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You will learn how to fit a Gaussian process to
data.
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Probability theory represents an extension of
traditional logic, allowing us to reason in the
face of uncertainty.
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A probability is a degree of belief. This might be
held by any agent - a human, a robot, a sensor,
etc.
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‘I is the totality of an agent’s prior information.
An agent is defined by /.

We define our agents so that they can perform
difficult inference for us.
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A dot-to-dot is an inference problem.
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A dot-to-dot is a problem with many possible

solutions.
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Our prior information

allows

between solutions.
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A dot-to-dot requires us to do inference about
functions, as can be seen more clearly in one
dimension.
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The multivariate Gaussian distribution is
wonderful; it is defined by a mean vector (which

simply gives the centrepoint) and covariance
matrix.

Yi
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The covariance K must be a positive semi-
definite matrix; so for any vector x, x' K x = 0.

This implies that:

K must be symmetric.

~ The diagonal of K

- )
3.1 0 0 must be positive.
1 3 2 0
oot K= R" R for some
\ ~/ upper triangular R.

The eigenvalues of K
are all > 0.
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We can represent any covariance K using the
spherical parameterisation.

K=R'R
(1 cos(6) cos(d,) ~\(h 0 0
P 0 smn(6) sm(6,)cos(b,) 0 A, O
10 0 sin(6,)sin(6,) 0 0 A
\. ...)\ .




The (i, ))th element of the covariance expresses
how variable jis dependent upon variable J.
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The (i, )t element of the inverse covariance
(precision) expresses how variable jis

dependent upon variable j, conditioned on all
other variables.
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The multivariate Gaussian distribution allows us
to produce distributions for variables

conditioned on any other observed variables.

10— ' '
ply; | y,=-5, 1 /?

il
% p(y, |1
1 /\

-10 0 10

Y;




The Gaussian distribution allows us to produce
distributions for variables conditioned on any
other observed variables.
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A Gaussian process is the generalisation of a
multivariate Gaussian distribution to a
potentially infinite number of variables.
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For a Gaussian process, we need to define mean

and covariance functions, specified by
hyperparameters ¢.
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A Gaussian process represents a powerful way
to perform Bayesian inference about functions.
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A Gaussian process produces a mean estimate.
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A Gaussian process produces a mean estimate
along with an indication of the uncertainty in it.

1.5,
1 i
0.5} + 1SD
Y Mean
Or 4+ Observations
-0.5
2 4 6 8 10

Fesd UNIVERSITY OF

Y OXFORD



The posterior mean and covariance equations
follow simply from Gaussian identities.
ys=y(x)  Predictants
ye=y(x;) Data

p(yey)=N (y*).(ﬂ(x*)) (K(x*,x*) K(x*,xd))
*9 Vd y, ’ ﬂ(xd) ’ K()Cd,x*) K(xdﬁxd)

Mean m(y.|y,) = u(x)+K(x,x)K (x,.x,) (v, - u(x,)
Cov. C(y.|y,)= K(x*,x*)+K(x*,xd)K(xd,xd)'lK(xd,x*)
\ /

All functions here are dependent
upon hyperparameters.




A Gaussian process can accommodate noise.
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We usually consider making independent and
identically distributed (IID) Gaussian noisy
measurements z, of y; giving

p(z, |y, = N(Zd;ydaﬂzw ldentity matrix

m(y. | z,) = 1(x) + K (%, 5,V (x4, x,) 7 (2, - p(x,)
C(y.lz,;)=K(x.,x.)+ K(x*axd)V(xdaxd)_lK(xdax*)

(K(x19x1)+(72 K(x;,x,)
V(xdaxd)=K(xdﬂxd)+02[d = K(x29x1) K(XZ,X2)+O'2
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More generally, we could consider correlated
noise, in which the noise contribution could
itself be drawn from a GP.

Full posterior for EEG data with saccade
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We often want to address functions of time,
using Gaussian processes for tracking.
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We often want to address functions of time,
using Gaussian processes for tracking.

