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Preface

Computing, in the sense of doing mathematical calculations, is a skill
that mankind has developed over thousands of years. Programming,
on the other hand, is in its infancy, with a history that spans a few
decades only. Both topics are vastly comprehensive and usually taught as
separate subjects in educational institutions around the world, especially
at the undergraduate level. This book is about the combination of the
two, because computing today becomes so much more powerful when
combined with programming.

Most universities and colleges implicitly require students to specialize
in computer science if they want to learn the craft of programming, since
other student programs usually do not offer programming to an extent
demanded for really mastering this craft. Common arguments claim that
it is sufficient with a brief introduction, that there is not enough room for
learning programming in addition to all other must-have subjects, and
that there is so much software available that few really need to program
themselves. A consequence is that engineering students often graduate
with shallow knowledge about programming, unless they happened to
choose the computer science direction.

We think this is an unfortunate situation. There is no doubt that
practicing engineers and scientists need to know their pen and paper
mathematics. They must also be able to run off-the-shelf software for
important standard tasks and will certainly do that a lot. Nevertheless,
the benefits of mastering programming are many.

Why learn programming?
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. Ready-made software is limited to handling certain standard problems.

What do you do when the problem at hand is not covered by the
software you bought? Fortunately, a lot of modern software systems
are extensible via programming. In fact, many systems demand parts
of the problem specification (e.g., material models) to be specified by
computer code.

. With programming skills, you may extend the flexibility of existing

software packages by combining them. For example, you may integrate
packages that do not speak to each other from the outset. This makes
the work flow simpler, more efficient, and more reliable, and it puts
you in position to attack new problems.

. It is easy to use excellent ready-made software the wrong way. Insight

in programming and the mathematics behind is fundamental for
understanding complex software, avoiding pitfalls, and become a safe
user.

Bugs (errors in computer code) are present in most larger computer
programs (also in the ones from the shop!). What do you do when
your ready-made software gives unexpected results? Is it a bug, is
it wrong use, or is it the mathematically correct result? Experience
with programming of mathematics gives you a good background for
answering these questions. The one who can program, can also make
tailored code for a simplified problem setting and use that to verify
the computations done with off-the-shelf software.

. Lots of skilled people around the world solve computational problems

by writing their own code and offer their code for free on the Internet.
To take advantage of this truly great source of software in a reliable
way, one must normally be able to understand and possibly modify
computer code offered by others.

. It is recognized world wide that students struggle with mathematics

and physics. Too many find such subjects difficult and boring. With
programming, we can execute the good old subjects in a brand new
way! According to the authors’ own experience, students find it much
more motivating and enlightening when programming is made an inte-
grated part of mathematics and physical science courses. In particular,
the problem being solved can be much more realistic than when the
mathematics is restricted to what you can do with pen and paper.

Finally, we launch our most important argument for learning com-
puter programming: the algorithmic thinking that comes with the
process of writing a program for a computational problem enforces a
thorough understanding of both the problem and solution method. We
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can simply quote the famous Norwegian computer scientist Kristen
Nyggaard: “Programming is understanding”.

In the authors’ experience, programming is an excellent pedagogical tool
for understanding mathematics: “You think you know when you can
learn, are more sure when you can write, even more when you can teach,
but certain when you can program” (Alan Perlis, computer scientist,
1922-1990). Consider, for example, integration. A numerical method for
integration has a much stronger focus on what the integral actually is
and means compared to analytical methods, where much time and effort
must be devoted to integration by parts, integration by substitution,
etc. Moreover, when programming the numerical integration formula, it
becomes evident that it works for “all” mathematical functions and that
the implementation should be in terms of a general function applicable to
“all” integrals. In this way, students learn to recognize a special problem as
belonging to a class of problems (e.g., integration, differential equations,
root finding), for which we have general numerical methods implemented
in widely applicable software. When they write this software, as we do
in this book, they learn how to generalize and increase the abstraction
level of the mathematical problem. When they use this software, they
learn how a special case should be attacked by general methods and
software for the class of problems that comprises the special case at hand.
This is the power of mathematics in a nutshell, and it is paramount that
students understand this way of thinking.

Target audience and background knowledge. This book was writ-
ten for students, teachers, engineers and scientists that know nothing
about programming and numerical methods from before, but who seek
a minimum of the fundamental skills required to get started with pro-
gramming as a tool for solving scientific and engineering problems. Some
knowledge of one- and multi-variable calculus is assumed. The basic
programming concepts are presented in only 50 pages (Chapters 1 and
2), before practical applications of these concepts are demonstrated in
important mathematical subjects addressed in the remaining parts of the
book (Chapters 3-6). Each chapter is followed by a set of exercises that
cover a wide range of application areas, e.g. biology, geology, statistics,
physics and mathematics. The exercises were particularly designed to
bring across important points from the text. The reader will realize that
the modest content of the first 50 pages can in fact bring you quite far
in powerful problem solving!
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Learning the very basics of programming should not take long, but as
with any other craft, mastering the skill requires continued and extensive
practice. Some beginning practice is gained through Chapters 3-6, but
the authors strongly emphasize that this is only a start. Students should
continue to practice programming in subsequent courses, while those who
exercise self-study, should keep up the learning process through continued
application of the craft. The book is a good starting point when teaching
computer programming as an integrated part of standard university
courses in mathematics and physical sciences. In our experience, such an
integration is doable and indeed rewarding.

Numerical methods. An overall goal with this book is to motivate
computer programming as a very powerful tool for doing mathematics.
All examples are related to mathematics and its use in engineering and
science. However, to solve mathematical problems through computer
programming, we need numerical methods. Explaining basic numerical
methods is therefore an integral part of the book. Our choice of topics is
governed by what is most needed in science and engineering, as well as in
the teaching of applied physical science courses. Mathematical models are
then central, with differential equations constituting the most frequent
type of models. Consequently, the numerical focus in this book is on
differential equations. As a soft pedagogical starter for the programming
of mathematics, we have chosen the topic of numerical integration. There
is also a chapter on root finding, which is important for the numerical
solution on nonlinear differential equations. We remark that the book
is deliberately brief on numerical methods. This is because our focus is
on implementing numerical algorithms, but to develop reliable, working
programs, the programmer must be confident about the basic ideas of
the numerical approximations involved.

The computer language: Matlab. We have chosen to use the program-
ming language Matlab, because this language gives very compact and
readable code that closely resembles the mathematical recipe for solving
the problem at hand. Matlab also has a gentle learning curve. There
is a Python companion of this book in case that language is preferred.
Comparing these two versions of the book provides an excellent demon-
stration of how similar these languages are. We use the term Matlab
throughout this book to mean the commercial MATLAB (R) software
[12] or the open source alternative Octave [4]. Other computer languages,
like Fortran, C, and C++, have a strong position in science and engineer-
ing. During the last two decades, however, there has been a significant
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shift in popularity from these compiled languages to more high-level and
easier-to-read languages like Matlab, Python, R, Maple, Mathematica,
and IDL, for instance. This latter class of languages is computationally
less efficient, but superior with respect to overall human problem solving
efficiency. This book emphasizes how to think like a programmer, rather
than focusing on technical language details. Thus, the book should put
the reader in a good position for learning other programming languages
later, including the classic ones: Fortran, C, and C++.

How this book is different. There are numerous texts on computer
programming and numerical methods, so how does the present one differ
from the existing literature? Compared to books on numerical methods,
our book has a much stronger emphasis on the craft of programming and
on verification. We want to give students a thorough understanding of
how one thinks about programming as a problem solving method and
how one can be sure that programs are correct (well, you can never be
completely sure, but we show how you can provide convincing evidence
for correctness).

Even though there are lots of books on numerical methods where many
algorithms have a corresponding computer implementation (see, e.g.,
[2, 16, 17, 14, 15, 13, 18, 3, 20, 21, 5, 11, 19, 6, 22, 1, 7]) it is assumed that
the reader “can program” beforehand. The present book teaches the craft
of structured programming along with the fundamental ideas of numerical
methods. Furthermore, we have so far not found any other numerical
methods book that has a strong emphasis on verifying implementations.
In this book, unit testing and corresponding test functions are introduced
early on. We also put much emphasis on coding algorithms as functions,
as opposed to “flat programs”, which often dominate in the literature
and among practitioners. Functions are reusable because they utilize the
general formulation of a mathematical algorithm such that it becomes
applicable to a large class of problems.

There are also numerous books on computer programming, but to our
knowledge only one [9] that aims to teach how to think about program-
ming in the context of numerical methods and scientific applications.
That book [9] has its primary focus on teaching Python and is a very
comprehensive introduction to Python as a language and the thinking
about programming as a computer scientist. Sometimes one needs a
text that does not go so deep into the language-specific details, but in-
stead targets the shortest path to reliable mathematical problem solving
through programming. With this attitude in mind, a lot of topics were
left out of the present book, simply because they were not strictly needed



in the mathematical problem solving process. An example of such a topic
is object-oriented programming.

Whenever the need for a structured introduction to programming arises
in science and engineering courses, this book may be your option, either
for self-study or for use in organized teaching. The thinking, habits,
and practice covered in a couple of hundred pages will put readers in a
firm position for utilizing and understanding the power of computers for
problem solving in science and engineering.

Supplementary materials. All program and data files referred to in this
book are available from the book’s primary web site: http://hplgit.
github.io/progécomp/.
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The text was written in the DocOnce! [8] markup language, which
allowed us to work with a single text source for both the Python and the
Matlab version of this book, and to produce various electronic versions

of the book.
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1.1 What is a program? And what is programming?

Today, most people are experienced with computer programs, typically
programs such as Word, Excel, PowerPoint, Internet Explorer, and Pho-
toshop. The interaction with such programs is usually quite simple and
intuitive: you click on buttons, pull down menus and select operations,
drag visual elements into locations, and so forth. The possible operations
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you can do in these programs can be combined in seemingly an infinite
number of ways, only limited by your creativity and imagination.

Nevertheless, programs often make us frustrated when they cannot
do what we wish. One typical situation might be the following. Say you
have some measurements from a device, and the data are stored in a file
with a specific format. You may want to analyze these data in Excel and
make some graphics out of it. However, assume there is no menu in Excel
that allows you to import data in this specific format. Excel can work
with many different data formats, but not this one. You start searching
for alternatives to Excel that can do the same and read this type of data
files. Maybe you cannot find any ready-made program directly applicable.
You have reached the point where knowing how to write programs on
your own would be of great help to you! With some programming skills,
you may write your own little program which can translate one data
format to another. With that little piece of tailored code, your data may
be read and analyzed, perhaps in Excel, or perhaps by a new program
tailored to the computations that the measurement data demand.

The real power of computers can only be utilized if you can program
them. By programming you can get the computer to do (most often!)
exactly what you want. Programming consists of writing a set of in-
structions in a very specialized language that has adopted words and
expressions from English. Such languages are known as programming or
computer languages. The set of instructions is given to a program which
can translate the meaning of the instructions into real actions inside the
computer.

The purpose of this book is to teach you to write such instructions ded-
icated to solve mathematical and engineering problems by fundamental
numerical methods.

There are numerous computer languages for different purposes. Within
the engineering area, the most widely used computer languages are
Python, MATLAB, Octave, Fortran, C, C4++, and to some extent Maple,
and Mathematica. How you write the instructions (i.e. the syntax) differs
between the languages. Let us use an analogy.

Assume you are an international kind of person, having friends abroad
in England, Russia and China. They want to try your favorite cake. What
can you do? Well, you may write down the recipe in those three languages
and send them over. Now, if you have been able to think correctly when
writing down the recipe, and you have written the explanations according
to the rules in each language, each of your friends will produce the same
cake. Your recipe is the “computer program”, while English, Russian
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and Chinese represent the “computer languages” with their own rules
of how to write things. The end product, though, is still the same cake.
Note that you may unintentionally introduce errors in your “recipe”.
Depending on the error, this may cause “baking execution” to stop, or
perhaps produce the wrong cake. In your computer program, the errors
you introduce are called bugs (yes, small insects! ...for historical reasons),
and the process of fixing them is called debugging. When you try to run
your program that contains errors, you usually get warnings or error
messages. However, the response you get depends on the error and the
programming language. You may even get no response, but simply the
wrong “cake”. Note that the rules of a programming language have to be
followed very strictly. This differs from languages like English etc., where
the meaning might be understood even with spelling errors and “slang”
included.

This book comes in two versions, one that is based on Python, and
one based on Matlab. Both Python and Matlab represent excellent
programming environments for scientific and engineering tasks. The
version you are reading now, is the Matlab version.

Readers who want to expand their scientific programming skills beyond
the introductory level of the present exposition, are encouraged to study
the book A Primer on Scientific Programming with Python [9]. This
comprehensive book is as suitable for beginners as for professional pro-
grammers, and teaches the art of programming through a huge collection
of dedicated examples. This book is considered the primary reference,
and a natural extension, of the programming matters in the present book.

-
Some computer science terms

Note that, quite often, the terms script and scripting are used as
synonyms for program and programming, respectively.

The inventor of the Perl programming language, Larry Wall, tried
to explain the difference between script and program in a humorous
way (from perl.com?®): Suppose you went back to Ada Lovelace®
and asked her the difference between a script and a program. She’d
probably look at you funny, then say something like: Well, a script
is what you give the actors, but a program is what you give the
audience. That Ada was one sharp lady... Since her time, we seem
to have gotten a bit more confused about what we mean when we
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say scripting. It confuses even me, and I’'m supposed to be one of
the experts.

There are many other widely used computer science terms to
pick up. Writing a program (or script or code) is often expressed as
implementing the program. Frecuting a program means running the
program. An algorithm is a recipe for how to construct a program.
A bug is an error in a program, and the art of tracking down and
removing bugs is called debugging. Simulating or simulation refers
to using a program to mimic processes in the real world, often
through solving differential equations that govern the physics of the
processes.

“http://www.perl.com/pub/2007/12/06/soto-11.html
®http://en.wikipedia.org/wiki/Ada_Lovelace

1.2 A Matlab program with variables

Our first example regards programming a mathematical model that
predicts the position of a ball thrown up in the air. From Newton’s
2nd law, and by assuming negligible air resistance, one can derive a
mathematical model that predicts the vertical position y of the ball at
time t. From the model one gets the formula

y = vot — 0.5g12,

where vg is the initial upwards velocity and g is the acceleration of gravity,
for which 9.81 ms™2 is a reasonable value (even if it depends on things
like location on the earth). With this formula at hand, and when vy is
known, you may plug in a value for time and get out the corresponding
height.

1.2.1 The program

Let us next look at a Matlab program for evaluating this simple formula.
Assume the program is contained as text in a file named ball.m. The
text looks as follows (file ball.m):

% Program for computing the height of a ball in vertical motion


https://github.com/hplgit/prog4comp/tree/master/src/m/ball.m
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vO0 = 5; % Initial velocity
g = 9.81; 7 Acceleration of gravity
t = 0.6; % Time

y = vOxt - 0.5%gxt"2 7, Vertical position

Computer programs and parts of programs are typeset with a blue
background in this book. A slightly darker top and bottom bar, as above,
indicates that the code is a complete program that can be run as it
stands. Without the bars, the code is just a snippet and will (normally)
need additional lines to run properly.

1.2.2 Dissection of the program

A computer program is plain text, as here in the file ball.m, which
contains instructions to the computer. Humans can read the code and
understand what the program is capable of doing, but the program itself
does not trigger any actions on a computer before another program, the
Matlab interpreter, reads the program text and translates this text into
specific actions.

a B
You must learn to play the role of a computer

Although Matlab is responsible for reading and understanding your
program, it is of fundamental importance that you fully understand
the program yourself. You have to know the implication of every
instruction in the program and be able to figure out the consequences
of the instructions. In other words, you must be able to play the
role of a computer. The reason for this strong demand of knowledge
is that errors unavoidably, and quite often, will be committed in the
program text, and to track down these errors, you have to simulate
what the computer does with the program. Next, we shall explain
all the text in ball.m in full detail.

When you run your program in Matlab, it will interpret the text in
your file line by line, from the top, reading each line from left to right.
The first line it reads is

% Program for computing the height of a ball in vertical motion.
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This line is what we call a comment. That is, the line is not meant for
Matlab to read and execute, but rather for a human that reads the code
and tries to understand what is going on. Therefore, one rule in Matlab
says that whenever Matlab encounters the sign % it takes the rest of the
line as a comment. Matlab then simply skips reading the rest of the line
and jumps to the next line. In the code, you see several such comments
and probably realize that they make it easier for you to understand
(or guess) what is meant with the code. In simple cases, comments are
probably not much needed, but will soon be justified as the level of
complexity steps up.
The next line read by Matlab is

v0 = 5; % Initial velocity

According to its rules, Matlab will now create a variable with the
name v0 and set (the value of) that variable equal to 5. We say that 5 is
assigned to v0O. This means that whenever Matlab reads vO hereafter, it
plugs in 5 instead of the name vO0, since it knows that vO has the value 5.
You may think of vO as a variable vg in mathematics. The next two lines

1; % Acceleration of gravity

g =9.8
0.6; % Time

t

are of the same kind, so having read them too, Matlab knows of three
variables (v0, g, t) and their values. These variables are then used by
Matlab when it reads the next line, the actual “formula”,

y = vO*xt - 0.5*gxt"2 % Vertical position

Again, according to its rules, Matlab interprets * as multiplication, - as
minus and ~ as exponent (let us also add here that, not surprisingly,
+ and / would have been understood as addition and division, if such
signs had been present in the expression). Having read the line, Matlab
performs the mathematics on the right-hand side, and then assigns the
result (in this case the number 1.2342) to the variable name y. Also, since
the final line has no semi-colon, Matlab understands that we also want
the result printed to screen. When ball.m is run, the number 1.2342
appears on the screen.

Note that leaving out a semi-colon provides an easy way to print
things to screen in general. Simply writing, e.g., vO in the program above,
i.e. without the semi-colon, will make the content of vO be printed to
screen.



1.2 A Matlab program with variables 7

In the code above, you see several blank lines too. These are simply
skipped by Matlab and you may use as many as you want to make a
nice and readable layout of the code.

1.2.3 Why not just use a pocket calculator?

Certainly, finding the answer as done by the program above could easily
have been done with a pocket calculator. No objections to that and no
programming would have been needed. However, what if you would like
to have the position of the ball for every milli-second of the flight? All
that punching on the calculator would have taken you something like
four hours! If you know how to program, however, you could modify
the code above slightly, using a minute or two of writing, and easily
get all the positions computed in one go within a second. A much
stronger argument, however, is that mathematical models from real life
are often complicated and comprehensive. The pocket calculator cannot
cope with such problems, even not the programmable ones, because
their computational power and their programming tools are far too weak
compared to what a real computer can offer.

1.2.4 Why you must use a text editor to write programs

When Matlab interprets some code in a file, it is concerned with every
character in the file, exactly as it was typed in. This makes it troublesome
to write the code into a file with word processors like, e.g., Microsoft
Word, since such a program will insert extra characters, invisible to
us, with information on how to format the text (e.g., the font size and
type). Such extra information is necessary for the text to be nicely
formatted for the human eye. Matlab, however, will be much annoyed by
the extra characters in the file inserted by a word processor. Therefore, it
is fundamental that you write your program in a text editor where what
you type on the keyboard is exactly the characters that appear in the
file and that Matlab will later read. There are many text editors around.
Some are stand-alone programs like Emacs, Vim, Gedit, Notepad++,
and TextWrangler. Many prefer to use the text editor that comes with
the graphical Matlab environment.
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1.2.5 Write and run your first program

Reading only does not teach you computer programming: you have to
program yourself and practice heavily before you master mathematical
problem solving via programming. Therefore, it is crucial at this stage
that you write and run a Matlab program. We just went through the
program ball.m above, so let us next write and run that code.

But first a warning: there are many things that must come together
in the right way for ball.m to run correctly on your computer. There
might be problems with your Matlab installation, with your writing of
the program (it is very easy to introduce errors!), or with the location
of the file, just to mention some of the most common difficulties for
beginners. Fortunately, such problems are solvable, and if you do not
understand how to fix the problem, ask somebody. Typically, once you
are beyond these common start-up problems, you can move on to learn
programming and how programs can do a lot of otherwise complicated
mathematics for you.

The term Matlab refers to both the software package Matlab from
MathWorks Inc., and the programming language Matlab. Matlab pro-
grams can either be run in the commercial Matlab software package, or
they can be run in the free GNU Octave! software, usually just called
Octave. We first describe how to operate the Matlab software and then
Octave.

The first step is to generate a directory in which you will place your
future Matlab code. Do this in a terminal window (Zerminal on Mac,
Power Shell or Command Prompt on Windows, or (e.g.) gnome-terminal
on Linux). Write mkdir mycode to create a directory with name mycode.
Then move into that directory by writing cd mycode.

Write and run a program in Matlab. Start Matlab and try out the
following.

1. Write the Matlab program ball.m. Do this by choosing
File/New/Script from the menu in the Command window. In the
editor window that pops up, simply write the code lines there as they
were given above for ball.m. Now save this with the name ball.m
in the right directory, i.e. myCode, via Save As from the File menu.
The program is now ready for use!

Yhttp://www.gnu.org/software/octave/


http://www.gnu.org/software/octave/

1.3 A Matlab program with a library function 9

2. Run the program. Do this in the Command window by writing the
name of the program without the extension, i.e. write "ball", and press
enter. Matlab will now run the program.

Write a program in a text editor and run it in Octave. Octave users
must write the program in a plain text editor such as Gedit on Linux
computers; TextWrangler on Mac, or Notepad++ on Windows. Popular,
but more advanced text editors, primarily Emacs and Vim, are also
available for these platforms.

1. Write the Matlab program ball.m by launching a text editor and
write each line exactly as they are listed in the ball.m program. Save
the file as ball.m in the mycode directory.

2. Run the program. Type octave. The Octave program is started and
gives you a prompt octave:1>, which indicates that you can give
Octave commands. Type run ball.m and press enter. Octave will
now run the program.

With a little luck, you should now get the number 1.2342 out in the
command window. If so, congratulations! You have just executed your
first self-written computer program in Matlab (or Octave), and you are
ready to go on studying this book!

-
m-files

A program such as ball.m, i.e., code stored in a file with the
extension .m, is usually referred to as an m-file.

1.3 A Matlab program with a library function

Imagine you stand on a distance, say 10 m away, watching someone
throwing a ball upwards. A straight line from you to the ball will then
make an angle with the horizontal that increases and decreases as the
ball goes up and down. Let us consider the ball at a particular moment
in time, at which it has a height of 10 m.

What is the angle of the line then? Again, this could easily be done with
a calculator, but we continue to address gentle mathematical problems
when learning to program. Before thinking of writing a program, one
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should always formulate the algorithm, i.e., the recipe for what kind of
calculations that must be performed. Here, if the ball is x m away and y
m up in the air, it makes an angle 6 with the ground, where tanf = y/x.
The angle is then tan~!(y/x).

Let us make a Matlab program for doing these calculations. We
introduce names x and y for the position data x and ¥, and the descriptive
name angle for the angle 6. The program is stored in a file ball_angle.m:

X

y

10; % Horizontal position
10; % Vertical position

angle = atan(y/x);
(angle/pi)*180 % Computes and prints to screen

Before we turn our attention to the running of this program, let us
take a look at one new thing in the code. The line angle = atan(y/x),
illustrates how the function atan, corresponding to tan~! in mathemat-
ics, is called with the ratio y/x as input parameter or argument. The
atan function takes one argument, and the computed value is returned
from atan. This means that where we see atan(y/x), a computation is
performed (tan=!(y/z)) and the result “replaces” the text atan(y/x).
This is actually no more magic than if we had written just y/x: then
the computation of y/x would take place, and the result of that division
would replace the text y/x. Thereafter, the result is assigned to the name
angle on the left-hand side of =.

Note that the trigonometric functions, such as atan, work with angles
in radians. The return value of atan must hence be converted to degrees,
and that is why we perform the computation (angle/pi)*180. With the
missing semi-colon, Matlab will do the computations and print the result
to the screen. And yes, the famous pi () is a variable that is known to
Matlab.

1.4 A Matlab program with vectorization and plotting

We return to the problem where a ball is thrown up in the air and we
have a formula for the vertical position y of the ball. Say we are interested
in y at every milli-second for the first second of the flight. This requires
repeating the calculation of y = vyt — 0.5gt% one thousand times.

We will also draw a graph of y versus ¢ for ¢ € [0,1]. Drawing such
graphs on a computer essentially means drawing straight lines between


https://github.com/hplgit/prog4comp/tree/master/src/m/ball_angle.m
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points on the curve, so we need many points to make the visual impression
of a smooth curve. With one thousand points, as we aim to compute
here, the curve looks indeed very smooth.

In Matlab, the calculations and the visualization of the curve may be

done with the program ball plot.m, reading
0 5k

9.81;

= linspace(0, 1, 1001);

<

g
t
y = vOxt - 0.5%g*t.”2;

plot(t, y);
xlabel(’t (s)’);
ylabel(’y (m)’);

This program produces a plot of the vertical position with time, as
seen in Figure 1.1. As you notice, the code lines from the ball.m program
in Chapter 1.2 have not changed much, but the height is now computed
and plotted for a thousand points in time!

Let us take a look at the differences between the new program and
our previous program.

The function linspace takes 3 parameters, and is generally called as

linspace(start, stop, n)

This is our first example of a Matlab function that takes multiple argu-
ments. The linspace function generates n equally spaced coordinates,
starting with start and ending with stop. The expression linspace(0,
1, 1001) creates 1001 coordinates between 0 and 1 (including both 0 and
1). The mathematically inclined reader will notice that 1001 coordinates
correspond to 1000 equal-sized intervals in [0, 1] and that the coordinates
are then given by ¢; = /1000 (i = 0, 1, ..., 1000).

The value returned from linspace (being stored in t) is an array, i.e.,
a collection of numbers. When we start computing with this collection of
numbers in the arithmetic expression vO*t - 0.5*%g*t.~ 2, the expression
is calculated for every number in t (i.e., every t; for i = 0,1, ...,1000),
yielding a similar collection of 1001 numbers in the result y. That is, y is
also an array.

Note the dot that has been inserted in 0.5*g*t .2, i.e. just before the
operator ~. This is required to make Matlab do ~ to each number in t.
The same thing applies to other operators, as shown in several examples
later.


https://github.com/hplgit/prog4comp/tree/master/src/m/ball_plot.m
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Figure 1
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Fig. 1.1 Plot generated by the script ball_plot.m showing the vertical position of the
ball at a thousand points in time.

This technique of computing all numbers “in one chunk” is referred to
as vectorization. When it can be used, it is very handy, since both the
amount of code and computation time is reduced compared to writing a
corresponding for or while loop (Chapter 2) for doing the same thing.

The plotting commands are simple:

1. plot(t, y) means plotting all the y coordinates versus all the t
coordinates

2. xlabel(’t (8)’) places the text t (s) on the z axis

3. ylabel(’y (m)’) places the text y (m) on the y axis

At this stage, you are strongly encouraged to do Exercise 1.4. It builds
on the example above, but is much simpler both with respect to the
mathematics and the amount of numbers involved.
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1.5 More basic concepts

So far we have seen a few basic examples on how to apply Matlab
programming to solve mathematical problems. Before we can go on
with other and more realistic examples, we need to briefly treat some
topics that will be frequently required in later chapters. These topics
include computer science concepts like variables, objects, error messages,
and warnings; more numerical concepts like rounding errors, arithmetic
operator precedence, and integer division; in addition to more Matlab
functionality when working with arrays, plotting, and printing.

1.5.1 Using Matlab interactively

You may also use Matlab interactively (i.e. without writing a program).
For example, you may do calculations like the following directly at the
command prompt » in the Command window (a prompt means a “ready
sign”, i.e. the program allows you to enter a command, and different
programs often have different looking prompts).

>> 242
ans = 4

>> 2%3
ans = 6

>> 10/2
ans = 5

>> 273
ans = 8

You may also define variables and use formulas interactively as

>> v0 = 5;

>> g = 9.81;

>t = 0.6;

>> y = vOxt - 0.5%g*xt"2

y =
1.2342000000000

Sometimes you would like to repeat a command you have given earlier,

or perhaps give a command that is almost the same as an earlier one.

Then you can use the “up-arrow” key. Pressing this one time gives you
the previous command, pressing two times gives you the command before
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that, and so on. If you go too far, you may go back with the “down-arrow”
key. When you have the command at the prompt, it may be edited before
pressing enter (which lets Matlab read it).

1.5.2 Arithmetics, parentheses and rounding errors

When the arithmetic operators +, -, *, / and ~ appear in an expression,
Matlab gives them a certain precedence. Matlab interprets the expression
from left to right, taking one term (part of expression between two
successive + or -) at a time. Within each term, ~ is done before * and /.
Consider the expression x = 1*¥572 + 10*3 - 1.0/4. There are three
terms here and interpreting this, Matlab starts from the left. In the first
term, 1¥572, it first does 572 which equals 25. This is then multiplied
by 1 to give 25 again. The second term is 103, i.e., 30. So the first two
terms add up to 55. The last term gives 0.25, so the final result is 54.75
which becomes the value of x.

Note that parentheses are often very important to group parts of
expressions together in the intended way. Let us say x = 4 and that you
want to divide 1.0 by x + 1. We know the answer is 0.2, but the way we
present the task to Matlab is critical, as shown by the following example.

>> x = 4;

>> 1.0/x+1
ans = 1.25000000000000000

>> 1.0/ (x+1)
ans = 0.20000000000000001

In the first try, we see that 1.0 is divided by x (i.e., 4), giving 0.25,
which is then added to 1. Matlab did not understand that our complete
denominator was x+1. In our second try, we used parentheses to “group’
the denominator, and we got what we wanted. That is, almost what we
wanted! Since most numbers can be represented only approximately on
the computer, this gives rise to what is called rounding errors. We should
have got 0.2 as our answer, but the inexact number representation gave

)

a small error. Usually, such errors are so small compared to the other
numbers of the calculation, that we do not need to bother with them.
Still, keep it in mind, since you will encounter this issue from time to
time. More details regarding number representations on a computer is
given in Section 3.4.3.
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1.5.3 Variables

Variables in Matlab will be of a certain type. Real numbers are in computer
language referred to as floating point numbers, being the default (i.e. what
Matlab uses if nothing is specified) data type in Matlab. These are of two
kinds, single and double, corresponding to single and double precision,
respectively. It is the “double” that is the default type. With double
precision, twice as many bits (64) are used for storage as with single
precision. Writing x = 2 in some Matlab program, by default makes x a
double, i.e. a float variable.

Whole numbers may be stored more memory efficiently as integers,
however, and there are several ways of doing this. For example, writing
X = int8(2), or x = int16(2), will store the integer 2 in the variable
x by use of 8 or 16 bits, respectively.

Another common type of variable is a string, which we get by writing,
e.g., x = ’This is a string’. The variable x then becomes a string
variable containing the text between single quotes (the string actually
becomes an array of characters, see “Arrays” below). Several other
standard data types also exist in Matlab.

You may also convert between variable types in different ways. For
example, after first writing x = 2 (which causes x to become a double),
you may write y = single(x) to make y contain the number 2 with
single precision only. Type conversion may also occur automatically,
e.g. when calling a ready-made Matlab function that requires input data
to be of a certain type. When combining variables of different types, the
result will have a type according to given rules. For example, multiplying
a single and a double, gives a single variable.

Names of variables should be chosen so that they are descriptive. When
computing a mathematical quantity that has some standard symbol,
e.g. «, this should be reflected in the name by letting the word alpha
be part of the name for the corresponding variable in the program. If
you, e.g., have a variable for counting the number of sheep, then one
appropriate name could be no_of_sheep. Such naming makes it much
easier for a human to understand the written code. Variable names may
also contain any digit from 0 to 9, or underscores, but can not start with
a digit. Letters may be lower or upper case, which to Matlab is different.
Note that certain names in Matlab are reserved, meaning that you can
not use these as names for variables. Some examples are for, while,
if, else, end, global and function. If you accidentally use a reserved
word as a variable name you get an error message.
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We have seen that, e.g., x = 2 will assign the value 2 to the variable
x. But how do we write it if we want to increase x by 47 We may then
write an assignment like x = x + 4. Now Matlab interprets this as: "take
whatever value that is in x, add 4, and let the result become the new
value of ‘x‘". In other words, the old value of x is used on the right hand
side of =, no matter how messy the expression might be, and the result
becomes the new value of x. In a similar way, x = x - 4 reduces the
value of x by 4, x = x*4 multiplies x by 4, and x = x/4 divides x by 4,
updating the value of x accordingly.

1.5.4 Formatting text and numbers

Results from scientific computations are often to be reported as a mixture
of text and numbers. Usually, we want to control how numbers are
formatted. For example, we may want to write 1/3 as 0.33 or 3.3333e-01
(3.3333-1071). The fprintf command is the key tool to write out text
and numbers with full control of the formatting. The first argument to
fprintf is a string with a particular syntax to specify the formatting,
the so-called printf syntaz. (The peculiar name stems from the printf
function in the programming language C where the syntax was first
introduced.)

Suppose we have a real number 12.89643, an integer 42, and a text
’some message’ that we want to write out in the following two alterna-
tive ways:

real=12.896, integer=42, string=some message

real=1.290e+01, integer= 42, string=some message
The real number is first written in decimal notation with three decimals,
as 12.896, but afterwards in scientific notation as 1.290e+01. The
integer is first written as compactly as possible, while on the second line,
42 is formatted in a text field of width equal to five characters.

The following program, formatted_print.m, applies the printf syntax
to control the formatting displayed above:

real = 12.89643;

integer = 42;

string = ’some message’;

fprintf (’real=),.3f, integer=Jd, string=J,s’, real, integer, string);
fprintf(’real=%9.3e, integer=J,5d, string=)s’, real, integer, string);

The output of fprintf is a string, specified in terms of text and a set
of variables to be inserted in the text. Variables are inserted in the text
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at places indicated by %. After % comes a specification of the formatting,
e.g, %t (real number), %d (integer), or %s (string). The format %9.3f
means a real number in decimal notation, with 3 decimals, written in a
field of width equal to 9 characters. The variant %.3f means that the
number is written as compactly as possible, in decimal notation, with
three decimals. Switching £ with e or E results in the scientific notation,
here 1.290e+01 or 1.290E+01. Writing %5d means that an integer is to
be written in a field of width equal to 5 characters. Real numbers can
also be specified with %g, which is used to automatically choose between
decimal or scientific notation, from what gives the most compact output
(typically, scientific notation is appropriate for very small and very large
numbers and decimal notation for the intermediate range).

A typical example of when printf formatting is required, arises when
nicely aligned columns of numbers are to be printed. Suppose we want
to print a column of ¢ values together with associated function values
g(t) = tsin(t) in a second column. The simplest approach would be

t0 2;

dt 0.55;

% Unformatted print

t = t0 + Oxdt; g = txsin(t);
fprintf(’%g %g\n’, t, g);

t = t0 + 1xdt; g = t*sin(t);
fprintf (g %g\n’, t, g);

t = t0 + 2xdt; g = txsin(t);
fprintf C%g %g\n’, t, g);

with output

2 1.81859
2.55 1.42209
3.1 0.1289

(Repeating the same set of statements multiple times, as done above, is
not good programming practice - one should use a for loop, as explained
later in Section 2.3.) Observe that the numbers in the columns are not
nicely aligned. Using the printf syntax ’%6.2f %8.3f’ % (t, g) for
t and g, we can control the width of each column and also the number
of decimals, such that the numbers in a column are aligned under each
other and written with the same precision. The output then becomes

Formatting via printf syntax
2.00 1.819
2.55 1.422
3.10 0.129
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We shall frequently use the printf syntax throughout the book so there
will be plenty of further examples.

1.5.5 Arrays

In the program ball_plot.m from Chapter 1.4 we saw how 1001 height
computations were executed and stored in the variable y, and then
displayed in a plot showing y versus t, i.e., height versus time. The
collection of numbers in y (or t, respectively) was stored in what is
called an array, a construction also found in most other programming
languages. Such arrays are created and treated according to certain rules,
and as a programmer, you may direct Matlab to compute and handle
arrays as a whole, or as individual array elements. Let us briefly look at
a smaller such collection of numbers.

Assume that the heights of four family members have been collected.
These heights may be generated and stored in an array, e.g., named h,
by writing

h = zeros(4,1)

h(1) = 1.60
h(2) = 1.85
h(3) = 1.75
h(4) = 1.80

where the array elements appear as h(1), h(2), etc. Generally, when we
read or talk about the array elements of some array a, we refer to them
by reading or saying "a of one" (i.e. a(1)), "a of two" (i.e. a(2)), and so
on. The very first line in the example above, i.e.

h = zeros(4,1)

instructs Matlab to reserve, or allocate, space in memory for an array
h with four elements and initial values set to 0. (Note that zeros(4,1)
gives a column array, while zeros(1,4) gives a line array. Try it at the
command prompt to see the difference. Sometimes this distinction is
important, e.g. when doing matrix - vector calculations.) The next four
lines command Matlab to overwrite the zeros with the desired numbers
(measured heights), one number for each element. Elements are, by rule,
indezed (numbers within parentheses) from 1 to the last element, in this
case 4. We say that Matlab has one-based indexing. This differs from
zero-based indexing (e.g., found in Python) where the array index starts
with 0.
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As illustrated in the code, you may refer to the array as a whole by
the name h, but also to each individual element by use of the index.
The array elements may enter in computations as individual variables,
e.g., writing z = h(1) + h(2) + h(3) + h(4) will compute the sum
of all the elements in h, while the result is assigned to the variable z.
Note that this way of creating an array is a bit different from the one
with linspace, where the filling in of numbers occurred automatically
“behind the scene”.

By use of a colon, you may pick out a slice of an array. For example,
to create a new array from the two elements h(1) and h(2), we could
write slice_h = h(1:2). For the generated slice_h array, indices are
as usual, i.e., 1 and 2 in this case. The very last entry in an array may
be addressed as, e.g., h(length(h)), where the ready made function
length gives the number of elements in the array.

1.5.6 Plotting

Sometimes you would like to have two or more curves or graphs in the
same plot. Assume we have h as above, and also an array H with the
heights 0.50 m, 0.70 m, 1.90 m, and 1.75 m from a family next door.
This may be done with the program plot_heights.m given as

h = zeros(4, 1);

h(1) = 1.60; h(2) = 1.85; h(3)= 1.75; h(4) = 1.80;
H = zeros(4, 1);
H(1) = 0.50; H(2) = 0.70; H(3)= 1.90; H(4) = 1.75;

family_member_no = zeros(4, 1);
family_member_no(1) 0; family_member_no(2)
family_member_no(3) 2; family_member_no(4)

[y

plot(family_member_no, h, family_member_no, H);
xlabel (’Family member number’);
ylabel (*Height (m)’)

Running the program gives the plot shown in Figure 1.2.

Alternatively, the two curves could have been plotted in the same plot
by use of two plot commands, which gives more freedom as to how the
curves appear. To do this, you could plot the first curve by

plot(family_member_no, h)
hold(’on’)

Then you could (in principle) do a lot of other things in your code, before
you plot the second curve by


https://github.com/hplgit/prog4comp/tree/master/src/m/plot_heights.m
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Fig. 1.2 Generated plot for the heights of family members from two families.

plot(family_member_no, H)
hold(’off’)

Notice the use of hold here. hold(’on’) tells Matlab to plot also the
following curve(s) in the same window. Matlab does so until it reads
hold(’off’). If you do not use the hold(’on’) or hold(’off’) com-
mand, the second plot command will overwrite the first one, i.e., you get
only the second curve.

In case you would like the two curves plotted in two separate plots,
you can do this by plotting the first curve straightforwardly with

plot(family_member_no, h)
then do other things in your code, before you do

figure()
plot(family _member_no, H)

Note how the graphs are made continuous by Matlab, drawing straight
lines between the four data points of each family. This is the standard way
of doing it and was also done when plotting our 1001 height computations
with ball_plot.m in Chapter 1.4. However, since there were so many
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data points then, the curve looked nice and smooth. If preferred, one
may also plot only the data points. For example, writing

plot(h, ’*’)

will mark only the data points with the star symbol. Other symbols like
circles etc. may be used as well.

There are many possibilities in Matlab for adding information to a
plot or for changing its appearance. For example, you may add a legend
by the instruction

legend(’This is some legend’)
or you may add a title by

title(’This is some title’)
The command

axis([xmin xmax ymin ymax])

will define the plotting range for the x axis to stretch from xmin to xmax
and, similarly, the plotting range for the y axis from ymin to ymax. Saving
the figure to file is achieved by the command

print(’some_plot’, ’-dpng’); # PNG format
print(’some_plot’, ’-dpdf’); # PDF format
print(’some_plot’, ’-dtiff’); # TIFF format
print (’some_plot’, ’-deps’); # Encanspulated PostScript format

For the reader who is into linear algebra, it may be useful to know
that standard matrix/vector operations are straightforward with arrays,
e.g., matrix-vector multiplication. For example, assume you would like
to calculate the vector y (note that boldface is used for vectors and
matrices) as y = Ax, where A is a 2 x 2 matrix and x is a vector. We
may do this as illustrated by the program matrix_vector_product.m
reading

x = zeros(2, 1);
x(1) = 3; x(2) = 2; Y% Insert some values

A = zeros(2, 2);
AC1,1) = 1; A(1,2)
AC2,1) = 0; A(2,2)

>

ig

y = A*x 7, Computes and prints

Here, x is first established as a column array with the zeros function.
Then the test values are plugged in (3 and 2). The matrix A is first


https://github.com/hplgit/prog4comp/tree/master/src/m/matrix_vector_product.m
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created as a two dimensional array with A = zeros(2, 2) before filling
in values. Finally, the multiplication is performed as y = A*x. Running
the program gives the following output on the screen:

y =

1.5.7 Error messages and warnings

All programmers experience error messages, and usually to a large extent
during the early learning process. Sometimes error messages are under-
standable, sometimes they are not. Anyway, it is important to get used
to them. One idea is to start with a program that initially is working,
and then deliberately introduce errors in it, one by one. (But remember
to take a copy of the original working code!) For each error, you try to
run the program to see what Matlab’s response is. Then you know what
the problem is and understand what the error message is about. This
will greatly help you when you get a similar error message or warning
later.

Very often, you will experience that there are errors in the program
you have written. This is normal, but frustrating in the beginning. You
then have to find the problem, try to fix it, and then run the program
again. Typically, you fix one error just to experience that another error is
waiting around the corner. However, after some time you start to avoid
the most common beginner’s errors, and things run more smoothly. The
process of finding and fixing errors, called debugging, is very important
to learn. There are different ways of doing it too.

A special program (debugger) may be used to help you check (and do)
different things in the program you need to fix. A simpler procedure, that
often brings you a long way, is to print information to the screen from
different places in the program. First of all, this is something you should
do (several times) during program development anyway, so that things
get checked as you go along. However, if the final program still ends up
with error messages, you may save a copy of it, and do some testing on
the copy. Useful testing may then be to remove, e.g., the latter half of the
program (by inserting comment signs %), and insert print commands at
clever places to see what is the case. When the first half looks ok, insert
parts of what was removed and repeat the process with the new code.
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Using simple numbers and doing this in parallel with hand calculations
on a piece of paper (for comparison) is often a very good idea.

Matlab also offers means to detect and handle errors by the program
itself! The programmer must then foresee (when writing the code) that
there is a potential for error at some particular point. If, for example,
some user of the program is asked (by the running program) to provide a
number, and intends to give the number 5, but instead writes the word five,
the program could run into trouble. A try-catch construction may be
used by the programmer to check for such errors and act appropriately (see
Chapter 6.2 for an example), avoiding a program crash. This procedure
of trying an action and then recovering from trouble, if necessary, is
referred to as exception handling and is the modern way of dealing with
errors in a program.

