the utility of planning based on modelling as well as sensor information.  However, this
generates a new problem: how to fuse the path information and sensor information.  A practical
machine-learning based solution is to formulate a simple model, and then use the sensor data in real
time to update that model.  Often, particularly for industrial robots, the model is used off-line in the
design phase, and is scarcely visible during operation.

Kalman filters provide one of the best traditional techniques for dealing with the robot control problem
(Grewal and Andews, 1993).  The linear Kalman filter is very attractive for controller design for
simple linear dynamical systems due to its simplicity and low computational demand.  Its
disadvantage is that it can only be used effectively for linear systems.  Improved non-linear Kalman
filters can be used to track the dynamics of robots, but it is still very hard to track a dynamical and
unknown environment for an autonomous robot.  This is because the uncertain and unknown
environment is generally nonlinear, with non-Gaussian noise in the sensor data, and the Kalman filter
is not guaranteed to converge to the real state of the object.  Neural network based systems, however,
are readily applied to noisy, non-linear and non-stationary environments.

3.  Neural Network Control

Neural networks are computational structures based loosely on those employed by the human brain,
and can be set up with architectures tailored for each specific application, with any number of inputs
and outputs, of any type (e.g., real valued, binary, categorical). The idea is that patterns of “activation”
flow from the inputs through a network of simple sigmoidal thresholding units or leaky-integrators via
connections with weights (i.e. gains) that are adapted so as to produce the appropriate (e.g., required)
outputs.  Their computational power is well understood from a theoretical point of view, and given a
suitable structure, they are known to be capable of universal computation.  Most importantly, they can
take inputs from a variety of sources of differing types and learn how to best use them to produce
appropriate actions.  They are robust against noise, degrade gracefully on suffering damage, and can
generalize well from their training data to operate in novel situations.  Parallel processing can also
speed their computation, and make them more feasible for control in real time.  Ham & Kostanic
(2001) provide a good introduction with a particular emphasis on applications.

There are two broad approaches one can adopt for neural control systems.  First, it is clear that one can
set up a neural network to mimic any conventional control system.  For example, a leaky integrator
neuron has activations that are a temporal sum of its inputs with an exponential decay over time, so a
simple PI control system is equivalent to a pair of leaky integrator neurons with connection weights
and time constants related simply to the traditional PI parameters.  Second, we can use conventional
sigmoid based neural networks, such as Multi-Layer Perceptrons, to provide parameters for feeding
into a traditional control system, e.g. via learning the inverse plant dynamics.  Either way, one of the
most useful features of neural networks is that they come with powerful learning algorithms that can
optimize their parameters so as to perform appropriately, and we can define “appropriate
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performance” in whatever way we like.  For a robot manipulator, for example, we may wish to
minimize the distance or time taken to move between two points.  We may also want to minimize or
eliminate any overshoot when arriving at the final position, or limit the speed or accelerations during
the movements.  In any case, we simply need to build all such requirements into a performance
measure, and then we can use traditional gradient descent learning procedures to maximize that
performance.  The general idea is that if the rate of change of the performance error or cost E with
respect to each parameter (or neural network connection weight) w is ∂E/∂w, then by iteratively
updating those parameters by Δw = – η ∂E/∂w  where η is some small step size, this automatically
reduces E towards some minimum.  Application of the chain rule for partial derivatives results in the
output errors being “back-propagated” through the network so that appropriate parameter updates are
applied to each component.  Normally the learning phase fixes the various parameters for optimal
performance during operation, but it is also possible to allow further learning and refinement of the
parameters during operation.

A simplified example (discussed in more detail by Bullinaria and Riddell, 2001) will illustrate how
this works.  Consider the simple feedback control system shown in Figure 1, with integrator time
constants {τI, τT}, gains {I, P, T}, bias B, and a simple first order plant.  It is actually based on part of
the human oculomotor control system, with the aim of modelling the smooth changes of eye focus
between looking at objects at different distances, but it could also form part of an active vision sensor
for a robot.  It can also be represented by the leaky integrator neuron system shown in Figure 2, with
corresponding time constants, and connection weights shown on the links.  Either way, the starting
point is to define a suitable performance error measure E, and a natural definition of that is in terms of
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Figure 1: Simplified control system with parameters {I, P, T, B} to be learned using a gradient descent
algorithm.
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Figure 2: Leaky integrator neuron based version of the control system shown in Figure 1 with
parameters {I, P, IS, IF, PS, PF, SP, FP, BP} to be learned using a gradient descent algorithm.
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the difference between and the actual response r(t) and the desired (i.e. target) response x(t) integrated
over time, plus some measure Φ[r] of our other requirements:

