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@ The Problem of the hill climber

© Going to Math

© Numerical Optimization and its Parts

@ Now we go to Stata!



The Problem of the hill climber

Hill Climbing Method: Finding the highest altitude in a 2D landscape
@ Choose a starting location (Choose initial parameters)
© Determine the steepest uphill direction
© Move a certain distance in that direction
@ Go on until all surrounding directions are downhill

Numerical optimization methods differ in how they take on steps 1 to 3.
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Complications

Again our method is:
@ Choose a starting location (Choose initial parameters)
© Determine the steepest uphill direction
© Move a certain distance in that direction
@ Go on until all surrounding directions are downhill

It is easy to see that many things can go wrong in our recipe of climbing
the mountain
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Taken from Charbonneau (2002)
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Taken from Charbonneau (2002)



What climbing the hill looks like in math

o Our problem is always find 6 = argmax Qu (8) where Qu (-) is a given
objective function.

o Usually Qy (6) =0 has an analytical solution.

@ In nonlinear applications, this is not the case. Then we need a way to
implement the sequence 2-3 explained above = lterative Methods

@ In Iterative Methods you have an step s and there is a rule that yields
where to find ésH, where ideally Qn <és+1> > Qu (és)



Gradient Methods

@ Most iterative methods are gradient methods.

@ The derivative tells them where to go

és—0—1 - és + Asgs (1)

where A, = A <é5> and gs = aQaNe(e) 5
@ Different methods use different Ag
@ What is a natural A;?

» Answer: The Hessian (Newton-Raphson)



Simple Example

Consider the exponential regression

aw(®) =@M L (o)’

It is easy to see that the gradient becomes

N
g= Nflz (y,-—ee) &b — (}-/_ee> &b
i=1
Suppose As = e 2%, Then following (1)
é5+1— s+e ( ee) :é ( —e9>e79
Suppose y=2and 6, =0. Then,

Gh=landg=1—-6;=1+(2—e)e*and go=(2—e)e . And so
on....



Figure: Q(0) and s; Q(0) and the lteration s

< <
o | © |
8 8
] ]
= =
i
5 5
<} <
o | o |
[ 2 4 6 8 1 1 2 3
theta_hat step



Convergence

Iterations will continue forever if we do not define some criteria
@ A small change in Qu (és)
@ A small change in g relative to the Hessian
© A small change in parameter estimates 0,

Convergence is often 107°



Initial Values (1. Starting Location)

@ lterations needed to reach hill top reduce if initial values are chosen to
be close to 6*

@ A poor initial values choice can lead to failure

@ Stata chooses 20 places in the parameter space at random



Derivatives (2. Determine the steepest uphill direction)

AQp (és> Qn (és + hej) + Qn (és - hej)
AG; 2h

where e; = (0,0,...,0,1,0,...,0)/ and h should be very small
@ Computer calculates them

@ Drawback is that they can be computationally burdensome as the
number of parameters increases (parameter space dimensions).

@ Advantage: no coding
@ Alternative: Analytical derivatives provided by user

> Analytical derivatives reduce the computational work and make easier
the computation of the second derivatives (Hessian).
» Users can also provide second analytical derivatives



Newton-Raphson Method

és—i—l — és + H;Igs

2
where Hy = aa(ggé?)

Motivation: From the Taylor approximation around és

; is of dimension g x g

/

Q4 (8) = Qu (é) tg. (9 — és) 1/ <e - és) H, (9 _ és)

To find the optimal 8* of this Taylor expansion we calculate the derivative
with respect to 6 which yields

gs+Hs(9—§s) —0

Solving for 6 = 6 = 6 — H g,
Note that Hs has to be non-singular



BHHH and DFP

9q;(0) 9q;(0)
Z 00 00’

HehHH,s =

b
Note that we only require to calculate the first derivatives. Less
burdensome.

A=A+ 65715;71 n Asfll’ys*l’}éflASfl
55_1’}/5_1 75_1A5,1y571
where 051 = As 185 1 and ¥s 1 =8s — 851



Prepare for the Example (Poisson Model)

A Poisson model optimizes the following objective function

Q(8) =

M=

[—exr‘e +yix;6 — Iny,-!]

i=1

It is easy to see that the gradient and the Hessian are

0=+

=1




Now we go to Statal
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