When a program finally runs without error messages, it might be
tempting to think that Ah..., I am finished!. But no! Then comes program
testing, you need to wverify that the program does the computations
as planned. This is almost an art and may take more time than to
develop the program, but the program is useless unless you have much
evidence showing that the computations are correct. Also, having a set of
(automatic) tests saves huge amounts of time when you further develop
the program.

Verification versus validation

Verification is important, but wvalidation is equally important. It
is great if your program can do the calculations according to the
plan, but is it the right plan? Put otherwise, you need to check
that the computations run correctly according to the formula you
have chosen/derived. This is verification: doing the things right.
Thereafter, you must also check whether the formula you have
chosen /derived is the right formula for the case you are investigating.
This is validation: doing the right things. In the present book, it
is beyond scope to question how well the mathematical models
describe a given phenomenon in nature or engineering, as the answer
usually involves extensive knowledge of the application area. We
will therefore limit our testing to the verification part.
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1.5.8 Input data

Computer programs need a set of input data and the purpose is to use
these data to compute output data, i.e., results. In the previous program
we have specified input data in terms of variables. However, one often
wants to get the input through some dialog with the user. Here is one
example where the program asks a question, and the user provides an
answer by typing on the keyboard:

age = input(’What is your age? °’)
fprintf(’0k, so you are half way to %d, wow!\n’, age*2)

So, after having interpreted and run the first line, Matlab has established
the variable age and assigned your input to it. The second line combines
the calculation of twice the age with a message printed on the screen. Try
these two lines in a little test program to see for yourself how it works.

There are other ways of providing input to a program as well, e.g., via a
graphical interface (as many readers will be used to) or at the command
line (i.e., as parameters succeeding, on the same line, the command
that starts the program). Reading data from a file is yet another way.
Logically, what the program produces when run, e.g. a plot or printout
to the screen or a file, is referred to as program output.

1.5.9 Symbolic computations

Even though the main focus in this book is programming of numerical
methods, there are occasions where symbolic (also called ezact or analyt-
ical) operations are useful. Doing symbolic computations means, as the
name suggests, that we do computations with the symbols themselves
rather than with the numerical values they could represent. Let us illus-
trate the difference between symbolic and numerical computations with
a little example. A numerical computation could be

2;

3;

X*y

X

y
z

which will make the number 6 appear on the screen. A symbolic counter-
part of this code could be

syms X y
Z = XXy
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which causes the symbolic result x*y to appear on the screen. Note that
no numerical value was assigned to any of the variables in the symbolic
computation. Only the symbols were used, as when you do symbolic
mathematics by hand on a piece of paper.

Symbolic computations in Matlab make use of the Symbolic Toolbox
(but support for symbolic computations in Octave is weak). Each symbol
is represented by a standard variable, but the name of the symbol must
be declared with syms name for a single symbol, or syms namel name2
... for multiple symbols. The following script example_symbolic.m is
a quick demonstration of some of the basic symbolic operations that are
supported in Matlab.

syms X y

2%x + 3%x - y % Algebraic computation

f = x72;

diff(f, x) % Differentiate x~2 wrt x

f = cos(x);
int(f, x) % Integrate cos(x) wrt x

f = (x72 + x73)/x72;
simplify(f) % Simplify £

f = sin(x)/x
limit(f, x, 0) % Find limit of f as x -> 0

f = 15%xx - 15;
solve(f, x) % Solve 15*x - 15 = 0 wrt x

Other symbolic calculations like Taylor series expansion, linear algebra
(with matrix and vector operations), and (some) differential equation
solving are also possible.

Symbolic computations are also readily accessible through the (partly)
free online tool WolframAlpha?, which applies the very advanced Math-
ematica® package as symbolic engine. The disadvantage with Wolfra-
mAlpha compared to the Symbolic Toolbox is that the results cannot
automatically be imported into your code and used for further analysis.
On the other hand, WolframAlpha has the advantage that it displays
many additional mathematical results related to the given problem. For
example, if we type 2x + 3x - y in WolframAlpha, it not only simpli-
fies the expression to 5x - y, but it also makes plots of the function

2http://www.wolframalpha.com
Shttp://en.wikipedia.org/wiki/Mathematica


https://github.com/hplgit/prog4comp/tree/master/src/m/example_symbolic.m
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26 1 The first few steps

f(z,y) = bx — y, solves the equation 5z —y = 0, and calculates the
integral [ [(5z + y)dxdy. The commercial Pro version can also show
a step-by-step of the analytical computations in the problem. You are
strongly encouraged to try out these commands in WolframAlpha:

o diff(x"2, x) or diff (x**2, x)
e integrate(cos(x), x)

o simplify((x**2 + x**3)/x**2)
e limit(sin(x)/x, x, 0)

e solve(5*x - 15, x)

WolframAlpha is very flexible with respect to syntax.

Another impressive tool for symbolic computations is Sage*, which is a
very comprehensive package with the aim of “creating a viable free open
source alternative to Magma, Maple, Mathematica and Matlab”. Sage is
implemented in Python. Projects with extensive symbolic computations
will certainly benefit from exploring Sage.

1.5.10 Concluding remarks

Programming demands you to be accurate!

In this chapter, you have seen some examples of how simple things
may be done in Matlab. Hopefully, you have tried to do the examples
on your own. If you have, most certainly you have discovered that
what you write in the code has to be very accurate. For example,
with our previous example of four heights collected in an array h,
writing h[1] instead of h(1) gives an error, even if you and I know
perfectly well what you mean! Remember that it is not a human
that runs your code, it is a machine. Therefore, even if the meaning
of your code looks fine to a human eye, it still has to comply in
detail to the rules of the programming language. If not, you get
warnings and error messages. This also goes for lower and upper
case letters. Pay attention to such details also when they are given
in later chapters.

‘http://sagemath.org/
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Remember to insert comments to explain your code

When you write a computer program, you have two very different
kinds of readers. One is Matlab, which will interpret and run your
program according to the rules. The other is some human, for
example, yourself or a peer. It is very important to organize and
comment the code so that you can go back to your own code after,
e.g., a year and still understand what clever constructions you put
in there. This is relevant when you need to change or extend your
code (which usually happens often in reality). Organized coding and
good commenting is even more critical if other people are supposed
to understand code that you have written.

One important contribution to writing readable code, is to indent
parts of the code that naturally belong together. You will see
this used systematically from Chapter 2 and on. It is a highly
recommendable habit to develop for a programmer.

Fast code versus readable and correct code

Numerical computing has a strong tradition in paying much atten-
tion to creating fast code. Real industrial applications of numerical
computing often involves simulations that run for hours, days, and
even weeks. Fast code is tremendously important in those cases.
The problem with a strong focus on fast code, unfortunately, is
sometimes that clear and easily understandable constructions are
replaced by clever and less readable, but faster code. However, for
beginners it is most important to learn to write readable and correct
code. We will make some comments on constructions that are fast
or slow, but the main focus of this book is to teach how to write
correct programs, not the fastest possible programs.

Matlab requires a license

Matlab has a student licence version that is cheap as long as you
are a student. Note, however, that the student version is stripped of

27
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much functionality. A commercial license is required to use Matlab
in industry.

Matlab has a whole range of toolboxes with ready-made code
dedicated to particular fields in science and engineering. We encoun-
tered one of these above, the Symbolic Toolbox. Generally, the more
toolboxes you want to include in your license, the more expensive
it gets.

Tip: how to deal with long lines

If a statement in a program gets too long, it may be continued on
the next line by inserting three dots in succession immediately after
the last character of the line that is split (no spaces between!).

The present introductory book just provides a tiny bit of all the
functionality that Matlab has to offer. An important source of informa-
tion is the the homepage "of Matlab': htpp://www.mathworks.com®. In
addition, there are lots of excellent books (for references, see Preface).

1.6 Exercises

Exercise 1.1: Error messages

Save a copy of the program ball.m and confirm that the copy runs as the
original. You are now supposed to introduce errors in the code, one by
one. For each error introduced, save and run the program, and comment
how well Matlab’s response corresponds to the actual error. When you
are finished with one error, re-set the program to correct behavior (and
check that it works!) before moving on to the next error.

a) Insert the word hello on the empty line above the assignment to vO.
b) Remove the % sign in front of the comment initial velocity.

c) Remove the = sign in the assignment to vO.

d) Change the symbol ~ into **.

e) Change the calculation of y to y = vOxt.

5htpp://www.mathworks.com
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f) Write x on the line just above where y is calculated.

g) Change the statement y = vO*t - 0.5%g*t~2intoy = vOxt - 0.5*gxt~2;.
That is, insert a semicolon at the end.

Filename: testing_ball.m.

Exercise 1.2: Volume of a cube

Write a program that computes the volume V' of a cube with sides of
length L = 4 c¢cm and prints the result to the screen. Both V and L
should be defined as separate variables in the program. Run the program
and confirm that the correct result is printed.

Hint. See ball.m in the text.
Filename: cube_volume.m.

Exercise 1.3: Area and circumference of a circle

Write a program that computes both the circumference C' and the area
A of a circle with radius r = 2 cm. Let the results be printed to the
screen on a single line with an appropriate text. The variables C, A and
r should all be defined as a separate variables in the program. Run the
program and confirm that the correct results are printed.

Filename: circumference_and_area.m.

Exercise 1.4: Volumes of three cubes

We are interested in the volume V of a cube with length L: V = L3,
computed for three different values of L.

a) Use the linspace function to compute three values of L, equally
spaced on the interval [1, 3].

b) Carry out by hand the computation V = L3 if L is an array with
three elements. That is, compute V for each value of L.

c) In a program, write out the result V of V = L."3 when L is an
array with three elements as computed by linspace in a). Compare the
resulting volumes with your hand calculations.

d) Make a plot of V versus L.
Filename: volume3cubes.m.
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Exercise 1.5: Average of integers

Write a program that stores the sum 1+ 2 4+ 3 4+ 4 4 5 in one variable
and then creates another variable with the average of these five numbers.
Print the average to the screen and check that the result is correct.
Filename: average_int.m.

Exercise 1.6: Interactive computing of volume and area

a) Compute the volume in Exercise 1.2 by using Matlab interactively,
i.e., do the computations at the command prompt (in a Matlab shell as
we also say). Compare with what you got previously from the written
program.

b) Do the same also for Exercise 1.3.

Exercise 1.7: Update variable at command prompt
Invoke Matlab interactively and perform the following steps.

1. Initialize a variable x to 2.

2. Add 3 to x. Print out the result.

3. Print out the result of x + 1%2 and (x+1)*2. (Observe how paren-
theses make a difference).

4. What variable type is x7?

Exercise 1.8: Formatted print to screen

Write a program that defines two variables as x = pi and y = 2. Then
let the program compute the product z of these two variables and print
the result to the screen as

Multiplying 3.14159 and 2 gives 6.283

Filename: formatted_print.m.

Exercise 1.9: Matlab documentation and random numbers

Write a program that prints four random to the screen. The numbers
should be drawn from a uniform distribution over the interval [0, 10) (0



1.6 Exercises 31

inclusive, 10 exclusive). Find the information needed for the task, see for

example htpp://www.mathworks . com’.

Hint. Matlab has a built-in function rand for drawing random numbers.
Try » help rand at the command prompt.
Filename: drawing_random_numbers.m.

Shtpp://www.mathworks.com
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Python 2.7 Frames Objects
# Square elements of a list Global frame list
x = [0, 0.2, 0.4, 1, 2, 4] e 1 2 3 4 |5
- 3 S 0|02 |04 1|24
y =11
for 1, x_ in enumerate(x): vt
- y.append(x_**2) i 4 S list
rint 2 Ue 2 3
P Y = 0| 004|016 |1

Edit code

2.1 If tests

Very often in life, and in computer programs, the next action depends
on the outcome of a question starting with “if”. This gives the possibility
to branch into different types of action depending on some criterion. Let
us as usual focus on a specific example, which is the core of so-called
random walk algorithms used in a wide range of branches in science and
engineering, including materials manufacturing and brain research. The
action is to move randomly to the north (N), east (E), south (S), or west
(W) with the same probability. How can we implement such an action in
life and in a computer program?

We need to randomly draw one out of four numbers to select the
direction in which to move. A deck of cards can be used in practice for
this purpose. Let the four suits correspond to the four directions: clubs
to N, diamonds to E, hearts to S, and spades to W, for instance. We
draw a card, perform the corresponding move, and repeat the process a
large number of times. The resulting path is a typical realization of the
path of a diffusing molecule.

33
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In a computer program, we need to draw a random number, and
depending on the number, update the coordinates of the point to be
moved. There are many ways to draw random numbers and translate
them into (e.g.) four random directions, but the technical details usually
depend on the programming language. Our technique here is universal: we
draw a random number in the interval [0, 1) and let [0,0.25) correspond
to N, [0.25,0.5) to E, [0.5,0.75) to S, and [0.75,1) to W. Let x and y
hold the coordinates of a point and let d be the length of the move. A
pseudo code (i.e., not “real” code, just a “sketch of the logic”) then goes
like

r = random number in [0,1)
if 0 <= r < 0.25
move north: y =y + d
else if 0.256 <= r < 0.5
move east: X = x +
else if 0.5 <= r < 0.75
move south: y
else if 0.756 <= r
move west: x =x - d

Note the need for first asking about the value of r and then performing
an action. If the answer to the “if” question is positive (true), we are
done and can skip the next else if questions. If the answer is negative
(false), we proceed with the next question. The last test if 0.75 < r < 1
could also read just else, since we here cover all the remaining possible
r values.

The exact code in Matlab reads

r = rand() % random number in [0,1)
if 0 <=r < 0.25
% move north
y=y+d;
elseif 0.256 <=1 < 0.5
% move east
X =x + d;
elseif 0.5 <= r < 0.75
% move south
y=y -4
else
% move west
X =x - d;
end

We use else in the last test to cover the different types of syntax that
is allowed. Matlab recognizes the reserved words if, elseif, and else
and expects the code to be compatible with the rules of if tests:
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e The test reads if condition, elseif condition, or else, where
condition is a boolean expression that evaluates to true (1) or false
(0).

e If condition is true, the following statements up to the next elseif,
else, or end are executed, and the remaining if, elseif, or else
branches are skipped.

o If condition is false, the program flow jumps to the next if, elseif,
or else branch.

The blocks after if, elseif, or else may contain new if tests, if desired.

Working with if tests requires mastering boolean expressions. Here
are some basic boolean expressions involving the logical operators ==, =,
<, <=, > and >=. Given the assignment to temp, you should go through
each boolean expression below and determine if it is true or false.

temp = 21 % assign value to a variable
temp == 20 7 temp equal to 20

temp ~= 20 % temp not equal to 20
temp < 20 7 temp less than 20
temp > 20 7 temp greater than 20

temp <= 20 7 temp less than or equal to 20
temp >= 20 % temp greater than or equal to 20

2.2 Functions

Functions are widely used in programming and is a concept that needs to
be mastered. In the simplest case, a function in a program is much like
a mathematical function: some input number z is transformed to some
output number. One example is the tanhfl(:c) function, called atan in
computer code: it takes one real number as input and returns another
number. Functions in Matlab are more general and can take a series of
variables as input and return one or more variables, or simply nothing.
The purpose of functions is two-fold:

1. to group statements into separate units of code lines that naturally
belong together (a strategy which may dramatically ease the problem
solving process), and/or

2. to parameterize a set of statements such that they can be written only
once and easily be re-executed with variations.

Examples will be given to illustrate how functions can be written in
various contexts.
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If we modify the program ball.m from Chapter 1.2 slightly, and
include a function, we could let this be a new program ball function.m
as

function ball_function()
% This is the main program
time = 0.6; % Just pick some time
vertical_position = y(time);
fprintf (°%f \n’,vertical_position)
time = 0.9; % Pick another time
vertical_position = y(time);
fprintf (’%f \n’,vertical_position)
end

% The function ’y’ is a _local_ function in this file
function result = y(t)

g = 9.81; % Acceleration of gravity
v0 = 5; % Initial velocity
result = vO*t - 0.5%g*xt"2;

end

Here, Matlab interprets this as the definition of two functions, rec-
ognized by the reserved word function that appears two places. The
first function ball_function, is defined by the statements between (and
including) function ball_function() and the first end. Note that the
first function in a file should have the same name as the name of the file
(apart from the extension .m). The second function, i.e. y, is similarly
defined between function result = y(t) and the second end.

Opposed to the function y, the function ball_function does not
return a value. This is stated in the first line of each function defini-
tion. Comparing, you notice that y has an assignment there, whereas
ball_function has not. The final statement of the function y, i.e.

result = vO*t - 0.5xg*t~2;

will be understood by Matlab as “first compute the expression, then
place the result in result and send it back (i.e. return) to where the
function was called from”. The function depends on one variable (or we
say that it takes one argument or input parameter), the value of which
must be provided when the function is called.

What do these things mean? Well, the function definition itself, e.g. of
y, just tells Matlab that there is a function y, taking the specified
arguments as input, and returning a specified output result. Matlab
keeps this information ready for use in case a call to y is performed
elsewhere in the code. In our case, a call to y happens twice by the
line vertical_position = y(time). By this instruction, Matlab takes
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y(time) as a call to the function y, assigning the value of time to the
variable t. So in the first call, t becomes 0.6, while in the second call
t becomes 0.9. In both cases the code lines of y are executed and the
returned result (the output parameter) is stored in vertical_position,
before it is next printed by Matlab.

Note that the reserved word return may be used to enforce a return
from a function before it reaches the end. For example, if a function con-
tains if-elseif-else constructions, return may be done from within
any of the branches. This may be illustrated by the following function
containing three return statements:

function result = check_sign(x)
if x >0
result = ’x is positive’;
return;
elseif x < 0
result = ’x is negative’;
return;
else
result = ’x is zero’;
return;
end
end

Remember that only one of the branches is executed for a single call on
check_sign, so depending on the number x, the return may take place
from any of the three return alternatives.

One phrase you will meet often when dealing with programming, is
main program or main function, or that some code is in main. This is
nothing particular to Matlab, and simply means the first function that
is defined in a file, e.g. ball function above. You may define as many
functions as you like in a file after the main function. These then become
local functions, i.e. they are only known inside that file. In particular, only
the main function may be called from the command window, whereas
local functions may not.

A function may take no arguments, or many, in which case they are
just listed within the parentheses (following the function name) and
separated by a comma. Let us illustrate. Take a slight variation of the
ball example and assume that the ball is not thrown straight up, but at
an angle, so that two coordinates are needed to specify its position at
any time. According to Newton’s laws (when air resistance is negligible),
the vertical position is given by y(t) = vo,t — 0.5¢¢? and the horizontal
position by z(t) = vg,t. We can include both these expressions in a new
version of our program that prints the position of the ball for chosen
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times. Assume we want to evaluate these expressions at two points in
time, ¢t = 0.6s and t = 0.9s. We can pick some numbers for the initial
velocity components vOy and vOx, name the program ball_position.m,
and write it for example as

function ball_position_xy()
initial_velocity_x = 2.0;
initial_velocity_y = 5.0;

time = 0.6; 7 Just pick one point in time

x_pos = x(initial_velocity_x, time);

y_pos = y(initial_velocity_y, time);

fprintf (%f %f \n’, x_pos, y_pos)

time = 0.9; 7 Pick another point in time
x_pos = x(initial_velocity_x, time);
y_pos = y(initial_velocity_y, time);
fprintf (°%f %f \n’, x_pos, y_pos)

end

function result = y(vOy, t)
g = 9.81; % Acceleration of gravity
result = vOy*t - 0.5%g*t"2;

end

function result = x(vO0x, t)
result = vOx*t;
end

Now we compute and print the two components for the position,
for each of the two chosen points in time. Notice how each of the two
functions now takes two arguments. Running the program gives the
output

A function may also return more than one value. For example, the
two functions we just defined could alternatively have been defined into
one as

function [resultl, result2] = xy(vOx, vOy, t)
g = 9.81; % acceleration of gravity
resultl = vOx*t;
result2 = vOy*t - 0.5%gxt"2;

end

Notice the two return values resultl and result2 that are listed in
the function header, i.e., the first line of the function definition. When
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calling the function, arguments must appear in the same order as in the
function definition. We would then write

[x_pos,y_pos] = xy(initial_x_velocity, initial_y_velocity, time);

The variables x_pos and y_pos could then have been printed or used in
other ways in the code.

There are possibilities for having a variable number of function input
and output parameters (using nargin and nargout). However, we do
not go further into that topic here.

Variables that are defined inside a function, e.g., g in the last xy
function, are local variables. This means they are only known inside the
function. Therefore, if you had accidentally used g in some calculation
outside the function, you would have got an error message. By use of
the reserved word global, a variable may be known also outside the
function in which it is defined (without transferring it as a parameter).
For example, if, in some function A, we write

global some_variable;
some_variable = 2;

then, in another function B, we could use some_variable directly if we
just specify it first as being global, e.g.

global some_variable;
some_other_variable = some_variablex*2;

We could even change the value of some_variable itself inside B if we
like, so that upon return to the function A, some_variable would have a
new value. If you define one global and one local variable, both with the
same name, the function only sees the local one, so the global variable
is not affected by what happens with its local companion of the same
name. The arguments named in the header of a function definition are
by rule local variables inside the function. One should strive to define
variables mostly where they are needed and not everywhere.

In any programming language, it is a good habit to include a little
explanation of what the function is doing, unless what is done by the
function is obvious, e.g., when having only a few simple code lines. This
explanation (sometimes known as a doc string) should be placed just at
the top of the function. This explanation is meant for a human who wants
to understand the code, so it should say something about the purpose of
the code and possibly explain the arguments and return values if needed.
If we do that with our xy function from above, we may write the first
lines of the function as
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function xy(vOx, vOy, t)
% Compute the x and y position of the ball at time t

Note that a function you have written may call another function you
have written, even if they are not defined within the same file. Such a
call requires the called function to be located in a file with the same
name as the function (apart from the extension .m). This file must also
be located in a folder where Matlab can find it, e.g. in the same folder
as the calling function.

Functions are straightforwardly passed as arguments to other functions,
as illustrated by the following script function_as_argument.m:

function function_as_argument ()
X = 2;
y=3;
% Create handles to the functions defined below

sum_xy_handle = Qsum_xy;
prod_xy_handle = @prod_xy;

sum = treat_xy(sum_xy_handle, x, y);
fprintf (’%f \n’, sum);
prod = treat_xy(prod_xy_handle, x, y);
fprintf (’%f \n’, prod);

end

function result = treat_xy(f, x, y)
result = £(x, y);
end

function result = sum_xy(x, y)
result = x + y;
end

function result = prod_xy(x, y)
result = x*y;
end

When run, this program first prints the sum of x and y (i.e., 5), and
then it prints the product (i.e., 6). We see that treat_xy takes a function
name as its first parameter. Inside treat_xy, that function is used to
actually call the function that was given as input parameter. Therefore, as
shown, we may call treat_xy with either sum_xy or prod_xy, depending
on whether we want the sum or product of x and y to be calculated.

To transfer a function to the function treat_xy, we must use function
handles, one for each function we want to transfer. This is done by the
sign @ combined with the function name, as illustrated by the lines
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sum_xy_handle = Q@sum_xy;
prod_xy_handle = Q@prod_xy;

Note that it is the handle that is used in the function call, as, e.g., in
sum = treat_xy(sum_xy_handle,x,y);

Functions may also be defined within other functions. It that case, they
become local functions, or nested functions, known only to the function
inside which they are defined. Functions defined in main are referred to
as global functions. A nested function has full access to all variables in
the parent function, i.e. the function within which it is defined.

One convenient way of defining one-line functions (they can not be
more than one line!), is by use of anonymous functions. You may then
define, e.g., a square function by the name my_square, as

my_square = Q(x) x72;
and then use it simply as
y = my_sqare(2);

which would have assigned the value 4 to y. Note that my_square here
becomes a handle that may be used directly as a function parameter for
example.

[ Overhead of function calls )

Function calls have the downside of slowing down program execution.
Usually, it is a good thing to split a program into functions, but
in very computing intensive parts, e.g., inside long loops, one must
balance the convenience of calling a function and the computational
efficiency of avoiding function calls. It is a good rule to develop a
program using plenty of functions and then in a later optimization
stage, when everything computes correctly, remove function calls
that are quantified to slow down the code.

2.3 For loops

Many computations are repetitive by nature and programming languages
have certain loop structures to deal with this. Here we will present what
is referred to as a for loop (another kind of loop is a while loop, to
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be presented afterwards). Assume you want to calculate the square of
each integer from 3 to 7. This could be done with the following two-line
program.
for i = 3:7
i~2
end

What happens when Matlab interprets your code here? First of all,
the word for is a reserved word signalling to Matlab that a for loop
is wanted. Matlab then sticks to the rules covering such constructions
and understands that, in the present example, the loop should run 5
successive times (i.e., 5 iterations should be done), letting the variable
i take on the numbers 3,4,5,6,7 in turn. During each iteration, the
statement inside the loop (i.e. i2) is carried out. After each iteration, i
is automatically (behind the scene) updated. When the last number is
reached, the last iteration is performed and the loop is finished. When
executed, the program will therefore print out 9, 16,25, 36 and 49. The
variable i is often referred to as a loop indez, and its name (here i) is a
choice of the programmer.

Note that, had there been several statements within the loop, they
would all be executed with the same value of i (before i changed in the
next iteration). Make sure you understand how program execution flows
here, it is important.

The specification of the values desired for the loop variable (here 3:7)
is more generally given as start:step:stop, meaning that the loop
variable should take on the integers from start to stop, inclusive at
both ends, in steps of step. If step is skipped, the default value is 1, as
in the example above. Note that decreasing integers may be produced
by letting start > stop combined with a negative step. This makes it
easy to, e.g., traverse arrays in either direction.

Let us modify ball_plot.m from Chapter 1.4 to illustrate how useful
for loops are if you need to traverse arrays. In that example we computed
the height of the ball at every milli-second during the first second of its
(vertical) flight and plotted the height versus time.

Assume we want to find the maximum height during that time, how
can we do it with a computer program? One alternative may be to
compute all the thousand heights, store them in an array, and then
run through the array to pick out the maximum. The program, named
ball max_height.m, may look as follows.

g = 9.81;
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v0 = 5;
linspace(0, 1, 1000);
vO*t - 0.5%g*xt.”2;

<
non

% At this point, the array y with all the heights is ready.
% Now we need to find the largest value within y.

largest_height = y(1); % Preliminary value
for i = 2:1000
if y(i) > largest_height
largest_height = y(i);
end
end

fprintf (’The largest height achieved was %f m \n’,largest_height);

% We might also like to plot the path again just to compare
plot(t,y);

xlabel (’Time (s)’);

ylabel (’Height (m)’)

There is nothing new here, except the for loop construction, so let us
look at it in more detail. As explained above, Matlab understands that
a for loop is desired when it sees the word for. The value in y(1) is
used as the preliminary largest height, so that, e.g., the very first check
that is made is testing whether y(2) is larger than this height. If so,
y(2) is stored as the largest height. The for loop then updates i to
2, and continues to check y(3), and so on. Each time we find a larger
number, we store it. When finished, largest_height will contain the
largest number from the array y. When you run the program, you get

The largest height achieved was 1.274210 m

which compares favorably to the plot that pops up.

To implement the traversing of arrays with loops and indices, is
sometimes challenging to get right. You need to understand the start, stop
and step length choices for an index, and also how the index should enter
expressions inside the loop. At the same time, however, it is something
that programmers do often, so it is important to develop the right skills
on these matters.

Having one loop inside another, referred to as a double loop, is some-
times useful, e.g., when doing linear algebra. Say we want to find the
maximum among the numbers stored in a 4 X 4 matrix A. The code
fragment could look like

largest_number = A(1,1);

for i = 1:length(A)
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for j = 1:length(A)
if A(i,j) > largest_number
largest_number = A(i,j);
end
end
end

Here, all the j indices (1 - 4) will be covered for each value of index
i. First, i stays fixed at i = 1, while j runs over all its indices. Then,
i stays fixed at i = 2 while j runs over all its indices again, and so
on. Sketch A on a piece of paper and follow the first few loop iterations
by hand, then you will realize how the double loop construction works.
Using two loops is just a special case of using multiple or nested loops,
and utilizing more than two loops is just a straightforward extension
of what was shown here. Note, however, that the loop index name in
multiple loops must be unique to each of the nested loops. Note also that
each nested loop may have as many code lines as desired, both before
and after the next inner loop.

The vectorized computation of heights that we did in ball_plot.m
(Chapter 1.4) could alternatively have been done by traversing the time
array (t) and, for each t element, computing the height according to the
formula y = vt — % gt?. However, it is important to know that vector-
ization goes much quicker. So when speed is important, vectorization is
valuable.

Use loops to compute sums

One important use of loops, is to calculate sums. As a simple exam-
ple, assume some variable x given by the mathematical expression

i.e., summing up the N first even numbers. For some given N, say
N =5, x would typically be computed in a computer program as:

1:N
X + 2%i;

K H OO,
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Executing this code will print the number 30 to the screen. Note
in particular how the accumulation variable x is initialized to zero.
The value of x then gets updated with each iteration of the loop,
and not until the loop is finished will x have the correct value. This
way of building up the value is very common in programming, so
make sure you understand it by simulating the code segment above
by hand. It is a technique used with loops in any programming
language.

2.4 While loops

Matlab also has another standard loop construction, the while loop, doing
iterations with a loop index very much like the for loop. To illustrate
what such a loop may look like, we consider another modification of
ball_plot.m in Chapter 1.4. We will now change it so that it finds the
time of flight for the ball. Assume the ball is thrown with a slightly lower
initial velocity, say 4.5 ms—!, while everything else is kept unchanged.
Since we still look at the first second of the flight, the heights at the end
of the flight become negative. However, this only means that the ball has
fallen below its initial starting position, i.e., the height where it left the
hand, so there is no problem with that. In our array y we will then have
a series of heights which towards the end of y become negative. Let us,
in a program named ball time.m find the time when heights start to
get negative, i.e., when the ball crosses y = 0. The program could look
like this

g = 9.81;

vO = 4.5; % Initial velocity

t = linspace(0, 1, 1000); 7 Acceleration of gravity
y = vO*t - 0.5%g*xt.”2; % Generate all heights

% At this point, the array y with all heights is ready

i=1;

while y(i) >= 0
i=1i+1;

end

% Having the index, we may look up the time in the array t
fprintf (’The time (switch from positive to negative): %f\n’, t(i));

% We plot the path again just for comparison
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plot(t, y);
xlabel (*Time (s)’);
ylabel (’Height (m)’);

If you type and run this program you should get
y=0 at 0.917417417417

The new thing here is the while loop only. The loop will run as long
as the boolean expression y(i) >= 0 evaluates to true. Note that the
programmer introduced a variable (the loop index) by the name i,
initialized it (i = 1) before the loop, and updated it (i = i + 1) in the
loop. So for each iteration, i is explicitly increased by 1, allowing a check
of successive elements in the array y.

Compared to a for loop, the programmer does not have to specify
the number of iterations when coding a while loop. It simply runs until
the boolean expression becomes false. Thus, a loop index (as we have
in a for loop) is not required. Furthermore, if a loop index is used in a
while loop, it is not increased automatically; it must be done explicitly
by the programmer. Of course, just as in for loops and if blocks, there
might be (arbitrarily) many code lines in a while loop. Any for loop
may also be implemented as a while loop, but while loops are more
general so not all of them can be expressed as a for loop.

A problem to be aware of, is what is usually referred to as an infinite
loop. In those unintentional (erroneous) cases, the boolean expression of
the while test never evaluates to false, and the program can not escape
the loop. This is one of the most frequent errors you will experience as a
beginning programmer. If you accidentally enter an infinite loop and the
program just hangs forever, press Ctrl+c to stop the program.

2.5 Reading from and writing to files

Input data for a program often come from files and the results of the
computations are often written to file. To illustrate basic file handling,
we consider an example where we read x and y coordinates from two
columns in a file, apply a function f to the y coordinates, and write the
results to a new two-column data file. The first line of the input file is a
heading that we can just skip:

d y coordinates
4
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3.5 6.61

4.0 5.0

The relevant Matlab lines for reading the numbers and writing out a
similar file are given in the file file_handling.m

filename = ’tmp.dat’;
infileID = fopen(filename, ’r’); 7 Open file for reading
fgetl(infilelD); % Read and skip first line

% First read file to count number of lines with data
no_of_lines = 0;
while ~feof(infileID)
no_of_lines = no_of_lines + 1;
fgetl(infileID);
end
fclose(infileID);

% Can now define arrays x and y of known length
x = zeros(no_of_lines, 1);

y = zeros(no_of_lines, 1);

% Re-open the file for reading

infileID = fopen(filename, ’r’); 7 Open file for reading
fgetl(infileID); % Read and skip first line

% Read x and y coordinates from the file and store in arrays
i=1;
while i <= no_of_lines
x(i) = fscanf(infileID, ’%f’, 1);
y(i) = fscanf(infileID, ’J%f’, 1);
i=1+1;
end
fclose(infileID);

% Next, we treat the y-coordinates and write to file

F = e(y) log(y);

y = F(y); % Overwrite y with new values

filename = ’tmp_out.dat’;

outfileID = fopen(filename, ’w’); % Open file for writing
i=1;

while i <= no_of_lines
fprintf (outfileID, °7%10.5f %10.5f°, x(i), y(i));
i=1+1;

end

fclose(outfilelID);

Such a file with a comment line and numbers in tabular format is very
common so Matlab has functionality to ease reading and writing. Here is
the same example (file file_handling easy.m):
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filename = ’tmp.dat’;

data = load(filename);

x = data(:,1);

y = data(:,2);

data(:,2) = log(y); % insert transformed y back in array
filename = ’tmp_out.dat’;

outfile = fopen(filename, ’w’); % open file for writing
fprintf (outfile, ’%% x and y coordinates\n’);
fprintf(outfile, ’%10.5f %10.5f\n’, data);
fclose(outfile);

2.6 Exercises

Exercise 2.1: Introducing errors

Write the program ball function.m as given in the text and confirm
that the program runs correctly. Then save a copy of the program and
use that program during the following error testing.

You are supposed to introduce errors in the code, one by one. For
each error introduced, save and run the program, and comment how well
Matlab’s response corresponds to the actual error. When you are finished
with one error, re-set the program to correct behavior (and check that it
works!) before moving on to the next error.

a) Change the first line from function ball_function() to
ball function(), i.e. remove the word function.

b) Change the first line from function ball_function() to
function ball func(), i.e., change the name of the function.

c) Change the line function result = y(t) to function y(t).

d) Change the line function result = y(t) to function result =
y(), i.e., remove the parameter t.

e) Change the first statement that calls y from vertical_position = y(time);

to vertical position = y(O;.
Filename: introducing errors.m.

Exercise 2.2: Compare integers a and b

Explain briefly, in your own words, what the following program does.
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a
b

input (’Give an integer a: ’);
input (°Give an integer b: ’);

if a<b

fprintf(’a is the smallest of the two numbers\n’);
elseif a == b

fprintf(’a and b are equal\n’);
else

fprintf(’a is the largest of the two numbers\n’);
end

Proceed by writing the program, and then run it a few times with
different values for a and b to confirm that it works as intended. In
particular, choose combinations for a and b so that all three branches of
the if construction get tested.

Filename: compare_a_and_b.m.

Exercise 2.3: Functions for circumference and area of a circle

Write a program that takes a circle radius r as input from the user and
then computes the circumference C and area A of the circle. Implement
the computations of C and A as two separate functions that each takes r
as input parameter. Print C and A to the screen along with an appropriate
text. Run the program with r = 1 and confirm that you get the right
answer.

Filename: functions circumference area.m.

Exercise 2.4: Function for area of a rectangle

Write a program that computes the area A = bc of a rectangle. The
values of b and ¢ should be user input to the program. Also, write the
area computation as a function that takes b and ¢ as input parameters
and returns the computed area. Let the program print the result to
screen along with an appropriate text. Run the program with b = 2 and
¢ = 3 to confirm correct program behavior.

Filename: function_area_rectangle.m.

Exercise 2.5: Area of a polygon

One of the most important mathematical problems through all times has
been to find the area of a polygon, especially because real estate areas
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often had the shape of polygons, and it was necessary to pay tax for the
area. We have a polygon as depicted below.

6

0 1 2 3 4 5

The vertices (“corners”) of the polygon have coordinates (z1,y1),
(x2,Y2), -+, (@n, yn), numbered either in a clockwise or counter clockwise
fashion. The area A of the polygon can amazingly be computed by just
knowing the boundary coordinates:

1
A= 5 [(T1y2 + 22y3 + -+ + Tn1Yn + Toy1) — (Y102 + Y223 + -+ Y170 + Ynz1)| -

Write a function polyarea(x, y) that takes two coordinate arrays with
the vertices as arguments and returns the area. Assume that x and y are
either lists or arrays.

Test the function on a triangle, a quadrilateral, and a pentagon where
you can calculate the area by alternative methods for comparison.
Filename: polyarea.m.

Exercise 2.6: Average of integers

Write a program that gets an integer N > 1 from the user and computes
the average of all integers ¢ = 1,..., N. The computation should be
done in a function that takes N as input parameter. Print the result to
the screen with an appropriate text. Run the program with N =5 and
confirm that you get the correct answer.

Filename: average 1 to_N.m.
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Exercise 2.7: While loop with errors

Assume some program has been written for the task of adding all integers
i=1,2,...,10:

some_number = 0;

i=1;

while j < 11;
some_number += 1

print some_number

a) Identify the errors in the program by just reading the code and
simulating the program by hand.

b) Write a new version of the program with errors corrected. Run this
program and confirm that it gives the correct output.
Filename: while_loop_errors.m.

Exercise 2.8: Area of rectangle versus circle

Consider one circle and one rectangle. The circle has a radius r = 10.6.
The rectangle has sides a and b, but only a is known from the outset. Let
a = 1.3 and write a program that uses a while loop to find the largest
possible integer b that gives a rectangle area smaller than, but as close
as possible to, the area of the circle. Run the program and confirm that
it gives the right answer (which is b = 271).

Filename: area_rectangle vs_circle.m.

Exercise 2.9: Find crossing points of two graphs

Consider two functions f(z) = z and g(z) = 2? on the interval [—4, 4].
Write a program that, by trial and error, finds approximately for which
values of = the two graphs cross, i.e., f(z) = g(x). Do this by considering
N equally distributed points on the interval, at each point checking
whether |f(z) — g(x)| < €, where € is some small number. Let N and €
be user input to the program and let the result be printed to screen. Run
your program with N = 400 and ¢ = 0.01. Explain the output from the
program. Finally, try also other values of N, keeping the value of € fixed.
Explain your observations.
Filename: crossing 2_graphs.m.
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Exercise 2.10: Sort array with numbers

The built-in function rand may be used to draw pseudo-random numbers
for the standard uniform distribution between 0 and 1 (exclusive at both
ends). See help rand.

Write a script that generates an array of 6 random numbers between 0
and 10. The program should then sort the array so that numbers appear
in increasing order. Let the program make a formatted print of the array
to the screen both before and after sorting. The printouts should appear
on the screen so that comparison is made easy. Confirm that the array
has been sorted correctly.

Filename: sort_numbers.m.

Exercise 2.11: Compute 7

Up through history, great minds have developed different computational
schemes for the number 7. We will here consider two such schemes, one
by Leibniz (1646 — 1716), and one by Euler (1707 — 1783).

The scheme by Leibniz may be written

e 1
sy 7
£ (4 + 1)(4k + 3)

while one form of the Euler scheme may appear as

>© 1
T = 65 —.
k:1k2

If only the first IV terms of each sum are used as an approximation to m,
each modified scheme will have computed 7 with some error.

Write a program that takes N as input from the user, and plots
the error development with both schemes as the number of iterations
approaches N. Your program should also print out the final error achieved
with both schemes, i.e. when the number of terms is N. Run the program
with N = 100 and explain briefly what the graphs show.

Filename: compute_pi.m.



2.6 Exercises 53

Exercise 2.12: Compute combinations of sets

Consider an ID number consisting of two letters and three digits, e.g.,
RE198. How many different numbers can we have, and how can a program
generate all these combinations?

If a collection of n things can have m, variations of the first thing, mo
of the second and so on, the total number of variations of the collection
equals mims - --m,. In particular, the ID number exemplified above
can have 26 - 26 - 10 - 10 - 10 = 676, 000 variations. To generate all the
combinations, we must have five nested for loops. The first two run over
all letters A, B, and so on to Z, while the next three run over all digits
0,1,...,9.

To convince yourself about this result, start out with an ID number
on the form A3 where the first part can vary among A, B, and C, and
the digit can be among 1, 2, or 3. We must start with A and combine it
with 1, 2, and 3, then continue with B, combined with 1, 2, and 3, and
finally combine C with 1, 2, and 3. A double for loop does the work.

a) In a deck of cards, each card is a combination of a rank and a suit.
There are 13 ranks: ace (A), 2, 3, 4, 5,6, 7, 8,9, 10, jack (J), queen
(Q), king (K), and four suits: clubs (C), diamonds (D), hearts (H), and
spades (S). A typical card may be D3. Write statements that generate a
deck of cards, i.e., all the combinations CA, C2, C3, and so on to SK.

b) A vehicle registration number is on the form DE562, where the letters
vary from A to Z and the digits from 0 to 9. Write statements that
compute all the possible registration numbers and stores them in a list.

c) Generate all the combinations of throwing two dice (the number of
eyes can vary from 1 to 6). Count how many combinations where the
sum of the eyes equals 7.

Filename: combine_sets.m.

Exercise 2.13: Frequency of random numbers

Write a program that takes a positive integer IV as input and then draws
N random integers in the interval [1,6] (both ends inclusive). In the
program, count how many of the numbers, M, that equal 6 and write
out the fraction M/N. Also, print all the random numbers to the screen
so that you can check for yourself that the counting is correct. Run the
program with a small value for N (e.g., N = 10) to confirm that it works
as intended.
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Hint. Use 1+floor(6*rand()) to draw a random integer between 1 and
6.

Filename: count random_numbers.m.

Remarks. For large N, this program computes the probability M /N of
getting six eyes when throwing a die.

Exercise 2.14: Game 21

Consider some game where each participant draws a series of random
integers evenly distributed from 0 and 10, with the aim of getting the
sum as close as possible to 21, but not larger than 21. You are out of
the game if the sum passes 21. After each draw, you are told the number
and your total sum, and is asked whether you want another draw or not.
The one coming closest to 21 is the winner.

Implement this game in a program.

Hint. Use floor(11*rand()) to draw random integers in [0, 10].
Filename: game_21.m.

Exercise 2.15: Linear interpolation

Some measurements y;, i = 1,2,..., N (given below), of a quantity y have
been collected regularly, once every minute, at timest; = ¢, =0,1,..., V.
We want to find the value y in between the measurements, e.g., at t = 3.2
min. Computing such y values is called interpolation.

Let your program use linear interpolation to compute y between two
consecutive measurements:

1. Find ¢ such that t; <t <#;41.

2. Find a mathematical expression for the straight line that goes through
the points (i,y;) and (i + 1, yi+1)-

3. Compute the y value by inserting the user’s time value in the expression
for the straight line.

a) Implement the linear interpolation technique in a function that takes
an array with the y; measurements as input, together with some time ¢,
and returns the interpolated y value at time t.
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b) Write another function with in a loop where the user is asked for a
time on the interval [0, N| and the corresponding (interpolated) y value
is written to the screen. The loop is terminated when the user gives a
negative time.

c) Use the following measurements: 4.4,2.0,11.0,21.5, 7.5, corresponding
to times 0, 1,...,4 (min), and compute interpolated values at ¢t = 2.5
and ¢ = 3.1 min. Perform separate hand calculations to check that the
output from the program is correct.