E[r] = r( t) − x(t)∫  dt +  λΦ[r]

If we set Φ[r] = 0, and iteratively update the parameters (e.g., the {I, P, T, B} in Figure 1) using
gradient descent starting from small random values, they will eventually settle down with values that
minimize the response error, with typical responses as shown on the left of Figure 3.  Usually, such
undamped responses are unacceptable, and we wish to incorporate suitable additional factors Φ[r] into
the performance measure.  We could minimize some integrated power of m of the response velocity:

Φvel [r] =   ∂r (t)
∂t

m

∫  dt

or use the response Fourier transform F(ω) and power |F(ω)|2 at frequency ω to penalise the high
frequency components and reduce unnecessary oscillations with:

Φosc[r] =  ω 2m F(ω) 2  dω∫       where      F(ω) =  r(t) e− iωt∫  dt  .

The precise measure Φ[r] and trade-off parameter λ chosen will naturally affect the responses learned
by the gradient descent process, but appropriate choices can lead to smooth responses such as seen on
the right of Figure 3.  Figure 4 shows the response measures obtained by training on pseudo-random
sequences of target signals using the velocity and oscillation based Φvel and Φosc with m = 1.  In each
case it is seen how increasing λ results in the response error E increasing while the two smoothing
functions Φ decrease.  To provide an indication of how these measures relate to the outputs shown in
Figure 3, a measure of overshoot (defined as the total response change, summed over oscillations, in
the direction opposite to that of the step change producing it) is also shown.  Such plots allow better
informed design decisions about the crucial trade-offs between the different aspects of performance.

These basic ideas of neural network control have now been used in many real world applications and
detailed descriptions published.  Four examples indicate the range of possibilities:  Walter and
Schulten (1993) developed two algorithms for visuo-motor control of a Puma 562 industrial robot, one
using a “neural-gas” network, and the other based on a self-organizing map.  The neural networks
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Figure 3: Learned responses for the control system of Figure 1: undamped (left) and damped (right).
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encoded the transformation between the input image coordinates and the robot joint angles.  These
systems were able to learn how to position the robot’s end effector using information gained solely
from a pair of cameras.  Er and Liew (1997) presented a neural control system for an Adept One
SCARA Robot using joint angles, angular velocities and position errors as the network inputs, with
motor commands for the various actuators at the outputs, and showed the advantages over earlier
systems.  Clark and Mills (2000) described the technical issues of using real-time neural network
learning on a CRS Robotics Corporation A460 robot with 6 degrees of freedom, and showed how the
neural network could provide a signal to compensate for the remaining errors in the PID-controlled
system.  That paper also discussed a more sophisticated mixtures of experts approach which combines
the outputs from a number of specialized neural networks in a “divide and conquer” approach, with
the whole process optimized by the learning algorithm.  Gong and Yao (2001) formulated adaptive
robust control algorithms for non-linear systems and applied them to an epoxy-core linear motor,
taking particular care to avoid the potentially destabilizing effects of the on-line learning.

4.  Improving Performance using Simulated Evolution

Despite the successes of the neural network approach, it does have some important limitations, that
other computational intelligence techniques can address.  For gradient descent learning to work, there
is the obvious need for the performance measure to be differentiable, and one can have serious
difficulty finding workable parameters for the learning algorithm, such as the gradient descent
learning rates η (Clark and Mills, 2000) and initial parameter values prior to learning (Bullinaria,
2003).  Then, even if these problems are solved, there is still the distinct possibility that the learning
process will finish in a local minimum rather than the true error minimum.