1.5,
1 i
0.5} +1SD
< S — Mean
O <+ Observations
-0.5
2 4 6 8 10

Fesd UNIVERSITY OF

Y OXFORD



We often want to address functions of time,
using Gaussian processes for tracking.
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We often want to address functions of time,
using Gaussian processes for tracking.
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We often want to address functions of time,
using Gaussian processes for tracking.
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We often want to address functions of time,
using Gaussian processes for tracking.
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We often want to address functions of time,
using Gaussian processes for tracking.
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We often want to address functions of time,
using Gaussian processes for tracking.
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The prior mean function u(x;¢) should be our
best guess (of any form) for the function y(x)
before any observations are made.
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The prior mean function is the function our
inference will default to far from observations.
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It’s rarely worth using a complicated mean
function (with many hyperparameters), unless
we’re concerned with prediction far from our

observations.

Predictions required Mean function

Interpolation u(x;¢p)=mean(y, ).
Bespoke model built
using domain
knowledge.

Extrapolation
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There are a huge number of covariance
functions (in spite of the requirement that they
be positive semi-definite) appropriate for
modelling functions of different types.

Function type Covariance function

mprobably smooth  Squared exponential.
Less smooth Matern.

Polynomial Polynomial.
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Many covariance functions (including the
squared exponential and Matérn) are of the

metric form
squared output scale

K(x X3 W hzl(&(xl,x w)

decreases W|th distance input
increasing d function scale

€.g. d(xi,xj;w)=
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We often want distances that are stationary (a

function of x,-x,), implying that the function
looks similar throughout its domain.

10

0 50 100

stationary functions non-stationary
function
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The hyperparameters h and w specify our
expected length scales of the function in output
(‘height’) and input (‘width’) spaces respectively.
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The squared exponential and Matérn
covariances allow us to model functions of
various degrees of smoothness.
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The squared exponential and Matérn
covariances allow us to model functions of
various degrees of smoothness.

KSE(xl.,xj;h,w)= h’ exp(—%d(xi,xj;w)z)
KMtn(xi,xj;h,w,v = %)= h2(1+ \/gd(xi,xj;w))exp(—\/gd(xl.,xj;w))
KMm(xl.,xj;h,w,v = %)= h’ exp(— d(xl.,xj;w))

rove Squared exponential
== Matérn, v =

w

v =
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Polynomial covariances exist to model functions
that are known to be polynomial.

KP(xl.,xj,x,W): (02 +x; W xj)d

10057
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The Kalman filter is a Gaussian process with a
special covariance

. K = (ugly)

fgnctlon, one that 2 10 0
gives a sparse
precision matrix. -1 2 -1 0
This allows k'=l0o -1 2 -1
efficient 0 0 -1 2
computation. :

\— /

Y1 Y2 Y3 Yi—1 Ut




We can create new covariance functions by
adding or multiplying other covariance
functions.
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When a function is the sum of two independent
functions, use a covariance that is the sum of
the covariances for those two functions.

2_
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When a function is the product of two
independent functions, use a covariance that is
(almost) the product of the covariances for those
two functions.
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We can also modify covariance functions.

Inputs exssgjr?erﬁ'?ial Matern Polynomial
1-dim

n-dim ‘

derivative ‘

periodic .
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We can modify covariance functions to
accommodate multiple input dimensions, using

d(xi,xj;W)= \/(Xi —xj)TW_l(xi —xj)

o W e 1 O
Cean[) 0

20,

0{

10
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If there are multiple outputs, reframe the
problem as having a single output, and an
additional /abel input specifying the output.

20 d
T
101‘% A a;t !

i 3
LN
R Y

label 10 y d:ys)

Hence we do not need simultaneous
observations of all outputs.
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If the inputs were previously x, and outputs
were labelled by /=1, ..., L, we now need to
specify a covariance over both x and /, e.qg.

separable for

convenience
A\
[

K((xl,ll)(x],l])) K(xl.,x) (ll,lj)

|

If Lis not too large, we
could use the spherical
parameterisation.
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Many other modifications are possible, to build
covariances allowing for e.g. changepoints,
faults and sets.