Filename: linear_interpolation.m.

Exercise 2.16: Test straight line requirement

Assume the straight line function f(z) = 4z + 1. Write a script that tests
the “point-slope” form for this line as follows. Within a chosen interval
on the z-axis (for example, for = between 0 and 10), randomly pick 100
points on the line and check if the following requirement is fulfilled for

each point:
f(z:i) = fle)
T, —C

=a, i=1,2,...,100,

where a is the slope of the line and ¢ defines a fixed point (¢, f(c)) on
the line. Let ¢ = 2 here.
Filename: test_straight_line.m.

Exercise 2.17: Fit straight line to data

Assume some measurements y;,7 = 1,2,...,5 have been collected, once
every second. Your task is to write a program that fits a straight line to
those data.

a) Make a function that computes the error between the straight line
f(z) = ax + b and the measurements:

5
Z (az; +b— yZ
=1

b) Make a function with a loop where you give a and b, the corresponding
value of e is written to the screen, and a plot of the straight line f(z) =
ax + b together with the discrete measurements is shown.
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c) Given the measurements 0.5,2.0,1.0,1.5,7.5, at times 0, 1,2, 3,4, use
the function in b) to interactively search for a and b such that e is
minimized.

Filename: fit_straight line.m.

Remarks. Fitting a straight line to measured data points is a very
common task. The manual search procedure in ¢) can be automated by
using a mathematical method called the method of least squares.

Exercise 2.18: Fit sines to straight line

A lot of technology, especially most types of digital audio devices for
processing sound, is based on representing a signal of time as a sum of
sine functions. Say the signal is some function f(t) on the interval [—m, 7]
(a more general interval [a,b] can easily be treated, but leads to slightly
more complicated formulas). Instead of working with f(¢) directly, we
approximate f by the sum

N
Sn(t) = Z by, sin(nt), (2.1)
n=1

where the coefficients b, must be adjusted such that Sy (t) is a good
approximation to f(¢). We shall in this exercise adjust b, by a trial-and-
eITor Process.

a) Make a function sinesum(t, b) that returns Sy (t), given the coeffi-
cients b, in an array b and time coordinates in an array t. Note that if
t is an array, the return value is also an array.

b) Write a function test_sinesum() that calls sinesum(t, b) in a)
and determines if the function computes a test case correctly. As test
case, let t be an array with values —7/2 and 7/4, choose N = 2, and
by = 4 and by = —3. Compute Sy(t) by hand to get reference values.

c) Make a function plot_compare(f, N, M) that plots the original
function f(t) together with the sum of sines Sy (t), so that the quality
of the approximation Sy (t) can be examined visually. The argument f
is a Matlab function implementing f(t), N is the number of terms in the
sum Sy (t), and M is the number of uniformly distributed ¢ coordinates
used to plot f and Sy.
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d) Write a function error(b, f, M) that returns a mathematical mea-
sure of the error in Sy (t) as an approximation to f(t):

E = \/Z (f(t;) — Sn(t:))?,

where the ¢; values are M uniformly distributed coordinates on [—, 7].
The array b holds the coefficients in Sy and f is a Matlab function
implementing the mathematical function f(t).

e) Make a function trial(f, N) for interactively giving b, values and
getting a plot on the screen where the resulting Sy (t) is plotted together
with f(¢). The error in the approximation should also be computed as
indicated in d). The argument £ is a Matlab function for f(¢) and N is the
number of terms NN in the sum Sy(¢). The trial function can run a loop
where the user is asked for the b,, values in each pass of the loop and the
corresponding plot is shown. You must find a way to terminate the loop
when the experiments are over. Use M=500 in the calls to plot_compare
and error.

f) Choose f(t) to be a straight line f(t) = 2t on [—m, @] Call trial(f,
3) and try to find through experimentation some values by, by, and b3
such that the sum of sines Sy(t) is a good approximation to the straight

line.

g) Now we shall try to automate the procedure in f). Write a function
that has three nested loops over values of by, by, and b3. Let each loop
cover the interval [—1,1] in steps of 0.1. For each combination of by, b,
and bs, the error in the approximation Sy should be computed. Use this
to find, and print, the smallest error and the corresponding values of
b1, ba, and b3. Let the program also plot f and the approximation Sy
corresponding to the smallest error.

Filename: fit_sines.m.

Remarks.

1. The function Sy (x) is a special case of what is called a Fourier series.
At the beginning of the 19th century, Joseph Fourier (1768-1830)
showed that any function can be approximated analytically by a sum
of cosines and sines. The approximation improves as the number of
terms (V) is increased. Fourier series are very important throughout
science and engineering today.
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a. Finding the coefficients b, is solved much more accurately in
Exercise 3.12, by a procedure that also requires much less human
and computer work!

b. In real applications, f(t) is not known as a continuous function,
but function values of f(t) are provided. For example, in digital
sound applications, music in a CD-quality WAV file is a signal
with 44100 samples of the corresponding analog signal f(¢) per
second.

Exercise 2.19: Count occurrences of a string in a string

In the analysis of genes one encounters many problem settings involving
searching for certain combinations of letters in a long string. For example,
we may have a string like

gene = ’AGTCAATGGAATAGGCCAAGCGAATATTTGGGCTACCA’

We may traverse this string letter by letter. The length of the
string is given by length(gene), so with a loop index i, for i =
1:1length(gene) will produce the required index values. Letter num-
ber i is then reached through gene (i), and a substring from index i up
to and including j, is created by gene(i:j).

a) Write a function freq(letter, text) that returns the frequency of
the letter letter in the string text, i.e., the number of occurrences of
letter divided by the length of text. Call the function to determine the
frequency of C and G in the gene string above. Compute the frequency
by hand too.

b) Write a function pairs(letter, text) that counts how many times
a pair of the letter letter (e.g., GG) occurs within the string text. Use
the function to determine how many times the pair AA appears in the
string gene above. Perform a manual counting too to check the answer.

c) Write a function mystruct (text) that counts the number of a certain
structure in the string text. The structure is defined as G followed by A
or T until a double GG. Perform a manual search for the structure too to
control the computations by mystruct.

Filename: count_substrings.m.



Computing integrals

We now turn our attention to solving mathematical problems through
computer programming. There are many reasons to choose integration as
our first application. Integration is well known already from high school
mathematics. Most integrals are not tractable by pen and paper, and
a computerized solution approach is both very much simpler and much
more powerful - you can essentially treat all integrals | (f f(x)dx in 10
lines of computer code (!). Integration also demonstrates the difference
between exact mathematics by pen and paper and numerical mathematics
on a computer. The latter approaches the result of the former without
any worries about rounding errors due to finite precision arithmetics in
computers (in contrast to differentiation, where such errors prevent us
from getting a result as accurate as we desire on the computer). Finally,
integration is thought of as a somewhat difficult mathematical concept
to grasp, and programming integration should greatly help with the
understanding of what integration is and how it works. Not only shall we
understand how to use the computer to integrate, but we shall also learn
a series of good habits to ensure your computer work is of the highest

59
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scientific quality. In particular, we have a strong focus on how to write
Matlab code that is free of programming mistakes.
Calculating an integral is traditionally done by

where

dF
fla) =
The major problem with this procedure is that we need to find the
anti-derivative F(x) corresponding to a given f(x). For some relatively
simple integrands f(z), finding F(x) is a doable task, but it can very
quickly become challenging, even impossible!

The method (3.1) provides an ezact or analytical value of the integral.
If we relax the requirement of the integral being exact, and instead
look for approximate values, produced by numerical methods, integration
becomes a very straightforward task for any given f(x) (!).

The downside of a numerical method is that it can only find an approx-
imate answer. Leaving the exact for the approximate is a mental barrier
in the beginning, but remember that most real applications of integration
will involve an f(z) function that contains physical parameters, which
are measured with some error. That is, f(x) is very seldom exact, and
then it does not make sense to compute the integral with a smaller error
than the one already present in f(z).

Another advantage of numerical methods is that we can easily integrate
a function f(z) that is only known as samples, i.e., discrete values at
some z points, and not as a continuous function of z expressed through
a formula. This is highly relevant when f is measured in a physical
experiment.

3.1 Basic ideas of numerical integration

We consider the integral

/ab f(z)dx. (3.2)

Most numerical methods for computing this integral split up the original
integral into a sum of several integrals, each covering a smaller part
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of the original integration interval [a, b]. This re-writing of the integral
is based on a selection of integration points x;, ¢ = 0,1,...,n that are
distributed on the interval [a, b]. Integration points may, or may not, be
evenly distributed. An even distribution simplifies expressions and is
often sufficient, so we will mostly restrict ourselves to that choice. The
integration points are then computed as

r,=a+ih, 1=0,1,...,n, (3.3)

where .
—a
h = ) 3.4
— (3.4)

Given the integration points, the original integral is re-written as a sum
of integrals, each integral being computed over the sub-interval between
two consecutive integration points. The integral in (3.2) is thus expressed
as

/ab flz)de = /3;:1 f(x)dx + /:2 flz)dr + ...+ /;:1 flx)de.  (3.5)

Note that zg = a and z,, = b.

Proceeding from (3.5), the different integration methods will differ
in the way they approximate each integral on the right hand side. The
fundamental idea is that each term is an integral over a small interval
[, i11], and over this small interval, it makes sense to approximate f
by a simple shape, say a constant, a straight line, or a parabola, which
we can easily integrate by hand. The details will become clear in the
coming examples.

Computational example. To understand and compare the numerical
integration methods, it is advantageous to use a specific integral for
computations and graphical illustrations. In particular, we want to use
an integral that we can calculate by hand such that the accuracy of the
approximation methods can easily be assessed. Our specific integral is
taken from basic physics. Assume that you speed up your car from rest
and wonder how far you go in 7" seconds. The distance is given by the
integral [; v(t)dt, where v(t) is the velocity as a function of time. A
rapidly increasing velocity function might be

v (t) = 3% . (3.6)

The distance after one second is
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/ L, (3.7)
0

which is the integral we aim to compute by numerical methods. Fortu-
nately, the chosen expression of the velocity has a form that makes it
easy to calculate the anti-derivative as

V(t)=e" —1. (3.8)

We can therefore compute the exact value of the integral as V(1) -V (0) ~
1.718 (rounded to 3 decimals for convenience).

3.2 The composite trapezoidal rule

The integral [° f(z)dz may be interpreted as the area between the x
axis and the graph y = f(z) of the integrand. Figure 3.1 illustrates this
area for the choice (3.7). Computing the integral f01 f(t)dt amounts to
computing the area of the hatched region.

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3.1 The integral of v(t) interpreted as the area under the graph of v.

If we replace the true graph in Figure 3.1 by a set of straight line
segments, we may view the area rather as composed of trapezoids, the
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areas of which are easy to compute. This is illustrated in Figure 3.2,
where 4 straight line segments give rise to 4 trapezoids, covering the time
intervals [0,0.2), [0.2,0.6), [0.6,0.8) and [0.8,1.0]. Note that we have
taken the opportunity here to demonstrate the computations with time
intervals that differ in size.

0.2 0.4 0.6 0.8 1.0

Fig. 3.2 Computing approximately the integral of a function as the sum of the areas of
the trapezoids.

The areas of the 4 trapezoids shown in Figure 3.2 now constitute our
approximation to the integral (3.7):

/01 o(t)dt ~ hl(v(O) —1—21)(0.2)) N h2(0(0.2) —;— v(0.6))
+h3(v(0'6>;U(O'S))+h4(v(0 8);11(1 O)), (3.9)
where
hy = (0.2 — 0.0), (3.10)
ha = (0.6 — 0.2), (3.11)
hs = (0.8 — 0.6), (3.12)
ha = (1.0 — 0.8) (3.13)
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With v(t) = 3t2¢!’ | each term in (3.9) is readily computed and our
approximate computation gives

1
/ V(t)dt ~ 1.895. (3.14)
0

Compared to the true answer of 1.718, this is off by about 10%. However,
note that we used just 4 trapezoids to approximate the area. With
more trapezoids, the approximation would have become better, since the
straight line segments in the upper trapezoid side then would follow the
graph more closely. Doing another hand calculation with more trapezoids
is not too tempting for a lazy human, though, but it is a perfect job for
a computer! Let us therefore derive the expressions for approximating
the integral by an arbitrary number of trapezoids.

3.2.1 The general formula

For a given function f(x), we want to approximate the integral [ ; f(z)dz
by n trapezoids (of equal width). We start out with (3.5) and approximate
each integral on the right hand side with a single trapezoid. In detail,

Tn

/bf(x) de = [ f@)de + / f@de+ ...+ [ fa)da,

SICOES I PUPIERES (C .
By simplifying the right hand side of (3.15) we get
b
[ $@) e = 5 7 (0) + 20 (1) + 26(02) + .+ 2 ) + Flo)
(3.16)

which is more compactly written as

IBELEY [;f<xo>+§f<xi>+;f<xn> e
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a B
Composite integration rules

The word composite is often used when a numerical integration
method is applied with more than one sub-interval. Strictly speaking
then, writing, e.g., “the trapezoidal method”, should imply the use
of only a single trapezoid, while “the composite trapezoidal method”
is the most correct name when several trapezoids are used. However,
this naming convention is not always followed, so saying just “the
trapezoidal method” may point to a single trapezoid as well as the
composite rule with many trapezoids.

3.2.2 Implementation

Specific or general implementation? Suppose our primary goal was
to compute the specific integral fol v(t)dt with v(t) = 3t2e!’. First we
played around with a simple hand calculation to see what the method
was about, before we (as one often does in mathematics) developed a
general formula (3.17) for the general or “abstract” integral [ f(x)dz.
To solve our specific problem fol v(t)dt we must then apply the general
formula (3.17) to the given data (function and integral limits) in our
problem. Although simple in principle, the practical steps are confusing
for many because the notation in the abstract problem in (3.17) differs
from the notation in our special problem. Clearly, the f, x, and h in
(3.17) correspond to v, t, and perhaps At for the trapezoid width in our
special problem.

-
The programmer’s dilemma

1. Should we write a special program for the special integral, using
the ideas from the general rule (3.17), but replacing f by v, x
by t, and h by At?

2. Should we implement the general method (3.17) as it stands in a
general function trapezoid(f, a, b, n) and solve the specific
problem at hand by a specialized call to this function?

Alternative 2 is always the best choice!

The first alternative in the box above sounds less abstract and therefore
more attractive to many. Nevertheless, as we hope will be evident from
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the examples, the second alternative is actually the simplest and most
reliable from both a mathematical and programming point of view. These
authors will claim that the second alternative is the essence of the power
of mathematics, while the first alternative is the source of much confusion
about mathematics!

Implementation with functions. For the integral f; f(z)dx computed
by the formula (3.17) we want the corresponding Matlab function
trapezoid to take any f, a, b, and n as input and return the approxi-
mation to the integral.

We write a Matlab function trapezoidal in a file trapezoidal.m
as close as possible to the formula (3.17), making sure variable names
correspond to the mathematical notation:

function integral = trapezoidal(f, a, b, n)
h = (b-a)/n;
result = 0.5%f(a) + 0.5*%f(b);
for i = 1:(n-1)
result = result + f(a + ix*h);
end
integral = h*result;
end

This function must be placed in a file trapezoidal.m to be reused in
other programs and in interactive sessions.

Solving our specific problem in a session. An interactive session can
make use of the trapezoidal function in trapezoidal.m to solve our
particular problem fol v(t)dt:

octave:1> v = Q(t) 3*(t"2)*exp(t~3);

octave:2> n = 4;

octave:4> numerical = trapezoidal(v, 0, 1, n);
octave:5> numerical

numerical = 1.9227

Let us compute the exact expression and the error in the approximation:
octave:6> V = @(t) exp(t~3);
octave:7> exact = V(1) - V(0);
octave:8> error = exact - numerical
ans = -0.20443
Is this error convincing? We can try a larger n:
octave:9> numerical = trapezoidal(v, 0, 1, 400);
octave:10> exact - numerical

ans = -2.1236e-05

Fortunately, many more trapezoids give a much smaller error.


https://github.com/hplgit/prog4comp/tree/master/src/m/trapezoidal.m
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Solving our specific problem in a program. Instead of computing our
special problem in an interactive session, we can do it in a program. As
always, a chunk of code doing a particular thing is best isolated as a
function even if we do not see any future reason to call the function
several times and even if we have no need for arguments to parameterize
what goes on inside the function. In the present case, we just put the
statements we otherwise would have put in a main program, inside a
function:

function application()
v = @(t) 3*(t"2)*exp(t~3);
n = input(’n: ’)
numerical = trapezoidal(v, 0, 1, n);

% Compare with exact result
V = @(t) exp(t™3);
exact = V(1) - V(0);
error = exact - numerical;
fprintf ("n=Yd: %.16f, error: %g", n, numerical, error)
end
Now we compute our special problem by calling application() as the
only statement in the main program. The application function and its

call is in the file trapezoidal_app.m, which can be run as
Terminal> octave trapezoidal_app.m

n: 4
n 4
n 1.

=4: 9227167504675762, error: -0.204435

3.2.3 Alternative flat special-purpose implementation

Let us illustrate the implementation implied by alternative 1 in the
Programmer’s dilemma box in Section 3.2.2. That is, we make a special-
purpose code where we adapt the general formula (3.17) to the specific
problem [} 3t%¢t’ dt.

Basically, we use a for loop to compute the sum. Each term with f(x)
in the formula (3.17) is replaced by 3t2e!”, x by t, and h by At 1. A first
try at writing a plain, flat program doing the special calculation is

a=0.0; b=1.0;
! Replacing h by At is not strictly required as many use h as interval also along the

time axis. Nevertheless, At is an even more popular notation for a small time interval,
so we adopt that common notation.
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n = input(’n: ’)
dt = (b-a)/n;

% Integral by the trapezoidal method
numerical = 0.5%3x(a"2)*exp(a~3) + 0.5*3*(b~2)*exp(b~3);
for i = 1:(n-1)
numerical = numerical + 3%((a + i*dt) 2)*exp((a + i*dt)~3);
end
numerical = numericalx*dt;

exact_value = exp(173) - exp(073);
error = exact_value - numerical;
fprintf (’n=Yd: %.16f, error: %g’, n, numerical, error);

The problem with the above code is at least three-fold:

1. We need to reformulate (3.17) for our special problem with a different
notation.

2. The integrand 3t2¢t” is inserted many times in the code, which quickly
leads to errors.

3. A lot of edits are necessary to use the code to compute a different
integral - these edits are likely to introduce errors.

The potential errors involved in point 2 serve to illustrate how important
it is to use Matlab functions as mathematical functions. Here we have
chosen to use the lambda function to define the integrand as the variable
v

<!
]

Q(t) 3*(t~2)*exp(t~3);

a=0.0; b=1.0;
n = input(’n: ’)
dt = (b-a)/n;

% Integral by the trapezoidal method
numerical = 0.5*v(a) + 0.5%v(b);
for i = 1:(n-1)

numerical = numerical + v(a + ix*dt);
end
numerical = numericalx*dt;

F = @(t) exp(t™3);

exact_value = F(b) - F(a);

error = exact_value - numerical;

fprintf (’n=Yd: %.16f, error: %g’, n, numerical, error);

Unfortunately, the two other problems remain and they are fundamen-
tal.



3.2 The composite trapezoidal rule 69

Suppose you want to compute another integral, say f}f e~ dz. How
much do we need to change in the previous code to compute the new
integral? Not so much:

o the formula for v must be replaced by a new formula

e the limits a and b

« the anti-derivative V is not easily known 2 and can be omitted, and
therefore we cannot write out the error

« the notation should be changed to be aligned with the new problem,
i.e., t and dt changed to x and h

These changes are straightforward to implement, but they are scattered
around in the program, a fact that requires us to be very careful so we
do not introduce new programming errors while we modify the code. It
is also very easy to forget to make a required change.

With the previous code in trapezoidal.m, we can compute the new
integral f}f e~ dx without touching the mathematical algorithm. In an
interactive session (or in a program) we can just do

octave:1> trapezoidal(@(x) exp(-x~2), -1, 1.1, 400)
ans = 1.5269

When you now look back at the two solutions, the flat special-purpose
program and the function-based program with the general-purpose func-
tion trapezoidal, you hopefully realize that implementing a general
mathematical algorithm in a general function requires somewhat more
abstract thinking, but the resulting code can be used over and over again.
Essentially, if you apply the flat special-purpose style, you have to retest
the implementation of the algorithm after every change of the program.

The present integral problems result in short code. In more challenging
engineering problems the code quickly grows to hundreds and thousands
of line. Without abstractions in terms of general algorithms in general
reusable functions, the complexity of the program grows so fast that it
will be extremely difficult to make sure that the program works properly.

Another advantage of packaging mathematical algorithms in functions
is that a function can be reused by anyone to solve a problem by just
calling the function with a proper set of arguments. Understanding
the function’s inner details is not necessary to compute a new integral.
Similarly, you can find libraries of functions on the Internet and use these

2You cannot integrate e’ by hand, but this particular integral is appearing so often
in so many contexts that the integral is a special function, called the Error function®
and written erf(z). In a code, you can call erf (x).
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functions to solve your problems without specific knowledge of every
mathematical detail in the functions.

This desirable feature has its downside, of course: the user of a function
may misuse it, and the function may contain programming errors and
lead to wrong answers. Testing the output of downloaded functions is
therefore extremely important before relying on the results.

3.3 The composite midpoint method

The idea. Rather than approximating the area under a curve by trape-
zoids, we can use plain rectangles. It may sound less accurate to use
horizontal lines and not skew lines following the function to be integrated,
but an integration method based on rectangles (the midpoint method) is
in fact slightly more accurate than the one based on trapezoids!

In the midpoint method, we construct a rectangle for every sub-interval
where the height equals f at the midpoint of the sub-interval. Let us do
this for four rectangles, using the same sub-intervals as we had for hand
calculations with the trapezoidal method: [0,0.2), [0.2,0.6), [0.6,0.8),
and [0.8,1.0]. We get

/ f(tydt ~ b f (H2) +ms (B52)

2 2
0.6 +0.8 0.8+ 1.0
+ hyf (2 ) 4 haf (2 ) , (3.18)

where hq, hs, hs, and hy are the widths of the sub-intervals, used previ-
ously with the trapezoidal method and defined in (3.10)-(3.13).

With f(t) = 3t2e!”, the approximation becomes 1.632. Compared with
the true answer (1.718), this is about 5% too small, but it is better
than what we got with the trapezoidal method (10%) with the same
sub-intervals. More rectangles give a better approximation.

3.3.1 The general formula

Let us derive a formula for the midpoint method based on n rectangles
of equal width:
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0.2 0.4 0.6 0.8 1.0

Fig. 3.3 Computing approximately the integral of a function as the sum of the areas of
the rectangles.

/abf(x) dx:/; f(x)dx+/:2 f(m)dx+...—|—/xinl F)da,
zhf(x[’;ml)+hf(x1+x2>+...+hf(x"‘1+x”>,

2 2
(3.19)
- To + T1 T1+ X2 Tp—1+ T
() e () e ()
(3.20)
This sum may be written more compactly as
b n—1
/ f@)dr~h Y f(), (3.21)
a i=0

where z; = (a + %) + ih.

3.3.2 Implementation

We follow the advice and lessons learned from the implementation of the
trapezoidal method and make a function midpoint(f, a, b, n) (ina
file midpoint.m) for implementing the general formula (3.21):


https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint.m
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function result_integration = midpoint(f, a, b, n)
h = (b-a)/n;
result = 0;
for i = 0:(n-1)
result = result + £((a + h/2) + ixh);
end
result_integration = h*result;
end

We can test the function as we explained for the similar trapezoidal
method. The error in our particular problem fol 3t2e!” dt with four intervals
is now about 0.1 in contrast to 0.2 for the trapezoidal rule. This is in
fact not accidental: one can show mathematically that the error of the
midpoint method is a bit smaller than for the trapezoidal method. The
differences are seldom of any practical importance, and on a laptop we
can easily use n = 10% and get the answer with an error about 107!? in
a couple of seconds.

3.3.3 Comparing the trapezoidal and the midpoint methods

The next example shows how easy we can combine the trapezoidal and
midpoint functions to make a comparison of the two methods in the file
compare_integration_methods.m:

g = 0(y) exp(-y~2);
a=0;
b = 2;
fprintf (° n midpoint trapezoidal\n’) ;
for i = 1:20
n=271i;
m = midpoint(g, a, b, n);
t = trapezoidal(g, a, b, n);
fprintf (’%7d %.16f 7%.16f\n’, n, m, t);
end

Note the efforts put into nice formatting - the output becomes

n midpoint trapezoidal
2 0.8842000076332692 0.8770372606158094
4 0.8827889485397279 0.8806186341245393
8 0.8822686991994210 0.8817037913321336
16 0.8821288703366458 0.8819862452657772
32 0.8820933014203766 0.8820575578012112
64 0.8820843709743319 0.8820754296107942
128 0.8820821359746071 0.8820799002925637
256 0.8820815770754198 0.8820810181335849
512 0.8820814373412922 0.8820812976045025


https://github.com/hplgit/prog4comp/tree/master/src/m/compare_integration_methods.m

3.4 Testing 73

1024 0.8820814024071774 0.8820813674728968
2048 0.8820813936736116 0.8820813849400392
4096 0.8820813914902204 0.8820813893068272
8192 0.8820813909443684 0.8820813903985197
16384 0.8820813908079066 0.8820813906714446
32768 0.8820813907737911 0.8820813907396778
65536 0.8820813907652575 0.8820813907567422
131072 0.8820813907631487 0.8820813907610036
262144 0.8820813907625702 0.8820813907620528
524288 0.8820813907624605 0.8820813907623183
1048576 0.8820813907624268 0.8820813907623890

A visual inspection of the numbers shows how fast the digits stabilize in
both methods. It appears that 13 digits have stabilized in the last two
TOWS.

Remark

The trapezoidal and midpoint methods are just two examples in
a jungle of numerical integration rules. Other famous methods are
Simpson’s rule and Gauss quadrature. They all work in the same
way:

[ fwyae~ Z wif ().

That is, the integral is approximated by a sum of function evalua-
tions, where each evaluation f(z;) is given a weight w;. The different
methods differ in the way they construct the evaluation points x;
and the weights w;. We have used equally spaced points x;, but
higher accuracy can be obtained by optimizing the location of x;.

3.4 Testing

3.4.1 Problems with brief testing procedures

Testing of the programs for numerical integration has so far employed two
strategies. If we have an exact answer, we compute the error and see that
increasing n decreases the error. When the exact answer is not available,
we can (as in the comparison example in the previous section) look at the
integral values and see that they stabilize as n grows. Unfortunately, these



74 3 Computing integrals

are very weak test procedures and not at all satisfactory for claiming
that the software we have produced is correctly implemented.

To see this, we can introduce a bug in the application function that
calls trapezoidal: instead of integrating 3t26t3, we write “accidentally”
3t3¢"” | but keep the same anti-derivative V(¢)e!” for computing the error.
With the bug and n = 4, the error is 0.1, but without the bug the error
is 0.2! It is of course completely impossible to tell if 0.1 is the right value
of the error. Fortunately, increasing n shows that the error stays about
0.3 in the program with the bug, so the test procedure with increasing n
and checking that the error decreases points to a problem in the code.

Let us look at another bug, this time in the mathematical algorithm:
instead of computing % (f(a)+ f(b)) as we should, we forget the second 3
and write 0.5%f(a) + £(b). The error for n = 4,40, 400 when computing

11:19 3t2et’ dt goes like 1400, 107, 10, respectively, which looks promising.
The problem is that the right errors should be 369, 4.08, and 0.04. That
is, the error should be reduced faster in the correct than in the buggy
code. The problem, however, is that it is reduced in both codes, and we
may stop further testing and believe everything is correctly implemented.

Unit testing

A good habit is to test small pieces of a larger code individually, one
at a time. This is known as unit testing. One identifies a (small) unit
of the code, and then one makes a separate test for this unit. The unit
test should be stand-alone in the sense that it can be run without
the outcome of other tests. Typically, one algorithm in scientific
programs is considered as a unit. The challenge with unit tests in
numerical computing is to deal with numerical approximation errors.
A fortunate side effect of unit testing is that the programmer is
forced to use functions to modularize the code into smaller, logical

pieces.

3.4.2 Proper test procedures

There are three serious ways to test the implementation of numerical
methods via unit tests:

1. Comparing with hand-computed results in a problem with few arith-
metic operations, i.e., small n.
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2. Solving a problem without numerical errors. We know that the trape-
zoidal rule must be exact for linear functions. The error produced by
the program must then be zero (to machine precision).

3. Demonstrating correct convergence rates. A strong test when we can
compute exact errors, is to see how fast the error goes to zero as n
grows. In the trapezoidal and midpoint rules it is known that the
error depends on n as n”2 as n — oo.

Hand-computed results. Let us use two trapezoids and compute the
integral [} v(t), v(t) = 32"

1 1
Sh(©(0) +v(0.5)) + Sh(v(0.5) + v(1)) = 2.463642041244344,

when h = 0.5 is the width of the two trapezoids. Running the program
gives exactly the same results.

Solving a problem without numerical errors. The best unit tests for
numerical algorithms involve mathematical problems where we know the
numerical result beforehand. Usually, numerical results contain unknown
approximation errors, so knowing the numerical result implies that we
have a problem where the approximation errors vanish. This feature
may be present in very simple mathematical problems. For example, the
trapezoidal method is exact for integration of linear functions f(z) =
ax + b. We can therefore pick some linear function and construct a test
function that checks equality between the exact analytical expression
for the integral and the number computed by the implementation of the
trapezoidal method.

A specific test case can be [;'5' (62 —4)dz. This integral involves an “ar-
bitrary” interval [1.2,4.4] and an “arbitrary” linear function f(x) = 6x—4.
By “arbitrary” we mean expressions where we avoid the special numbers
0 and 1 since these have special properties in arithmetic operations (e.g.,
forgetting to multiply is equivalent to multiplying by 1, and forgetting
to add is equivalent to adding 0).

Demonstrating correct convergence rates. Normally, unit tests must
be based on problems where the numerical approximation errors in our
implementation remain unknown. However, we often know or may assume
a certain asymptotic behavior of the error. We can do some experimental
runs with the test problem fol 3t2e!’ dt where n is doubled in each run:
n = 4,8,16. The corresponding errors are then 12%, 3% and 0.77%,
respectively. These numbers indicate that the error is roughly reduced
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by a factor of 4 when doubling n. Thus, the error converges to zero as
n~2 and we say that the convergence rate is 2. In fact, this result can
also be shown mathematically for the trapezoidal and midpoint method.
Numerical integration methods usually have an error that converge to
zero as n”P for some p that depends on the method. With such a result,
it does not matter if we do not know what the actual approximation error
is: we know at what rate it is reduced, so running the implementation for
two or more different n values will put us in a position to measure the
expected rate and see if it is achieved.

The idea of a corresponding unit test is then to run the algorithm
for some n values, compute the error (the absolute value of the differ-
ence between the exact analytical result and the one produced by the
numerical method), and check that the error has approximately correct
asymptotic behavior, i.e., that the error is proportional to n~2 in case of
the trapezoidal and midpoint method.

Let us develop a more precise method for such unit tests based on
convergence rates. We assume that the error £ depends on n according
to

E=Cn",

where C' is an unknown constant and r is the convergence rate. Con-
sider a set of experiments with various n: ni,ns,...,n,. We compute
the corresponding errors Ey,. .., F,. For two consecutive experiments,
number ¢ and ¢ — 1, we have the error model

E; = Cnl, (3.22)
Eifl = Cng_l . (323)

These are two equations for two unknowns C' and r. We can easily
eliminate C' by dividing the equations by each other. Then solving for r
gives

- hl(Ei/Eifl)
! ln(ni/ni_l)
We have introduced a subscript ¢ in r since the estimated value for r

varies with ¢. Hopefully, r; approaches the correct convergence rate as
the number of intervals increases and i — q.

(3.24)
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3.4.3 Finite precision of floating-point numbers

The test procedures above lead to comparison of numbers for checking
that calculations were correct. Such comparison is more complicated
than what a newcomer might think. Suppose we have a calculation a +
b and want to check that the result is what we expect. We start with 1
+ 2:

>> a =1; b = 2; expected = 3;
>> a + b == expected
ans = 1

Then we proceed with 0.1 + 0.2:

>> a =0.1; b =0.2; expected = 0.3;

>> a + b == expected

ans = 0

So why is 0.1 + 0.2 # 0.37 The reason is that real numbers cannot

in general be exactly represented on a computer. They must instead be
approximated by a floating-point number? that can only store a finite
amount of information, usually about 17 digits of a real number. Let us
print 0.1, 0.2, 0.1 + 0.2, and 0.3 with 17 decimals:

>> fprintf(’%.17f\n%.17f\n%.17f\n%.17f\n’, 0.1, 0.2, 0.1 + 0.2, 0.3)
0.10000000000000001
0.20000000000000001
0.30000000000000004
0.29999999999999999

We see that all of the numbers have an inaccurate digit in the 17th
decimal place. Because 0.1 4+ 0.2 evaluates to 0.30000000000000004 and
0.3 is represented as 0.29999999999999999, these two numbers are not
equal. In general, real numbers in Matlab have (at most) 16 correct
decimals.

When we compute with real numbers, these numbers are inaccurately
represented on the computer, and arithmetic operations with inaccurate
numbers lead to small rounding errors in the final results. Depending on
the type of numerical algorithm, the rounding errors may or may not
accumulate.

If we cannot make tests like 0.1 + 0.2 == 0.3, what should we then
do? The answer is that we must accept some small inaccuracy and make
a test with a tolerance. Here is the recipe:

>>a =0.1; b =0.2; expected = 0.3;

4https://en.wikipedia.org/wiki/Floating_point
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>> computed = a + b;

>> diff = abs(expected - computed);
>> tol = 1E-15;

>> diff < tol

ans = 1

Here we have set the tolerance for comparison to 1071, but calculating
0.3 - (0.1 + 0.2) shows that it equals -5.55e-17, so a lower tolerance
could be used in this particular example. However, in other calculations
we have little idea about how accurate the answer is (there could be ac-
cumulation of rounding errors in more complicated algorithms), so 10715
or 10~ are robust values. As we demonstrate below, these tolerances
depend on the magnitude of the numbers in the calculations.

Doing an experiment with 10¥ +0.3 — (10 +0.1+0.2) for k = 1,...,10
shows that the answer (which should be zero) is around 10'6~*. This
means that the tolerance must be larger if we compute with larger
numbers. Setting a proper tolerance therefore requires some experiments
to see what level of accuracy one can expect. A way out of this difficulty
is to work with relative instead of absolute differences. In a relative
difference we divide by one of the operands, e.g.,

a—>b

a=10F+03, b=(10"401402), c= .
a

Computing this ¢ for various k shows a value around 10716, A safer
procedure is thus to use relative differences.

3.4.4 Constructing unit tests and writing test functions

Software testing in other languages often applies comprehensive test
frameworks to automatically run through large numbers of tests. This is
very advantageous as one can at any time check that the code works. It
is a good habit to run the test suite after every edit of the source code
files.

Matlab also has test frameworks, but we shall here just use the common
ideas (across languages) for writing tests and not employ any particular
framework for running the tests. Our convention is to put each test in a
separate test function, with the following properties:

e the name must start with test_
o the test function cannot have any arguments
« the tests inside test functions must be boolean expressions
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« a boolean expression b must be tested with assert(b, msg), where
msg is an optional object (string or number) to be written out when
b is false

Suppose we have written a function

function u = add(a, b)
u=a+ b;
end

A corresponding test function might then be

function test_add

expected = 1 + 1;

computed = add(1, 1);

assert(computed == expected, ’1+1=J,g’, computed) ;
end

Test functions and their calls are conveniently placed in files whose names
start with test_. A simple script can be made to search for such files
and run them automatically (essentially, this is what testing frameworks
do).

As long as we add integers, the equality test in the test_add function
is appropriate, but if we try to call add(0.1, 0.2) instead, we will face
the rounding error problems explained in Section 3.4.3, and we must use
a test with tolerance instead:

function test_add
expected = 0.3;
computed = add(0.1, 0.2;
tol = 1E-14;
diff = abs(expected - computed);
assert(diff < tol, ’diff=Jg’, diff);
end

Below we shall write test functions for each of the three test procedures
we suggested: comparison with hand calculations, checking problems that
can be exactly solved, and checking convergence rates. We stick to
testing the trapezoidal integration code and collect all test functions in
one common file by the name test_trapezoidal.m.

In Matlab, we need to enforce the following rules on files for the
function to be tested and the test functions:

« The numerical method (to be tested) must be available as a function
in a file with the same name as the function.
e The test functions are put in separate files.
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Hand-computed numerical results. Our previous hand calculations for
two trapezoids can be checked against the trapezoidal function inside
a test function (in a file test_trapezoidal.m):

function test_trapezoidal_one_exact_result
% Compare one hand-computed result
v = @(t) 3*(t"2)*exp(t~3);
n=2;
computed = trapezoidal(v, 0, 1, n);
expected = 2.463642041244344;
error = abs(expected - computed);

tol = 1E-14;
assert(error < tol, ’error=Jg > tol=Jg’, error, tol);
end

Note the importance of checking err against exact with a tolerance:
rounding errors from the arithmetics inside trapezoidal will not make
the result exactly like the hand-computed one. The size of the tolerance
is here set to 1074, which is a kind of all-round value for computations
with numbers not deviating much from unity.

Solving a problem without numerical errors. We know that the
trapezoidal rule is exact for linear integrands. Choosing the integral

14f '24(6:15 — 4)dz as test case, the corresponding test function for this unit
test may look like

function test_trapezoidal_linear
% Check that linear functions are integrated exactly
f = @(x) 6xx - 4;
@(x) 3*x~2 - 4xx; Y Anti-derivative
a=1.2; b = 4.4;
expected = F(b) - F(a);
tol = 1E-14;
for n = [2 20 21]
computed = trapezoidal(f, a, b, n);
error = abs(expected - computed);
assert(error < tol, ’n=/d, err=Jg’, n, error);
end
end

o3|
]

Demonstrating correct convergence rates. In the present example
with integration, it is known that the approximation errors in the trape-
zoidal rule are proportional to n~2, n being the number of subintervals
used in the composite rule.

Computing convergence rates requires somewhat more tedious pro-
gramming than the previous tests, but can be applied to more general
integrands. The algorithm typically goes like

o fori=1,2,...,¢q


https://github.com/hplgit/prog4comp/tree/master/src/m/test_trapezoidal.m
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- n; = 2i

— Compute integral with n; intervals
— Compute the error E;

Estimate 7; from (3.24) if i > 1

The corresponding code may look like

function r = convergence_rates(f, F, a, b, num_experiments)
n = zeros(num_experiments, 1);
E = zeros(num_experiments, 1);
r = zeros(num_experiments-1, 1);
expected = F(b) - F(a);

for i = 1:num_experiments
n(i) = 27i;
computed = trapezoidal(f, a, b, n(i));
error = abs(expected - computed) ;
E(i) = error;
if (1 > 1)
r(i-1) = log(E(i-1)/E(i))/log(n(i-1)/n(i));
r(i-1) = round(r(i-1)*100)/100; Y% Truncate, two decimals
end
end
end

Making a test function is a matter of choosing f, F, a, and b, and then
checking the value of r; for the largest i:

function test_trapezoidal_conv_rate

% Check empirical convergence rates against the expected -2.

v = @(t) 3x(t"2)*exp(t~3);

V = a(t) exp(t~3);

a=1.1; b =1.9;

num_experiments = 14;

r = convergence_rates(v, V, a, b, num_experiments)

tol = 0.01;

assert(abs(r(num_experiments-1)) - 2 < tol, ’U%f, %f, %f, %f, %hf’,...

r ((num_experiments-1)-4:num_experiments-1));

end

Running the test shows that all r;, except the first one, equal the

target limit 2 within two decimals. This observation suggest a tolerance
of 1072,

[ Remark about version control of files

Having a suite of test functions for automatically checking that
your software works is considered as a fundamental requirement for
reliable computing. Equally important is a system that can keep
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track of different versions of the files and the tests, known as a
verston control system. Today’s most popular version control system
is Git®, which the authors strongly recommend the reader to use
for programming and writing reports. The combination of Git and
cloud storage such as GitHub is a very common way of organizing
scientific or engineering work. We have a quick intro® to Git and
GitHub that gets you up and running within minutes.
The typical workflow with Git goes as follows.

1. Before you start working with files, make sure you have the latest
version of them by running git pull.

2. Edit files, remove or create files (new files must be registered by
git add).

3. When a natural piece of work is done, commit your changes by
the git commit command.

4. Implement your changes also in the cloud by doing git push.

A nice feature of Git is that people can edit the same file at the
same time and very often Git will be able to automatically merge
the changes (!). Therefore, version control is crucial when you
work with others or when you do your work on different types of
computers. Another key feature is that anyone can at any time
view the history of a file, see who did what when, and roll back the
entire file collection to a previous commit. This feature is, of course,
fundamental for reliable work.

“https://en.wikipedia.org/wiki/Git_(software)
®http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.htm

=

3.5 Vectorization

The functions midpoint and trapezoid usually run fast in Matlab
and compute an integral to a satisfactory precision within a fraction
of a second. However, long loops in Matlab may run slowly in more
complicated implementations. To increase the speed, the loops can be
replaced by vectorized code. The integration functions constitute a simple
and good example to illustrate how to vectorize loops.


https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html
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We have already seen simple examples on vectorization in Section 1.4
when we could evaluate a mathematical function f(z) for a large number
of = values stored in an array. Basically, we can write

function result = f(x)
result = exp(-x)*sin(x) + 5.*x
end

X
y

linspace(0, 4, 101); # coordinates from 100 intervals on [0, 4]
f(x); # all points evaluated at once

The result y is the array that would be computed if we ran a for loop
over the individual x values and called f for each value. Vectorization
essentially eliminates this loop in Matlab (i.e., the looping over x and
application of f to each x value are instead performed in a library with
fast, compiled code).

Vectorizing the midpoint rule. The aim of vectorizing the midpoint
and trapezoidal functions is also to remove the explicit loop in Matlab.
We start with vectorizing the midpoint function since trapezoid is
not equally straightforward. The fundamental ideas of the vectorized
algorithm are to

1. compute all the evaluation points in one array x
2. call £(x) to produce an array of corresponding function values
3. use the sum function to sum the £ (x) values

The evaluation points in the midpoint method are z; = a + (i + %)h, 1=
0,...,n—1. That is, n uniformly distributed coordinates between a -+ h /2
and b—h /2. Such coordinates can be calculated by x = linspace(a+h/2,
b-h/2, n). Given that the Matlab implementation f of the mathematical
function f works with an array argument, which requires array versions
of arithmetic operators (.+, .*, etc.) in Matlab, £ (x) will produce all
the function values in an array. The array elements are then summed up
by sum: sum(f(x)). This sum is to be multiplied by the rectangle width
h to produce the integral value. The complete function is listed below.

function result_integration = midpoint_vec(f, a, b, n)
h = (b-a)/n;
x = linspace(a + h/2, b - h/2, n);
result_integration = h*sum(f(x));

end

The code is found in the file integration_methods_vec.m. An interac-
tive test reads


https://github.com/hplgit/prog4comp/tree/master/src/m/integration_methods_vec.m
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octave:1> v = @(t) 3.xt."2.*exp(t.”3);

octave:2> midpoint_vec(v, 0, 1, 10)

ans = 1.7015
Note the need for the vectorized operator .* in the function expression
since v(x) will be called with array arguments x.