Evolutionary computation addresses these (and other) problems by employing the key ideas from
biological evolution by natural selection.  There are an almost endless variety of ways in which such
evolutionary processes can be implemented for practical applications (e.g., Eiben and Smith, 2003).
The general idea is that one maintains a whole population of systems (e.g., neural network or
traditional control systems), each specified by a “genotype” consisting of a set of innate parameters
represented in some convenient manner.  Then, depending on those parameter values, each individual
will have an associated fitness value, which could be based on the same measure E used for the neural
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Figure 4: Varying levels of learned performance for the control system of Figure 1: with error plus
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network system above, or any other (not necessarily differentiable) function.  The fittest individuals in
each generation are used to generate children, using appropriate forms of crossover and mutation, to
replace the least fit members of the population.  The precise forms of the crossover and mutations will
depend on the problem and how the parameters are represented.  For a set of real valued parameters,
for example, cross-over could simply involve taking (for each parameter) a random value from the
range spanned by two parents, and the mutation could simply consist of adding to that a small random
number from a suitable Gaussian distribution (Bullinaria, 2003).  There are clearly many further
application dependent details that need to be specified, but the general result is that, over many such
generations, the fitness of the population increases towards some optimum.  This approach can be used
to optimize directly the basic control parameters (e.g., the {I, P, T, B} in the system of Figure 1) as an
alternative to gradient descent learning (Davidor, 1991), or it can be used to optimize the details (e.g.,
the learning rates and initial parameter values) in systems that learn by gradient descent (Bullinaria,
2003).  If diversity can be maintained in the evolving populations, one can also minimize the chances
of ending up in a local optimum of fitness, rather than the global optimum.

Another useful advantage of evolutionary approaches is their utility for multi-objective optimization
(e.g., minimizing both the performance error and overshoot in the control system of Figure 1).
Specifying a single trade-off parameter λ as above is one way to do this, but it is usually better to set
up an evolutionary process to yield a population that covers the whole Pareto Front of non-dominated
solutions, i.e. the whole set of solutions that cannot be improved simultaneously on all the objectives
(Abraham, Lakhmi and Goldberg, 2004).

Two examples of using evolutionary approaches for industrial robot control illustrate what can be
achieved:  Moriarty and Miikkulainen (1996) evolved obstacle avoidance behaviour in neural network
control of an OSCAR-6 robot arm that received both visual and sensory input.  Two neural networks
were involved: one to get the robot arm close to the target, and another to carry out the more precise
final movements.  Both networks were simple feed-forward networks, with nine inputs corresponding
to obstacle proximities and target distances, one layer of “hidden” neurons, and six outputs to specify
joint rotations, and one output to stop the arm.  The evolution of the whole system was guided by a
single fitness measure over the entire task, involving both target reaching and obstacle avoiding skills.
Gómez and Eggenberger Hotz (2004) evolved a neural network system to control a robot arm moving
coloured objects, using inputs representing colour and movement detection and joint angle
information.  Experiments with a Mittsubishi MELFRA RV-2JA robot manipulator, with six degrees
of freedom and a stereo colour vision system, led them to conclude that “to overcome the ‘reality gap’
between simulation and the real world one should evolve mechanisms enabling the real-world system
to explore its own possibilities instead of specifying the system precisely in simulation”.  Similar
evolutionary techniques have also proved particularly useful for optimizing associated industrial tasks,
such as manufacturing cell design, planning, job scheduling, bin packing, network routing, etc. (Gen
and Cheng, 2000).

5.  Fuzzy Neural Network Control

Fuzzy logic provides a powerful tool for taking uncertain and imprecise information, and representing
it in a way that can easily be processed, often in the form of linguistic rules (Ross, 2005).  A fuzzy
controller block diagram for a robot is shown in Figure 5.  The inputs are denoted by x(t), the output of
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the controller by u(t), and the output of the robot by y(t).  A rule base stores the relevant knowledge
(i.e. how to control the system); fuzzification modifies the inputs for the inference in conjunction with
the rule base; an inference module obtains a rule from the rule base in terms of the current inputs and
provides a suitable control signal for the robot; and finally, defuzzification converts that signal into an
input for the robot.  The advantage of such fuzzy control is that it does not need a mathematical model
of the system and may implement expert human knowledge and experience.  Its drawback is the
difficulty of transferring the human knowledge and experience into the rule base and designing the
fuzzy controller.  For instance, fuzzy control for real-world applications invariably involves many
parameters that need tuning, such as those which define the fuzzy set membership functions, and this
often proves difficult.  A natural hybrid approach is to combine fuzzy logic with the strong learning
ability of neural networks (Lin and Lee, 1991; Ross, 2005).  The idea is to identify the structure and
parameters of the fuzzy controller by using the learning capability of neural networks, but the
relationship between the fuzzy system and neural network can be very complicated.  Fortunately,
techniques from one area can often be used in the other.  For instance, gradient descent methods can
be applied to train the neural network for parameter identification, and the same methods can be
applied to identify the fuzzy membership functions and the structure of fuzzy system.  Moreover,
under certain restrictions, there is a functional equivalence between radial basis function networks and
fuzzy systems (Jang and Sun, 1993).  It should be noted that the details of the hybridization of fuzzy
and neural systems depends on the application.

Hybrids of fuzzy logic and neural networks for robot control fall into two general categories.  One,
called fuzzy neural control, endows learning functions to the fuzzy control, or conducts information
processing before fuzzy logic is applied.  The other, called neuro-fuzzy control, incorporates fuzzy
logic and linguistic rules into the structure of neural network control.  The four typical hybrid types
are represented in Figure 6.  The simplest type consists of simple serial processing by the fuzzy system
and neural network as shown in Figure 6a.  Before the neural network modelling, the input
information is processed by the fuzzification, and the utility of the fuzzy system here is in dealing with
any uncertain information before the neural learning takes place.  In terms of the fuzzy controller in
Figure 5, the inference module and rule base are replaced by a neural network.  This structure is
particularly suitable for the design of controllers for autonomous robots, since the collected data from
unknown and dynamic environments is generally uncertain.  It is necessary to process the “fuzzy” data
via fuzzy logic; then a perfect model can be built via the neural network.  The operation of this
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Figure 5: Block diagram for a fuzzy robot controller.
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structure is simple, but the real learning capability of the neural network does not benefit from the
fuzzy system.  As a result, many challenging problems remain for this type of system.

The optimization function of the neural network based on the feedback of errors via gradient descent
may also be applied to adjust the parameters and structure of fuzzy system (as shown in Figure 6b),
especially the optimization of the fuzzy rule base (Marichal et al., 2001).  The main part of this
structure is the fuzzy system, while the utility of neural network is to improve the performance of the
fuzzy system.  The main disadvantages of this approach is that the training problems of the neural
network still exist, and the limitations of the fuzzy system, such as the updating process of the
structure which is impossible to realize in more reliable and flexible autonomous robots.

In order to reduce the influence of any uncertain data on the neural network, the input data may be
classified as being either certain or uncertain, and the different data types processed by different sub-
systems.  Most naturally, the uncertain information would be processed by the fuzzy system; while
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Figure 6:  The four main types of hybrid system with neural networks and fuzzy systems.



9

any exact data should be processed by the neural network.  This structure is shown in Figure 6c.
However, this approach still does not yet make full use of the utility of neural network and fuzzy
systems.  Moreover, the classification of the inputs, into certain and uncertain, is often far from easy
for many real-world applications.

From the viewpoint of learning, neural networks are superior to fuzzy systems, since they are more
flexible in dynamic environments.  However, a practical weakness is that for complex control
problems, training the neural network can be hard, particularly if evolutionary techniques have not
been employed to optimize the process.  Usually, autonomous robots are not required to obtain
complete and exact information for moving in their unknown environment, in the same way that a
human being moving along a busy street, for example, does not have to “calculate” accurately the
speed of every moving car nearby.  Therefore, fuzzy logic based controllers for autonomous robots are
still a more promising method, but the challenging problem is to improve the fuzzy system via
learning.  In Figure 6d, a new approach is proposed for building a model with fuzzy operation via
learning of a neural network.  If X = {xi} and Y = {yj} represent the input and output of the system, and
weights W = {wij} represent the model describing the relationship between input X and output Y, then
the operation of this system can be defined as:

WXY o=   :  y j = ∨(∧(xi ,wij ))   ,   i = 1, 2,…, N;  j = 1, 2, …, M

where ∧ and ∨ are the min and max operators that implement fuzzy conjunction and disjunction, N is
the number of inputs, and M is the sample number for training.  The weights can be adjusted using a
gradient descent based learning algorithm as described in detail by Ma, Li and Qiao (2001).  A major
advantage of this method is that it consumes less computational time, and such an operation process is
relatively easy and reliable.