The vectorized code performs all loops very efficiently in compiled
code, resulting in much faster execution. Moreover, many readers of the
code will also say that the algorithm looks clearer than in the loop-based
implementation.

Vectorizing the trapezoidal rule. We can use the same approach to
vectorize the trapezoid function. However, the trapezoidal rule performs
a sum where the end points have different weight. If we do sum(f (%)),
we get the end points f(a) and f(b) with weight unity instead of one
half. A remedy is to subtract the error from sum(f(x)): sum(f(x)) -
0.5xf(a) - 0.5%f(b). The vectorized version of the trapezoidal method
then becomes

function result_integration = trapezoidal_vec(f, a, b, n)

h = (b-a)/n;

x = linspace(a, b, nt+il);

result_integration = h*(sum(£(x)) - 0.5xf(a) - 0.5*%f(b))
end

3.6 Measuring computational speed

Now that we have created faster, vectorized versions of functions in the
previous section, it is interesting to measure how much faster they are.
The purpose of the present section is therefore to explain how we can
record the CPU time consumed by a function so we can answer this
question. The “stop watch” in Matlab is the function pair tic (start) and
toc. Here is an interactive session measuring the effect of midpoint_vec
versus midpoint:

octave:1> v = @(t) 3*t"2%exp(t~3);

octave:2> v_ = @(t) 3.*t. 2.xexp(t."3);

octave:3> tic; midpoint_vec(v_, 0, 1, 1000000); toc
Elapsed time is 0.38 seconds.

octave:4> tic; midpoint(v_, 0, 1, 1000000); toc
Elapsed time is 40 seconds.

octave:5> 40/0.38

ans = 105.26

The vectorized version is 100 times faster!
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3.7 Double and triple integrals

3.7.1 The midpoint rule for a double integral

Given a double integral over a rectangular domain [a, b] X [¢, d],

/ b / * fay)dyd,

how can we approximate this integral by numerical methods?

Derivation via one-dimensional integrals. Since we know how to deal
with integrals in one variable, a fruitful approach is to view the double
integral as two integrals, each in one variable, which can be approxi-
mated numerically by previous one-dimensional formulas. To this end,
we introduce a help function g(z) and write

/ab /cdf(x,y)dydx = /abg(x)dx, g(x) = /Cd f(z,y)dy.

Each of the integrals

[ oz, o= [ sy

can be discretized by any numerical integration rule for an integral in
one variable. Let us use the midpoint method (3.21) and start with
g(x) = [? f(z,y)dy. We introduce n,, intervals on [c,d] with length h,.
The midpoint rule for this integral then becomes

ny—1

d 1 )
g(x) =/ [l y)dy = hy > flz,y), yj=c+ Sl dhy -
C JZO

The expression looks somewhat different from (3.21), but that is because
of the notation: since we integrate in the y direction and will have to
work with both = and y as coordinates, we must use n, for n, h, for
h, and the counter ¢ is more naturally called j when integrating in .
Integrals in the x direction will use h, and n, for h and n, and ¢ as
counter.

The double integral is [ ; g(z)dz, which can be approximated by the
midpoint method:
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b Ne—1 1
dx ~ hy i)y i he Dy
/ag(x)x ;g(x) x a—|—2 +1

Putting the formulas together, we arrive at the composite midpoint
method for a double integral:

b d Ne—1 nyfl
[ fadyde = e 3 by 3 flai)
a Je i=0  j=0

he . h )
=hahy > Y f(a+?+zhm,c+3y+jhy).
i=0 j=0

(3.25)

Direct derivation. The formula (3.25) can also be derived directly in
the two-dimensional case by applying the idea of the midpoint method.
We divide the rectangle [a, b] X [c, d] into n, x n, equal-sized cells. The
idea of the midpoint method is to approximate f by a constant over each
cell, and evaluate the constant at the midpoint. Cell (7, j) occupies the
area

la+ ihg,a+ (i + 1)hy] X [¢+ jhy,c+ (j + 1)hy],
and the midpoint is (x;,y;) with

1 1
azi:a—i—z’hx—s—ihw, yj:c+jhy+§hy.
The integral over the cell is therefore hyhy, f(x;,y;), and the total double

integral is the sum over all cells, which is nothing but formula (3.25).

Programming a double sum. The formula (3.25) involves a double sum,
which is normally implemented as a double for loop. A Matlab function
implementing (3.25) may look like

function result = midpoint_doublel(f, a, b, c, d, nx, ny)

hx = (b - a)/nx;
hy = (d - ¢)/ny;
I=0;

for i = 0:(nx-1)
for j = 0:(ny-1)
xi a + hx/2 + ix*hx;
yj = ¢ + hy/2 + j¥hy;
I = I + hxxhy*f(xi, yj);
end
end
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result = I;
end

With this function, which is available in the file midpoint_doublel.
m, we may now compute some integral f02 f;’(2x + y)dydr = 9 in an
interactive shell and demonstrate that the function computes the right
number:

>> f = 0(x, y) 2*x + y;
>>> midpoint_doublel(f, 0, 2, 2, 3, 5, 5)
9.0

Reusing code for one-dimensional integrals. It is very natural to
write a two-dimensional midpoint method as we did in function
midpoint_doublel when we have the formula (3.25). However, we could
alternatively ask, much as we did in the mathematics, can we reuse
a well-tested implementation for one-dimensional integrals to compute
double integrals? That is, can we use function midpoint

function result_integration = midpoint(f, a, b, n)
h = (b-a)/n;
result = 0;
for i = 0:(n-1)
result = result + f((a + h/2) + ixh);
end
result_integration = h*result;
end

from Section 3.3.2 “twice”? The answer is yes, if we think as we did
in the mathematics: compute the double integral as a midpoint rule for
integrating g(z) and define g(z;) in terms of a midpoint rule over f in
the y coordinate. The corresponding function has very short code:

function I = midpoint_double2(f, a, b, c, d, nx, ny)
function result = g(x)
result = midpoint(@(y) f(x, y), ¢, d, ny);
end
g_handle = Qg;
I = midpoint(g_handle, a, b, nx);
end

The important advantage of this implementation is that we reuse a
well-tested function for the standard one-dimensional midpoint rule and
that we apply the one-dimensional rule exactly as in the mathematics.

Verification via test functions. How can we test that our functions for
the double integral work? The best unit test is to find a problem where


https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_double1.m
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the numerical approximation error vanishes because then we know exactly
what the numerical answer should be. The midpoint rule is exact for linear
functions, regardless of how many subinterval we use. Also, any linear
two-dimensional function f(z,y) = px + qy + r will be integrated exactly
by the two-dimensional midpoint rule. We may pick f(z,y) = 2z +y
and create a proper test function that can automatically verify our two
alternative implementations of the two-dimensional midpoint rule. To
compute the integral of f(z,y) we take advantage of SymPy to eliminate
the possibility of errors in hand calculations. The test function becomes

function test_midpoint_double()
% Test that a linear function is integrated exactly.
f =0(x, y) 2*x + y;

a=0; b=2; c=2; d=3;

syms X y;

I_expected = int(int(f, y, c, d), x, a, b);

% Test three cases: nx < ny, nx = ny, nx > ny

nx = 3; ny = 5;

for i = (0:2)
nx =nx + 1; ny =ny - 1;
I_computedl = midpoint_doublel(f, a, b, ¢, d, nx, ny);
I_computed2 = midpoint_double2(f, a, b, ¢, d, nx, ny);
tol = 1E-14;
hEprintf (...
% I_expected = %g, I_computedl = %g, I_computed2 = %g\n’,.
% I_expected, I_computedl, I_computed2);

assert(abs(I_computedl - I_expected) < tol);

assert(abs(I_computed2 - I_expected) < tol);

end

end

Let test functions speak up?

If we call the above test_midpoint_double function and nothing
happens, our implementations are correct. However, it is somewhat
annoying to have a function that is completely silent when it works
- are we sure all things are properly computed? During development
it is therefore highly recommended to insert a print statement such
that we can monitor the calculations and be convinced that the test
function does what we want. Since a test function should not have
any print statement, we simply comment it out as we have done in
the function listed above.
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The trapezoidal method can be used as alternative for the midpoint
method. The derivation of a formula for the double integral and the
implementations follow exactly the same ideas as we explained with the
midpoint method, but there are more terms to write in the formulas.
Exercise 3.13 asks you to carry out the details. That exercise is a very
good test on your understanding of the mathematical and programming
ideas in the present section.

3.7.2 The midpoint rule for a triple integral

Theory. Once a method that works for a one-dimensional problem is
generalized to two dimensions, it is usually quite straightforward to
extend the method to three dimensions. This will now be demonstrated
for integrals. We have the triple integral

b ord rf
///9(x,y72)dzdydx

and want to approximate the integral by a midpoint rule. Following the
ideas for the double integral, we split this integral into one-dimensional
integrals:

p(x,y) = /efg(l'7y, Z)dZ

q(x) = /Cdp(x,y)dy

b opd f b
///g(x,y,Z)dzdydx=/ q(x)dz

For each of these one-dimensional integrals we apply the midpoint rule:

q(z) = /Cdp(w,y)dy ~ p(z,95),

b prd pf b
| [ st 2)dzdyd = [ a@)de = Y ata)

13

Il
o
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where

1 1 1
Zk:€+§hz+/€hz, yj:C+§hy+jhy l’Z:a—Fihm—Fth

Starting with the formula for f: fcd fef g(x,y, z)dzdydzr and inserting the
two previous formulas gives

b opd of
///g(x,y,z)dzdyda:%

ne—1ny—1ln,—1
xT Y z 1 1 1
hohyh: > > > gla+ ihm + ihg, ¢+ 5hy + jhy, e+ 5hz + kh.).
=0 4j=0 k=0
(3.26)

Note that we may apply the ideas under Direct derivation at the end
of Section 3.7.1 to arrive at (3.26) directly: divide the domain into
Ny X ny X n, cells of volumes h,hyh.; approximate g by a constant,
evaluated at the midpoint (z;,y;,2x), in each cell; and sum the cell
integrals hyhyh.g(z;, y;, 25).

Implementation. We follow the ideas for the implementations of the
midpoint rule for a double integral. The corresponding functions are
shown below and found in the files midpoint_triplel.m, midpoint.m,
midpoint_triple2.m, test_midpoint_triple.m.

function result = midpoint_triplel(g, a, b, ¢, d, e, f, nx, ny, nz)

hx = (b - a)/nx;
hy = (d - ¢)/ny;
hz = (f - e)/nz;
I=0;

for i = 0:(nx-1)
for j = 0:(ny-1)
for k = 0:(nz-1)
xi = a + hx/2 + ix*hx;

yj = ¢ + hy/2 + j*hy;
zk = e + hz/2 + k*hz;
I = I + hxxhy*hz*xg(xi, yj, zk);
end
end
end
result = I;
end

function result_integration = midpoint(f, a, b, n)


https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_triple1.m
https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint.m
https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_triple2.m
https://github.com/hplgit/prog4comp/tree/master/src/m/test_midpoint_triple.m
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h = (b-a)/n;
result = 0;
for i = 0:(n-1)
result = result + f((a + h/2) + ixh);
end
result_integration = h*result;
end

function I = midpoint_triple2(g, a, b, ¢, d, e, f, nx, ny, nz)
function result = p(x, y)
result = midpoint(@(z) g(x, y, z), e, f, nz);
end

function result = q(x)
result = midpoint(@(y) p(x, y), ¢, d, ny);
end

q_handle = Qq;
I = midpoint(q_handle, a, b, nx);
end

function test_midpoint_triple()
% Test that a linear function is integrated exactly.
g =0(x, y, z) 2%x + y - 4xz;

a=0; b=2; c=2; d=3; e=-1; f =2;
syms X y z;
I_expected = int(int(int(f, y, ¢, d), x, a, b), z, e, f);
nx = 3; ny =5; nz = 2;
for i = 0:2
nx =nx + 1; ny =ny - 1; nz = nz + 2;
I_computedl = midpoint_triplel(...
g, a, b, ¢, d, e, £, nx, ny, nz)
I_computed2 = midpoint_triple2(...
g, a, b, ¢, d, e, £, nx, ny, nz)
tol = 1E-14;
fprintf (...
I_expected = %g, I_computedl = %g, I_computed2 = %g\n’,...
I_expected, I_computedl, I_computed2);
assert(abs(I_computedl - I_expected) < tol);
assert(abs(I_computed2 - I_expected) < tol);
end
end

3.7.3 Monte Carlo integration for complex-shaped domains

Repeated use of one-dimensional integration rules to handle double and
triple integrals constitute a working strategy only if the integration
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domain is a rectangle or box. For any other shape of domain, completely
different methods must be used. A common approach for two- and three-
dimensional domains is to divide the domain into many small triangles
or tetrahedra and use numerical integration methods for each triangle or
tetrahedron. The overall algorithm and implementation is too complicated
to be addressed in this book. Instead, we shall employ an alternative,
very simple and general method, called Monte Carlo integration. It can
be implemented in half a page of code, but requires orders of magnitude
more function evaluations in double integrals compared to the midpoint
rule.

However, Monte Carlo integration is much more computationally
efficient than the midpoint rule when computing higher-dimensional
integrals in more than three variables over hypercube domains. Our ideas
for double and triple integrals can easily be generalized to handle an
integral in m variables. A midpoint formula then involves m sums. With
n cells in each coordinate direction, the formula requires n™ function
evaluations. That is, the computational work explodes as an exponential
function of the number of space dimensions. Monte Carlo integration, on
the other hand, does not suffer from this explosion of computational work
and is the preferred method for computing higher-dimensional integrals.
So, it makes sense in a chapter on numerical integration to address Monte
Carlo methods, both for handling complex domains and for handling
integrals with many variables.

The Monte Carlo integration algorithm. The idea of Monte Carlo
integration of [ : f(z)dx is to use the mean-value theorem from calculus,
which states that the integral [ f f(z)dx equals the length of the integra-
tion domain, here b — a, times the average value of f, f, in [a,b]. The
average value can be computed by sampling f at a set of random points
inside the domain and take the mean of the function values. In higher
dimensions, an integral is estimated as the area/volume of the domain
times the average value, and again one can evaluate the integrand at
a set of random points in the domain and compute the mean value of
those evaluations.

Let us introduce some quantities to help us make the specification
of the integration algorithm more precise. Suppose we have some two-
dimensional integral

/ f(z,y)dzdz,
Q

where (2 is a two-dimensional domain defined via a help function g(z, y):
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Q2 ={(z,y)]g9(z,y) > 0}

That is, points (x,y) for which g(z,y) > 0 lie inside 2, and points for
which g(z,y) < {2 are outside 2. The boundary of the domain 02 is
given by the implicit curve g(z,y) = 0. Such formulations of geometries
have been very common during the last couple of decades, and one refers
to g as a level-set function and the boundary g = 0 as the zero-level
contour of the level-set function. For simple geometries one can easily
construct g by hand, while in more complicated industrial applications
one must resort to mathematical models for constructing g.

Let A(£2) be the area of a domain 2. We can estimate the integral by
this Monte Carlo integration method:

1. embed the geometry (2 in a rectangular area R

2. draw a large number of random points (z,y) in R

3. count the fraction ¢ of points that are inside {2

4. approximate A(£2)/A(R) by ¢, i.e., set A(£2) = qA(R)
5. evaluate the mean of f, f, at the points inside {2

6. estimate the integral as A(§2)f

Note that A(R) is trivial to compute since R is a rectangle, while A({2)
is unknown. However, if we assume that the fraction of A(R) occupied
by A({2) is the same as the fraction of random points inside {2, we get a
simple estimate for A({2).

To get an idea of the method, consider a circular domain {2 embedded

in a rectangle as shown below. A collection of random points is illustrated
by black dots.

3.5

3.0f

2.5F

2.0F

1.5

1.01
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Implementation. A Matlab function implementing [, f(x,y)dzdy can
be written like this:

function result = MonteCarlo_double(f, g, x0, x1, yO, yl, n)

Monte Carlo integration of f over a domain g>=0, embedded
in a rectangle [x0,x1]x[y0,y1]. n~2 is the number of
random points.

ST e s

% Draw n~2 random points in the rectangle
x = x0 + (x1 - x0)*rand(n,1);
y = y0 + (y1 - yO)*rand(n,1);
% Compute sum of f values inside the integration domain
f_mean = 0;
num_inside = O; % number of x,y points inside domain (g>=0)
for i = 1:length(x)
for j = 1:length(y)
if gx(i), y(G)) >= 0
num_inside = num_inside + 1;
f_mean = f_mean + f(x(i), y(j));
end
end
end
f mean = f_mean/num_inside;
area = num_inside/(n"2)*(x1 - x0)*(yl - yO);
result = area*f_mean;
end

(See the file MonteCarlo_double.m.)

Verification. A simple test case is to check the area of a rectangle
[0,2] x [3,4.5] embedded in a rectangle [0, 3] x [2,5]. The right answer
is 3, but Monte Carlo integration is, unfortunately, never exact so it
is impossible to predict the output of the algorithm. All we know is
that the estimated integral should approach 3 as the number of random
points goes to infinity. Also, for a fixed number of points, we can run the
algorithm several times and get different numbers that fluctuate around
the exact value, since different sample points are used in different calls
to the Monte Carlo integration algorithm.
The area of the rectangle can be computed by the integral f02 f34'5 dydzx,
so in this case we identify f(x,y) = 1, and the g function can be specified
s (e.g.) 1if (x,y) is inside [0,2] x [3,4.5] and —1 otherwise. Here is
an example on how we can utilize the MonteCarlo_double function to
compute the area for different number of samples:

>> g =0(x, y) -1 + 2%(0 <= x && x <= 2 && 3 <=y && y <= 4.5);
>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 100)

2.9484

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 1000)


https://github.com/hplgit/prog4comp/tree/master/src/m/MonteCarlo_double.m
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2.947032

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 1000)
3.0234600000000005

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 2000)
2.9984580000000003

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 2000)
3.1903469999999996

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 5000)
2.986515

To get a one-line definition of g, we have exploited the fact that each
of the boolean tests (in parenthesis separated by &&) will evaluate to
either 0 (if false) or 1 (if true). If all of them evaluate to true, the whole
parenthesis will evaluate to 1 and the number 1 (from —1 + 2% 1) is
returned. On the other hand, if any single one of the boolean tests
evaluate to false, the parenthesis will evaluate to 0 and the number -1
(from —1 + 2 % 0) is returned. We see that the values fluctuate around
3, a fact that supports a correct implementation, but in principle, bugs
could be hidden behind the inaccurate answers.

It is mathematically known that the standard deviation of the Monte
Carlo estimate of an integral converges as n~ /2, where n is the number
of samples. This kind of convergence rate estimate could be used to verify
the implementation, but this topic is beyond the scope of this book.

Test function for function with random numbers. To make a test
function, we need a unit test that has identical behavior each time we run
the test. This seems difficult when random numbers are involved, because
these numbers are different every time we run the algorithm, and each
run hence produces a (slightly) different result. A standard way to test
algorithms involving random numbers is to fix the seed of the random
number generator. Then the sequence of numbers is the same every time
we run the algorithm. Assuming that the MonteCarlo_double function
works, we fix the seed, observe a certain result, and take this result as the
correct result. Provided the test function always uses this seed, we should
get exactly this result every time the MonteCarlo_double function is
called. Our test function can then be written as shown below.

function test_MonteCarlo_double_rectangle_area()
% Check the area of a rectangle.
g =0(x, y) -1 + 2%(0 <= x & x <= 2 & 3 <=y & y <= 4.5);

x0 = 0; x1=3; yO=2; yl=5; Y embedded rectangle

n = 1000;

rand("seed", 8); % must fix the seed!

I_expected = 3.117285; 7 computed with this seed

I_computed = MonteCarlo_double(@(x,y) 1, g, x0, x1, yO, yi1, n);
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assert(abs(I_expected - I_computed) < 1E-14);
end

(See the file test_MonteCarlo_double_rectangle_area.m.)

Integral over a circle. The test above involves a trivial function f(z,y) =
1. We should also test a non-constant f function and a more complicated
domain. Let {2 be a circle at the origin with radius 2, and let f =
V2% + y2. This choice makes it possible to compute an exact result: in
polar coordinates, [, f(z,y)dxzdy simplifies to 27 f02 r2dr = 167/3. We
must be prepared for quite crude approximations that fluctuate around
this exact result. As in the test case above, we experience better results
with larger number of points. When we have such evidence for a working
implementation, we can turn the test into a proper test function. Here is
an example:

function test_MonteCarlo_double_circle_r()
% Check the integral of r over a circle with radius 2.
function result = g(x, y)
xc = 0; yc = 0; % center
R = 2; % radius
result = R™2 - ((x-xc)"2 + (y-yc)~2);
end
g_handle = Qg;

% Exact: integral of r*r*xdr over circle with radius R becomes
% 2xpix1/3%R"3

syms r;

I_exact = int(@(r) 2*pi*r*r, r,
fprintf (’Exact integral: %g\n’,
x0 =-2; x1=2; yo=-2; yi
n = 1000;

rand("seed", 6); % must fix the seed!

I_expected = 16.85949525320151 7, Computed with this seed
I_computed = MonteCarlo_double(...

@(x, y) sqrt(x”2 + y~2), g_handle, x0, x1, yO, y1, n);
fprintf (’MC approximation (%d samples): %.16f’, n~2, I_computed);
assert(abs(I_computed - I_expected) < 1E-15);

end

> 2);
_exact);
2;

N H o

(See the file test_MonteCarlo_double_circle_r.m.)

3.8 Exercises

Exercise 3.1: Hand calculations for the trapezoidal method

Compute by hand the area composed of two trapezoids (of equal width)
that approximates the integral f13 223dx. Make a test function that calls
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the trapezoidal function in trapezoidal.m and compares the return
value with the hand-calculated value.
Filename: trapezoidal test_func.m.

Exercise 3.2: Hand calculations for the midpoint method

Compute by hand the area composed of two rectangles (of equal width)
that approximates the integral f13 223dx. Make a test function that calls
the midpoint function in midpoint.m and compares the return value
with the hand-calculated value.

Filename: midpoint_test_func.m.

Exercise 3.3: Compute a simple integral

Apply the trapezoidal and midpoint functions to compute the integral
f26 z(z — 1)dz with 2 and 100 subintervals. Compute the error too.
Filename: integrate_parabola.m.

Exercise 3.4: Hand-calculations with sine integrals
We consider integrating the sine function: fob sin(z)dz.

a) Let b = 7 and use two intervals in the trapezoidal and midpoint
method. Compute the integral by hand and illustrate how the two
numerical methods approximates the integral. Compare with the exact
value.

b) Do a) when b = 27.

Filename: integrate_sine.pdf.

Exercise 3.5: Make test functions for the midpoint method

Modify the file test_trapezoidal.m such that the three tests are ap-
plied to the function midpoint implementing the midpoint method for
integration.

Filename: test_midpoint.m.
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Exercise 3.6: Explore rounding errors with large numbers

The trapezoidal method integrates linear functions exactly, and this
property was used in the test function test_trapezoidal linear in
the file test_trapezoidal.m. Change the function used in Section 3.4.2
to f(x) = 6-10%z — 4-10° and rerun the test. What happens? How must
you change the test to make it useful? How does the convergence rate
test behave? Any need for adjustment?

Filename: test_trapezoidal2.m.

Exercise 3.7: Write test functions for [ \/zdx

We want to test how the trapezoidal function works for the integral
fé Vadz. Two of the tests in test_trapezoidal.m are meaningful for
this integral. Compute by hand the result of using 2 or 3 trapezoids and
modify the test_trapezoidal one_exact_result function accordingly.
Then modify test_trapezoidal_conv_rate to handle the square root
integral.

Filename: test_trapezoidal3.m.

Remarks. The convergence rate test fails. Printing out r shows that the
actual convergence rate for this integral is —1.5 and not —2. The reason
is that the error in the trapezoidal method® is —(b — a)3n=2f"(¢) for
some (unknown) ¢ € [a,b]. With f(z) = Vx, f"({) = —cc as £ — 0,
pointing to a potential problem in the size of the error. Running a test
with a > 0, say fo4.1 Vvxdz shows that the convergence rate is indeed
restored to -2.

Exercise 3.8: Rectangle methods

The midpoint method divides the interval of integration into equal-sized
subintervals and approximates the integral in each subinterval by a
rectangle whose height equals the function value at the midpoint of the
subinterval. Instead, one might use either the left or right end of the
subinterval as illustrated in Figure 3.4. This defines a rectangle method
of integration. The height of the rectangle can be based on the left or
right end or the midpoint.

Shttp://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis
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Fig. 3.4 Illustration of the rectangle method with evaluating the rectangle height by
either the left or right point.

a) Write a function rectangle(f, a, b, n, height=’1left’) for com-
puting an integral [ f f(z)dz by the rectangle method with height com-
puted based on the value of height, which is either left, right, or
mid.

b) Write three test functions for the three unit test procedures described
in Section 3.4.2. Make sure you test for height equal to left, right,
and mid. You may call the midpoint function for checking the result
when height=mid.

Hint. Edit test_trapezoidal.m.
Filename: rectangle_methods.m.

Exercise 3.9: Adaptive integration

Suppose we want to use the trapezoidal or midpoint method to compute
an integral [ f f(z)dx with an error less than a prescribed tolerance e.
What is the appropriate size of n?

To answer this question, we may enter an iterative procedure where we
compare the results produced by n and 2n intervals, and if the difference
is smaller than e, the value corresponding to 2n is returned. Otherwise,
we halve n and repeat the procedure.

Hint. It may be a good idea to organize your code so that the function
adaptive_integration can be used easily in future programs you write.

a) Write a function
adaptive_integration(f, a, b, eps, method=midpoint)

that implements the idea above (eps corresponds to the tolerance e, and
method can be midpoint or trapezoidal).
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b) Test the method on [ #2dz and [ \/zdz for ¢ = 1071,1071° and

write out the exact error.

c) Make a plot of n versus e € [10~',10719] for [ \/zdz. Use logarithmic
scale for e.
Filename: adaptive_integration.m.

Remarks. The type of method explored in this exercise is called adaptive,
because it tries to adapt the value of n to meet a given error criterion.
The true error can very seldom be computed (since we do not know the
exact answer to the computational problem), so one has to find other
indicators of the error, such as the one here where the changes in the
integral value, as the number of intervals is doubled, is taken to reflect
the error.

Exercise 3.10: Integrating x raised to x

4
I:/ 25 dx .
0

The integrand z® does not have an anti-derivative that can be expressed
in terms of standard functions (visit http://wolframalpha.com and
type integral (x"x,x) to convince yourself that our claim is right. Note
that Wolfram alpha does give you an answer, but that answer is an
approximation, it is not exact. This is because Wolfram alpha too uses

Consider the integral

numerical methods to arrive at the answer, just as you will in this
exercise). Therefore, we are forced to compute the integral by numerical
methods. Compute a result that is right to four digits.

Hint. Use ideas from Exercise 3.9.
Filename: integrate_x2x.m.

Exercise 3.11: Integrate products of sine functions

In this exercise we shall integrate

ijk:/ sin(jx) sin(kz)dz,

—T

where j and k are integers.


http://wolframalpha.com
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a) Plot sin(x) sin(2x) and sin(2x) sin(3z) for €] —m, 7] in separate plots.
Explain why you expect [™ sinzsin2zdz = 0 and [*_sin2zsin 3z dx =
0.

b) Use the trapezoidal rule to compute [, for j =1,...,10 and k =
1,...,10.
Filename: products_sines.m.

Exercise 3.12: Reuvisit fit of sines to a function

This is a continuation of Exercise 2.18. The task is to approximate a
given function f(¢) on [—m, 7] by a sum of sines,

N
Sn(t) = bysin(nt) . (3.27)

We are now interested in computing the unknown coefficients b,, such that
Sn(t) is in some sense the best approzimation to f(t). One common way
of doing this is to first set up a general expression for the approzimation
error, measured by “summing up” the squared deviation of Sy from f:

™

E= [ (Sx(t)— f(£))dt.

—Tr
We may view E as a function of by, ..., by. Minimizing F with respect to
b1,...,by will give us a best approzimation, in the sense that we adjust
b1,...,by such that Sy deviates as little as possible from f.
Minimization of a function of N variables, F(by,...,by) is mathemat-
ically performed by requiring all the partial derivatives to be zero:

oF
— =0
ob; ’
oOF
o, O
oF

a) Compute the partial derivative 0E/0b; and generalize to the arbitrary
case OF/0b,,, 1 <n < N.
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b) Show that

1 ™
b, = — f(t)sin(nt) dt .
TJr
c) Write a function integrate_coeffs(f, N, M) that computes
bi,...,by by numerical integration, using M intervals in the trapezoidal
rule.

d) A remarkable property of the trapezoidal rule is that it is exact
for integrals [ _sinntdt (when subintervals are of equal size). Use this
property to create a function test_integrate_coeff to verify the im-
plementation of integrate_coeffs.

e) Implement the choice f(t) = 1t as a Matlab function f(t) and
call integrate_coeffs(f, 3, 100) to see what the optimal choice of
bl, bz, bg is.

f) Make a function plot_approx(f, N, M, filename) where you plot
f (t) together with the best approximation Sy as computed above, using
M intervals for numerical integration. Save the plot to a file with name
filename.

g) Run plot_approx(f, N, M, filename) for f(t) = it for N =
3,6,12,24. Observe how the approximation improves.

h) Run plot_approx for f(t) = e~*=™ and N = 100. Observe a
fundamental problem: regardless of N, Sy(—m) = 0, not ¢*™ ~ 535.
(There are ways to fix this issue.)

Filename: autofit_sines.m.

Exercise 3.13: Derive the trapezoidal rule for a double
integral

Use ideas in Section 3.7.1 to derive a formula for computing a double
integral [ ; /. cd f(z,y)dydx by the trapezoidal rule. Implement and test
this rule.

Filename: trapezoidal_double.m.

Exercise 3.14: Compute the area of a triangle by Monte
Carlo integration

Use the Monte Carlo method from Section 3.7.3 to compute the area of
a triangle with vertices at (—1,0), (1,0), and (3,0).
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Filename: MC_triangle.m.
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Differential equations constitute one of the most powerful mathematical
tools to understand and predict the behavior of dynamical systems in
nature, engineering, and society. A dynamical system is some system with
some state, usually expressed by a set of variables, that evolves in time.
For example, an oscillating pendulum, the spreading of a disease, and
the weather are examples of dynamical systems. We can use basic laws of
physics, or plain intuition, to express mathematical rules that govern the
evolution of the system in time. These rules take the form of differential
equations. You are probably well experienced with equations, at least
equations like ax + b = 0 or axz? + bx + ¢ = 0. Such equations are known
as algebraic equations, and the unknown is a number. The unknown in a
differential equation is a function, and a differential equation will almost
always involve this function and one or more derivatives of the function.
For example, f/(x) = f(x) is a simple differential equation (asking if

105
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there is any function f such that it equals its derivative - you might
remember that e” is a candidate).

The present chapter starts with explaining how easy it is to solve both
single (scalar) first-order ordinary differential equations and systems
of first-order differential equations by the Forward Euler method. We
demonstrate all the mathematical and programming details through two
specific applications: population growth and spreading of diseases.

Then we turn to a physical application: oscillating mechanical systems,
which arise in a wide range of engineering situations. The differential
equation is now of second order, and the Forward Euler method does
not perform well. This observation motivates the need for other solution
methods, and we derive the Euler-Cromer scheme!, the 2nd- and 4th-
order Runge-Kutta schemes, as well as a finite difference scheme (the
latter to handle the second-order differential equation directly without
reformulating it as a first-order system). The presentation starts with
undamped free oscillations and then treats general oscillatory systems
with possibly nonlinear damping, nonlinear spring forces, and arbitrary
external excitation. Besides developing programs from scratch, we also
demonstrate how to access ready-made implementations of more advanced
differential equation solvers in Matlab.

As we progress with more advanced methods, we develop more sophis-
ticated and reusable programs, and in particular, we incorporate good
testing strategies so that we bring solid evidence to correct computa-
tions. Consequently, the beginning with population growth and disease
modeling examples has a very gentle learning curve, while that curve
gets significantly steeper towards the end of the treatment of differential
equations for oscillatory systems.

4.1 Population growth

Our first taste of differential equations regards modeling the growth
of some population, such as a cell culture, an animal population, or a
human population. The ideas even extend trivially to growth of money
in a bank. Let N(¢) be the number of individuals in the population at
time t. How can we predict the evolution of N(t) in time? Below we shall
derive a differential equation whose solution is N(t). The equation reads

1 The term scheme is used as synonym for method or computational recipe, especially
in the context of numerical methods for differential equations.



4.1 Population growth 107

N'(t) = rN(t), (4.1)

where 7 is a number. Note that although N is an integer in real life, we
model N as a real-valued function. We are forced to do this because the
solution of differential equations are (normally continuous) real-valued
functions. An integer-valued N (t) in the model would lead to a lot of
mathematical difficulties.

With a bit of guessing, you may realize that N(t) = Ce", where C' is
any number. To make this solution unique, we need to fix C', done by
prescribing the value of N at some time, usually ¢ = 0. Say N(0) is given
as Ny. Then N(t) = Nge™.

In general, a differential equation model consists of a differential
equation, such as (4.1) and an initial condition, such as N(0) = Ny. With
a known initial condition, the differential equation can be solved for the
unknown function and the solution is unique.

It is, of course, very seldom that we can find the solution of a differ-
ential equation as easy as in this example. Normally, one has to apply
certain mathematical methods, but these can only handle some of the
simplest differential equations. However, we can easily deal with almost
any differential equation by applying numerical methods and a bit of
programming. This is exactly the topic of the present chapter.

4.1.1 Derivation of the model

It can be instructive to show how an equation like (4.1) arises. Consider
some population of (say) an animal species and let N(¢) be the number
of individuals in a certain spatial region, e.g. an island. We are not
concerned with the spatial distribution of the animals, just the number
of them in some spatial area where there is no exchange of individuals
with other spatial areas. During a time interval At, some animals will
die and some new will be born. The number of deaths and births are
expected to be proportional to N. For example, if there are twice as
many individuals, we expect them to get twice as many newborns. In a
time interval At, the net growth of the population will be

N(t+ At) — N(t) = bN(t) — dN(t),

where bN(t) is the number of newborns and dN(t) is the number of
deaths. If we double At, we expect the proportionality constants b and d

to double too, so it makes sense to think of b and d as proportional to
At and “factor out” At. That is, we introduce b = b/At and d = d/At
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to be proportionality constants for newborns and deaths independent of
At. Also, we introduce r = b — d, which is the net rate of growth of the
population per time unit. Our model then becomes

N(t+ At) — N(t) = AtrN(t). (4.2)
Equation (4.2) is actually a computational model. Given N (t), we can
advance the population size by
N(t+ At) = N(t) + AtrN(t).

This is called a difference equation. If we know N (t) for some t, e.g.,
N(0) = Ny, we can compute

N(At) = Ny + At rNy,
N(2At) = N(At) + AtrN(At),
N(3At) = N(2At) + AtrN(2At),

N((k+ 1)At).: N(kAt) + AtrN(kAt),

where k is some arbitrary integer. A computer program can easily compute
N((k+ 1)At) for us with the aid of a little loop.

Warning

Observe that the computational formula cannot be started unless
we have an initial condition!

The solution of N’ = rN is N = Ce" for any constant C, and
the initial condition is needed to fix C' so the solution becomes
unique. However, from a mathematical point of view, knowing N ()
at any point t is sufficient as initial condition. Numerically, we more
literally need an initial condition: we need to know a starting value
at the left end of the interval in order to get the computational
formula going.

In fact, we do not need a computer since we see a repetitive pattern
when doing hand calculations, which leads us to a mathematical formula
for N((k +1)At), :
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N((k+1)At) = N(kAt) + AtrN(kAt) = N(kAt)(1 + Atr)
= N((k = 1)At)(1 4 Atr)?

= No(1 + Atr)F+t.

Rather than using (4.2) as a computational model directly, there is a
strong tradition for deriving a differential equation from this difference
equation. The idea is to consider a very small time interval At and
look at the instantaneous growth as this time interval is shrunk to an
infinitesimally small size. In mathematical terms, it means that we let
At — 0. As (4.2) stands, letting At — 0 will just produce an equation
0 = 0, so we have to divide by At and then take the limit:

lim N(t+ At) — N(t)
At—0 At

The term on the left-hand side is actually the definition of the derivative
N'(t), so we have

=7rN(t).

N'(t) = rN(t),

which is the corresponding differential equation.

There is nothing in our derivation that forces the parameter r to be
constant - it can change with time due to, e.g., seasonal changes or more
permanent environmental changes.

[ Detour: Exact mathematical solution

If you have taken a course on mathematical solution methods for
differential equations, you may want to recap how an equation like
N' =rN or N' = r(t)N is solved. The method of separation of
variables is the most convenient solution strategy in this case:
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N =rN
dN
a
dN
W :Tdt

N AN t d
— = rdt
%=
t
lanlnNoz/ r(t)dt
0

N = Ny exp (/Otr(t)dt),

which for constant r results in N = Npe™. Note that exp (t) is the
same as e’.

As will be described later, r must in more realistic models depend
on N. The method of separation of variables then requires to inte-
grate [ Ji,\g N/r(N)dN, which quickly becomes non-trivial for many
choices of r(N). The only generally applicable solution approach is
therefore a numerical method.

4.1.2 Numerical solution

There is a huge collection of numerical methods for problems like (4.2),
and in general any equation of the form v = f(u,t), where wu(t) is the
unknown function in the problem, and f is some known formula of u and
optionally t. For example, f(u,t) = ru in (4.2). We will first present a
simple finite difference method solving ' = f(u,t). The idea is four-fold:

1. Introduce a mesh in time with N;+1 points ¢g, ¢1,. .., tn,. We seek the
unknown u at the mesh points ¢,, and introduce u™ as the numerical
approximation to wu(t,), see Figure 4.1.

2. Assume that the differential equation is valid at the mesh points.

Approximate derivatives by finite differences, see Figure 4.2.

4. Formulate a computational algorithm that can compute a new value
u™ based on previously computed values v, i < n.

w
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Fig. 4.1 Mesh in time with corresponding discrete values (unknowns).

*< forward

t

t’nfl n+1

Fig. 4.2 Tllustration of a forward difference approximation to the derivative.

An example will illustrate the steps. First, we introduce the mesh, and
very often the mesh is uniform, meaning that the spacing between points
t, and t,11 is constant. This property implies that

t, =nAt, n=0,1,..., N;.

Second, the differential equation is supposed to hold at the mesh points.
Note that this is an approximation, because the differential equation
is originally valid at all real values of t. We can express this property
mathematically as

u(ty) = f(u™t,), n=01,...,N;.

For example, with our model equation u' = ru, we have the special case
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W (ty) =ru™, n=0,1,..., Ny,

or

W (ty) =r(ty)u”, n=0,1,..., N,

if » depends explicitly on ¢.

Third, derivatives are to be replaced by finite differences. To this end,
we need to know specific formulas for how derivatives can be approximated
by finite differences. One simple possibility is to use the definition of the
derivative from any calculus book,

At an arbitrary mesh point ¢, this definition can be written as

n+1 n

u —Uu

! o .
)= A

Instead of going to the limit At — 0 we can use a small At, which yields
a computable approximation to u'(¢,):

un+1 n

—u
At

This is known as a forward difference since we go forward in time (u"!)
to collect information in u to estimate the derivative. Figure 4.2 illustrates
the idea. The error in of the forward difference is proportional to At
(often written as O(At), but will not use this notation in the present
book).

We can now plug in the forward difference in our differential equation
sampled at the arbitrary mesh point ¢,:

u'(tn) =

un+1 —un

4At f(unvtn)v (43)

or with f(u,t) = ru in our special model problem for population growth,

— = ru” . (4.4)
If r depends on time, we insert r(t,) = r™ for r in this latter equation.
The fourth step is to derive a computational algorithm. Looking at
(4.3), we realize that if u™ should be known, we can easily solve with
respect to u™! to get a formula for u at the next time level ¢, 1:
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u" T =" 4 ALf(u™ ) (4.5)

Provided we have a known starting value, u® = Uy, we can use (4.5) to
advance the solution by first computing «! from u°, then v? from u', u?
from 2, and so forth.

Such an algorithm is called a numerical scheme for the differential

equation and often written compactly as

u" =+ Atf(utt,), u’=U;, n=0,1,...,N,—1. (4.6)

This scheme is known as the Forward Fuler scheme, also called Fuler’s
method.
In our special population growth model, we have

=+ Atru®, W =Up, n=0,1,...,N,—1. (4.7)

We may also write this model using the problem-specific symbol N
instead of the generic u function:

N = N" 4 AtrN™, N°=Ny, n=0,1,...,N,—1. (4.8

The observant reader will realize that (4.8) is nothing but the com-
putational model (4.2) arising directly in the model derivation. The
formula (4.8) arises, however, from a detour via a differential equation
and a numerical method for the differential equation. This looks rather
unnecessary! The reason why we bother to derive the differential equation
model and then discretize it by a numerical method is simply that the
discretization can be done in many ways, and we can create (much) more
accurate and more computationally efficient methods than (4.8) or (4.6).
This can be useful in many problems! Nevertheless, the Forward Euler
scheme is intuitive and widely applicable, at least when At is chosen to
be small.

[ The numerical solution between the mesh points ]

Our numerical method computes the unknown function u at dis-
crete mesh points t1,ts,...,ty,. What if we want to evaluate the
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numerical solution between the mesh points? The most natural
choice is to assume a linear variation between the mesh points, see
Figure 4.3. This is compatible with the fact that when we plot the
array u®,u', ... versus to,t1,..., a straight line is drawn between

the discrete points.

Fig. 4.3 The numerical solution at points can be extended by linear segments between
the mesh points.

4.1.3 Programming the Forward Euler scheme; the special
case

Let us compute (4.8) in a program. The input variables are Ny, At, r,
and N;. Note that we need to compute N; + 1 new values N1, ... NN+
A total of Ny + 2 values are needed in an array representation of N,
n = O,.. .,]\Q + 1.

Our first version of this program is as simple as possible:

N_O = input(’Give initial population size N_0: ’);

r = input(’Give net growth rate r: ’);
dt = input(’Give time step size: ’);
N_t = input(’Give number of steps: ’);
t = linspace(0, (N_t+1)#*dt, N_t+2);

N = zeros(N_t+2, 1);

N(1) = N_O;
for n = 1:N_t
N(n+1) = N(n) + r*dt*N(n);
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end
if N_t < 70
numerical_sol = ’bo’;
else
numerical_sol = ’b-’;
end

plot(t, N, numerical_sol, t, N_Oxexp(r.*t), ’r-’);
xlabel(’t’); ylabel(’N(t)’);

legend(’numerical’, ’exact’, ’location’, ’northwest’);
filestem = strcat(’growthl_’, num2str(N_t), ’steps’);
print(filestem, ’-dpng’); print(filestem, ’-dpdf’);

The complete code above resides in the file growthl.m.

Let us demonstrate a simulation where we start with 100 animals,
a net growth rate of 10 percent (0.1) per time unit, which can be one
month, and ¢ € [0,20] months. We may first try At of half a month
(0.5), which implies Ny = 40 (or to be absolutely precise, the last time
point to be computed according to our set-up above is ty,+1 = 20.5).
Figure 4.4 shows the results. The solid line is the exact solution, while the
circles are the computed numerical solution. The discrepancy is clearly
visible. What if we make At 10 times smaller? The result is displayed in
Figure 4.5, where we now use a solid line also for the numerical solution
(otherwise, 400 circles would look very cluttered, so the program has
a test on how to display the numerical solution, either as circles or
a solid line). We can hardly distinguish the exact and the numerical
solution. The computing time is also a fraction of a second on a laptop,
so it appears that the Forward Euler method is sufficiently accurate
for practical purposes. (This is not always true for large, complicated
simulation models in engineering, so more sophisticated methods may
be needed.)

It is also of interest to see what happens if we increase At to 2 months.
The results in Figure 4.6 indicate that this is an inaccurate computation.

4.1.4 Understanding the Forward Euler method

The good thing about the Forward Euler method is that it gives an
understanding of what a differential equation is and a geometrical picture
of how to construct the solution. The first idea is that we have already
computed the solution up to some time point £,,. The second idea is that
we want to progress the solution from ¢, to t,41 as a straight line.

We know that the line must go through the solution at ¢,, i.e., the
point (t,,u™). The differential equation tells us the slope of the line:


https://github.com/hplgit/prog4comp/tree/master/src/m/growth1.m
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Fig. 4.4 Evolution of a population computed with time step 0.5 month.

' (ty) = f(u", t,) = ru™. That is, the differential equation gives a direct
formula for the further direction of the solution curve. We can say that
the differential equation expresses how the system (u) undergoes changes
at a point.

There is a general formula for a straight line y = ax + b with slope
a that goes through the point (zg,v0): v = a(z — o) + yo. Using this
formula adapted to the present case, and evaluating the formula for ¢, 1,
results in

U = Uty — ) F U™ = U+ Atru®,

which is nothing but the Forward Euler formula. You are now encour-
aged to do Exercise 4.1 to become more familiar with the geometric
interpretation of the Forward Fuler method.
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Fig. 4.5 Evolution of a population computed with time step 0.05 month.

4.1.5 Programming the Forward Euler scheme; the general
case

Our previous program was just a flat main program tailored to a special
differential equation. When programming mathematics, it is always good
to consider a (large) class of problems and making a Matlab function to
solve any problem that fits into the class. More specifically, we will make
software for the class of differential equation problems of the form

u'(t) = f(u,t), u=Uy, tel0,T),

for some given function f, and numbers Uy and T. We also take the
opportunity to illustrate what is commonly called a demo function. As
the name implies, the purpose of such a function is solely to demonstrate
how the function works (not to be confused with a test function, which
does verification by use of assert). The Matlab function calculating the
solution must take f, Uy, At, and T as input, find the corresponding N,
compute the solution, and return and array with v°,«!,..., vt and an
array with tg,%1,...,tn,. The Forward Euler scheme reads
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Fig. 4.6 Evolution of a population computed with time step 2 months.

u" =" 4 Atf(u",t,), n=0,...,N;—1.
The corresponding program ode FE.m may now take the form

function [sol, time] = ode_FE(f, U_0, dt, T)
N_t = floor(T/dt);
u = zeros(N_t+1, 1);
t = linspace(0, N_t*dt, length(u));
u(l) = U_0;
for n = 1:N_t
u(n+l) = u(@) + dt*f(u(@), t(n));

end

sol = u;

time = t;
end

Note that the function ode_ FE is general, i.e. it can solve any differen-
tial equation v’ = f(u,t).

A proper demo function for this solver might be written as (file
demo_population_growth.m):

function demo_population_growth()
% Test case: u’ = r*u, u(0)=100
function r = f(u, t)


https://github.com/hplgit/prog4comp/tree/master/src/m/demo_population_growth.m
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r = 0.1%u;
end
[u, t] = ode_FE(@f, 100, 0.5, 20);
plot(t, u, t, 100*exp(0.1%t));
end

The solution should be identical to what the growthl.m program
produces with the same parameter settings (r = 0.1, Ng = 100). This
feature can easily be tested by inserting a print statement, but a much
better, automated verification is suggested in Exercise 4.1. You are
strongly encouraged to take a “break” and do that exercise now.

Remark on the use of u as variable

In the ode_FE program, the variable u is used in different contexts.
Inside the ode FE function, u is an array, but in the £ (u,t) func-
tion, as exemplified in the demo_population_growth function, the
argument u is a number. Typically, we call £ (in ode_FE) with the
u argument as one element of the array u in the ode_FE function:
u(n).

4.1.6 Making the population growth model more realistic

Exponential growth of a population according the model N’ = rN, with
exponential solution N = Npe™, is unrealistic in the long run because the
resources needed to feed the population are finite. At some point there
will not be enough resources and the growth will decline. A common
model taking this effect into account assumes that r depends on the size
of the population, N:

N(t+ At) — N(t) = r(N(t))N(t).
The corresponding differential equation becomes
N'=r(N)N.

The reader is strongly encouraged to repeat the steps in the derivation
of the Forward Euler scheme and establish that we get

Nt = N™ 4 Atr(N™)N™,
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which computes as easy as for a constant r, since r(N") is known when
computing N™*!. Alternatively, one can use the Forward Euler formula
for the general problem v’ = f(u,t) and use f(u,t) = r(u)u and replace
u by N.

The simplest choice of 7(N) is a linear function, starting with some
growth value 7 and declining until the population has reached its maxi-
mum, M, according to the available resources:

r(N) = 7(1 — N/M).

In the beginning, N < M and we will have exponential growth e but
as N increases, r(N) decreases, and when N reaches M, r(N) = 0 so
there is now more growth and the population remains at N(t) = M. This
linear choice of (V) gives rise to a model that is called the logistic model.
The parameter M is known as the carrying capacity of the population.

Let us run the logistic model with aid of the ode_FE function in the
ode_FE module. We choose N(0) = 100, At = 0.5 month, 7' = 60 months,
r = 0.1, and M = 500. The complete program, called logistic.m, is
basically a call to ode_FE:

f = Q@Cu, t) 0.1%(1 - u/500)*u;
U_0 = 100;

dt = 0.5; T = 60;

[u, t] = ode FE(f, U_0, dt, T);

plot(t, u, ’b-?);

xlabel(’t’); ylabel(’°N(t)’);

filestem = strcat(’tmp_’,num2str(dt));

% Note: this print statement gets a problem with the decimal point
sprint(filestem,’-dpng’); print(filestem,’-dpdf’);

% so we rather do it like this:

filename = strcat(filestem, ’.png’); print(filename);

filename = strcat(filestem, ’.pdf’); print(filename);

dt = 20; T = 100;

[u, t] = ode_FE(f, U_0, dt, T);

plot(t, u, ’b-’);

xlabel(’t’); ylabel(’N(t)’);

filestem = strcat(’tmp_’,num2str(dt));
print(filestem, ’-dpng’); print(filestem, ’-dpdf’);

Figure 4.7 shows the resulting curve. We see that the population
stabilizes around M = 500 individuals. A corresponding exponential
growth would reach Npe™ = 100e%160 ~ 40, 300 individuals!

It is always interesting to see what happens with large At values. We
may set At = 20 and T" = 100. Now the solution, seen in Figure 4.8,


https://github.com/hplgit/prog4comp/tree/master/src/m/logistic.m
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Fig. 4.7 Logistic growth of a population.

oscillates and is hence qualitatively wrong, because one can prove that the
exact solution of the differential equation is monotone. (However, there
is a corresponding difference equation model, N, 11 = rN,(1 — N,,/M),
which allows oscillatory solutions and those are observed in animal
populations. The problem with large At is that it just leads to wrong
mathematics - and two wrongs don’t make a right in terms of a relevant

model.)

Remark on the world population

The number of people on the planet® follows the model N’ = r(¢)N,
where the net reproduction r(t) varies with time and has decreased
since its top in 1990. The current world value of r is 1.2%, and it is
difficult to predict future values’. At the moment, the predictions
of the world population point to a growth to 9.6 billion before
declining.

This example shows the limitation of a differential equation
model: we need to know all input parameters, including r(¢), in



http://en.wikipedia.org/wiki/Population_growth
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Populations.html
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Fig. 4.8 Logistic growth with large time step.

order to predict the future. It is seldom the case that we know
all input parameters. Sometimes knowledge of the solution from
measurements can help estimate missing input parameters.

“http://en.wikipedia.org/wiki/Population_growth
*http://users.rcn.com/jkimball .ma.ultranet/BiologyPages/P/Populations.hfml

4.1.7 Verification: exact linear solution of the discrete
equations

How can we verify that the programming of an ODE model is correct?
The best method is to find a problem where there are no unknown
numerical approximation errors, because we can then compare the exact
solution of the problem with the result produced by our implementation
and expect the difference to be within a very small tolerance. We shall
base a unit test on this idea and implement a corresponding test function
(see Section 3.4.4) for automatic verification of our implementation.
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It appears that most numerical methods for ODEs will exactly repro-
duce a solution u that is linear in . We may therefore set u = at + b and
choose any f whose derivative is a. The choice f(u,t) = a is very simple,
but we may add anything that is zero, e.g.,

fut) = a+ (u—(at +b))™.

This is a valid f(u,t) for any a, b, and m. The corresponding ODE looks
highly non-trivial, however:

u' =a+ (u— (at +b)™.

Using the general ode_FE function in ode_FE.m, we may write a proper
test function as follows (in file test_ode_FE_exact_linear.m):

function test_ode_FE_exact_linear()
% Test if a linear function u(t) = a*x + b is exactly reproduced.

a=4; b=-1; m=6;

exact_solution = @(t) (a*t + b)’;
f = @(u, t) a + (u - exact_solution(t)) m;

dt = 0.5; T = 20.0;

[u, t] = ode_FE(f, exact_solution(0), dt, T);
diff = max(abs(exact_solution(t) - u));
tol = 1E-15; % Tolerance for float comparison
assert(diff < tol);
end

Observe that we cannot compare diff to zero, which is what we
mathematically expect, because diff is a floating-point variable that
most likely contains small rounding errors. Therefore, we must compare
diff to zero with a tolerance, here 10715,

You are encouraged to do Exercise 4.2 where the goal is to make a
test function for a verification based on comparison with hand-calculated
results for a few time steps.

4.2 Spreading of diseases

Our aim with this section is to show in detail how one can apply math-
ematics and programming to investigate spreading of diseases. The
mathematical model is now a system of three differential equations with


https://github.com/hplgit/prog4comp/tree/master/src/m/ode_FE.m
https://github.com/hplgit/prog4comp/tree/master/src/m/test_ode_FE_exact_linear.m
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three unknown functions. To derive such a model, we can use mainly
intuition, so no specific background knowledge of diseases is required.

4.2.1 Spreading of a flu

Imagine a boarding school out in the country side. This school is a small
and closed society. Suddenly, one or more of the pupils get a flu. We
expect that the flu may spread quite effectively or die out. The question is
how many of the pupils and the school’s staff will be affected. Some quite
simple mathematics can help us to achieve insight into the dynamics of
how the disease spreads.

Let the mathematical function S(t) count how many individuals, at
time ¢, that have the possibility to get infected. Here, ¢ may count
hours or days, for instance. These individuals make up a category called
susceptibles, labeled as S. Another category, I, consists of the individuals
that are infected. Let I(¢) count how many there are in category I at
time t. An individual having recovered from the disease is assumed to
gain immunity. There is also a small possibility that an infected will die.
In either case, the individual is moved from the I category to a category
we call the removed category, labeled with R. We let R(t) count the
number of individuals in the R category at time t. Those who enter the
R category, cannot leave this category.

To summarize, the spreading of this disease is essentially the dynamics
of moving individuals from the S to the I and then to the R category:

e e

We can use mathematics to more precisely describe the exchange
between the categories. The fundamental idea is to describe the changes
that take place during a small time interval, denoted by At.

Our disease model is often referred to as a compartment model, where
quantities are shuffled between compartments (here a synonym for cate-
gories) according to some rules. The rules express changes in a small time
interval At, and from these changes we can let At go to zero and obtain

derivatives. The resulting equations then go from difference equations
(with finite At) to differential equations (At — 0).
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We introduce a uniform mesh in time, ¢, = nAt, n =0,..., Ny, and
seek S at the mesh points. The numerical approximation to S at time ¢,
is denoted by S™. Similarly, we seck the unknown values of I(t) and R(t)
at the mesh points and introduce a similar notation I™ and R" for the
approximations to the exact values I(¢,) and R(t,).

In the time interval At we know that some people will be infected,
so S will decrease. We shall soon argue by mathematics that there will
be BAtSIT new infected individuals in this time interval, where 3 is a
parameter reflecting how easy people get infected during a time interval
of unit length. If the loss in S is SAtSI, we have that the change in S is

S §n — _BALS" I (4.9)

Dividing by At and letting At — 0, makes the left-hand side approach
S’(t,) such that we obtain a differential equation

S' = —BSI. (4.10)

The reasoning in going from the difference equation (4.9) to the differential
equation (4.10) follows exactly the steps explained in Section 4.1.1.

Before proceeding with how I and R develops in time, let us explain
the formula SAtSI. We have S susceptibles and I infected people. These
can make up ST pairs. Now, suppose that during a time interval T we
measure that m actual pairwise meetings do occur among n theoretically
possible pairings of people from the S and I categories. The probability
that people meet in pairs during a time 7" is (by the empirical frequency
definition of probability) equal to m/n, i.e., the number of successes
divided by the number of possible outcomes. From such statistics we
normally derive quantities expressed per unit time, i.e., here we want
the probability per unit time, p, which is found from dividing by 7"
= m/(nT).

Given the probability u, the expected number of meetings per time
interval of ST possible pairs of people is (from basic statistics) pS1.
During a time interval At, there will be uSIAt expected number of
meetings between susceptibles and infected people such that the virus
may spread. Only a fraction of the uAtSI meetings are effective in the
sense that the susceptible actually becomes infected. Counting that m
people get infected in n such pairwise meetings (say 5 are infected from
1000 meetings), we can estimate the probability of being infected as
p = m/n. The expected number of individuals in the S category that
in a time interval At catch the virus and get infected is then puAtSI.
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Introducing a new constant 5 = pu to save some writing, we arrive at
the formula SAtST.

The value of S must be known in order to predict the future with the
disease model. One possibility is to estimate p and g from their meanings
in the derivation above. Alternatively, we can observe an “experiment”
where there are Sy susceptibles and I infected at some point in time.
During a time interval T' we count that N susceptibles have become
infected. Using (4.9) as a rough approximation of how S has developed
during time 7' (and now 7' is not necessarily small, but we use (4.9)
anyway), we get

N
TSolo "
We need an additional equation to describe the evolution of I(¢). Such

an equation is easy to establish by noting that the loss in the S category
is a corresponding gain in the I category. More precisely,

N =pTSly = =

(4.11)

" [ = BALS™M ™. (4.12)

However, there is also a loss in the I category because people recover from
the disease. Suppose that we can measure that m out of n individuals
recover in a time period T (say 10 of 40 sick people recover during a day:
m = 10, n = 40, T'= 24 h). Now, v = m/(nT) is the probability that
one individual recovers in a unit time interval. Then (on average) yAtI
infected will recover in a time interval At. This quantity represents a
loss in the I category and a gain in the R category. We can therefore
write the total change in the I category as

I I = BALS™T™ — yALT™ . (4.13)

The change in the R category is simple: there is always an increase
from the I category:

R™ — R™ = yAtI™. (4.14)

Since there is no loss in the R category (people are either recovered and
immune, or dead), we are done with the modeling of this category. In
fact, we do not strictly need the equation (4.14) for R, but extensions of
the model later will need an equation for R.

Dividing by At in (4.13) and (4.14) and letting At — 0, results in the
corresponding differential equations



4.2 Spreading of diseases 127

I' = BALST — yAtl, (4.15)

and

R =~I. (4.16)

To summarize, we have derived difference equations (4.9)-(4.14), and
alternative differential equations (4.15)-(4.16). For reference, we list the
complete set of the three difference equations:

Smtl — gn - BALS™I™, (4.17)
" = 1" 4 BALS™T™ — yALI™, (4.18)
R™ = R" 4 yALI™. (4.19)

Note that we have isolated the new unknown quantities S"*!, I"*1 and
R™1 on the left-hand side, such that these can readily be computed if S™,
1™, and R™ are known. To get such a procedure started, we need to know
SY 19 R°. Obviously, we also need to have values for the parameters 3
and 7.

We also list the system of three differential equations:

S' = —BSI, (4.20)
I'=BSI—~l, (4.21)
R =~I. (4.22)

This differential equation model (and also its discrete counterpart above)
is known as a SIR model. The input data to the differential equation
model consist of the parameters § and 7 as well as the initial conditions
S(O) = SQ, ](O) = 107 and R(O) = Ro.

4.2.2 A Forward Euler method for the differential equation
system

Let us apply the same principles as we did in Section 4.1.2 to discretize
the differential equation system by the Forward Euler method. We already
have a time mesh and time-discrete quantities S™, I", R", n=0,..., N;.
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The three differential equations are assumed to be valid at the mesh
points. At the point ¢, we then have

S/(tn) = _/BS(tn)[(tn)a (4'23)
I/(tn) = ﬁs(tn)l(tn) - Vj(tn)v (424)
R/(tn) = ’Yl(tn)a (4'25)
for n = 0,1,..., N;. This is an approximation since the differential

equations are originally valid at all times ¢ (usually in some finite interval
[0,T7). Using forward finite differences for the derivatives results in an
additional approximation,

Sn+1 — §n
= —pS"I", (4.26)
InJrl _ "
A =St Al (4.27)
Rn+1 — Rn .

As we see, these equations are identical to the difference equations that
naturally arise in the derivation of the model. However, other numerical
methods than the Forward Euler scheme will result in slightly different
difference equations.

4.2.3 Programming the numerical method; the special case

The computation of (4.26)-(4.28) can be readily made in a computer
program SIR1.m:

% Time unit: 1 h
beta = 10/(40%8%24) ;
gamma = 3/(15%24);

dt = 0.1; % 6 min
D = 30; % Simulate for D days
N_t = floor(D*24/dt); % Corresponding no of hours

linspace(0, N_t*dt, N_t+1);
zeros(N_t+1, 1);
zeros(N_t+1, 1);
zeros(N_t+1, 1);

o H W o

% Initial condition


https://github.com/hplgit/prog4comp/tree/master/src/m/SIR1.m
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S(1) = 50;
I(1) = 1;
R(1) = 0;

% Step equations forward in time
for n = 1:N_t

S(n+1) = S(n) - dtxbetax*xS(n)*I(n);
I(n+1) = I(n) + dt*beta*S(n)*I(n) - dt*xgamma*I(n);
R(n+1) = R(n) + dt*gamma*I(n);

end

plot(t, S, t, I, t, R);

legend(’S’, ’I’, ’R’, ’Location’,’northwest’);
xlabel ("hours’);
print(’tmp’, ’-dpdf’); print(’tmp’, ’-dpng’);

This program was written to investigate the spreading of a flu at the
mentioned boarding school, and the reasoning for the specific choices
B and v goes as follows. At some other school where the disease has
already spread, it was observed that in the beginning of a day there
were 40 susceptibles and 8 infected, while the numbers were 30 and 18,
respectively, 24 hours later. Using 1 h as time unit, we then have from
(4.11) that 8 = 10/(40-8-24). Among 15 infected, it was observed that 3
recovered during a day, giving v = 3/(15-24). Applying these parameters
to a new case where there is one infected initially and 50 susceptibles,
gives the graphs in Figure 4.9. These graphs are just straight lines between
the values at times t; = At as computed by the program. We observe
that S reduces as I and R grows. After about 30 days everyone has
become ill and recovered again.

We can experiment with 5 and 7 to see whether we get an outbreak
of the disease or not. Imagine that a “wash your hands” campaign was
successful and that the other school in this case experienced a reduction
of 3 by a factor of 5. With this lower § the disease spreads very slowly
so we simulate for 60 days. The curves appear in Figure 4.10.

4.2.4 Qutbreak or not

Looking at the equation for I, it is clear that we must have 5ST—~I > 0
for I to increase. When we start the simulation it means that

#5(0)1(0) —~1(0) >0,

or simpler
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Fig. 4.9 Natural evolution of a flu at a boarding school.

p5(0)

~
to increase the number of infected people and accelerate the spreading
of the disease. You can run the SIR1.m program with a smaller 5 such
that (4.29) is violated and observe that there is no outbreak.

>1 (4.29)

The power of mathematical modeling

The reader should notice our careful use of words in the previous
paragraphs. We started out with modeling a very specific case,
namely the spreading of a flu among pupils and staff at a board-
ing school. With purpose we exchanged words like pupils and flu
with more neutral and general words like individuals and disease,
respectively. Phrased equivalently, we raised the abstraction level
by moving from a specific case (flu at a boarding school) to a more
general case (disease in a closed society). Very often, when devel-
oping mathematical models, we start with a specific example and
see, through the modeling, that what is going on of essence in this
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Fig. 4.10 Small outbreak of a flu at a boarding school (8 is much smaller than in
Figure 4.9).

example also will take place in many similar problem settings. We
try to incorporate this generalization in the model so that the model
has a much wider application area than what we aimed at in the
beginning. This is the very power of mathematical modeling: by
solving one specific case we have often developed more generic tools
that can readily be applied to solve seemingly different problems.
The next sections will give substance to this assertion.

4.2.5 Abstract problem and notation

When we had a specific differential equation with one unknown, we
quickly turned to an abstract differential equation written in the generic
form u' = f(u,t). We refer to such a problem as a scalar ODE. A specific
equation corresponds to a specific choice of the formula f(u,t) involving
u and (optionally) .
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It is advantageous to also write a system of differential equations in
the same abstract notation,

u' = f(u7t)7

but this time it is understood that w is a vector of functions and f is
also vector. We say that ' = f(u,t) is a vector ODE or system of ODFEs
in this case. For the SIR model we introduce the two 3-vectors, one for
the unknowns,

u=(S@),1(t), R(t)),

and one for the right-hand side functions,

flu,t) = (=BSI, ST —~I,~I).

The equation v’ = f(u,t) means setting the two vectors equal, i.e., each
component must be equal. Since v’ = (S, I', R'), we get that v’ = f
implies

S"'=—pBSI,
I' = BSI — 1,
R =~I.
The generalized short notation v’ = f(u,t) is very handy since we

can derive numerical methods and implement software for this abstract
system and in a particular application just identify the formulas in the f
vector, implement these, and call functionality that solves the differential
equation system.

4.2.6 Programming the numerical method; the general case

In Matlab code, the Forward Euler step

a = AL (" ),
being a scalar or a vector equation, can be coded as
u(n+l,:) = uln,:) + dtxf(uln,:), t))

both in the scalar and vector case. In the vector case, u(n, :) is a one-
dimensional array of length m + 1 holding the mathematical quantity u",
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and the Matlab function £ must return an array of length m + 1. Then
the expression u(n, :) + dt*f(u(n,:), t(n)) is an array plus a scalar
times an array.

For all this to work, the complete numerical solution must be repre-
sented by a two-dimensional array, created by u = zeros(N_t+1, m+1).
The first index counts the time points and the second the components of
the solution vector at one time point. That is, u(n,i) corresponds to the
mathematical quantity «;'. Writing u(n, :) picks out all the components
in the solution at the time point with index n. The nice feature of these
facts is that the same piece of Matlab code works for both a scalar ODE
and a system of ODEs!

The ode_FE function for the vector ODE is placed in the file ode
system_FE.m and was written as follows:

function [u, t] = ode_FE(f, U_O, dt, T)
N_t = floor(T/dt);
u = zeros(N_t+1, length(U_0));
t = linspace(0, N_t*dt, length(u));
u(l,:) = U_0; % Initial values
t(1) = 0;
for n = 1:N_t
u(n+l,:) = u(n,:) + dt*f(uln,:), t@n));
end
end

Let us show how the previous SIR model can be solved using the
new general ode_FE that can solve any vector ODE. The user’s f (u, t)
function takes a vector u, with three components corresponding to .S, I,
and R as argument, along with the current time point t(n), and must
return the values of the formulas of the right-hand sides in the vector
ODE. An appropriate implementation is

function result = f(u, t)

S=ull); I=mu(2); R =nu(3;

result = [-beta*S*I beta*S*I - gamma*I gammaxI]
end

where beta and gamma are problem specific parameters set outside of
that function. Note that the S, I, and R values correspond to 5™, I, and
R™. These values are then just inserted in the various formulas in the
vector ODE.

We can now show a function (in file demo_SIR.m) that runs the previous
SIR example, but which applies the generic ode_FE function:

function demo_SIR()
% Test case using an SIR model


https://github.com/hplgit/prog4comp/tree/master/src/m/ode_system_FE.m
https://github.com/hplgit/prog4comp/tree/master/src/m/ode_system_FE.m
https://github.com/hplgit/prog4comp/tree/master/src/m/demo_SIR.m

134 4 Solving ordinary differential equations

dt = 0.1; % 6 min

D = 30; % Simulate for D days

N_t = floor(D*24/dt); % Corresponding no of hours
T = dt*N_t; % End time

U_0 = [50 1 0];

f_handle = @f;

[u, t] = ode_FE(f_handle, U_0, dt, T);

S =u(:,1);
I=nu(:,2);
R = u(:,3);

plot(t, S, ’b-’, t, I, ’r-’, t, R, ’g-’);
legend(’S’, ’I’, ’R’);
xlabel (’hours’);
% Consistency check:
N = S8(1) + I(1) + R(1);
eps = 1E-12; % Tolerance for comparing real numbers
for n = 1:length(S)
err = abs(S(n) + I(n) + R(n) - N);
if (err > eps)
error(’demo_SIR: error=}g’, err);
end
end
end

function result = f(u,t)
beta = 10/(40%8%24) ;
gamma = 3/(15%24);

S=u(1); I=u(2);R=1ul@;
result = [-beta*S*I beta*S*I - gamma*I gammaxI];
end

Recall that the u returned from ode_FE contains all components (.5, I,
R) in the solution vector at all time points. We therefore need to extract
the S, I, and R values in separate arrays for further analysis and easy
plotting.

Another key feature of this higher-quality code is the consistency check.
By adding the three differential equations in the SIR model, we realize
that S’ + I’ + R’ = 0, which means that S+ 4+ R = const. We can check
that this relation holds by comparing S™ + I"™ + R™ to the sum of the
initial conditions. The check is not a full-fledged verification, but it is
a much better than doing nothing and hoping that the computation is
correct. Exercise 4.5 suggests another method for controlling the quality
of the numerical solution.
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4.2.7 Time-restricted immunity

Let us now assume that immunity after the disease only lasts for some
certain time period. This means that there is transport from the R state
to the S state:

G

Modeling the loss of immunity is very similar to modeling recovery
from the disease: the amount of people losing immunity is proportional
to the amount of recovered patients and the length of the time interval
At. We can therefore write the loss in the R category as —vAtR in time
At, where v~ is the typical time it takes to lose immunity. The loss in
R(t) is a gain in S(t). The “budgets” for the categories therefore become

Sl — §n — BALS™I™ + v ALR™, (4.30)
"M = 1" 4 BALS™T™ — Y ALT™, (4.31)
R = R™ + yAtI™ — vALR" . (4.32)

Dividing by At and letting At — 0 gives the differential equation system

S"= —BSI+vR, (4.33)
I' = BSI — I, (4.34)
R =+l —vR. (4.35)

This system can be solved by the same methods as we demonstrated
for the original SIR model. Only one modification in the program is
necessary: adding nu*R[n] to the S[n+1] update and subtracting the
same quantity in the R[n+1] update:

for n = 1:N_t

S(n+1) = S(n) - dt*beta*S(n)*I(n) + dt*nu*R(n)
I(n+1) = I(n) + dt*beta*S(n)*I(n) - dtxgammax*I(n)
R(n+1) = R(n) + dt*gamma*I(n) - dt*nu*R(n)

end

The modified code is found in the file SIR2.m.
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Setting v~ ! to 50 days, reducing 3 by a factor of 4 compared to
the previous example (5 = 0.00033), and simulating for 300 days gives
an oscillatory behavior in the categories, as depicted in Figure 4.11. It
is easy now to play around and study how the parameters affect the
spreading of the disease. For example, making the disease slightly more
effective (increase  to 0.00043) and increasing the average time to loss
of immunity to 90 days lead to other oscillations in Figure 4.12.
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Fig. 4.11 Including loss of immunity.

4.2.8 Incorporating vaccination

We can extend the model to also include vaccination. To this end, it can
be useful to track those who are vaccinated and those who are not. So,
we introduce a fourth category, V, for those who have taken a successful
vaccination. Furthermore, we assume that in a time interval At, a fraction
pAt of the S category is subject to a successful vaccination. This means
that in the time At, pAtS people leave from the S to the V category.
Since the vaccinated ones cannot get the disease, there is no impact on
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Fig. 4.12 Increasing 8 and reducing v compared to Figure 4.11.

the T or R categories. We can visualize the categories, and the movement
between them, as

The new, extended differential equations with the V' quantity become
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S = —BSI+vR — pS, (4.36)
V' =pS, (4.37)
I' = BST — 1, (4.38)
R =~I —vR. (4.39)

We shall refer to this model as the SIRV model.
The new equation for V’ poses no difficulties when it comes to the
numerical method. In a Forward Euler scheme we simply add an update

Vi = VT 4 pALS™ .

The program needs to store V' (¢) in an additional array V, and the plotting
command must be extended with more arguments to plot V versus t as
well. The complete code is found in the file SIRV1.m.

Using p = 0.0005 and p = 0.0001 as values for the vaccine efficiency pa-
rameter, the effect of vaccination is seen in Figure 4.13 (other parameters
are as in Figure 4.11).
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Fig. 4.13 The effect of vaccination: p = 0005 (left) and p = 0.0001 (right).

4.2.9 Discontinuous coefficients: a vaccination campaign

What about modeling a vaccination campaign? Imagine that six days
after the outbreak of the disease, the local health station launches a
vaccination campaign. They reach out to many people, say 10 times as
efficiently as in the previous (constant vaccination) case. If the campaign
lasts for 10 days we can write
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(1) [0005.6-24< 1 <1524
P =10, otherwise

Note that we must multiply the ¢ value by 24 because ¢ is measured
in hours, not days. In the differential equation system, pS(¢) must be
replaced by p(¢)S(t), and in this case we get a differential equation system
with a term that is discontinuous. This is usually quite a challenge in
mathematics, but as long as we solve the equations numerically in a
program, a discontinuous coefficient is easy to treat.

There are two ways to implement the discontinuous coefficient p(t):
through a function and through an array. The function approach is
perhaps the easiest:

function value = p(t)
if (6%24 <= t <= 15%24)
value = 0.005;
else
value = 0;
end
end

In the code for updating the arrays S and V we get a term p(t(n))*S(n).
We can also let p(t) be an array filled with correct values prior to the
simulation. Then we need to allocate an array p of length N_t+1 and
find the indices corresponding to the time period between 6 and 15 days.
These indices are found from the time point divided by At. That is,
p = zeros(N_t+1,1);
start_index = 6%24/dt + 1;

stop_index = 15*%24/dt + 1;
p(start_index:stop_index) = 0.005;

The p(t)S(t) term in the updating formulas for S and V' simply becomes
p()*S(n). The file SIRV2.m contains a program based on filling an
array p.

The effect of a vaccination campaign is illustrated in Figure 4.14. All
the data are as in Figure 4.13 (left), except that p is ten times stronger
for a period of 10 days and p = 0 elsewhere.
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Fig. 4.14 The effect of a vaccination campaign.

4.3 Oscillating one-dimensional systems

Numerous engineering constructions and devices contain materials that
act like springs. Such springs give rise to oscillations, and controlling
oscillations is a key engineering task. We shall now learn to simulate
oscillating systems.

As always, we start with the simplest meaningful mathematical model,
which for oscillations is a second-order differential equation:

u’ () + wu(t) =0, (4.40)

where w is a given physical parameter. Equation (4.40) models a one-
dimensional system oscillating without damping (i.e., with negligible
damping). One-dimensional here means that some motion takes place
along one dimension only in some coordinate system. Along with (4.40)
we need the two initial conditions u(0) and u'(0).
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Fig. 4.15 Sketch of a one-dimensional, oscillating dynamic system (without friction).

4.3.1 Derivation of a simple model

Many engineering systems undergo oscillations, and differential equations
constitute the key tool to understand, predict, and control the oscillations.
We start with the simplest possible model that captures the essential
dynamics of an oscillating system. Some body with mass m is attached
to a spring and moves along a line without friction, see Figure 4.15
for a sketch (rolling wheels indicate “no friction”). When the spring is
stretched (or compressed), the spring force pulls (or pushes) the body
back and work “against” the motion. More precisely, let z(¢) be the
position of the body on the z axis, along which the body moves. The
spring is not stretched when x = 0, so the force is zero, and z = 0 is
hence the equilibrium position of the body. The spring force is —kzx,
where k is a constant to be measured. We assume that there are no other
forces (e.g., no friction). Newton’s 2nd law of motion F' = ma then has
F=—kx and a = 7,

— kx = mi, (4.41)

which can be rewritten as

i+ w?r =0, (4.42)

by introducing w = /k/m (which is very common).

Equation (4.42) is a second-order differential equation, and therefore
we need two initial conditions, one on the position (0) and one on the
velocity 2/(0). Here we choose the body to be at rest, but moved away
from its equilibrium position:
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z(0) = Xy, 2'(0)=0.

The exact solution of (4.42) with these initial conditions is z(t) =
X coswt. This can easily be verified by substituting into (4.42) and
checking the initial conditions. The solution tells that such a spring-mass
system oscillates back and forth as described by a cosine curve.

The differential equation (4.42) appears in numerous other contexts.
A classical example is a simple pendulum that oscillates back and forth.
Physics books derive, from Newton’s second law of motion, that

mLO" +mgsinf = 0,

where m is the mass of the body at the end of a pendulum with length L,
g is the acceleration of gravity, and 6 is the angle the pendulum makes
with the vertical. Considering small angles 6, sinf ~ 6, and we get (4.42)
with z =0, w = \/g/L, x(0) = ©, and 2/(0) = 0, if O is the initial angle
and the pendulum is at rest at ¢t = 0.

4.3.2 Numerical solution

We have not looked at numerical methods for handling second-order
derivatives, and such methods are an option, but we know how to solve
first-order differential equations and even systems of first-order equations.
With a little, yet very common, trick we can rewrite (4.42) as a first-order
system of two differential equations. We introduce v = z and v = 2’/ = o/
as two new unknown functions. The two corresponding equations arise
from the definition v = «’ and the original equation (4.42):

u =, (4.43)
v = —w?u. (4.44)

(Notice that we can use u” = v’ to remove the second-order derivative
from Newton’s 2nd law.)

We can now apply the Forward Euler method to (4.43)-(4.44), exactly
as we did in Section 4.2.2:
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un—i—l —un "
= 4.45
n+l _ . n
c Y L (4.46)
resulting in the computational scheme
"t =y Ato™, (4.47)
" =" — At (4.48)

4.3.3 Programming the numerical method; the special case

A simple program for (4.47)-(4.48) follows the same ideas as in Sec-
tion 4.2.3:

omega = 2;

P = 2%pi/omega;

dt = P/20;

3%P;

= floor(T/dt);

linspace(0, N_t*dt, N_t+1);

ot

T
N_
t

= zeros(N_t+1, 1);
= zeros(N_t+1, 1);

< e
[

==

Initial condition
X_0 = 2;

u(l) = X_0;

v(1) = 0;

% Step equations forward in time
for n = 1:N_t

u(n+1) = u(n) + dtxv(n);

v(n+l) = v(n) - dtxomega~2*u(n);
end

plot(t, u, ’b-’, t, X_O*cos(omega*t), ’r--’);

legend(’numerical’, ’exact’, ’Location’,’northwest’);
xlabel(’t’);
print(’tmp’, ’-dpdf’); print(’tmp’, ’-dpng’);

(See file osc_FE_special_case.m.)

Since we already know the exact solution as u(t) = Xy coswt, we
have reasoned as follows to find an appropriate simulation interval [0, T']
and also how many points we should choose. The solution has a period
P =27 /w. (The period P is the time difference between two peaks of the


https://github.com/hplgit/prog4comp/tree/master/src/m/osc_FE_special_case.m
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u(t) ~ coswt curve.) Simulating for three periods of the cosine function,
T = 3P, and choosing At such that there are 20 intervals per period
gives At = P/20 and a total of N; = T'/At intervals. The rest of the
program is a straightforward coding of the Forward Euler scheme.

Figure 4.16 shows a comparison between the numerical solution and the
exact solution of the differential equation. To our surprise, the numerical
solution looks wrong. Is this discrepancy due to a programming error or
a problem with the Forward Euler method?

30

— numerical
- - exact

201

-30

t

Fig. 4.16 Simulation of an oscillating system.

First of all, even before trying to run the program, you should sit
down and compute two steps in the time loop with a calculator so
you have some intermediate results to compare with. Using X, = 2,
dt = 0.157079632679, and w = 2, we get u' = 2, v! = —1.25663706,
u? = 1.80260791, and v? = —2.51327412. Such calculations show that the
program is seemingly correct. (Later, we can use such values to construct
a unit test and a corresponding test function.)

The next step is to reduce the discretization parameter At and see
if the results become more accurate. Figure 4.17 shows the numerical
and exact solution for the cases At = P/40, P/160, P/2000. The results
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clearly become better, and the finest resolution gives graphs that cannot
be visually distinguished. Nevertheless, the finest resolution involves 6000
computational intervals in total, which is considered quite much. This is
no problem on a modern laptop, however, as the computations take just
a fraction of a second.

— numerical
8t - - exact

— numerical
-~ exact
/l k
.
\
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3 3
— numerical — numerical
- - exact - - exact
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3
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Fig. 4.17 Simulation of an oscillating system with different time steps. Upper left: 40
steps per oscillation period. Upper right: 160 steps per period. Lower left: 2000 steps per
period. Lower right: 2000 steps per period, but longer simulation.

Although 2000 intervals per oscillation period seem sufficient for an
accurate numerical solution, the lower right graph in Figure 4.17 shows
that if we increase the simulation time, here to 20 periods, there is a
little growth of the amplitude, which becomes significant over time. The
conclusion is that the Forward Euler method has a fundamental problem
with its growing amplitudes, and that a very small At is required to
achieve satisfactory results. The longer the simulation is, the smaller
At has to be. It is certainly time to look for more effective numerical
methods!



146 4 Solving ordinary differential equations

4.3.4 A magic fix of the numerical method

In the Forward Euler scheme,

ut =" At o™,

VT =0 — Atwu”,

we can replace u™ in the last equation by the recently computed value
u™*! from the first equation:

u" ="+ Ato", (4.49)

v =" — Atw?unt (4.50)

Before justifying this fix more mathematically, let us try it on the
previous example. The results appear in Figure 4.18. We see that the
amplitude does not grow, but the phase is not entirely correct. After 40
periods (Figure 4.18 right) we see a significant difference between the
numerical and the exact solution. Decreasing At decreases the error. For
example, with 2000 intervals per period, we only see a small phase error
even after 50,000 periods (!). We can safely conclude that the fix results
in an excellent numerical method!

3 3
— numerical — numerical
- - exact - - exact
) I /\ \ A\
\ \ v AW

—3|
2 4 6 8 10 112 114 116 118 120 122 124 126
t t

Fig. 4.18 Adjusted method: first three periods (left) and period 36-40 (right).

Let us interpret the adjusted scheme mathematically. First we or-
der (4.49)-(4.50) such that the difference approximations to derivatives
become transparent:
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n+l _ . n

% =", (4.51)
n+l _ ,,n

% = Wi, (4.52)

We interpret (4.51) as the differential equation sampled at mesh point ¢,
because we have v™ on the right-hand side. The left-hand side is then a
forward difference or Forward Euler approximation to the derivative u/,
see Figure 4.2. On the other hand, we interpret (4.52) as the differential
equation sampled at mesh point #,1, since we have u"*! on the right-
hand side. In this case, the difference approximation on the left-hand
side is a backward difference,

,Un+1 — " o™ — vnfl
V' (tny1) ~ QO V' (t,) ~ —

Figure 4.19 illustrates the backward difference. The error in the backward
difference is proportional to At, the same as for the forward difference
(but the proportionality constant in the error term has different sign).
The resulting discretization method for (4.52) is often referred to as a
Backward Euler scheme.

u(t)

_ backward

t
th tn b1

Fig. 4.19 Illustration of a backward difference approximation to the derivative.

To summarize, using a forward difference for the first equation and
a backward difference for the second equation results in a much better
method than just using forward differences in both equations.

The standard way of expressing this scheme in physics is to change
the order of the equations,
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—w?u, (4.53)

v =
u =, (4.54)

and apply a forward difference to (4.53) and a backward difference to
(4.54):

vt =" — Atw?u®, (4.55)

u" ="+ At (4.56)

That is, first the velocity v is updated and then the position u, using
the most recently computed velocity. There is no difference between
(4.55)-(4.56) and (4.49)-(4.50) with respect to accuracy, so the order of
the original differential equations does not matter. The scheme (4.55)-
(4.56) goes under the names Semi-implicit Euler? or Euler-Cromer. The
implementation of (4.55)-(4.56) is found in the file osc_EC.m. The core
of the code goes like

u
v

zeros(N_t+1,1);
zeros(N_t+1,1);

% Initial condition
u(l) = 2;
v(1l) = 0;

% Step equations forward in time
for n = 1:N_t
v(n+1)
u(n+1)

v(n) - dtxomega~2*u(n);
u(n) + dt*v(n+1);

end

4.3.5 The 2nd-order Runge-Kutta method (or Heun'’s
method)

A very popular method for solving scalar and vector ODEs of first order
is the 2nd-order Runge-Kutta method (RK2), also known as Heun’s
method. The idea, first thinking of a scalar ODE, is to form a centered
difference approximation to the derivative between two time points:

n+1 n

u"tt —u
At '

2http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

1
o' (t, + 5Az&) ~


http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

4.3 Oscillating one-dimensional systems 149

The centered difference formula is visualized in Figure 4.20. The error
in the centered difference is proportional to At?, one order higher than
the forward and backward differences, which means that if we halve At,
the error is more effectively reduced in the centered difference since it is
reduced by a factor of four rather than two.

~ <. centered

t t tn+1

n n +§

Fig. 4.20 Illustration of a centered difference approximation to the derivative.

The problem with such a centered scheme for the general ODE ' =
f(u,t) is that we get

un+1 —um

At
which leads to difficulties since we do not know what u"*3 is. However, we

can approximate the value of f between two time levels by the arithmetic
average of the values at ¢, and ¢,,41:

1
f(un+2 ) tn+%)7

1 1
f(un+2 ) tn+%) ~ §(f(un7tn) + f(un+17tn+1)) :
This results in

n+1 n

T = SO )+ F ),

which in general is a nonlinear algebraic equation for vt if f(u,t) is
not a linear function of u. To deal with the unknown term f(u"!, ¢,1),
without solving nonlinear equations, we can approximate or predict u"*!
using a Forward Fuler step:

"t =" ALf(u”ty,) .
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This reasoning gives rise to the method

ut =u" 4+ Atf(u",ty), (4.57)
At
W = S )+ 0 ). (4.58)

The scheme applies to both scalar and vector ODEs.

For an oscillating system with f = (v, —w?u) the file osc_Heun.m
implements this method. The demo script demo_osc_Heun.m runs the
simulation for 10 periods with 20 time steps per period. The corresponding
numerical and exact solutions are shown in Figure 4.21. We see that
the amplitude grows, but not as much as for the Forward Euler method.
However, the Euler-Cromer method is much better!

— numerical
- - exact

t

Fig. 4.21 Simulation of 10 periods of oscillations by Heun’s method.