To test the performance of this approach, three ultrasonic sensors and an optical range-finder sensor
were mounted on a mobile robot.  The ultrasonic sensors were designed to detect obstacle information,
while the optical sensor was expected to obtain orientation information about the target.  In a
simulation environment, the neural fuzzy based controller was built using a process like training a
driver as proposed by Ma, Li and Qiao (2001).  Then the trained robot could be run in an unknown
and dynamic environment, with the controller driving the robot to select the right path and to avoid
crashes with the obstacles.  The test results showed that this new neural fuzzy based controller for
autonomous robots could deal effectively with uncertain information from complex and dynamic
environments.  Further details of the results have been presented by Ma, Li, Ma and Cai (1998) and
Ma, Li and Qiao, (2001).

Considering the problems of autonomous and intelligent control of robots, the unavailability of
complete and accurate mathematical models for most real-world robot systems, and uncertainties in
the sensor data, fuzzy neural network techniques have become a popular approach for designing
autonomous controllers.  It is noticeable that the application of fuzzy neural networks should be
directed by practical issues and user requirements.  Further improved algorithms are regularly being
developed, such as the generalized dynamic fuzzy neural network learning algorithm proposed by
Wu et al. (2001), that has been applied to designing real-time controllers for autonomous mobile
robots (Er et al., 2002, 2004).  This new method can not only optimize the parameters of the
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controller, but the structure of the controller can also be self-adaptive.

A few examples will illustrate the range of successful applications of the fuzzy neural approach:
Watanabe et al. (1996) used Gaussian activation functions in a fuzzy neural network to control two
independent motors on a mobile robot.  Control rules were identified and fuzzy membership functions
fine-tuned so that the output deviations of the plant were minimized.  Godjevac and Steele (1999)
discussed a radial basis function based fuzzy controller for a mobile robot that learns faster than
conventional error back-propagation style networks, and also has the advantage of being able to
express the input-output transformation in the form of fuzzy inference rules.  Mbede, Huang and
Wang (2003) and Mbede et al. (2005) presented a robust neuro-fuzzy controller for robot manipulators
working in environments with moving obstacles.  They showed how any perturbations in the system
dynamics could automatically be compensated for by the controller.  Castillo and Melin (2003)
combined the learning and adaptability of neural networks with the use of fuzzy expert knowledge for
the control of robot manipulators, and demonstrated that their hybrid approach performed better than
fuzzy control alone.

The fuzzy control design also remains tractable for evolutionary algorithms, which can be used to
optimize all aspects.  For example, Hoffmann (2000) used evolution to tune scaling factors for the
controller’s inputs and outputs, and optimize the direction of sensor axes, on a mobile robot.
Akbarzadeh-T et al. (2000) have also used an evolutionary algorithm augmented with a hierarchical
fuzzy logic-based neural network to enhance the intelligence of autonomous robotic systems, with an
evolutionary fuzzy behavior based system applied to the control of direct drive motors, the control of
flexible links, and the navigation of mobile robots, including optimization of the membership function
parameters and evolving fuzzy rule-bases.

6.  Conclusion

This paper has presented a broad overview of the core computational intelligence techniques that may
be applied to industrial robot control systems, along with some simple examples, and numerous
references to more detailed technical papers describing a range of real world applications that have
used these methods.  Although these techniques are becoming increasingly common and powerful
tools for designing intelligent controllers for robots, there are a number of important practical
considerations to bear in mind:

(1) The ultimate aim is to solve practical problems in the design of robot controllers, so the
techniques considered need to be simple, robust and reliable.

(2) Different types of computational intelligence techniques will generally be required for different
robot control problems, depending on their different practical requirements.

(3) The application of a single computational intelligence technique will often be insufficient on its
own to provide solutions to all the practical issues.

(4) Traditional robot control approaches should not be abandoned – they should be considered
alongside the computational intelligence techniques.
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(5) Hybrid systems involving combinations of neural computation, fuzzy logic, and evolutionary
algorithms, as well as traditional techniques, are a more promising approach for improving the
performance of robot controllers.

(6) A key idea behind computational intelligence is automated optimization, and this can be applied
to both the structure and parameters of robot control systems.  Neural network style learning is
good for tuning parameters. Evolutionary approaches can be applied to optimize virtually all
aspects of these systems.

It is hoped that readers will now appreciate the power of computational intelligence techniques for
industrial robot control, and will be encouraged to explore further the possibility of using them to
achieve improved performance in their own applications.
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