We should add that in problems where the Forward Euler method
gives satisfactory approximations, such as growth/decay problems or
the SIR model, the 2nd-order Runge-Kutta method or Heun’s method,
usually works considerably better and produces greater accuracy for the
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same computational cost. It is therefore a very valuable method to be
aware of, although it cannot compete with the Euler-Cromer scheme for
oscillation problems. The derivation of the RK2/Heun scheme is also
good general training in “numerical thinking”.

4.3.6 Software for solving ODEs

Matlab and Octave users have a handful of functions for solving ODEs,
e.g. the popular methods ode45 and ode23s. To illustrate, we may use
ode45 to solve the simple problem v = u, u(0) = 2, for 100 time steps
until ¢t = 4:

u0 = 2; % initial condition
time_points = linspace(0, 4, 101);
[t, ul = ode45(@exp_dudt, time_points, u0);

plot(t, u);
xlabel(’t’); ylabel(’u’);

Here, ode45 is called with three parameters. The first one, @exp_dudt,
is a handle to a function that specifies the right hand side of the ODE;,
i.e., f(u, t). In the present example, it reads

function dudt = exp_dudt(t, u)
dudt = u

The second parameter, time_points, is an array that gives the time
points on the interval where we want the solution to be reported. Alter-
natively, this second parameter could have been given as [0 4], which
just specifies the interval, giving no directions to Matlab as to where (on
the interval) the solution should be found. The third parameter, u0, just
states the initial condition.

Other ODE solvers in Matlab work in a similar fashion. Several ODEs
may also be solved with one function call and parameters may be included.

There is a jungle of methods for solving ODEs, and it would be nice
to have easy access to implementations of a wide range of methods,
especially the sophisticated and complicated adaptive methods (like
oded5 and ode23s above) that adjusts At automatically to obtain a
prescribed accuracy. The Python package Odespy?® gives easy access to a
lot of numerical methods for ODEs.

3https://github.com/hplgit/odespy
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The simplest possible example on using Odespy is to solve the same
problem that we just looked at, i.e., v’ = u, u(0) = 2, for 100 time steps
until ¢t = 4:

import odespy

def f(u, t):
return u

method = odespy.Heun # or, e.g., odespy.ForwardEuler
solver = method(f)

solver.set_initial_condition(2)

time_points = np.linspace(0, 4, 101)

u, t = solver.solve(time_points)

In other words, you define your right-hand side function £ (u, t), ini-
tialize an Odespy solver object, set the initial condition, compute a
collection of time points where you want the solution, and ask for the
solution. The returned arrays u and t can be plotted directly: plot(t,

u).

Warning

Note that Odespy must be operated from Python, so you need to
learn some basic Python to make use of this software. The type of

Python programming you need to learn has a syntax very close to
that of Matlab.

A nice feature of Odespy is that problem parameters can be arguments
to the user’s f(u, t) function. For example, if our ODE problem is
u' = —au + b, with two problem parameters a and b, we may write our £

function as

def f(u, t, a, b):
return -a*xu + b

The extra, problem-dependent arguments a and b can be transferred to
this function if we collect their values in a list or tuple when creating
the Odespy solver and use the f_args argument:

a =2

b=1

solver = method(f, f_args=[a, b])
This is a good feature because problem parameters must otherwise be
global variables - now they can be arguments in our right-hand side
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function in a natural way. Exercise 4.16 asks you to make a complete
implementation of this problem and plot the solution.

Using Odespy to solve oscillation ODEs like u” +w?u = 0, reformulated
as a system v’ = v and v = —w?u, is done as follows. We specify a
given number of time steps per period and compute the associated time
steps and end time of the simulation (T), given a number of periods to
simulate:

import odespy

# Define the ODE system
#u =v
# v’ = -omegax*2¥u

def f(sol, t, omega=2):
u, v = sol
return [v, -omega**2xu]

# Set and compute problem dependent parameters
omega = 2

X0-=1

number_of_periods = 40
time_intervals_per_period = 20

from numpy import pi, linspace, cos

P = 2xpi/omega # length of one period
dt = P/time_intervals_per_period # time step
T = number_of_periods*P # final simulation time

# Create Odespy solver object
odespy_method = odespy.RK2
solver = odespy_method(f, f_args=[omegal)

# The initial condition for the system is collected in a list
solver.set_initial_condition([X_0, 0])

# Compute the desired time points where we want the solution
N_t = int(round(T/dt)) # no of time intervals
time_points = linspace(0, T, N_t+1)

# Solve the ODE problem
sol, t = solver.solve(time_points)

Note: sol contains both displacement and velocity
Extract original variables

= sol[:,0]

soll[:,1]

< £ H O

The last two statements are important since our two functions v and v in
the ODE system are packed together in one array inside the Odespy solver.
The solution of the ODE system is returned as a two-dimensional array



154 4 Solving ordinary differential equations

where the first column (sol[:,0]) stores v and the second (sol[:,1])
stores v. Plotting « and v is a matter of running plot(t, u, t, v).

Remark

In the right-hand side function we write £ (sol, t, omega) instead
of £(u, t, omega) to indicate that the solution sent to f is a
solution at time t where the values of u and v are packed together:
sol = [u, v]. We might well use u as argument:

def f(u, t, omega=2):
u, v =1u
return [v, -omegax*2x*ul
This just means that we redefine the name u inside the function to
mean the solution at time t for the first component of the ODE
system.

To switch to another numerical method, just substitute RK2 by the
proper name of the desired method. Typing pydoc odespy in the terminal
window brings up a list of all the implemented methods. This very simple
way of choosing a method suggests an obvious extension of the code
above: we can define a list of methods, run all methods, and compare their
u curves in a plot. As Odespy also contains the Fuler-Cromer scheme,
we rewrite the system with v/ = —w?u as the first ODE and v/ = v as
the second ODE, because this is the standard choice when using the
Euler-Cromer method (also in Odespy):

def f(u, t, omega=2):
v, u=u
return [-omega**2xu, v]

This change of equations also affects the initial condition: the first com-
ponent is zero and second is X_0 so we need to pass the list [0, X 0] to
solver.set_initial condition.

The code ode_odespy.py contains the details:

def compare(odespy_methods,
omega,
X_0,
number_of_periods,
time_intervals_per_period=20) :

from numpy import pi, linspace, cos
P = 2*pi/omega # length of one period
dt = P/time_intervals_per_period


https://github.com/hplgit/prog4comp/tree/master/src/py/ode_odespy.py
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T = number_of_periods*P

# If odespy_methods is not a list, but just the name of
# a single Odespy solver, we wrap that name in a list
# so we always have odespy_methods as a list
if type(odespy_methods) != type([]):
odespy_methods = [odespy_methods]

# Make a list of solver objects
solvers = [method(f, f_args=[omega]) for method in
odespy_methods]
for solver in solvers:
solver.set_initial_condition([0, X_0])

# Compute the time points where we want the solution
dt = float(dt) # avoid integer division

N_t = int(round(T/dt))

time_points = linspace(0, N_t*dt, N_t+1)

legends = []

for solver in solvers:
sol, t = solver.solve(time_points)
v = soll[:,0]
u = soll[:,1]

# Plot only the last p periods
p=2©6
m = p*time_intervals_per_period # no time steps to plot
plot(t[-m:], ul-m:1)
hold(’on’)
legends.append(solver.name())
xlabel(’t?)
# Plot exact solution too
plot(t[-m:], X_O*cos(omega*t)[-m:], ’k--’)
legends.append(’exact’)
legend(legends, loc=’lower left’)
axis([t[-m], t[-1], -2%X_0, 2*X_0])
title(’Simulation of %d periods with %d intervals per period’
% (number_of_periods, time_intervals_per_period))
savefig(’tmp.pdf’); savefig(’tmp.png’)
show ()

A new feature in this code is the ability to plot only the last p periods,
which allows us to perform long time simulations and watch the end results
without a cluttered plot with too many periods. The syntax t [-m:] plots
the last m elements in t (a negative index in Python arrays/lists counts
from the end).

We may compare Heun’s method (or equivalently the RK2 method)
with the Euler-Cromer scheme:

compare (odespy_methods=[odespy.Heun, odespy.EulerCromer],
omega=2, X_0=2, number_of_periods=20,
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time_intervals_per_period=20)

Figure 4.22 shows how Heun’s method (the blue line with small disks)
has considerable error in both amplitude and phase already after 14-20
periods (upper left), but using three times as many time steps makes the
curves almost equal (upper right). However, after 194-200 periods the
errors have grown (lower left), but can be sufficiently reduced by halving
the time step (lower right).

Simulation of 20 periods with 20 intervals per period Simulation of 20 periods with 60 intervals per period

e—e Heun e—e Heun
=—a EulerCromer =3f| =—a EulerCromer
- - exact -- exact

as 50 55 60 45 50 55 60

Simulation of 200 periods with 60 intervals per period Simulation of 200 periods with 120 intervals per period

e—e Heun e—e Heun
=3f|m—a EulerCromer =3t| =—a EulerCromer
-- exact -- exact

610 615 620 625 610 615 620 625
t t

Fig. 4.22 Tllustration of the impact of resolution (time steps per period) and length of
simulation.

With all the methods in Odespy at hand, it is now easy to start
exploring other methods, such as backward differences instead of the
forward differences used in the Forward Euler scheme. Exercise 4.17
addresses that problem.

Odespy contains quite sophisticated adaptive methods where the user
is “guaranteed” to get a solution with prescribed accuracy. There is no
mathematical guarantee, but the error will for most cases not deviate
significantly from the user’s tolerance that reflects the accuracy. A very
popular method of this type is the Runge-Kutta-Fehlberg method, which
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runs a 4th-order Runge-Kutta method and uses a 5th-order Runge-Kutta
method to estimate the error so that At can be adjusted to keep the
error below a tolerance. This method is also widely known as ode45,
because that is the name of the function implementing the method in
Matlab. We can easily test the Runge-Kutta-Fehlberg method as soon
as we know the corresponding Odespy name, which is RKFehlberg:

compare (odespy_methods=[odespy.EulerCromer, odespy.RKFehlberg],
omega=2, X_0=2, number_of_periods=200,
time_intervals_per_period=40)
Note that the time_intervals_per_period argument refers to the time
points where we want the solution. These points are also the ones used
for numerical computations in the odespy.EulerCromer solver, while
the odespy.RKFehlberg solver will use an unknown set of time points
since the time intervals are adjusted as the method runs. One can easily
look at the points actually used by the method as these are available as
an array solver.t_all (but plotting or examining the points requires
modifications inside the compare method).

Figure 4.23 shows a computational example where the Runge-Kutta-
Fehlberg method is clearly superior to the Euler-Cromer scheme in long
time simulations, but the comparison is not really fair because the Runge-
Kutta-Fehlberg method applies about twice as many time steps in this
computation and performs much more work per time step. It is quite
a complicated task to compare two so different methods in a fair way
so that the computational work versus accuracy is scientifically well
reported.

4.3.7 The 4th-order Runge-Kutta method

The 4th-order Runge-Kutta method (RK4) is clearly the most widely
used method to solve ODEs. Its power comes from high accuracy even
with not so small time steps.

The algorithm. We first just state the four-stage algorithm:

At il il
S N = (f" +2frts pofrts 4 f"“) , (4.59)

where
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Simulation of 200 periods with 40 intervals per period

e—e FEulerCromer
—3f| =—a RKFehlberg
- - exact

610 615 620 625
t

Fig. 4.23 Comparison of the Runge-Kutta-Fehlberg adaptive method against the Euler-
Cromer scheme for a long time simulation (200 periods).

tn 1 n 1 n

frts = f(u +§Atf ,tn_‘_%)7 (4.60)
Py 1 1 N 1

fn—l—f _ f(un + iAtfn+§’ tn+%)7 (4.61)
Frrl = fu" + ALF3 ). (4.62)

Application. We can run the same simulation as in Figures 4.16, 4.18,
and 4.21, for 40 periods. The 10 last periods are shown in Figure 4.24.
The results look as impressive as those of the Euler-Cromer method.

Implementation. The stages in the 4th-order Runge-Kutta method
can easily be implemented as a modification of the osc_Heun.py code.
Alternatively, one can use the osc_odespy.py code by just providing
the argument odespy_methods=[odespy.RK4] to the compare function.

Derivation. The derivation of the 4th-order Runge-Kutta method can be
presented in a pedagogical way that brings many fundamental elements
of numerical discretization techniques together and that illustrates many
aspects of “numerical thinking” when constructing approximate solution
methods.

We start with integrating the general ODE «' = f(u,t) over a time
step, from ¢, to t,11,
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t

Fig. 4.24 The last 10 of 40 periods of oscillations by the 4th-order Runge-Kutta method.

tn41
ultas) = utn) = [ fult), ).
tn
The goal of the computation is u(t,y1) (u™*1), while u(t,) (u™) is the
most recently known value of u. The challenge with the integral is that

the integrand involves the unknown u between ¢, and ¢,41.
The integral can be approximated by the famous Simpson’s rule*:

tn41

[ o), i % (574 a4 )

tn

The problem with this formula is that we do not know f"*z =
1

flutz ¢, 1 ) and ! = (u"*l t,,1) as only u" is available and only

f™ can then readily be computed.

‘http://en.wikipedia.org/wiki/Simpson’s_rule
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To proceed, the idea is to use various approximations for f”+% and
™! based on using well-known schemes for the ODE in the intervals
[t ty 1 | and [t,, t,+1]. Let us split the integral into four terms:

tn+1

At A, 1 ~ 1 -
[ s e s (72 2 ),
tn

where f72, f7t3, and f**! are approximations to "3 and f"*! that
A1
can utilize already computed quantities. For f"*2 we can simply apply
1
an approximation to u""2 based on a Forward Euler step of size %At:

P 1
=t + A"t 1) (4.63)

This formula provides a prediction of f"+%, so we can for f”+% try a
1
Backward Euler method to approximate u"*2:

L1 1 !
n+s __ n - n+3 1
f = f(u" + 2Atf ’t"+§)' (4.64)

With f""2 as an approximation to ", we can for the final term fn+!
use a midpoint method (or central difference, also called a Crank-Nicolson
method) to approximate u"*:

= fu + AP ). (4.65)

We have now used the Forward and Backward Euler methods as well as
the centered difference approximation in the context of Simpson’s rule.
The hope is that the combination of these methods yields an overall
time-stepping scheme from t,, to ¢,+1 that is much more accurate than
the individual steps which have errors proportional to At and At?. This
is indeed true: the numerical error goes in fact like CAt* for a constant
C, which means that the error approaches zero very quickly as we reduce
the time step size, compared to the Forward Euler method (error ~ At),
the Euler-Cromer method (error ~ At?) or the 2nd-order Runge-Kutta,
or Heun’s, method (error ~ At?).

Note that the 4th-order Runge-Kutta method is fully explicit so there is
never any need to solve linear or nonlinear algebraic equations, regardless
of what f looks like. However, the stability is conditional and depends
on f. There is a large family of implicit Runge-Kutta methods that
are unconditionally stable, but require solution of algebraic equations
involving f at each time step. The Odespy package has support for a
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lot of sophisticated explicit Runge-Kutta methods, but not yet implicit
Runge-Kutta methods.

4.3.8 More effects: damping, nonlinearity, and external forces

Our model problem u” + w?u = 0 is the simplest possible mathematical
model for oscillating systems. Nevertheless, this model makes strong
demands to numerical methods, as we have seen, and is very useful as a
benchmark for evaluating the performance of numerical methods.

Real-life applications involve more physical effects, which lead to
a differential equation with more terms and also more complicated
terms. Typically, one has a damping force f(u') and a spring force s(u).
Both these forces may depend nonlinearly on their argument, u' or
u. In addition, environmental forces F'(¢f) may act on the system. For
example, the classical pendulum has a nonlinear “spring” or restoring
force s(u) ~ sin(u), and air resistance on the pendulum leads to a
damping force f(u') ~ |u/|v’. Examples on environmental forces include
shaking of the ground (e.g., due to an earthquake) as well as forces from
waves and wind.

With three types of forces on the system: F', f, and s, the sum of forces
is written F(t) — f(u’) — s(u). Note the minus sign in front of f and s,
which indicates that these functions are defined such that they represent
forces acting against the motion. For example, springs attached to the
wheels in a car are combined with effective dampers, each providing a
damping force f(u') = bu’ that acts against the spring velocity «’. The
corresponding physical force is then — f: —bu’, which points downwards
when the spring is being stretched (and u’ points upwards), while — f acts
upwards when the spring is being compressed (and «’ points downwards).

Figure 4.25 shows an example of a mass m attached to a potentially
nonlinear spring and dashpot, and subject to an environmental force
F(t). Nevertheless, our general model can equally well be a pendulum
as in Figure 4.26 with s(u) = mgsinf and f(u) = %CDAgéW (where
Cp = 0.4, A is the cross sectional area of the body, and p is the density
of air).

Newton’s second law for the system can be written with the mass
times acceleration on the left-hand side and the forces on the right-hand
side:
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Fig. 4.25 General oscillating system.
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Fig. 4.26 A pendulum with forces.

This equation is, however, more commonly reordered to

mu” + f(u') + s(u) = F(t). (4.66)

Because the differential equation is of second order, due to the term u”,
we need two initial conditions:
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Note that with the choices f(u') =0, s(u) = ku, and F(t) = 0 we recover
the original ODE " + w?u = 0 with w = \/k/m.

How can we solve (4.66)? As for the simple ODE u” + w?u = 0, we
start by rewriting the second-order ODE as a system of two first-order

ODEs:

vi=— (F() = s(u) = (), (4.68)
v =v. (4.69)
The initial conditions become u(0) = Uy and v(0) = V.
Any method for a system of first-order ODEs can be used to solve for
u(t) and v(t).

The Euler-Cromer scheme. An attractive choice from an implementa-
tional, accuracy, and efficiency point of view is the Euler-Cromer scheme
where we take a forward difference in (4.68) and a backward difference
in (4.69):

n+l _ . n 1

= = (Flt) = s(”) = £, (4.70)
n+1 n

W e, (4.71)

We can easily solve for the new unknowns v"*1 and u"*!:

o =t 4 2 (1) — ) ), (4.72)

u"t ="+ A" (4.73)

Remark on the ordering of the ODEs

The ordering of the ODEs in the ODE system is important for the
extended model (4.68)-(4.69). Imagine that we write the equation
for v first and then the one for v'. The Euler-Cromer method would
then first use a forward difference for «"*! and then a backward
difference for v"*!. The latter would lead to a nonlinear algebraic

equation for v+,
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At

At
o P = 0 S (F(ta) = s(a™)
m m
if f(v) is a nonlinear function of v. This would require a numerical
method for nonlinear algebraic equations to find v, while updat-
ing v"*! through a forward difference gives an equation for v™*!

that is linear and trivial to solve by hand.

We can implement the Euler-Cromer method like this:

function [u_values, v_values, t_values] =...
EulerCromer(f, s, F, m, T, U_0, V_0, dt)
N_t = floor(round(T/dt));
fprintf (’N_t: %d’, N_t);
t = linspace(0, N_t*dt, T_t+1);

zeros(N_t+1,1);
zeros(N_t+1,1);

u
v

=

Initial conditions
u(1l) U_0;
v(1) V_0;

% Step equations forward in time
for n = 1:N_t

v(n+1)

u(n+1)
end
u_values
v_values
t_values

end

v(n) + dt*x(1/m)*(F(t(n)) - £(v(n)) - sCu(m)));
u(n) + dt*v(n+l);

nonon
<

The 4-th order Runge-Kutta method. The RK4 method just evaluates
the right-hand side of the ODE system,

(- (F(1) ~ s(u) (1), v)

for known values of u, v, and ¢, so the method is very simple to use
regardless of how the functions s(u) and f(v) are chosen.

4.3.9 lllustration of linear damping

We consider an engineering system with a linear spring, s(u) = kz,
and a viscous damper, where the damping force is proportional to u/,
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f(u') = b, for some constant b > 0. This choice may model the vertical
spring system in a car (but engineers often like to illustrate such a system
by a horizontal moving mass like the one depicted in Figure 4.25). We
may choose simple values for the constants to illustrate basic effects
of damping (and later excitations). Choosing the oscillations to be the
simple u(t) = cost function in the undamped case, we may set m = 1,
k=1,0=0.3,Uy=1, Vo =0. The following function implements this
case:

function linear_damping()

b =0.3;

= Q(v) bx*v;
s = @(u) k*u;
F = @e(t) 0;
m=1;
k=1;
U 0 =1;
V_0 = 0;
T = 12%pi;
dt = T/5000;

[u, v, t] = EulerCromer(f, s, F, m, T, U_0, V_0, dt);

plot_u(u, t);
end

The plot_u function is a collection of plot statements for plotting u(t),
or a part of it. Figure 4.27 shows the effect of the bu’ term: we have oscil-
lations with (an approximate) period 27, as expected, but the amplitude
is efficiently damped.

[ Remark about working with a scaled problem

Instead of setting b = 0.3 and m = k = Uy = 1 as fairly “unlikely”
physical values, it would be better to scale the equation mu” + bu’ +
ku = 0. This means that we introduce dimensionless independent
and dependent variables:

-t _ U

t=—, u=—,

te Uc

where . and u. are characteristic sizes of time and displacement,
respectively, such that ¢ and @ have their typical size around unity.
In the present problem, we can choose u. = Uy and t. = /m/k.
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Fig. 4.27 Effect of linear damping.

This gives the following scaled (or dimensionless) problem for the

dimensionless quantity u(t):

d*u du ~ ., b
The striking fact is that there is only one physical parameter in
this problem: the dimensionless number 5. Solving this problem
corresponds to solving the original problem (with dimensions) with
the parameters m = k = Uy = 1 and b = 3. However, solving the

dimensionless problem is more general: if we have a solution u(t; ),
we can find the physical solution of a range of problems since

u(t) = Upu(ty/k/m; B) .

As long as [ is fixed, we can find u for any Uy, k, and m from the
above formula! In this way, a time consuming simulation can be
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done only once, but still provide many solutions. This demonstrates
the power of working with scaled or dimensionless problems.

4.3.10 Illustration of linear damping with sinusoidal
excitation

We now extend the previous example to also involve some external

oscillating force on the system: F(t) = Asin(wt). Driving a car on a

road with sinusoidal bumps might give such an external excitation on

the spring system in the car (w is related to the velocity of the car).
With A =0.5 and w = 3,

w = 3;
A = 0.5;
F = @(t) A*xsin(w*t);

we get the graph in Figure 4.28. The striking difference from Figure 4.27
is that the oscillations start out as a damped cost signal without much
influence of the external force, but then the free oscillations of the un-
damped system (cost) v’ +u = 0 die out and the external force 0.5 sin(3t)
induces oscillations with a shorter period 27 /3. You are encouraged to
play around with a larger A and switch from a sine to a cosine in F' and
observe the effects. If you look this up in a physics book, you can find
exact analytical solutions to the differential equation problem in these
cases.

A particularly interesting case arises when the excitation force has
the same frequency as the free oscillations of the undamped system,
ie., F(t) = Asint. With the same amplitude A = 0.5, but a smaller
damping b = 0.1, the oscillations in Figure 4.28 becomes qualitatively very
different as the amplitude grows significantly larger over some periods.
This phenomenon is called resonance and is exemplified in Figure 4.29.
Removing the damping results in an amplitude that grows linearly in
time.

4.3.11 Spring-mass system with sliding friction

A body with mass m is attached to a spring with stiffness k& while sliding
on a plane surface. The body is also subject to a friction force f(u’) due
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Fig. 4.28 Effect of linear damping in combination with a sinusoidal external force.

to the contact between the body and the plane. Figure 4.30 depicts the
situation. The friction force f(u’) can be modeled by Coulomb friction:

—pmg, u' <0,
f') = q pmg, o' >0,
0, u =0

where p is the friction coefficient, and mg is the normal force on the
surface where the body slides. This formula can also be written as
f(u") = pmgsign(u'), provided the signum function sign(x) is defined
to be zero for x = 0 (the sign function in Matlab‘ has this property).
To check that the signs in the definition of f are right, recall that the
actual physical force is — f and this is positive (i.e., f < 0) when it works
against the body moving with velocity «' < 0.
The nonlinear spring force is taken as

s(u) = —ka ! tanh(au),

which is approximately —ku for small u, but stabilizes at +k/« for large
+au. Here is a plot with & = 1000 and u € [—0.1,0.1] for three a values:
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Fig. 4.29 Excitation force that causes resonance.
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Fig. 4.30 Sketch of a one-dimensional, oscillating dynamic system subject to sliding
friction and a spring force.
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If there is no external excitation force acting on the body, we have the
equation of motion

mu” + pmgsign(u') + ka~ ! tanh(au) = 0.

Let us simulate a situation where a body of mass 1 kg slides on a surface
with g = 0.4, while attached to a spring with stiffness k = 1000 kg/s?.
The initial displacement of the body is 10 cm, and the a parameter in s(u)
is set to 60 1/m. Using the EulerCromer function from the EulerCromer
code, we can write a function sliding_friction for solving this problem:

function sliding_friction()
f = @(v) mu*mxg*sign(v);

alpha = 60.0;
s = @(u) k/alphaxtanh(alpha*u);
F = @(t) 0;
g = 9.81;

mu = 0.4;
m=1;

k = 1000;
U_0=0.1;
V_0 = 0;

T = 2;

dt = T/5000;

[u, v, t] = EulerCromer(f, s, F, m, T, U_0, V_0, dt);

plot_u(u, t);
end

Running the sliding friction function gives us the results in Fig-
ure 4.31 with s(u) = ka~!tanh(au) (left) and the linearized version
s(u) = ku (right).

4.3.12 A finite difference method; undamped, linear case
We shall now address numerical methods for the second-order ODE

u’ +wru =0, wu0)="Up, «'(0)=0, tc(0,T],

without rewriting the ODE as a system of first-order ODEs. The primary
motivation for “yet another solution method” is that the discretization
principles result in a very good scheme, and more importantly, the
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Fig. 4.31 Effect of nonlinear (left) and linear (right) spring on sliding friction.

thinking around the discretization can be reused when solving partial
differential equations.

The main idea of this numerical method is to approximate the second-
order derivative u” by a finite difference. While there are several choices
of difference approximations to first-order derivatives, there is one domi-
nating formula for the second-order derivative:

un+l — U™ + un—l

At? '
The error in this approximation is proportional to At?. Letting the ODE
be valid at some arbitrary time point %,,

o (tn) ~ (4.74)

u (ty) + wu(t,) = 0,

we just insert the approximation (4.74) to get

un—i—l —oun - un—l 5 n
= —wu". 4.75
AP (4.75)
We now assume that v"~! and u™ are already computed and that u"*!
is the new unknown. Solving with respect to u"*! gives
"t = 20" — Tt — AR (4.76)

A major problem arises when we want to start the scheme. We know
that u® = Uy, but applying (4.76) for n = 0 to compute u! leads to

ut =2u’ —ut — AW, (4.77)
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where we do not know «~!. The initial condition u’(0) = 0 can help us
to eliminate u~! - and this condition must anyway be incorporated in

some way. To this end, we discretize u/(0) = 0 by a centered difference,
1 ~1
, U —u
u(0) —— =0.
() 2A¢
It follows that ! = u!, and we can use this relation to eliminate u~

in (4.77):

1

1
ut =’ — iAt2w2u0 . (4.78)

With u® = Uy and u! computed from (4.78), we can compute u?, u*, and
so forth from (4.76). Exercise 4.19 asks you to explore how the steps
above are modified in case we have a nonzero initial condition u’(0) = Vj.

Remark on a simpler method for computing u'

We could approximate the initial condition «'(0) by a forward
difference:

At

leading to u' = u°. Then we can use (4.76) for the coming time
steps. However, this forward difference has an error proportional to
At, while the centered difference we used has an error proportional
to At?, which is compatible with the accuracy (error goes like At?)
used in the discretization of the differential equation.

The method for the second-order ODE described above goes under
the name Stormer’s method or Verlet integration®. It turns out that
this method is mathematically equivalent with the Euler-Cromer scheme
(1). Or more precisely, the general formula (4.76) is equivalent with the
Euler-Cromer formula, but the scheme for the first time level (4.78)
implements the initial condition «’(0) slightly more accurately than what
is naturally done in the Euler-Cromer scheme. The latter will do

vl =00 — At w! =u¥ + At = u° — AP0,
which differs from u! in (4.78) by an amount $At?w?u®.

Shttp://en.wikipedia.org/wiki/Verlet_integration
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Because of the equivalence of (4.76) with the Euler-Cromer scheme,
the numerical results will have the same nice properties such as a constant
amplitude. There will be a phase error as in the Euler-Cromer scheme, but
this error is effectively reduced by reducing At, as already demonstrated.

Another implication of the equivalence between (4.76) and the Euler-
Cromer scheme, is that the latter must also have accuracy of order
At?. One would intuitively think that using a forward and a backward
difference in the Euler-Cromer scheme implies an error proportional to
At, but the differences are used in a symmetric way so together they
form an scheme where the error is proportional to At.

The implementation of (4.78) and (4.76) is straightforward in a function
(file osc_2nd_order.m):

function [u, t] = osc_2nd_order(U_0, omega, dt, T)
% Solve u’’ + omega”2*u = 0 for t in (0,T], u(0)=U_0
% and u’(0)=0, by a central finite difference method with
% time step dt.
N_t = floor(round(T/dt));
u = zeros(N_t+1, 1);
t = linspace(0, N_t*dt, N_t+1);

u(l) = U_0;
u(2) = u(1) - 0.5%dt"2*omega~2*u(1);
for n = 2:N_t
u(n+1) = 2*u(n) - u(n-1) - dt"2*omega”2*u(n);
end
end

4.3.13 A finite difference method; linear damping

A key issue is how to generalize the scheme from Section 4.3.12 to a
differential equation with more terms. We start with the case of a linear
damping term f(u') = bu’, a possibly nonlinear spring force s(u), and an
excitation force F'(t):

mu” + b’ + s(u) = F(t), u(0)=Uy, «'(0)=0, t€ (0,T]. (4.79)

We need to find the appropriate difference approximation to «’ in the
bu' term. A good choice is the centered difference

n+1 _,un—l
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Sampling the equation at a time point ¢,

mu” (t,) + bu'(t,) + s(u") = F(t,),
and inserting the finite difference approximations to u” and u’ results in
un-i—l — u™ + un—l un—i—l _ un—l

m A +0b S A + s(u™) = F", (4.81)

where F™™ is a short notation for F'(¢,). Equation (4.81) is linear in the

unknown u"*!, so we can easily solve for this quantity:

b b
Wt = (2mu”+(§At—m)u"*1+At2(F”—s(un)))(m+§At)71- (4.82)

As in the case without damping, we need to derive a special formula
for u!. The initial condition «/(0) = 0 implies also now that u=! = u?,

and with (4.82) for n = 0, we get

ut = u® + %(F0 — s(u?)). (4.83)

In the more general case with a nonlinear damping term f(u'),

mu” + f(u') + s(u) = F(t),
we get

un+1 — o+ unfl unJrl n—1

mn A2 1

which is a nonlinear algebraic equation for u that must be solved by

numerical methods. A much more convenient scheme arises from using a
backward difference for o/,

)+ s(u™) = F",

n+1

u” — unfl

At
because the damping term will then be known, involving only «™ and
u™! and we can easily solve for u"*!,
The downside of the backward difference compared to the centered
difference (4.80) is that it reduces the order of the accuracy in the overall
scheme from At? to At. In fact, the Euler-Cromer scheme evaluates

a nonlinear damping term as f(v") when computing v"*!, and this is

n

U/(tn> ~
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equivalent to using the backward difference above. Consequently, the
convenience of the Euler-Cromer scheme for nonlinear damping comes at
a cost of lowering the overall accuracy of the scheme from second to first
order in At. Using the same trick in the finite difference scheme for the
second-order differential equation, i.e., using the backward difference in
f(u"), makes this scheme equally convenient and accurate as the Euler-
Cromer scheme in the general nonlinear case mu” + f(u’) + s(u) = F.

4.4 Exercises

Exercise 4.1: Geometric construction of the Forward Euler
method

Section 4.1.4 describes a geometric interpretation of the Forward Euler
method. This exercise will demonstrate the geometric construction of the
solution in detail. Consider the differential equation v’ = u with «(0) = 1.
We use time steps At = 1.

a) Start at ¢ = 0 and draw a straight line with slope v/(0) = u(0) = 1.
Go one time step forward to t = At and mark the solution point on the
line.

b) Draw a straight line through the solution point (At,u') with slope
u'(At) = ul. Go one time step forward to t = 2At and mark the solution
point on the line.

c) Draw a straight line through the solution point (2A¢t, u?) with slope
u/(2At) = u?. Go one time step forward to t = 3At and mark the solution
point on the line.

d) Set up the Forward Euler scheme for the problem u’ = u. Calculate
ul, u?, and u?. Check that the numbers are the same as obtained in a)-c).
Filename: ForwardEuler_geometric_solution.m.

Exercise 4.2: Make test functions for the Forward Euler
method

The purpose of this exercise is to make a file test_ode_FE.m that makes
use of the ode_FE function in the file ode_FE.m and automatically verifies
the implementation of ode_FE.
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a) The solution computed by hand in Exercise 4.1 can be used as a
reference solution. Make a function test_ode FE 1() that calls ode FE
to compute three time steps in the problem « = u, u(0) = 1, and
compare the three values u!, u?, and u? with the values obtained in

Exercise 4.1.

b) The test in a) can be made more general using the fact that if f is
linear in v and does not depend on ¢, i.e., we have v/ = ru, for some
constant r, the Forward Euler method has a closed form solution as
outlined in Section 4.1.1: u™ = Up(1 + rAt)™. Use this result to construct
a test function test_ode FE 2() that runs a number of steps in ode FE
and compares the computed solution with the listed formula for u".
Filename: test_ode_FE.m.

Exercise 4.3: Implement and evaluate Heun’s method

a) A 2nd-order Runge-Kutta method, also known has Heun’s method,
is derived in Section 4.3.5. Make a function ode Heun(f, U_0, dt, T)
(as a counterpart to ode_FE(f, U_0, dt, T) in ode_FE.m) for solving a
scalar ODE problem v’ = f(u,t), u(0) = Uy, t € (0,7, with this method
using a time step size At.

b) Solve the simple ODE problem « = u, u(0) = 1, by the ode_Heun
and the ode FE function. Make a plot that compares Heun’s method and
the Forward Euler method with the exact solution u(t) = €’ for ¢ € [0, 6].
Use a time step At = 0.5.

c) For the case in b), find through experimentation the largest value
of At where the exact solution and the numerical solution by Heun’s
method cannot be distinguished visually. It is of interest to see how far
off the curve the Forward Euler method is when Heun’s method can be
regarded as “exact” (for visual purposes).

Filename: ode_Heun.m.

Exercise 4.4: Find an appropriate time step; logistic model

Compute the numerical solution of the logistic equation for a set of
repeatedly halved time steps: At, = 27*At, k = 0,1,.... Plot the
solutions corresponding to the last two time steps Aty and Afi_1 in the
same plot. Continue doing this until you cannot visually distinguish the
two curves in the plot. Then one has found a sufficiently small time step.



4.4 Exercises 177

Hint. Extend the logistic.m file. Introduce a loop over k, write out
Aty, and ask the user if the loop is to be continued.
Filename: logistic_dt.m.

Exercise 4.5: Find an appropriate time step; SIR model

Repeat Exercise 4.4 for the SIR model.

Hint. Import the ode_FE function from the ode_system_FE module and
make a modified demo_SIR function that has a loop over repeatedly
halved time steps. Plot S, I, and R versus time for the two last time
step sizes in the same plot.

Filename: SIR_dt.m.

Exercise 4.6: Model an adaptive vaccination campaign

In the SIRV model with time-dependent vaccination from Section 4.2.9,
we want to test the effect of an adaptive vaccination campaign where
vaccination is offered as long as half of the population is not vaccinated.
The campaign starts after A days. That is, p = pg if V < %(SO + 1°) and
t > A days, otherwise p = 0.

Demonstrate the effect of this vaccination policy: choose 3, v, and v
as in Section 4.2.9, set p = 0.001, A = 10 days, and simulate for 200
days.

Hint. This discontinuous p(t) function is easiest implemented as a Matlab
function containing the indicated if test. You may use the file SIRV1.m
as starting point, but note that it implements a time-dependent p(t) via
an array.

Filename: SIRV_p_adapt.m.

Exercise 4.7: Make a SIRV model with time-limited effect of
vaccination

We consider the SIRV model from Section 4.2.8, but now the effect of
vaccination is time-limited. After a characteristic period of time, 7, the
vaccination is no more effective and individuals are consequently moved
from the V to the S category and can be infected again. Mathematically,
this can be modeled as an average leakage —7 'V from the V category
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to the S category (i.e., a gain 771V in the latter). Write up the complete
model, implement it, and rerun the case from Section 4.2.8 with various
choices of parameters to illustrate various effects. Filename: SIRV1_V2S.m.

Exercise 4.8: Refactor a flat program

Consider the file osc_FE.m implementing the Forward Euler method for
the oscillating system model (4.43)-(4.44). The osc_FE.m is what we
often refer to as a flat program, meaning that it is just one main program
with no functions. To easily reuse the numerical computations in other
contexts, place the part that produces the numerical solution (allocation
of arrays, initializing the arrays at time zero, and the time loop) in a
function osc_FE(X_0, omega, dt, T), which returns u, v, t. Place
the particular computational example in osc_FE.m in a function demo ().
Construct the file osc_FE_func.m such that the osc_FE function can
easily be reused in other programs.

Filename: osc_FE_func.m.

Exercise 4.9: Simulate oscillations by a general ODE solver

Solve the system (4.43)-(4.44) using the general solver ode_FE in the file
ode_system_FE.m described in Section 4.2.6. Program the ODE system
and the call to the ode FE function in a separate file osc_ode FE.m.
Equip this file with a test function that reads a file with correct u
values and compares these with those computed by the ode FE function.
To find correct u values, modify the program osc_FE.m to dump the u
array to file, run osc_FE.m, and let the test function read the reference
results from that file.
Filename: osc_ode_FE.m.

Exercise 4.10: Compute the energy in oscillations

a) Make a function osc_energy(u, v, omega) for returning the po-

tential and kinetic energy of an oscillating system described by (4.43)-

(4.44). The potential energy is taken as *w?u? while the kinetic energy is

2
%112. (Note that these expressions are not exactly the physical potential
and kinetic energy, since these would be %mv2 and %k’uz for a model

ma” + kx = 0.)
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Place the osc_energy in a separate file osc_energy.m such that the
function can be called from other functions.

b) Add a call to osc_energy in the programs osc_FE.m and osc_EC.m
and plot the sum of the kinetic and potential energy. How does the total
energy develop for the Forward Euler and the Euler-Cromer schemes?
Filenames: osc_energy.m, osc_FE_energy.m, osc_EC_energy.m.

Exercise 4.11: Use a Backward Euler scheme for population
growth

We consider the ODE problem N’(¢t) = rN(t), N(0) = Ny. At some
time, t,, = nAt, we can approximate the derivative N'(t,,) by a backward
difference, see Figure 4.19:

N(t,) — N(t, —At) N — Nt

N’ ty) ~ = y
() At At
which leads to
N™ — anl
A o

called the Backward Euler scheme.

a) Find an expression for the N” in terms of N"~! and formulate an
algorithm for computing N*, n=1,2,..., N.

b) Implement the algorithm in a) in a function growth BE(N_0, dt, T)
for solving N = rN, N(0) = Ny, t € (0,T], with time step At (dt).

c) Implement the Forward Euler scheme in a function
growth FE(N_O, dt, T) as described in b).

d) Compare visually the solution produced by the Forward and Backward
Euler schemes with the exact solution when r =1 and T'= 6. Make two
plots, one with At = 0.5 and one with At = 0.05.

Filename: growth_BE.m.

Exercise 4.12: Use a Crank-Nicolson scheme for population
growth

It is recommended to do Exercise 4.11 prior to the present one. Here we
look at the same population growth model N'(¢t) = rN(t), N(0) = Np.
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The time derivative N'(t) can be approximated by various types of finite
differences. Exercise 4.11 considers a backward difference (Figure 4.19),
while Section 4.1.2 explained the forward difference (Figure 4.2). A
centered difference is more accurate than a backward or forward difference:

N(t, + At) — N(t,) N — N"

At B At
This type of difference, applied at the point ¢, 1= tn+ %At, is illustrated
geometrically in Figure 4.20.

1

a) Insert the finite difference approximation in the ODE N’ = rN and
solve for the unknown N"*! assuming N" is already computed and
hence known. The resulting computational scheme is often referred to as
a Crank-Nicolson scheme.

b) Implement the algorithm in a) in a function growth_CN(N_0, dt, T)
for solving N' =rN, N(0) = Ny, t € (0,7, with time step At (dt).

c) Make plots for comparing the Crank-Nicolson scheme with the Forward
and Backward Euler schemes in the same test problem as in Exercise 4.11.
Filename: growth_CN.m.

Exercise 4.13: Understand finite differences via Taylor series

The Taylor series around a point = a can for a function f(x) be written

2
£() = £(@) + - f(@)w — )+ 555 F(a) (o~ a)
1 d3 3
+§Ff(a)(:ﬂ—a) +...
20;de (x —a).

For a function of time, as addressed in our ODE problems, we would use
u instead of f, ¢ instead of =, and a time point ¢,, instead of a:
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d d?
u(t) = u(t,) + ﬁu(tn)(t tn) + iﬁu(tn)(t t)?
3
= —!%u(tn)(t tn)? +
1 d ;
= ;) 5@“(%)(75 tn)

a) A forward finite difference approximation to the derivative f’(a) reads

by ultn + At) —u(ty)
u'(ty) ~ A .

We can justify this formula mathematically through Taylor series. Write
up the Taylor series for u(t, + At) (around ¢t = t,, as given above),
and then solve the expression with respect to u'(t,). Identify, on the
right-hand side, the finite difference approximation and an infinite series.
This series is then the error in the finite difference approximation. If At
is assumed small (i.e. At << 1), At will be much larger than A¢?, which
will be much larger than At3, and so on. The leading order term in the
series for the error, i.e., the error with the least power of At is a good
approximation of the error. Identify this term.

b) Repeat a) for a backward difference:

_ulty) —u(t, — At)
At

This time, write up the Taylor series for u(t, — At) around t,. Solve
with respect to u'(t,), and identify the leading order term in the error.
How is the error compared to the forward difference?

c) A centered difference approximation to the derivative, as explored in
Exercise 4.12, can be written

u(ty, + At) — u(ty)
At '

Write up the Taylor series for wu(t,) around t, + %At and the Taylor
series for u(t, + At) around t,, + 5 At. Subtract the two series, solve with
respect to u/(t, + 3 At), identify the finite difference approximation and
the error terms on the right-hand side, and write up the leading order
error term. How is this term compared to the ones for the forward and
backward differences?

1
o' (ty, + 5At) ~

d) Can you use the leading order error terms in a)-c) to explain the
visual observations in the numerical experiment in Exercise 4.127
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e) Find the leading order error term in the following standard finite
difference approximation to the second-order derivative:

At) — 2 —A
W (1) ~ u(t, + At) uA(ttn) + u(ty t) .

Hint. Express u(t, + At) via Taylor series and insert them in the
difference formula.
Filename: Taylor_differences.pdf.

Exercise 4.14: Use a Backward Euler scheme for oscillations

Consider (4.43)-(4.44) modeling an oscillating engineering system. This
2 x 2 ODE system can be solved by the Backward Euler scheme, which
is based on discretizing derivatives by collecting information backward
in time. More specifically, «'(t) is approximated as

u(t) —u(t — At)

l ~

A general vector ODE v/ = f(u,t), where v and f are vectors, can use
this approximation as follows:

n __ un—l

At :f(unvtn)u

which leads to an equation for the new value u':

u

u" — Atf(u”,t,) = u"t,

For a general f, this is a system of nonlinear algebraic equations.
However, the ODE (4.43)-(4.44) is linear, so a Backward Euler scheme
leads to a system of two algebraic equations for two unknowns:

u" — Ato" ="t (4.84)
V" 4 Atw?u™ =" (4.85)

a) Solve the system for u™ and v™.

b) Implement the found formulas for «™ and v™ in a program for com-
puting the entire numerical solution of (4.43)-(4.44).

c) Run the program with a At corresponding to 20 time steps per period
of the oscillations (see Section 4.3.3 for how to find such a At). What
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do you observe? Increase to 2000 time steps per period. How much does
this improve the solution?
Filename: osc_BE.m.

Remarks. While the Forward Euler method applied to oscillation prob-
lems u” +w?u = 0 gives growing amplitudes, the Backward Euler method
leads to significantly damped amplitudes.

Exercise 4.15: Use Heun’s method for the SIR model

Make a program that computes the solution of the SIR model from
Section 4.2.1 both by the Forward Euler method and by Heun’s method
(or equivalently: the 2nd-order Runge-Kutta method) from Section 4.3.5.
Compare the two methods in the simulation case from Section 4.2.3.
Make two comparison plots, one for a large and one for a small time
step. Experiment to find what “large” and “small” should be: the large
one gives significant differences, while the small one lead to very similar
curves.

Filename: SIR_Heun.m.

Exercise 4.16: Use Odespy to solve a simple ODE

Solve

u'=—au+0b, u0)=Uy, te(0,T]

by the Odespy software. Let the problem parameters a and b be arguments
to the right-hand side function that specifies the ODE to be solved. Plot
the solution for the case when a =2, b =1, T = 6/a, and we use 100
time intervals in [0, 7).

Filename: odespy_demo.m.

Exercise 4.17: Set up a Backward Euler scheme for
oscillations

Write the ODE u” + w?u = 0 as a system of two first-order ODEs and
discretize these with backward differences as illustrated in Figure 4.19.
The resulting method is referred to as a Backward Euler scheme. Identify
the matrix and right-hand side of the linear system that has to be solved
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at each time level. Implement the method, either from scratch yourself or
using Odespy (the name is odespy.BackwardEuler). Demonstrate that
contrary to a Forward Euler scheme, the Backward Euler scheme leads
to significant non-physical damping. The figure below shows that even
with 60 time steps per period, the results after a few periods are useless:

Simulation of 6 periods with 60 intervals per period

e—e FEulerCromer
—3f| =—a BackwardEuler 1
- - exact

Filename: osc_BE.m.

Exercise 4.18: Set up a Forward Euler scheme for nonlinear
and damped oscillations

Derive a Forward Euler method for the ODE system (4.68)-(4.69). Com-
pare the method with the Euler-Cromer scheme for the sliding friction
problem from Section 4.3.11:

1. Does the Forward Euler scheme give growing amplitudes?

2. Is the period of oscillation accurate?

3. What is the required time step size for the two methods to have
visually coinciding curves?

Filename: osc_FE_general .m.
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Exercise 4.19: Discretize an initial condition

Assume that the initial condition on w’ is nonzero in the finite difference
method from Section 4.3.12: u/(0) = V;. Derive the special formula for
u! in this case.

Filename: ic_with_V_0.pdf.






Solving partial differential
equations

The subject of partial differential equations (PDEs) is enormous. At the
same time, it is very important, since so many phenomena in nature and
technology find their mathematical formulation through such equations.
Knowing how to solve at least some PDEs is therefore of great importance
to engineers. In an introductory book like this, nowhere near full justice
to the subject can be made. However, we still find it valuable to give
the reader a glimpse of the topic by presenting a few basic and general
methods that we will apply to a very common type of PDE.

We shall focus on one of the most widely encountered partial differential
equations: the diffusion equation, which in one dimension looks like

ou ﬁ(()Qu N
o o2 9
The multi-dimensional counterpart is often written as
ou
i v 2
BT BViu + g

We shall restrict the attention here to the one-dimensional case.

The unknown in the diffusion equation is a function u(x,t) of space
and time. The physical significance of u depends on what type of process
that is described by the diffusion equation. For example, v is the concen-
tration of a substance if the diffusion equation models transport of this
substance by diffusion. Diffusion processes are of particular relevance at
the microscopic level in biology, e.g., diffusive transport of certain ion

187
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types in a cell caused by molecular collisions. There is also diffusion of
atoms in a solid, for instance, and diffusion of ink in a glass of water.

One very popular application of the diffusion equation is for heat
transport in solid bodies. Then w is the temperature, and the equation
predicts how the temperature evolves in space and time within the
solid body. For such applications, the equations is known as the heat
equation. We remark that the temperature in a fluid is influenced not
only by diffusion, but also by the flow of the liquid. If present, the latter
effect requires an extra term in the equation (known as an advection or
convection term).

The term g is known as the source term and represents generation,
or loss, of heat (by some mechanism) within the body. For diffusive
transport, ¢ models injection or extraction of the substance.

We should also mention that the diffusion equation may appear after
simplifying more complicated partial differential equations. For example,
flow of a viscous fluid between two flat and parallel plates is described by
a one-dimensional diffusion equation, where u then is the fluid velocity.

A partial differential equation is solved in some domain {2 in space
and for a time interval [0, T]. The solution of the equation is not unique
unless we also prescribe initial and boundary conditions. The type and
number of such conditions depend on the type of equation. For the
diffusion equation, we need one initial condition, u(x,0), stating what
u is when the process starts. In addition, the diffusion equation needs
one boundary condition at each point of the boundary 942 of (2. This
condition can either be that u is known or that we know the normal
derivative, Vu - n = 0u/0n (n denotes an outward unit normal to 0£2).

Let us look at a specific application and how the diffusion equation
with initial and boundary conditions then appears. We consider the
evolution of temperature in a one-dimensional medium, more precisely
a long rod, where the surface of the rod is covered by an insulating
material. The heat can then not escape from the surface, which means
that the temperature distribution will only depend on a coordinate along
the rod, x, and time t. At one end of the rod, x = L, we also assume
that the surface is insulated, but at the other end, z = 0, we assume
that we have some device for controlling the temperature of the medium.
Here, a function s(t) tells what the temperature is in time. We therefore
have a boundary condition u(0,¢) = s(t). At the other insulated end,
x = L, heat cannot escape, which is expressed by the boundary condition
Ou(L,t)/0x = 0. The surface along the rod is also insulated and hence
subject to the same boundary condition (here generalized to du/dn = 0



5 Solving partial differential equations 189

at the curved surface). However, since we have reduced the problem to
one dimension, we do not need this physical boundary condition in our
mathematical model. In one dimension, we can set {2 = [0, L].

To summarize, the partial differential equation with initial and bound-
ary conditions reads

T B 92 + g(z,t), x € (0,L),te(0,7T], (5.1)
u(0,t) = s(t), t € (0,T], (5.2)
aaxu(L,t) =0, t e (0,77, (5.3)
u(x,0) = I(x), rel0,L]. (5.4)

Mathematically, we assume that at ¢ = 0, the initial condition (5.4) holds
and that the partial differential equation (5.1) comes into play for ¢ > 0.
Similarly, at the end points, the boundary conditions (5.2) and (5.3)
govern u and the equation therefore is valid for z € (0, L).

Boundary and initial conditions are needed!

The initial and boundary conditions are extremely important. With-
out them, the solution is not unique, and no numerical method will
work. Unfortunately, many physical applications have one or more
initial or boundary conditions as unknowns. Such situations can
be dealt with if we have measurements of u, but the mathematical
framework is much more complicated.

What about the source term ¢ in our example with temperature
distribution in a rod? g(z,t) models heat generation inside the rod.
One could think of chemical reactions at a microscopic level in some
materials as a reason to include g. However, in most applications with
temperature evolution, g is zero and heat generation usually takes place
at the boundary (as in our example with u(0,t) = s(t)).

Before continuing, we may consider an example of how the temperature
distribution evolves in the rod. At time ¢ = 0, we assume that the
temperature is 10° C. Then we suddenly apply a device at = 0 that
keeps the temperature at 50° C at this end. What happens inside the
rod? Intuitively, you think that the heat generation at the end will warm
up the material in the vicinity of = 0, and as time goes by, more and
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more of the rod will be heated, before the entire rod has a temperature
of 50° C (recall that no heat escapes from the surface of the rod).

Mathematically, (with the temperature in Kelvin) this example has
I(x) =283 K, except at the end point: /(0) = 323 K, s(t) = 323 K, and
g = 0. The figure below shows snapshots from four different times in the
evolution of the temperature.

330 — t=0 330 — t=4

330 — t=9 330 — t=1038 10x

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

5.1 Finite difference methods

We shall now construct a numerical method for the diffusion equation.
We know how to solve ordinary differential equations, so in a way we are
able to deal with the time derivative. Very often in mathematics, a new
problem can be solved by reducing it to a series of problems we know how
to solve. In the present case, it means that we must do something with
the spatial derivative 92/0x2 in order to reduce the partial differential
equation to ordinary differential equations. One important technique
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for achieving this, is based on finite difference discretization of spatial
derivatives.

5.1.1 Reduction of a PDE to a system of ODEs

Introduce a spatial mesh in {2 with mesh points

ro=0<z1<29<---<xy=0L.

The space between two mesh points z; and ;11, i.e. the interval [z;, x;11],
is call a cell. We shall here, for simplicity, assume that each cell has the
same length Az = x;11 —x;,i=0,...,N — 1.

The partial differential equation is valid at all spatial points z € (2,
but we may relax this condition and demand that it is fulfilled at the
internal mesh points only, x1,...,2n_1:

Ou(wg,t) /882u(:1:i, t)
o 0z?

Now, at any point x; we can approximate the second-order derivative by
a finite difference:

+g(x;t), i=1,...,N—1. (5.5)

Pulzit)  w(wipr,t) — 2ulx,t) +u(zi_1,t)
o2~ Ax? ’
It is common to introduce a short notation w;(t) for wu(z;,t), ie., u
approximated at some mesh point z; in space. With this new notation we
can, after inserting (5.6) in (5.5), write an approximation to the partial
differential equation at mesh point (z;,t) as

(5.6)

dui (t)
dt

Ui_H(t) — 2u,- (t) + ui_l(t)
Ax?

=0 +gt), i=1,....N—1. (5.7)
Note that we have adopted the notation g;(t) for g(x;,t) too.

What is (5.7)7 This is nothing but a system of ordinary differential
equations in N — 1 unknowns uq (t), ..., un—_1(¢)! In other words, with aid
of the finite difference approximation (5.6), we have reduced the single
partial differential equation to a system of ODEs, which we know how
to solve. In the literature, this strategy is called the method of lines.

We need to look into the initial and boundary conditions as well. The
initial condition u(x,0) = I(z) translates to an initial condition for every
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unknown function u,(¢): u;(0) = I(z;), i = 0,..., N. At the boundary
x = 0 we need an ODE in our ODE system, which must come from
the boundary condition at this point. The boundary condition reads
u(0,t) = s(t). We can derive an ODE from this equation by differentiating
both sides: uy(t) = s'(t). The ODE system above cannot be used for
uy, since that equation involves some quantity u’ ; outside the domain.
Instead, we use the equation u((t) = s'(t) derived from the boundary
condition. For this particular equation we also need to make sure the
initial condition is uo(0) = s(0) (otherwise nothing will happen: we get
u = 283 K forever).

We remark that a separate ODE for the (known) boundary condition
up = s(t) is not strictly needed. We can just work with the ODE system
for uy,...,un, and in the ODE for wug, replace ug(t) by s(t). However,
these authors prefer to have an ODE for every point value u;, i = 0,..., N,
which requires formulating the known boundary at « = 0 as an ODE. The
reason for including the boundary values in the ODE system is that the
solution of the system is then the complete solution at all mesh points,
which is convenient, since special treatment of the boundary values is
then avoided.

The condition du/0x = 0 at = L is a bit more complicated, but we
can approximate the spatial derivative by a centered finite difference:

@ . UN+1 —UN-1

0x ;=N 2Ax
This approximation involves a fictitious point xy 11 outside the domain.
A common trick is to use (5.7) for ¢ = N and eliminate uyy1 by use of
the discrete boundary condition (uy41 = un—1):

duN(t) _ ,BQUN_l(t) — 2’LLN(t>
dt Ax?
That is, we have a special version of (5.7) at the boundary i = N.

=0.

+gn(t). (5.8)

What about simpler finite differences at the boundary?

Some reader may think that a smarter trick is to approximate the
boundary condition du/dz at x = L by a one-sided difference:

ou UN — UN_1

— A =0.
0x ;=N Ax
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This gives a simple equation uy = uy_1 for the boundary value,
and a corresponding ODE /5 = u/y,_;. However, this approximation
has an error of order Az, while the centered approximation we used
above has an error of order Az?. The finite difference approximation
we used for the second-order derivative in the diffusion equation
also has an error of order Az?. Thus, if we use the simpler one-sided
difference above, it turns out that we reduce the overall accuracy of
the method.

We are now in a position to summarize how we can approximate the
partial differential equation problem (5.1)-(5.4) by a system of ordinary
differential equations:

duo

= = s'(t), (5.9)
‘Z" = e (f) = 2it) + wa () F ait), i=1 N1,

(5.10)

d
B 2 uvea(t) — un (1)) + (1), (5.11)

The initial conditions are

uo(0) = s(0), (5.12)
w(0) = I(z;), i=1,...,N. (5.13)

We can apply any method for systems of ODEs to solve (5.9)-(5.11).

5.1.2 Construction of a test problem with known discrete
solution

At this point, it is tempting to implement a real physical case and run
it. However, partial differential equations constitute a non-trivial topic
where mathematical and programming mistakes come easy. A better start
is therefore to address a carefully designed test example where we can
check that the method works. The most attractive examples for testing
implementations are those without approximation errors, because we
know exactly what numbers the program should produce. It turns out
that solutions u(z,t) that are linear in time and in space can be exactly
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reproduced by most numerical methods for partial differential equations.
A candidate solution might be

uw(z,t) = (3t+2)(x—L).

Inserting this u in the governing equation gives

3z—L)=0+g(z,t) = glx,t)=3x—-L).

What about the boundary conditions? We realize that du/dz = 3t + 2
for + = L, which breaks the assumption of Ju/dxr = 0 at x = L in
the formulation of the numerical method above. Moreover, u(0,t) =
—L(3t +2), so we must set s(t) = —L(3t + 2) and §'(t) = —3L. Finally,
the initial condition dictates I(x) = 2(z — L), but recall that we must
have ug = s(0), and u; = I(z;), i = 1,..., N: it is important that wg
starts out at the right value dictated by s(t) in case I(0) is not equal
this value.

First we need to generalize our method to handle Ju/0x =y # 0 at
x = L. We then have

un+1(t) —un—1(t)

=7 = uny1 =un-1+27Ax,

2Azx
which inserted in (5.7) gives
dun(t)  2un—1(t) +27Az — 2un(t)
B =8 e 4 g (). (5.14)

5.1.3 Implementation: Forward Euler method

In particular, we may use the Forward Euler method as implemented

in the general function ode_FE in the module ode_system_FE from

Section 4.2.6. The ode_FE function needs a specification of the right-hand

side of the ODE system. This is a matter of translating (5.9), (5.10), and

(5.14) to Matlab code (in file test_diffusion_pde_exact_linear.m):
function right_hand_side = rhs(u, t)

global beta; global dx;
global L; global x;

dudx = Q@(t) (3%t + 2);
dsdt = @(t) 3*(-L);
g = Q@(x, t) 3*x(x-L);

N = length(u) - 1;


https://github.com/hplgit/prog4comp/tree/master/src/m/test_diffusion_pde_exact_linear.m
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end

rhs = zeros(1, N+1);
rhs(1) = dsdt(t);
for i = 2:N
rhs(i) = (beta/dx"2)*(u(i+1) - 2*u(i) + u(i-1)) +...
g(x(i), t);
end
rhs(N+1) = (beta/dx~2)*(2*u(N) + 2*dx*dudx(t) -...
2xu(N+1)) + g(x(N+1), t);
right_hand_side = rhs;

Note that dudx is the function representing the v parameter in (5.14).
Also note that the rhs function relies on access to global variables beta,
dx, L, and x, and global functions dsdt, g, and dudx.

We expect the solution to be correct regardless of N and At, so we
can choose a small N, N =4, and At = 0.1. A test function with N =4
goes like

function test_diffusion_pde_exact_linear()

global beta; global dx; % needed in rhs
global L; global x;

function value = u_exact(x, t)
value = (3%t + 2)*(x - L);
end
function value = s(t)
value = u_exact(0, t);
end

L =1.5;

beta = 0.5;

N = 4;

x = linspace(0, L, N+1);
dx = x(2) - x(1);

u = zeros(1l, N+1);

U_0 = zeros(1, N+1);

U_0(1) = s(0);

U_0(2:1length(U_0)) = u_exact(x(2:length(x)), 0);
dt = 0.1

T =1.2;

rhs_handle = Qrhs;
[u, t] = ode_FE(rhs_handle, U_0, dt, T);

tol = 1E-12;

for i = 1:length(u(:,1))
diff = max(abs(u_exact(x, t(i)) - u(i,:)));
assert(diff < tol, ’diff=).16g’, diff);
fprintf (’diff=lg at t=Y%g\n’, diff, t(i));

end
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end

With N = 4 we reproduce the linear solution exactly. This brings confi-
dence to the implementation, which is just what we need for attacking a
real physical problem next.

5.1.4 Application: heat conduction in a rod

Let us return to the case with heat conduction in a rod (5.1)-(5.4). Assume
that the rod is 50 cm long and made of aluminum alloy 6082. The
parameter equals x/(oc), where k is the heat conduction coefficient, o is
the density, and c is the heat capacity. We can find proper values for these
physical quantities in the case of aluminum alloy 6082: ¢ = 2.7-10° kg/ mg,

xk =200 %, ¢ =900 %@ This results in 8 = x/(oc) = 8.2-107° m?/s.
Preliminary simulations show that we are close to a constant steady state
temperature after 1 h, i.e., 7' = 3600 s.

The functions s, dsdt, f, and dudx must be changed, but the rhs

function becomes almost identical to the one from the previous section:

function right_hand_side = rhs(u, t)
global beta; global dx;
global L; global x;

dudx = @(t) O;
dsdt = @(t) O;
f = e(x, t) 0;

N = length(u) - 1;
rhs = zeros(1l, N+1);
rhs(1) = dsdt(t);
for i = 2:N
rhs(i) = (beta/dx"2)*(u(i+1) - 2*u(i) + u(i-1)) +...
f(x(i), t);
end
rhs(N+1) = (beta/dx~2)*(2*u(N) + 2*dx*dudx(t) -...
2%u(N+1)) + f(x(N+1), t);
right_hand_side = rhs;
end

Some new parameter values must also be set, and for the timestep, let

us use At = 0.00034375. We may also make an animation on the screen
to see how u(z,t) develops in time (see file rod_FE.m):

function rod_FE()
global beta; global dx;
global L; global x;


https://github.com/hplgit/prog4comp/tree/master/src/m/rod_FE.m
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s = @(t) 423;
L=1;

beta = 1;

N = 40;

x = linspace(0, L, N+1);
dx = x(2) - x(1);
u = zeros(1, N+1);

U_0 = zeros(1, N+1);

U_0(1) = s(0);

U_0(2:1length(U_0)) = 283;

dt = dx"2/(2xbeta);

fprintf (’stability limit: %g\n’, dt);
%dt = 0.00034375

T =1.2;

rhs_handle = Qrhs;

tic;

[u, t] = ode_FE(rhs_handle, U_0, dt, T);
cpu_time = toc;

fprintf (’CPU time: %.1fs\n’, cpu_time);

% Make movie
delay = 0.001;
h = plot(x, u(l,:));
axis([x(1), x(length(x)), 273, 1.2*s(0)]);
xlabel(’x’); ylabel(’u(x,t)’);
set(h, ’xData’, x);
counter = 0;
for i = 2:length(u(:,1))
t (i)
set(h, ’yData’, u(i,:));
legend(strcat (’t=’,num2str(t(i))), ’location’, ’northeast’);
pause(delay) ;
if mod(i, 10) ==
filestem = sprintf (’tmp_%04d’, counter);
print(filestem, ’-dpng’);
counter = counter + 1;
end
end
end

The plotting statements update the u(x,t) curve on the screen. In addi-
tion, we save a fraction of the plots to files tmp_0000. png, tmp_0001.png,
tmp_0002.png, and so on. These plots can be combined to ordinary video
files. A common tool is ffmpeg or its sister avconv.

These programs take the same type of command-line options. To make
a Flash video movie.flv, run

Terminal

Terminal> ffmpeg -i tmp_J%04d.png -r 4 -vcodec flv movie.flv
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The -1 option specifies the naming of the plot files in printf syntax, and
-r specifies the number of frames per second in the movie. On Magc, run
ffmpeg instead of avconv with the same options. Other video formats,
such as MP4, WebM, and Ogg can also be produced:

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libx264 movie.mp4
Terminal> ffmpeg -i tmp_J%04d.png -r 4 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libtheora movie.ogg

The results of a simulation start out as in Figures 5.1 and 5.2. We see
that the solution definitely looks wrong. The temperature is expected
to be smooth, not having such a saw-tooth shape. Also, after some time
(Figure 5.2), the temperature starts to increase much more than expected.
We say that this solution is unstable, meaning that it does not display
the same characteristics as the true, physical solution. Even though we
tested the code carefully in the previous section, it does not seem to work
for a physical application! How can that be?

00 — t=0.000 500 — t=0002
450 450
o 400 7—7400
3 X
=1 5
350 350
300 300
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x X
00 — t=0.003 500 — t=0.005

400 400

u(x,t)
ux,t)

300 300

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Fig. 5.1 Unstable simulation of the temperature in a rod.
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500 — t=0.007 500 — t=0.009

500 — t=0.010 500 — t-o.012

300 /\ A 300 /\
0.0 0. 0. 0.6

.2 a4 . 0.8 1.0 0.0 0. 0.4 0.6 0.8 1.0

Fig. 5.2 Unstable simulation of the temperature in a rod.

The problem is that At is too large, making the solution unstable.
It turns out that the Forward Euler time integration method puts a
restriction on the size of At. For the heat equation and the way we have
discretized it, this restriction can be shown to be [10]

Az?
A< 5o (5.15)
This is called a stability criterion. With the chosen parameters, (5.15)
tells us that the upper limit is At = 0.0003125, which is smaller than our
choice above. Rerunning the case with a At equal to Az?/(23), indeed
shows a smooth evolution of u(x,t). Find the program rod_FE.m and
run it to see an animation of the u(x,t) function on the screen.

Scaling and dimensionless quantities

Our setting of parameters required finding three physical properties
of a certain material. The time interval for simulation and the time
step depend crucially on the values for § and L, which can vary
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significantly from case to case. Often, we are more interested in how
the shape of u(x,t) develops, than in the actual u, x, and ¢ values
for a specific material. We can then simplify the setting of physical
parameters by scaling the problem.
Scaling means that we introduce dimensionless independent and

dependent variables, here denoted by a bar:

_ u—u* oz _ ot

U= ——, IT=—, t=—,

Ue — UF T, te

where u. is a characteristic size of the temperature, u* is some
reference temperature, while x. and t. are characteristic time and
space scales. Here, it is natural to choose u* as the initial condition,
and set u, to the stationary (end) temperature. Then u € [0, 1],
starting at 0 and ending at 1 as ¢ — co. The length L is z., while
choosing t, is more challenging, but one can argue for ¢, = L?/p.
The resulting equation for u reads

ou  0*u

ot 0z’
Note that in this equation, there are no physical parameters! In
other words, we have found a model that is independent of the
length of the rod and the material it is made of (!).

We can easily solve this equation with our program by setting
=1, L=1 I(z) =0, and s(t) = 1. It turns out that the total
simulation time (to “infinity”) can be taken as 1.2. When we have
the solution @(7,t), the solution with dimension Kelvin, reflecting
the true temperature in our medium, is given by

ze€(0,1).

u(w,t) = u* + (ue — u)u(z/L,t3/L?%).

Through this formula we can quickly generate the solutions for a
rod made of aluminum, wood, or rubber - it is just a matter of
plugging in the right 5 value.

Figure 5.3 shows four snapshots of the scaled (dimensionless)
solution (z,t).

The power of scaling is to reduce the number of physical param-
eters in a problem, and in the present case, we found one single

problem that is independent of the material () and the geometry

(L)-
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Fig. 5.3 Snapshots of the dimensionless solution of a scaled problem.

5.1.5 Vectorization

Occasionally in this book, we show how to speed up code by replacing
loops over arrays by vectorized expressions. The present problem involves
a loop for computing the right-hand side:

for i = 2:N

rhs(i) = (beta/dx"2)*(u(i+1) - 2*u(i) + u(i-1)) + gx(d), t);

end
This loop can be replaced by a vectorized expression with the following
reasoning. We want to set all the inner points at once: rhs(2:N) (this
goes from index 2 up to, and including, N). As the loop index i runs from
2 to N, the u(i+1) term will cover all the inner u values displaced one
index to the right (compared to 2:N), i.e., u(3:N+1). Similarly, u(i-1)
corresponds to all inner u values displaced one index to the left: u(1:N-1).
Finally, u(i) has the same indices as rhs: u(2:N). The vectorized loop
can therefore be written in terms of slices:

rhs(2:N) = (beta/dx"2)*(u(3:N+1) - 2*u(2:N) + u(1:N-1)) + g(x(2:N), t);
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This rewrite speeds up the code by about a factor of 10. A complete code
is found in the file rod_FE_vec.m.

5.1.6 Using Odespy to solve the system of ODEs

A nice feature with having a problem defined as a system of ODEs is
that we have a rich set of numerical methods available. Matlab/Octave
contains general-purpose ODE software such as the ode45 routine that
we may apply. However, we shall here step out of the Matlab/Octave
world and make use of the Odespy package (see Section 4.3.6). Odespy
requires the problem to be formulated in Python code. Since Python and
Matlab have very similar syntax for the type of programming encountered
when using Odespy, it should not be a big step for Matlab/Octave users
to utilize Odespy.

Suppose we have defined the right-hand side of our ODE system in a
function rhs, the following Python program makes use of Odespy and its
adaptive Runge-Kutta method of order 4-5 (RKFehlberg) to solve the
system.

import odespy

solver = odespy.RKFehlberg(rhs)
solver.set_initial_condition(U_0)
T=1.2

N_t = int(round(T/float(dt)))
time_points = linspace(0, T, N_t+1)
u, t = solver.solve(time_points)

# Check how many time steps are required by adaptive vs
# fixed-step methods
if hasattr(solver, ’t_all’):
print ’# time steps:’, len(solver.t_all)
else:
print ’# time steps:’, len(t)

The very nice thing is that we can now easily experiment with many
different integration methods. Trying out some simple ones first, like RK2
and RK4, quickly reveals that the time step limitation of the Forward
Fuler scheme also applies to these more sophisticated Runge-Kutta
methods, but their accuracy is better. However, the Odespy package
offers also adaptive methods. We can then specify a much larger time
step in time_points, and the solver will figure out the appropriate step.
Above we indicated how to use the adaptive Runge-Kutta-Fehlberg 4-5
solver. While the At corresponding to the Forward Euler method requires
over 8000 steps for a simulation, we started the RKFehlberg method
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with 100 times this time step and in the end it required just slightly
more than 2500 steps, using the default tolerance parameters. Lowering
the tolerance did not save any significant amount of computational work.
Figure 5.4 shows a comparison of the length of all the time steps for
two values of the tolerance. We see that the influence of the tolerance is
minor in this computational example, so it seems that the blow-up due
to instability is what governs the time step size. The nice feature of this
adaptive method is that we can just specify when we want the solution
to be computed, and the method figures out on its own what time step
that has to be used because of stability restrictions.

Evolution of the time step in RKFehlberg Evolution of the time step in RKFehlberg

0.0012, 0.001

0.0010

0.

0.
[ 500 1000 1500 2000 2500 3000 [ 500 1000 1500 2000 2500 3000

Fig. 5.4 Time steps used by the Runge-Kutta-Fehlberg method: error tolerance 1073
(left) and 107 (right).

We have seen how easy it is to apply sophisticated methods for ODEs
to this PDE example. We shall take the use of Odespy one step further
in the next section.

5.1.7 Implicit methods

A major problem with the stability criterion (5.15) is that the time step
becomes very small if Az is small. For example, halving Az requires
four times as many time steps and eight times the work. Now, with
N = 40, which is a reasonable resolution for the test problem above,
the computations are very fast. What takes time, is the visualization on
the screen, but for that purpose one can visualize only a subset of the
time steps. However, there are occasions when you need to take larger
time steps with the diffusion equation, especially if interest is in the
long-term behavior as ¢ — oco. You must then turn to implicit methods
for ODEs. These methods require the solutions of linear systems, if the



204 5 Solving partial differential equations

underlying PDE is linear, and systems of nonlinear algebraic equations if
the underlying PDE is non-linear.

The simplest implicit method is the Backward Euler scheme, which
puts no restrictions on At for stability, but obviously, a large At leads
to inaccurate results. The Backward Euler scheme for a scalar ODE
u = f(u,t) reads

n+1l _ u™

A _f( +17tn+1)'

This equation is to be solved for «w™*!. If f is linear in u, it is a linear
equation, but if f is nonlinear in u, one needs approximate methods for
nonlinear equations (Chapter 6).

In our case, we have a system of linear ODEs (5.9)-(5.11). The Back-
ward Euler scheme applied to each equation leads to

W = 5 (tns1), (5.16)

U?HA; ui Aﬁaﬂ (L — 260 ) £ gi(t), (5.17)
i=1,...,N—1,

R[HA; o A252 (un=y = u™) + giltata) - (5.18)

This is a system of linear equations in the unknowns u}™, i =0,... N,

which is easy to realize by writing out the equations for the case N = 3,
collecting all the unknown terms on the left-hand side and all the known
terms on the right-hand side:

up™ = ul + At s (1), (5.19)

n B n n n
+ AtA 5 (g Loyt ul ™ = ul + At gi(te),  (5.20)
n B n n n
+1 Atﬁ( +1 U2+1) = Uy + At g?(tn+l) . (521)
A system of linear equations like this, is usually written on matrix
form Au = b, where A is a coefficient matrix, u = (uj*', ... n!) is the

vector of unknowns, and b is a vector of known values. The coefficient
matrix for the case (5.19)-(5.21) becomes
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1 0 0
A=| At 1+ 2Ag§x2 —AtA%
0 A5 1+ A5

In the general case (5.16)-(5.18), the coefficient matrix is an (N + 1) x
(N + 1) matrix with zero entries, except for

A =1 (5.22)
Ajiig = —At%, i=2... N-1 (5.23)
Ajipt = AtAiQ, i=2... N-1 (5.24)

Ass f1+2AtA52, i=2... N-1 (5.25)

Any 1 = —Atj—fQ (5.26)
Any =1+ At Aﬁz (5.27)

If we want to apply general methods for systems of ODEs on the form
u' = f(u,t), we can assume a linear f(u,t) = Ku. The coefficient matrix
K is found from the right-hand side of (5.16)-(5.18) to be

Ki1=0 (5.28)
Kiiq = A%?’ i=2,...,N—1 (5.29)
Kml:%, i—2. N-1 (5.30)

Km:—j—f?, i=2,...,N—1 (5.31)

Knn_1= j—i (5.32)
Kyn = —j—i (5.33)

We see that A =1 — At K.

To implement the Backward Euler scheme, we can either fill a matrix
and call a linear solver, or we can apply Odespy. We follow the latter
strategy. Implicit methods in Odespy need the K matrix above, given as
an argument jac (Jacobian of f) in the call to odespy.BackwardEuler.
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Here is the Python code for the right-hand side of the ODE system (rhs)
and the K matrix (K) as well as statements for initializing and running
the Odespy solver BackwardEuler (in the file rod_BE.py):

def

def

rhs(u, t):
N = len(u) - 1
rhs = zeros(N+1)
rhs[0] = dsdt(t)
for i in range(1l, N):
rhs[i] = (beta/dx**2)*(u[i+1] - 2*uli]l + ul[i-1]1) + \
g(x[i], t)
rhs[N] = (beta/dx**2)*(2*uli-1] + 2*dx*dudx(t) -
2xuli]) + g(x[N], t)
return rhs

K(u, t):

N = len(u) - 1

K = zeros((N+1,N+1))

K[0,0] =0

for i in range(1l, N):
K[i,i-1] = beta/dx**2
K[i,i] = -2*beta/dx**2
K[i,i+1] = beta/dx**2

K[N,N-1] = (beta/dx**2)*2

K[N,N] = (beta/dx**2)*(-2)

return K

import odespy

solver = odespy.BackwardEuler(rhs, f_is_linear=True, jac=K)

solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)
solver.set_initial_condition(U_0)

=

N_t

1*%60*%60
= int(round(T/float(dt)))

time_points = linspace(0, T, N_t+1)
u, t = solver.solve(time_points)

The file rod_BE.py has all the details and shows a movie of the solution.
We can run it with any At we want, its size just impacts the accuracy of
the first steps.

Odespy solvers apply dense matrices!

Looking at the entries of the K matrix, we realize that there are at
maximum three entries different from zero in each row. Therefore,
most of the entries are zeroes. The Odespy solvers expect dense
square matrices as input, here with (N + 1) x (N + 1) elements.
When solving the linear systems, a lot of storage and work are spent
on the zero entries in the matrix. It would be much more efficient
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to store the matrix as a tridiagonal matrix and apply a specialized
Gaussian elimination solver for tridiagonal systems. Actually, this
reduces the work from the order N3 to the order N.

In one-dimensional diffusion problems, the savings of using a
tridiagonal matrix are modest in practice, since the matrices are
very small anyway. In two- and three-dimensional PDE problems,
however, one cannot afford dense square matrices. Rather, one must
resort to more efficient storage formats and algorithms tailored to
such formats, but this is beyond the scope of the present text.

5.2 Exercises

Exercise 5.1: Simulate a diffusion equation by hand

Consider the problem given by (5.9), (5.10) and (5.14). Set N = 2
and compute u?, u} and u? by hand for i = 0,1,2. Use these values to
construct a test function for checking that the implementation is correct.
Copy useful functions from test_diffusion_pde_exact_linear.m and
make a new test function test_diffusion hand calculation.
Filename: test_rod_hand calculations.m.

Exercise 5.2: Compute temperature variations in the ground

The surface temperature at the ground shows daily and seasonal oscilla-
tions. When the temperature rises at the surface, heat is propagated into
the ground, and the coefficient § in the diffusion equation determines
how fast this propagation is. It takes some time before the temperature
rises down in the ground. At the surface, the temperature has then fallen.
We are interested in how the temperature varies down in the ground
because of temperature oscillations on the surface.

Assuming homogeneous horizontal properties of the ground, at least
locally, and no variations of the temperature at the surface at a fixed
point of time, we can neglect the horizontal variations of the temperature.
Then a one-dimensional diffusion equation governs the heat propagation
along a vertical axis called x. The surface corresponds to x = 0 and the
x axis point downwards into the ground. There is no source term in the
equation (actually, if rocks in the ground are radioactive, they emit heat
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and that can be modeled by a source term, but this effect is neglected
here).

At some depth x = L we assume that the heat changes in x vanish, so
Ou/dx = 0 is an appropriate boundary condition at x = L. We assume a
simple sinusoidal temperature variation at the surface:

2
u(0,t) = Ty + Ty sin (;t) ,

where P is the period, taken here as 24 hours (24 - 60 - 60 s). The
coefficient may be set to 1076 m?/s. Time is then measured in seconds.
Set appropriate values for T ad T,.

a) Show that the present problem has an analytical solution of the form

u(z,t) = A+ Be " sin(wt — rx),
for appropriate values of A, B, r, and w.

b) Solve this heat propagation problem numerically for some days and
animate the temperature. You may use the Forward Euler method in
time. Plot both the numerical and analytical solution. As initial condi-
tion for the numerical solution, use the exact solution during program
development, and when the curves coincide in the animation for all
times, your implementation works, and you can then switch to a constant
initial condition: u(z,0) = Tjy. For this latter initial condition, how many
periods of oscillations are necessary before there is a good (visual) match
between the numerical and exact solution (despite differences at ¢ = 0)?
Filename: ground_temp.m.

Exercise 5.3: Compare implicit methods

An equally stable, but more accurate method than the Backward Euler
scheme, is the so-called 2-step backward scheme, which for an ODE
u' = f(u,t) can be expressed by

3un+l — 4y" + un—l
2At = f(un+17 tn+1) :
The Odespy package offers this method as odespy.Backward2Step. The
purpose of this exercise is to compare three methods and animate the
three solutions:

1. The Backward Euler method with A¢ = 0.001
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2. The backward 2-step method with At = 0.001
3. The backward 2-step method with At = 0.01

Choose the model problem from Section 5.1.4.
Filename: rod_BE_vs_B2Step.m.

Exercise 5.4: Explore adaptive and implicit methods

We consider the same problem as in Exercise 5.2. Now we want to explore
the use of adaptive and implicit methods from Odespy to see if they are
more efficient than the Forward Euler method. Assume that you want
the accuracy provided by the Forward Euler method with its maximum
At value. Since there exists an analytical solution, you can compute
an error measure that summarizes the error in space and time over the
whole simulation:

E = \/AxAtZ > (UP —u)?.

Here, U" is the exact solution. Use the Odespy package to run the
following implicit and adaptive solvers:

1. BackwardEuler
2. Backward2Step
3. RKFehlberg

Experiment to see if you can use larger time steps than what is required
by the Forward Euler method and get solutions with the same order of
accuracy.

Hint. To avoid oscillations in the solutions when using the RKFehlberg
method, the rtol and atol parameters to RKFFehlberg must be
set no larger than 0.001 and 0.0001, respectively. You can print out
solver_RKF.t_all to see all the time steps used by the RKFehlberg
solver (if solver is the RKFehlberg object). You can then compare the
number of time steps with what is required by the other methods.
Filename: ground_temp_adaptive.m.

Exercise 5.5: Investigate the 6 rule

a) The Crank-Nicolson method for ODEs is very popular when combined
with diffusion equations. For a linear ODE u' = au it reads
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T = i(aun + aunH) .

Apply the Crank-Nicolson method in time to the ODE system for
a one-dimensional diffusion equation. Identify the linear system to be
solved.

b) The Backward Euler, Forward Euler, and Crank-Nicolson methods
can be given a unified implementation. For a linear ODE v’ = au this
formulation is known as the 6 rule:

un+1 —um

At

For 6 = 0 we recover the Forward Euler method, 8 = 1 gives the Backward
Euler scheme, and 6 = 1/2 corresponds to the Crank-Nicolson method.
The approximation error in the # rule is proportional to At, except for
0 = 1/2 where it is proportional to At?. For § > 1/2 the method is stable
for all At.

Apply the 6 rule to the ODE system for a one-dimensional diffusion
equation. Identify the linear system to be solved.

= (1 —0)au" + fau™" .

c) Implement the 6 rule with aid of the Odespy package. The relevant
object name is ThetaRule:

solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)

d) Consider the physical application from Section 5.1.4. Run this case
with the 6 rule and 6 = 1/2 for the following values of A¢: 0.001, 0.01,
0.05. Report what you see.

Filename: rod_ThetaRule.m.

Remarks. Despite the fact that the Crank-Nicolson method, or the 6 rule
with § = 1/2, is theoretically more accurate than the Backward Euler
and Forward Euler schemes, it may exhibit non-physical oscillations as
in the present example if the solution is very steep. The oscillations are
damped in time, and decreases with decreasing At. To avoid oscillations
one must have At at maximum twice the stability limit of the Forward
Euler method. This is one reason why the Backward Euler method (or
a 2-step backward scheme, see Exercise 5.3) are popular for diffusion
equations with abrupt initial conditions.
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Exercise 5.6: Compute the diffusion of a Gaussian peak

Solve the following diffusion problem:

ou 0%u
5 5@, €(—-1,1), t€(0,7] (5.34)
0) = 1 z* 1], (5.35
u(z,0) = 5= P | ~53 | ze[-11], (5.35)
0
o u(—1,t) =0 te(0,7], (5.36)
aax“(l’t) =0 te (0,77 (5.37)

The initial condition is the famous and widely used Gaussian function
with standard deviation (or “width”) o, which is here taken to be small,
o = 0.01, such that the initial condition is a peak. This peak will then
diffuse and become lower and wider. Compute u(z,t) until u becomes
approximately constant over the domain.

Filename: gaussian_diffusion.m.

Remarks. Running the simulation with ¢ = 0.2 results in a constant
solution u ~ 1 as t — o0, while one might expect from “physics of
diffusion” that the solution should approach zero. The reason is that we
apply Neumann conditions as boundary conditions. One can then easily
show that the area under the u curve remains constant. Integrating the

PDE gives
L ou 1 8d2
[ at=6] %

Using the Gauss divergence theorem on the integral on the right-hand
and moving the time-derivative outside the integral on the left-hand side

results in
o ! Adul?
a /_1 u(l’7t)dx = B |:ax:|_l = 0.

(Recall that du/dx = 0 at the end points.) The result means that [*, uda
remains constant during the simulation. Giving the PDE an interpretation
in terms of heat conduction can easily explain the result: with Neumann
conditions no heat can escape from the domain so the initial heat will
just be evenly distributed, but not leak out, so the temperature cannot
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go to zero (or the scaled and translated temperature u, to be precise).
The area under the initial condition is 1, so with a sufficiently fine mesh,
u — 1, regardless of 0.

Exercise 5.7: Vectorize a function for computing the area of
a polygon

Vectorize the implementation of the function for computing the area of a
polygon in Exercise 2.5. Make a test function that compares the scalar
implementation in Exercise 2.5 and the new vectorized implementation
for the test cases used in Exercise 2.5.

Hint. Notice that the formula z1ys + zoys + -+ + Tp_1Yn = Z?;ol Tilit1
is the dot product of two vectors, x(1:end-1) and y(2,end), which
can be computed as dot (x(1:end-1), y(2,end)), or more explicitly as
sum(x(1:end-1) .*xy(1:end)).

Filename: polyarea_vec.m.

Exercise 5.8: Explore symmetry

One can observe (and also mathematically prove) that the solution u(z,t)
of the problem in Exercise 5.6 is symmetric around z = 0: u(—z,t) =
u(z,t). In such a case, we can split the domain in two and compute u in
only one half, [—1,0] or [0, 1]. At the symmetry line z = 0 we have the
symmetry boundary condition du/0x = 0. Reformulate the problem in
Exercise 5.6 such that we compute only for « € [0, 1]. Display the solution
and observe that it equals the right part of the solution in Exercise 5.6.
Filename: symmetric_gaussian_diffusion.m.

Remarks. In 2D and 3D problems, where the CPU time to compute a
solution of PDE can be hours and days, it is very important to utilize
symmetry as we do above to reduce the size of the problem.

Also note the remarks in Exercise 5.6 about the constant area under
the u(z,t) curve: here, the area is 0.5 and v — 0.5 as t — 0.5 (if the
mesh is sufficiently fine - one will get convergence to smaller values for
small ¢ if the mesh is not fine enough to properly resolve a thin-shaped
initial condition).
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Exercise 5.9: Compute solutions as ¢t — oo

Many diffusion problems reach a stationary time-independent solution
as t — oo. The model problem from Section 5.1.4 is one example where
u(z,t) = s(t) = const for t — co. When u does not depend on time, the
diffusion equation reduces to

—pu(x) = f (=),

in one dimension, and

_ﬂvzu = f(x)v

in 2D and 3D. This is the famous Poisson equation, or if f = 0, it is
known as the Laplace equation. In this limit ¢ — oo, there is no need for
an initial condition, but the boundary conditions are the same as for the
diffusion equation.

We now consider a one-dimensional problem

—u" () =0, x € (0,L), u(0)=0C, u'(L)=0, (5.38)

which is known as a two-point boundary value problem. This is nothing
but the stationary limit of the diffusion problem in Section 5.1.4. How
can we solve such a stationary problem (5.38)? The simplest strategy,
when we already have a solver for the corresponding time-dependent
problem, is to use that solver and simulate until £ — oo, which in practice
means that u(z,t) no longer changes in time (within some tolerance).

A nice feature of implicit methods like the Backward Euler scheme is
that one can take one very long time step to “infinity” and produce the
solution of (5.38).

a) Let (5.38) be valid at mesh points z; in space, discretize u” by a
finite difference, and set up a system of equations for the point values
ui,t = 0,..., N, where u; is the approximation at mesh point z;.

b) Show that if At — oo in (5.16) - (5.18), it leads to the same equations
as in a).

c) Demonstrate, by running a program, that you can take one large time
step with the Backward Euler scheme and compute the solution of (5.38).

The solution is very boring since it is constant: u(z) = C.
Filename: rod_stationary.m.

Remarks. If the interest is in the stationary limit of a diffusion equation,
one can either solve the associated Laplace or Poisson equation directly, or
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use a Backward Euler scheme for the time-dependent diffusion equation
with a very long time step. Using a Forward Euler scheme with small time
steps is typically inappropriate in such situations because the solution
changes more and more slowly, but the time step must still be kept
small, and it takes “forever” to approach the stationary state. This is
yet another example why one needs implicit methods like the Backward
Euler scheme.

Exercise 5.10: Solve a two-point boundary value problem

Solve the following two-point boundary-value problem

u(z) =2, 2 €(0,1), u(0)=0, u(l)=1.

Hint. Do Exercise 5.9. Modify the boundary condition in the code so it
incorporates a known value for u(1).
Filename: 2ptBVP.m.
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As a reader of this book you are probably well into mathematics and
often “accused” of being particularly good at “solving equations” (a
typical comment at family dinners!). However, is it really true that you,
with pen and paper, can solve many types of equations? Restricting our
attention to algebraic equations in one unknown x, you can certainly do
linear equations: ax + b = 0, and quadratic ones: az? + bz 4+ ¢ = 0. You
may also know that there are formulas for the roots of cubic and quartic
equations too. Maybe you can do the special trigonometric equation
sinz + cosxz = 1 as well, but there it (probably) stops. Equations that
are not reducible to one of the mentioned cannot be solved by general
analytical techniques, which means that most algebraic equations arising
in applications cannot be treated with pen and paper!

If we exchange the traditional idea of finding ezact solutions to equa-
tions with the idea of rather finding approzimate solutions, a whole
new world of possibilities opens up. With such an approach, we can in
principle solve any algebraic equation.

215
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Let us start by introducing a common generic form for any algebraic
equation:

f(x)=0.

Here, f(x) is some prescribed formula involving z. For example, the
equation

e ¥sinx = cosx

has

f(z)=e"sinz —cosx.

Just move all terms to the left-hand side and then the formula to the
left of the equality sign is f(x).

So, when do we really need to solve algebraic equations beyond the
simplest types we can treat with pen and paper? There are two major
application areas. One is when using implicit numerical methods for
ordinary differential equations. These give rise to one or a system of
algebraic equations. The other major application type is optimization,
i.e., finding the maxima or minima of a function. These maxima and
minima are normally found by solving the algebraic equation F’(z) = 0 if
F(x) is the function to be optimized. Differential equations are very much
used throughout science and engineering, and actually most engineering
problems are optimization problems in the end, because one wants a
design that maximizes performance and minimizes cost.

We restrict the attention here to one algebraic equation in one variable,
with our usual emphasis on how to program the algorithms. Systems of
nonlinear algebraic equations with many variables arise from implicit
methods for ordinary and partial differential equations as well as in
multivariate optimization. However, we consider this topic beyond the
scope of the current text.

Terminology

When solving algebraic equations f(z) = 0, we often say that the
solution z is a root of the equation. The solution process itself is
thus often called root finding.
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6.1 Brute force methods

The representation of a mathematical function f(x) on a computer takes
two forms. One is a Matlab function returning the function value given
the argument, while the other is a collection of points (x, f(z)) along
the function curve. The latter is the representation we use for plotting,
together with an assumption of linear variation between the points. This
representation is also very suited for equation solving and optimization:
we simply go through all points and see if the function crosses the x
axis, or for optimization, test for a local maximum or minimum point.
Because there is a lot of work to examine a huge number of points, and
also because the idea is extremely simple, such approaches are often
referred to as brute force methods. However, we are not embarrassed of
explaining the methods in detail and implementing them.

6.1.1 Brute force root finding

Assume that we have a set of points along the curve of a function f(x):

25 3.0 3.5 4.0

We want to solve f(z) =0, i.e., find the points = where f crosses the
x axis. A brute force algorithm is to run through all points on the curve
and check if one point is below the x axis and if the next point is above
the z axis, or the other way around. If this is found to be the case, we
know that f must be zero in between these two x points.
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Numerical algorithm. More precisely, we have a set of n 4+ 1 points
(i, yi), yi = f(x;),i=0,...,n, where xg < ... < z,,. We check if y; <0
and y;11 > 0 (or the other way around). A compact expression for this
check is to perform the test y;y;41 < 0. If so, the root of f(z) =0 is in
[z;, xi41]. Assuming a linear variation of f between x; and x;41, we have
the approximation

J(wiv1) — flwi Yi+1 — Yi
Lit1 — T4 Tiy1 — T
which, when set equal to zero, gives the root
Tirl — T4
= — 2 Ty
Yit1 — Yi

Implementation. Given some Matlab implementation f (x) of our math-
ematical function, a straightforward implementation of the above numer-
ical algorithm looks like

X
y

linspace(0, 4, 10001);
£(x);

root = NaN; % Initialization
for i = 1:(length(x)-1)
if y(i)*y(i+1) < 0
root = x(i) - (x(i+1) - x(1))/(y@E+1) - y(@@))*y(i);
break; % Jump out of loop
end
end
if isnan(root)
fprintf (’Could not find any root in [%g, %gl\n’, x(0), x(-1));
else
fprintf (’Find (the first) root as x=/g\n’, root);
end

(See the file brute_force_root_finder_flat.m.)

Note the nice use of setting root to NaN: we can simply test if
isnan(root) to see if we found a root and overwrote the NaN value, or
if we did not find any root among the tested points.

Running this program with some function, say f(z) = e’ cos(4x)
(which has a solution at x = §), gives the root 0.392699, which has an
error of 8.2 - 1078, Increasing the number of points with a factor of ten
gives a root with an error of 3.1 10710,

After such a quick “flat” implementation of an algorithm, we should
always try to offer the algorithm as a Matlab function, applicable to as
wide a problem domain as possible. The function should take f and an
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associated interval [a, b] as input, as well as a number of points (n), and
return a list of all the roots in [a, b]. Here is our candidate for a good
implementation of the brute force rooting finding algorithm:

function all_roots = brute_force_root_finder(f, a, b, n)
x = linspace(a, b, n);
y = £(x);
roots = [J;
for i = 1:(n-1)
if y(@i)*y(i+1) < 0
root = x(i) - (x(i+1) - x())/(y(@E+1) - y@))*y(i);
roots = [roots; root];
end
end
all_roots = roots;
end

This function is found in the file brute_force root finder.m.

This time we use another elegant technique to indicate if roots were
found or not: roots is empty (an array of length zero) if the root finding
was unsuccessful, otherwise it contains all the roots. Application of the
function to the previous example can be coded as (demo_brute_force_
root_finder.m):

function demo_brute_force_root_finder()
roots = brute_force_root_finder(
@(x) exp(-x.72).*xcos(4*x), 0, 4, 1001);
if length(roots) > 0
roots
else
fprintf (’Could not find any roots’);
end
end

6.1.2 Brute force optimization

Numerical algorithm. We realize that x; corresponds to a maximum
point if y;_1 < y; > y;41. Similarly, z; corresponds to a minimum if
Yi—1 > Y < yir1. We can do this test for all “inner” pointsi =1,...,n—1
to find all local minima and maxima. In addition, we need to add an end
point, ¢ = 0 or ¢ = n, if the corresponding y; is a global maximum or
minimum.

Implementation. The algorithm above can be translated to the following
Matlab function (file brute_force_optimizer.m):


https://github.com/hplgit/prog4comp/tree/master/src/m/brute_force_foot_finder.m
https://github.com/hplgit/prog4comp/tree/master/src/m/demo_brute_force_foot_finder.m
https://github.com/hplgit/prog4comp/tree/master/src/m/demo_brute_force_foot_finder.m
https://github.com/hplgit/prog4comp/tree/master/src/m/brute_force_optimizer.m

220 6 Solving nonlinear algebraic equations

function [xy_minima, xy_maxima] = brute_force_optimizer(f, a, b, n)
x = linspace(a, b, n);
y = £(x);
% Let maxima and minima hold the indices corresponding
to (local) maxima and minima points
minima = [];
maxima = [];
for i = 2:(n-1)
if y(i-1) < y(3) && y(i) > y(i+1)
maxima = [maxima; i];

==

end
if y(E-1) > y(1) && y(i) < y(i+1)
minima = [minima; il;
end
end

% What about the end points?
y_min_inner = y(minima(1)); % Initialize
for i = 1:length(minima)
if y(minima(i)) < y_min_inner
y_min_inner = y(minima(i));
end
end
y_max_inner = y(maxima(1)); % Initialize
for i = 1:length(maxima)
if y(maxima(i)) > y_max_inner
y_max_inner = y(maxima(i));
end
end

if y(1) > y_max_inner
maxima = [maxima; 1];
end
if y(length(x)) > y_max_inner
maxima = [maxima; length(x)];
end
if y(1) < y_min_inner
minima = [minima; 1];
end
if y(length(x)) < y_min_inner
minima = [minima; length(x)];
end

% Compose return values
xy_minima = [];
for i = 1:length(minima)
xy_minima = [xy_minima; [x(minima(i)) y(minima(i))]1];
end
xy_maxima = [];
for i = 1:length(maxima)
xy_maxima = [xy_maxima; [x(maxima(i)) y(maxima(i))1];
end
end
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An application to f(z) = e=*" cos(4x) looks like

function demo_brute_force_optimizer
[xy_minima, xy_maxima] = brute_force_optimizer(
@(x) exp(-x.72).xcos(4*x), 0, 4, 1001);
Xy_minima
Xy_maxima
end

6.1.3 Model problem for algebraic equations

We shall consider the very simple problem of finding the square root of
9, which is the positive solution of 22 = 9. The nice feature of solving
an equation whose solution is known beforehand is that we can easily
investigate how the numerical method and the implementation perform
in the search for the solution. The f(x) function corresponding to the
equation 22 = 9 is

flx)=2*—-9.

Our interval of interest for solutions will be [0,1000] (the upper limit
here is chosen somewhat arbitrarily).

In the following, we will present several efficient and accurate meth-
ods for solving nonlinear algebraic equations, both single equation and
systems of equations. The methods all have in common that they search
for approximate solutions. The methods differ, however, in the way they
perform the search for solutions. The idea for the search influences the
efficiency of the search and the reliability of actually finding a solution.
For example, Newton’s method is very fast, but not reliable, while the
bisection method is the slowest, but absolutely reliable. No method is
best at all problems, so we need different methods for different problems.

a Y
What is the difference between linear and nonlinear equa-

tions?

You know how to solve linear equations az +b = 0: © = —b/a. All
other types of equations f(x) = 0, i.e., when f(z) is not a linear
function of z, are called nonlinear. A typical way of recognizing
a nonlinear equation is to observe that = is “not alone” as in ax,
but involved in a product with itself, such as in 23 + 222 — 9 = 0.
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We say that 23 and 222 are nonlinear terms. An equation like
sinx 4+ e® cosxz = 0 is also nonlinear although z is not explicitly
multiplied by itself, but the Taylor series of sinz, e*, and cosz all
involve polynomials of x where x is multiplied by itself.

6.2 Newton’s method

Newton’s method, also known as Newton-Raphson’s method, is a very
famous and widely used method for solving nonlinear algebraic equations.
Compared to the other methods we will consider, it is generally the fastest
one (usually by far). It does not guarantee that an existing solution will
be found, however.

A fundamental idea of numerical methods for nonlinear equations is to
construct a series of linear equations (since we know how to solve linear
equations) and hope that the solutions of these linear equations bring us
closer and closer to the solution of the nonlinear equation. The idea will
be clearer when we present Newton’s method and the secant method.

6.2.1 Deriving and implementing Newton’s method

Figure 6.1 shows the f(x) function in our model equation 2% — 9 = 0.
Numerical methods for algebraic equations require us to guess at a
solution first. Here, this guess is called zy. The fundamental idea of
Newton’s method is to approximate the original function f(z) by a
straight line, i.e., a linear function, since it is straightforward to solve
linear equations. There are infinitely many choices of how to approximate
f(x) by a straight line. Newton’s method applies the tangent of f(z)
at xg, see the rightmost tangent in Figure 6.1. This linear tangent
function crosses the = axis at a point we call 1. This is (hopefully) a
better approximation to the solution of f(x) = 0 than xy. The next
fundamental idea is to repeat this process. We find the tangent of f at
x1, compute where it crosses the x axis, at a point called x5, and repeat
the process again. Figure 6.1 shows that the process brings us closer and
closer to the left. It remains, however, to see if we hit x = 3 or come
sufficiently close to this solution.

How do we compute the tangent of a function f(x) at a point zo? The
tangent function, here called f (x), is linear and has two properties:
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Fig. 6.1 Tllustrates the idea of Newton’s method with f(z) = 22 — 9, repeatedly solving
for crossing of tangent lines with the x axis.

1. the slope equals to f'(zg)
2. the tangent touches the f(z) curve at xg

So, if we write the tangent function as f (x) = ax + b, we must require

f'(x0) = f'(z0) and f(xz0) = (o), resulting in

f(@) = f(wo) + ' (xo)(z — o)
The key step in Newton’s method is to find where the tangent crosses
the x axis, which means solving f(x) = 0:

2 f(@o)
fley=0 = x=x— .
(x) 0 Fz0)
This is our new candidate point, which we call xy:
-~ f(@o)
1 = Xo f’(l‘o) .

With z¢ = 1000, we get x1 = 500, which is in accordance with the graph
in Figure 6.1. Repeating the process, we get
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f(z1)
f'(@1)
The general scheme of Newton’s method may be written as

Tptl = Ty — , n=0,1,2 ... 6.1
+1 f/(xn) ( )

~ 250.

To = T1 —

The computation in (6.1) is repeated until f (x,,) is close enough to zero.
More precisely, we test if |f(z,,)| < €, with € being a small number.

We moved from 1000 to 250 in two iterations, so it is exciting to see
how fast we can approach the solution z = 3. A computer program
can automate the calculations. Our first try at implementing Newton’s
method is in a function naive Newton:

function result = naive_Newton(f,dfdx,starting_value,eps)
x = starting_value;
while abs(f(x)) > eps
x = x - f(x)/dfdx(x);
end
result = x;
end

The argument x is the starting value, called xq in our previous description.
To solve the problem x? = 9 we also need to implement

function result = f(x)
result = x72 - 9;
end

function result = dfdx(x)
result = 2x*x;
end

Why not use an array for the z approximations?

Newton’s method is normally formulated with an iteration index n,

T+l = Tn — f/(fE ) .
n

Seeing such an index, many would implement this as

x(n+1) = x(x) - £(x(n))/dfdx(x(n));

Such an array is fine, but requires storage of all the approximations.
In large industrial applications, where Newton’s method solves
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millions of equations at once, one cannot afford to store all the
intermediate approximations in memory, so then it is important to
understand that the algorithm in Newton’s method has no more
need for x, when x,1 is computed. Therefore, we can work with
one variable x and overwrite the previous value:

x = x - f(x)/dfdx(x)

Running naive_Newton(f, dfdx, 1000, eps=0.001) results in the
approximate solution 3.000027639. A smaller value of eps will produce a
more accurate solution. Unfortunately, the plain naive Newton function
does not return how many iterations it used, nor does it print out all the
approximations xg, 1, Ts, ..., which would indeed be a nice feature. If
we insert such a printout, a rerun results in

500.0045
250.011249919
125.02362415
62.5478052723
31.3458476066
15.816483488
8.1927550496
4.64564330569
3.2914711388
3.01290538807
3.00002763928

We clearly see that the iterations approach the solution quickly. This
speed of the search for the solution is the primary strength of Newton’s
method compared to other methods.

6.2.2 Making a more efficient and robust implementation

The naive_Newton function works fine for the example we are considering
here. However, for more general use, there are some pitfalls that should
be fixed in an improved version of the code. An example may illustrate
what the problem is: let us solve tanh(z) = 0, which has solution = = 0.
With |z < 1.08 everything works fine. For example, xo leads to six
iterations if € = 0.001:

-1.05895313436
0.989404207298
-0.784566773086
0.36399816111
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-0.0330146961372
2.3995252668e-05

Adjusting xg slightly to 1.09 gives division by zero! The approximations
computed by Newton’s method become

-1.09331618202
1.10490354324
-1.14615550788
1.30303261823
-2.06492300238
13.4731428006
-1.26055913647e+11

The division by zero is caused by z7 = —1.26055913647 - 10!, because
tanh(z7) is 1.0 to machine precision, and then f’(z) = 1 — tanh(z)?
becomes zero in the denominator in Newton’s method.

The underlying problem, leading to the division by zero in the above
example, is that Newton’s method diverges: the approximations move
further and further away from z = 0. If it had not been for the division by
zero, the condition in the while loop would always be true and the loop
would run forever. Divergence of Newton’s method occasionally happens,
and the remedy is to abort the method when a maximum number of
iterations is reached.

Another disadvantage of the naive Newton function is that it calls
the f(x) function twice as many times as necessary. This extra work is
of no concern when f(x) is fast to evaluate, but in large-scale industrial
software, one call to f(x) might take hours or days, and then removing
unnecessary calls is important. The solution in our function is to store
the call £(x) in a variable (f_value) and reuse the value instead of
making a new call £(x).

To summarize, we want to write an improved function for implementing
Newton’s method where we

¢ avoid division by zero
¢ allow a maximum number of iterations
« avoid the extra evaluation to f(x)

A more robust and efficient version of the function, inserted in a complete
program Newtons_method.m for solving 22 — 9 = 0, is listed below.

function Newtons_method()
f =0(x) x°2 - 9;
dfdx = @(x) 2*x;
eps = le-6;
x0 = 1000;


https://github.com/hplgit/prog4comp/tree/master/src/m/Newtons_method.m
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[solution,no_iterations] = Newton(f, dfdx, x0, eps);

if no_iterations > 0O % Solution found
fprintf (’Number of function calls: %d\n’, 1 + 2%no_iterations);
fprintf (’A solution is: %f\n’, solution)

else
fprintf (’Abort execution.\n’)

end

end

function [solution, no_iterations] = Newton(f, dfdx, x0, eps)
x = x0;
f_value = f(x);
iteration_counter = 0;
while abs(f_value) > eps && iteration_counter < 100

try
x = x - (f_value)/dfdx(x);

catch
fprintf (’Error! - derivative zero for x = \n’, x)
exit (1)

end

f_value = f(x);
iteration_counter = iteration_counter + 1;
end
% Here, either a solution is found, or too many iterations
if abs(f_value) > eps
iteration_counter = -1;
end
solution = x;
no_iterations = iteration_counter;
end

Handling of the potential division by zero is done by a try-catch
construction, which works as follows. First, Matlab tries to execute the
code in the try block, but if something goes wrong there, the catch
block is executed instead and the execution is terminated by exit.

The division by zero will always be detected and the program will be
stopped. The main purpose of our way of treating the division by zero is
to give the user a more informative error message and stop the program
in a gentler way.

Calling exit with an argument different from zero (here 1) signifies
that the program stopped because of an error. It is a good habit to
supply the value 1, because tools in the operating system can then be
used by other programs to detect that our program failed.

To prevent an infinite loop because of divergent iterations, we have
introduced the integer variable iteration_counter to count the number
of iterations in Newton’s method. With iteration_counter we can
easily extend the condition in the while such that no more iterations
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take place when the number of iterations reaches 100. We could easily let
this limit be an argument to the function rather than a fixed constant.

The Newton function returns the approximate solution and the number
of iterations. The latter equals —1 if the convergence criterion |f(x)| < €
was not reached within the maximum number of iterations. In the calling
code, we print out the solution and the number of function calls. The main
cost of a method for solving f(z) = 0 equations is usually the evaluation
of f(z) and f'(z), so the total number of calls to these functions is an
interesting measure of the computational work. Note that in function
Newton there is an initial call to f(z) and then one call to f and one to
/' in each iteration.

Running Newtons_method.m, we get the following printout on the
screen:

Number of function calls: 25
A solution is: 3.000000

As we did with the integration methods in Chapter 3, we will place our
solvers for nonlinear algebraic equations in separate files for easy use by
other programs. So, we place Newton in the file Newton.m

The Newton scheme will work better if the starting value is close
to the solution. A good starting value may often make the difference
as to whether the code actually finds a solution or not. Because of its
speed, Newton’s method is often the method of first choice for solving
nonlinear algebraic equations, even if the scheme is not guaranteed to
work. In cases where the initial guess may be far from the solution, a
good strategy is to run a few iterations with the bisection method (see
Chapter 6.4) to narrow down the region where f is close to zero and
then switch to Newton’s method for fast convergence to the solution.

Newton’s method requires the analytical expression for the derivative
f'(x). Derivation of f’(x) is not always a reliable process by hand if
f(z) is a complicated function. However, Matlab has the Symbolic Math
Toolbox, which we may use to create the required dfdx function (Octave
does not (yet) offer the same possibilities for symbolic computations as
Matlab. However, there is work in progress, e.g. on using SymPy (from
Python) from Octave). In our sample problem, the recipe goes as follows:

sSyms X; % define x as a mathematical symbol
f_expr = x72 - 9; % symbolic expression for f(x)
dfdx_expr = diff(f_expr) 7, compute f’(x) symbolically

% Turn f_expr and dfdx_expr into plain Matlab functions

f = matlabFunction(f_expr) ;

dfdx = matlabFunction(dfdx_expr) ;
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dfdx(5) % will print 10

The nice feature of this code snippet is that dfdx_expr is the exact
analytical expression for the derivative, 2*x, if you print it out. This
is a symbolic expression so we cannot do numerical computing with it,
but the matlabFunction turns symbolic expressions into callable Matlab
functions.

The next method is the secant method, which is usually slower than
Newton’s method, but it does not require an expression for f’(x), and it
has only one function call per iteration.

6.3 The secant method

When finding the derivative f’(x) in Newton’s method is problematic,
or when function evaluations take too long; we may adjust the method
slightly. Instead of using tangent lines to the graph we may use secants’.
The approach is referred to as the secant method, and the idea is illustrated
graphically in Figure 6.2 for our example problem 2% — 9 = 0.

The idea of the secant method is to think as in Newton’s method,
but instead of using f’(x,), we approximate this derivative by a finite
difference or the secant, i.e., the slope of the straight line that goes
through the two most recent approximations x, and x,_1. This slope
reads

f(n) — f(xn—l)

Tn — Tp—1

. (6.2)

Inserting this expression for f/(z;,) in Newton’s method simply gives us
the secant method:

T — f(fcn)
L T T )~ f(eno1)
Tn—Tn—1

or
Tp — Tp—1

f(xn) - f(mn—l) '
Comparing (6.3) to the graph in Figure 6.2, we see how two chosen

starting points (o = 1000, x; = 700, and corresponding function values)
are used to compute x5. Once we have x9, we similarly use z1 and x5 to

Tpy1 = Tp — f(75) (6.3)

"nttps://en.wikipedia.org/wiki/Secant_line
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Fig. 6.2 Illustrates the use of secants in the secant method when solving 2 —9 =0,z €
[0,1000]. From two chosen starting values, g = 1000 and z1 = 700 the crossing x> of the
corresponding secant with the x axis is computed, followed by a similar computation of
x3 from 1 and x2.

compute x3. As with Newton’s method, the procedure is repeated until
f(z,) is below some chosen limit value, or some limit on the number of
iterations has been reached. We use an iteration counter here too, based
on the same thinking as in the implementation of Newton’s method.

We can store the approximations x,, in an array, but as in Newton’s
method, we notice that the computation of x,,11 only needs knowledge
of x, and x,_1, not “older” approximations. Therefore, we can make use
of only three variables: x for x,,11, x1 for x,, and x0 for x,,_1. Note that
x0 and x1 must be given (guessed) for the algorithm to start.

A program secant_method.m that solves our example problem may
be written as:

function secant_method()

f =0(x) x°2 - 9;

eps = le-6;

x0 = 1000; x1 =x0 - 1;

[solution,no_iterations] = secant(f, x0, x1, eps);

if no_iterations > 0O % Solution found
fprintf (’Number of function calls: %d\n’, 2 + no_iterations);
fprintf (’A solution is: %f\n’, solution)

else
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fprintf (’Abort execution.\n’)
end
end

function [solution,no_iterations] = secant(f, x0, x1, eps)
f_x0 = £(x0);
f x1 = £(x1);
iteration_counter = 0;
while abs(f_x1) > eps &% iteration_counter < 100
try
denominator = (f_x1 - f_x0)/(x1 - x0);
x = x1 - (f_x1)/denominator;
catch
fprintf (’Error! - denominator zero for x = \n’, x1)
break
end
x0 = x1;
x1l = x;
f x0 = £_x1;
f_x1 = £(x1);
iteration_counter = iteration_counter + 1;
end
% Here, either a solution is found, or too many iterations
if abs(f_x1) > eps
iteration_counter = -1;
end
solution = x1;
no_iterations = iteration_counter;
end

The number of function calls is now related to no_iterations, i.e.,
the number of iterations, as 2 + no_iterations, since we need two
function calls before entering the while loop, and then one function call
per loop iteration. Note that, even though we need two points on the
graph to compute each updated estimate, only a single function call
(f (x1)) is required in each iteration since f (x0) becomes the “old” f (x1)
and may simply be copied as f_x0 = f_x1 (the exception is the very
first iteration where two function evaluations are needed).

Running secant_method.m, gives the following printout on the screen:

Number of function calls: 19
A solution is: 3.000000

As with the function Newton, we place secant in a separate file
secant.m for easy use later.
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6.4 The bisection method

Neither Newton’s method nor the secant method can guarantee that an
existing solution will be found (see Exercises 6.1 and 6.2). The bisection
method, however, does that. However, if there are several solutions
present, it finds only one of them, just as Newton’s method and the
secant method. The bisection method is slower than the other two
methods, so reliability comes with a cost of speed.

To solve 22 — 9 = 0, z € [0,1000], with the bisection method, we
reason as follows. The first key idea is that if f(z) = 22 —9 is continuous
on the interval and the function values for the interval endpoints (zz = 0,
xr = 1000) have opposite signs, f(x) must cross the x axis at least once
on the interval. That is, we know there is at least one solution.

The second key idea comes from dividing the interval in two equal
parts, one to the left and one to the right of the midpoint x;; = 500.
By evaluating the sign of f(zps), we will immediately know whether
a solution must exist to the left or right of x;. This is so, since if
f(zar) >0, we know that f(x) has to cross the z axis between z, and
xpr at least once (using the same argument as for the original interval).
Likewise, if instead f(zp) < 0, we know that f(z) has to cross the x
axis between z;; and xg at least once.

In any case, we may proceed with half the interval only. The exception
is if f(zar) =~ 0, in which case a solution is found. Such interval halving
can be continued until a solution is found. A “solution” in this case,
is when |f(xps)] is sufficiently close to zero, more precisely (as before):
|f(zar)| < €, where € is a small number specified by the user.

The sketched strategy seems reasonable, so let us write a reusable func-
tion that can solve a general algebraic equation f(z) =0 (bisection_
method.m):

function bisection_method()
f =0(x) x°2 - 9;
eps = le-6;
a=0; b = 1000;
[solution, no_iterations] = bisection(f, a, b, eps);
if solution <= b % Solution found
fprintf (’Number of function calls: %d\n’, 1+2%no_iterations);
fprintf (’A solution is: %f\n’, solution);
else
fprintf (’Abort execution.\n’);
end
end

function [resultl, result2] = bisection(f, x_L, x_R, eps)
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if f(x_L)*f(x_R) > 0
fprintf (’Error! Function does not have opposite\n’);
fprintf(’signs at interval endpoints!’)

exit (1)
end
x M= (x_L + x_R)/2.0;
fM=fxM;

iteration_counter = 1;
while abs(f_M) > eps
left_f = f(x_L);
right_f = f(x_R);
if left_f*xf M > O % i.e., same sign

x_L = x_M;
else
x_R = x_M;
end
x M= (x_L + x_R)/2;
f M= f(x_M);
iteration_counter = iteration_counter + 2;
end
resultl = x_M;
result2 = iteration_counter;

end

Note that we first check if f changes sign in [a, b], because that is a
requirement for the algorithm to work. The algorithm also relies on a
continuous f(x) function, but this is very challenging for a computer
code to check.

We get the following printout to the screen when bisection_method.m
is run:

Number of function calls: 61
A solution is: 3.000000

We notice that the number of function calls is much higher than with
the previous methods.

Required work in the bisection method

If the starting interval of the bisection method is bounded by a and
b, and the solution at step n is taken to be the middle value, the
error is bounded as

b—al

-, (6.4)
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because the initial interval has been halved n times. Therefore, to
meet a tolerance €, we need n iterations such that the length of the
current interval equals e:

|b — al e o In((b—a)/e) .
2n In 2
This is a great advantage of the bisection method: we know before-
hand how many iterations n it takes to meet a certain accuracy e
in the solution.

As with the two previous methods, the function bisection is stored
as a separate file bisection.m for easy use by other programs.

6.5 Rate of convergence

With the methods above, we noticed that the number of iterations or
function calls could differ quite substantially. The number of iterations
needed to find a solution is closely related to the rate of convergence,
which is the speed of the error as we approach the root. More precisely,
we introduce the error in iteration n as e, = |r — x|, and define the
convergence rate q as

ent1 = Cell, (6.5)

where C' is a constant. The exponent ¢ measures how fast the error is
reduced from one iteration to the next. The larger ¢ is, the faster the
error goes to zero, and the fewer iterations we need to meet the stopping
criterion | f(x)| < e.

A single ¢ in (6.5) is defined in the limit n — oo. For finite n, and
especially smaller n, ¢ will vary with n. To estimate ¢, we can compute
all the errors e,, and set up (6.5) for three consecutive experiments n — 1,
n, and n + 1:

q

en =Ce,_1,

en+1 = Cel .

Dividing these two equations by each other and solving with respect to
q gives
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_ In(en+1/en)
q In(en/en—1)
Since this ¢ will vary somewhat with n, we call it ¢,. As n grows, we
expect g, to approach a limit (g, — ¢). To compute all the ¢, values, we
need all the x,, approximations. However, our previous implementations of
Newton’s method, the secant method, and the bisection method returned
just the final approximation.

Therefore, we have extended those previous implementations such
that the user can choose whether the final value or the whole history of
solutions is to be returned. The extended implementations are named
Newton_solver, secant_solver and bisection_solver. Compared to
the previous implementations, each of these now takes an extra parameter
return_x_list. This parameter is a boolean, set to true if the function
is supposed to return all the root approximations, or false, if the function
should only return the final approximation. As an example, let us take a
closer look at Newton_solver:

function [sol, no_it] = Newton_solver(f, dfdx, x, eps, return_x_list)
f_value = f(x);
iteration_counter = 0;
if return_x_list

x_list [1;
end
while abs(f_value) > eps && iteration_counter < 100
try
x = x - (f_value)/dfdx(x);
catch
fprintf (’Error! - derivative zero for x = \n’, x)
break
end
f_value = f(x);
iteration_counter = iteration_counter + 1;
if return_x_list
x_list = [x_list x];
end
end

% Here, either a solution is found, or too many iterations
if abs(f_value) > eps

iteration_counter = -1; % i.e., lack of convergence
end

if return_x_list

sol = x_list;

no_it = iteration_counter;
else

sol = x;

no_it = iteration_counter;
end
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end

The function is found in the file Newton_solver.m.
We can now make a call

[x, iter] = Newton_solver(f, dfdx, 1000, le-6, true);

and get an array x returned. With knowledge of the exact solution x of
f(z) =0, we can compute all the errors e,, and associated g, values with
the compact function

function q = rate(x, x_exact)
e = abs(x - x_exact);
q = zeros(length(e)-2,1);
for n = 2:(length(e)-1)
q(n-1) = log(e(n+1)/e(n))/log(e(n)/e(n-1));
end
end

The error model (6.5) works well for Newton’s method and the secant
method. For the bisection method, however, it works well in the beginning,
but not when the solution is approached.

We can compute the rates ¢, and print them nicely,

function print_rates(method, x, x_exact)
q = rate(x, x_exact);
fprintf(’%s:\n’, method)
for i = 1:length(q)
fprintf (’%.2f ’, q(i));
end
fprintf (’\n’)
end

The result for print_rates(’Newton’, x, 3) is

Newton:
1.01 1.02 1.03 1.07 1.14 1.27 1.51 1.80 1.97 2.00

indicating that ¢ = 2 is the rate for Newton’s method. A similar compu-
tation using the secant method, gives the rates

secant:
1.26 0.93 1.05 1.01 1.04 1.05 1.08 1.13 1.20 1.30 1.43
1.54 1.60 1.62 1.62

Here it seems that ¢ ~ 1.6 is the limit.

Remark. If we in the bisection method think of the length of the current
interval containing the solution as the error e,,, then (6.5) works perfectly
since e,41 = %en, ie,g=1land C = %, but if e, is the true error |z — x|,
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it is easily seen from a sketch that this error can oscillate between the
current interval length and a potentially very small value as we approach
the exact solution. The corresponding rates ¢, fluctuate widely and are
of no interest.

6.6 Solving multiple nonlinear algebraic equations

So far in this chapter, we have considered a single nonlinear algebraic
equation. However, systems of such equations arise in a number of appli-
cations, foremost nonlinear ordinary and partial differential equations. Of
the previous algorithms, only Newton’s method is suitable for extension
to systems of nonlinear equations.

6.6.1 Abstract notation

Suppose we have n nonlinear equations, written in the following abstract
form:

Fo(xo, z1, ..., 2n)

)

0
0,

AR
AR

Fi(zo,x1,...,2y)

o o
© 0o
= = U —_

Fo(xo,z1,...,2,) = 0.

|
=S = —~

It will be convenient to introduce a vector notation

F:(F(),...,Fl), .’BZ(.’E(),...,I'”).

The system can now be written as F(x) = 0.
As a specific example on the notation above, the system

2% =y — x cos(mx) (6.11)

yr+e ¥ =a"" (6.12)

can be written in our abstract form by introducing zo = z and z1 = y.
Then
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Fo(wo,21) = 2* — y + wcos(nz) = 0,

Fi(zo,m1) =ya+e ¥ =o' =0.

6.6.2 Taylor expansions for multi-variable functions

We follow the ideas of Newton’s method for one equation in one variable:
approximate the nonlinear f by a linear function and find the root of
that function. When n variables are involved, we need to approximate a
vector function F(z) by some linear function F = Jx + ¢, where J is
an n X n matrix and c is some vector of length n.

The technique for approximating F' by a linear function is to use
the first two terms in a Taylor series expansion. Given the value of F
and its partial derivatives with respect to & at some point x;, we can
approximate the value at some point x;11 by the two first term in a
Taylor series expansion around x;:

F(QZH_l) =~ F(acl) + VF(mZ)(a:,H — mz) .

The next terms in the expansions are omitted here and of size ||z; 11 —x;||?,
which are assumed to be small compared with the two terms above.

The expression VF' is the matrix of all the partial derivatives of F'.
Component (i,7) in VF is

OF;

ij'
For example, in our 2 x 2 system (6.11)-(6.12) we can use SymPy to
compute the Jacobian:

>>> from sympy import *

>>> x0, x1 = symbols(’x0 x1’)

>>> FO = x0**2 - x1 + xO0*cos(pi*x0)
>>> F1 = x0*x1 + exp(-x1) - x0x*(-1)
>>> diff (FO, x0)

-pi*x0*sin(pi*x0) + 2xx0 + cos(pi*x0)
>>> diff (FO, x1)

-1

>>> diff (F1, x0)

x1 + x0**(-2)

>>> diff(F1, x1)

x0 - exp(-x1)

We can then write
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-2
zy 011 T1+ T XTo— €

OFy 9Fy 2xg + cos(mxg) — mxgsin(mxg) —1
o ([ ) - (2o et

The matrix VF is called the Jacobian of F and often denoted by .J.

6.6.3 Newton’s method

The idea of Newton’s method is that we have some approximation x; to
the root and seek a new (and hopefully better) approximation ;41 by
approximating F'(x;11) by a linear function and solve the corresponding
linear system of algebraic equations. We approximate the nonlinear
problem F(x;+1) = 0 by the linear problem

where J(x;) is just another notation for VF(x;). The equation (6.13)
is a linear system with coefficient matrix J and right-hand side vector
F(x;). We therefore write this system in the more familiar form

where we have introduce a symbol § for the unknown vector x; 11 — @;
that multiplies the Jacobian J.

The ¢-th iteration of Newton’s method for systems of algebraic equa-
tions consists of two steps:

1. Solve the linear system J(xz;)0 = —F(x;) with respect to 4.
2. Set ®;41 = x; + 0.

Solving systems of linear equations must make use of appropriate software.
Gaussian elimination is the most common, and in general the most robust,
method for this purpose. Matlab interfaces the well-known LAPACK
package with high-quality and very well tested subroutines for linear
algebra. The backslash operator solves a linear system Ax = bby x = A\b
by a method based on Gaussian elimination.

When nonlinear systems of algebraic equations arise from discretiza-
tion of partial differential equations, the Jacobian is very often sparse,
i.e., most of its elements are zero. In such cases it is important to use
algorithms that can take advantage of the many zeros. Gaussian elimi-
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nation is then a slow method, and (much) faster methods are based on
iterative techniques.

6.6.4 Implementation

Here is a very simple implementation of Newton’s method for systems of
nonlinear algebraic equations:

% Use Newton’s method to solve systems of nonlinear algebraic equations.

function [x, iteration_counter] = Newton_system(F, J, x, eps)
% Solve nonlinear system F=0 by Newton’s method.
% J is the Jacobian of F. Both F and J must be functions of x.
% At input, x holds the start value. The iteration continues
% until F < eps.

F_value = F(x);
F_norm = norm(F_value); 7 12 norm of vector
iteration_counter = 0;
while abs(F_norm) > eps && iteration_counter < 100
delta = J(x)\-F_value;
X = x + delta;
F_value = F(x);
F_norm = norm(F_value);
iteration_counter = iteration_counter + 1;
end

% Here, either a solution is found, or too many iterations
if abs(F_norm) > eps

iteration_counter = -1;
end

end

We can test the function Newton_system with the 2 x 2 system (6.11)-
(6.12):

function test_Newton_systeml()
expected [1; 0];
tol = le-4;
[x, n] = Newton_system(@F, @J, [2; -1], 0.0001);
error = abs(expected - x);
assert(norm(error) < tol, ’err=Jg’, error);

end

function F_vector = F(x)
F_vector = [x(1)72 - x(2) + x(1)*cos(pi*x(1));...
x(1)*x(2) + exp(-x(2)) - x(V"(-D];
end
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function J_matrix = J(x)
J_matrix = [2*x(1) + cos(pi*x(1)) - pi*x(1)*sin(pi*x(1)) -1;...
x(2) + x(1)°(-2) x(1) - exp(-x(2))];
end

Here, the testing is based on the L2 norm of the error vector. Alternatively,
we could test against the values of x that the algorithm finds, with
appropriate tolerances. For example, as chosen for the error norm, if
eps=0.0001, a tolerance of 10~% can be used for x[0] and x[1].

6.7 Exercises

Exercise 6.1: Understand why Newton’s method can fail

The purpose of this exercise is to understand when Newton’s method
works and fails. To this end, solve tanh z = 0 by Newton’s method and
study the intermediate details of the algorithm. Start with o = 1.08.
Plot the tangent in each iteration of Newton’s method. Then repeat the
calculations and the plotting when xy = 1.09. Explain what you observe.
Filename: Newton_failure.*.

Exercise 6.2: See if the secant method fails

Does the secant method behave better than Newton’s method in the
problem described in Exercise 6.17 Try the initial guesses

1. 2o =1.08 and z; = 1.09
2. zg=1.09and z1 = 1.1
3. zg=1and 1 = 2.3

4. zg=1land 1 =24

Filename: secant_failure. *.

Exercise 6.3: Understand why the bisection method cannot
fail

Solve the same problem as in Exercise 6.1, using the bisection method,
but let the initial interval be [—5, 3]. Report how the interval containing
the solution evolves during the iterations.

Filename: bisection_nonfailure. *.
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Exercise 6.4: Combine the bisection method with Newton’s
method

An attractive idea is to combine the reliability of the bisection method
with the speed of Newton’s method. Such a combination is implemented
by running the bisection method until we have a narrow interval, and
then switch to Newton’s method for speed.

Write a function that implements this idea. Start with an interval
[a,b] and switch to Newton’s method when the current interval in the
bisection method is a fraction s of the initial interval (i.e., when the
interval has length s(b — a)). Potential divergence of Newton’s method
is still an issue, so if the approximate root jumps out of the narrowed
interval (where the solution is known to lie), one can switch back to the
bisection method. The value of s must be given as an argument to the
function, but it may have a default value of 0.1.

Try the new method on tanh(z) = 0 with an initial interval [—10, 15].
Filename: bisection Newton.m.

Exercise 6.5: Write a test function for Newton’s method

The purpose of this function is to verify the implementation of Newton’s
method in the Newton function in the file Newton.m Construct an alge-
braic equation and perform two iterations of Newton’s method by hand.
Find the corresponding size of | f(x)| and use this as value for eps when
calling Newton. The function should then also perform two iterations and
return the same approximation to the root as you calculated manually.
Implement this idea for a unit test as a test function test Newton().
Filename: test Newton.m.

Exercise 6.6: Solve nonlinear equation for a vibrating beam

An important engineering problem that arises in a lot of applications
is the vibrations of a clamped beam where the other end is free. This
problem can be analyzed analytically, but the calculations boil down to
solving the following nonlinear algebraic equation:

cosh fcosf = —1,

where [ is related to important beam parameters through
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where o is the density of the beam, A is the area of the cross section, F is
Young’s modulus, and [ is the moment of the inertia of the cross section.
The most important parameter of interest is w, which is the frequency of
the beam. We want to compute the frequencies of a vibrating steel beam
with a rectangular cross section having width b = 25 mm and height
h = 8 mm. The density of steel is 7850 kg/ms, and E = 210" Pa. The
moment of inertia of a rectangular cross section is I = bh3/12.

a) Plot the equation to be solved so that one can inspect where the zero
crossings occur.

Hint. When writing the equation as f(3) = 0, the f function increases
its amplitude dramatically with 5. It is therefore wise to look at an
equation with damped amplitude, g(3) = e f(3) = 0. Plot g instead.

b) Compute the first three frequencies.
Filename: beam_vib.m.
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