K (460, x; ¢)

1.2
1

K (460, x; ¢)
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We can modify covariance functions for
functions known to be periodic, by using the
distance

1 x-x
d(xi,xj}—sm T—7
W
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Gaussian distributed variables are joint Gaussian
with any affine transform of them.
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A function over which we have a Gaussian
process is joint Gaussian with any integral or
derivative of it, as integration and differentiation
are affine.
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We can modify covariance functions to manage
derivative or integral observations.

derivative
observation at 0

. K \x.x.]l=—K
x; and function D( r f)
observation at

Xj.

derivative

observation at (x . )_ d 0
x;and derivative PPYTT g g,
observation at




We can modify the squared exponential
covariance to manage derivative observations.

1 _
-l - : :
0.5 K, function observation
= with function observation
= 0 K™ derivative observation
= with function observation
l/‘ > . . .
= K®:D) derivative observation
0.5t with derivative observation
-1 f
-4 -2 0 2 4




We can improve our inference by including
observations of the gradient of a function.
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We can improve our inference by including
observations of the gradient of a function.

+1SD
— Mean
+ Observations
— Gradient Observations
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We can use observations of an integrand £ in
order to perform inference for its integral, Z:
this is known as Bayesian Quadrature.

x samples
GP mean

GP mean + SD
expected 2
p(Z|samples)
draw from GP
draw from GP
draw from GP
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Consider the
integral

P = f 5 exp(—%) dx-

Bayesian
quadrature
achieves more
accurate results
than Monte Carlo,
and provides an
estimate of our
uncertainty.
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p(Y | Data)
— — = /27 (correct )
— — - MC estimate for 1\




The enormous flexibility afforded by covariance
functions comes at a price: hyperparameters,
which must be marginalised.

[ p(yslza, ) p(zale)p(o) d

p(y+lza) = [p(zal0)p(e) d

Unfortunately, these integrals are non-analytic.




Given that we don’t to fix y., the two important
terms in our integrands are the likelihood and

the prior (specifically, their product,
proportional to the posterior for ¢).

Iikelibood pr}or

\

[ p(y«lza. ) (Zd\cb\){p(@ d

Pslzd) = N () d




The hyperparameter priors can have a
significant influence on our inference. Prior A

favours small input scale, prior C favours large

input scale and prior B is uninformative.
3 I I I

0 5 10 15 20 25 30 35 40 45 50
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Selecting priors is easy.

Use what you know.
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If probability theory makes ‘wrong’ predictions,
then we have learned something!

Model (/)
Probability
theory Our expectations

Predictions
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If probability theory makes ‘wrong’ predictions,
then we have learned something!

"One of these '
Model ( /) «— two must be
_wrong y
Probability 1
theory Our expectations
Predictions Z
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In this way, we are led to construct successively
better models.

Included Wireless
RIC Spy CAM

/'Q“;v WIRELESS RIC CAM
380 Motor Engine Futaba 2ER Attack Servos +3-Ch Radio
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Marginalisation requires quadrature, which
presents two challenges: integrand exploration,
and integral estimation.
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There are many different approaches to
quadrature for probabilistic integrals; integrand
estimation is usually undervalued.

400 A

200 -
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Optimisation (as in maximum likelihood),
particularly using global optimisers, gives a
reasonable heuristic for exploring the integrand.

400 A

200 -




However, maximum likelihood is an
unreasonable way of estimating a multi-modal
likelihood integrand: why throw away all those
other samples?

400 -

200 -




Monte Carlo schemes give a another reasonable
method of exploration.

400 -

200 -
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Monte Carlo schemes give a fairly reasonable
method of exploration; but a less reasonable
means of integrand estimation.

400 -

200 -




Bayesian Monte Carlo uses samples obtained via
Monte Carlo within a Bayesian quadrature
framework to give an estimate for the integral.




With Bayesian quadrature, we can also estimate
the posterior distributions for any
hyperparameters.

Posterior for period hyperparameter ¢

3.5

Posterior

3l — — — Posterior Mean

251

2_

151

p(¢|Data)

1_




There are many approaches to hyperparameter
marginalisation, but only two are recommended.

Likelihood Marginalisation
Unimodal or high Maximum likelihood.
dimensional

Multimodal or Bayesian Monte
computationally Carlo.

expensive
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We can put Gaussian processes to work not just
for regression. but also for classification.

Posterior probability of class B

® class A observation

® class B observation




To do so, use a Gaussian process to model a
latent variable, mapped through a sigmoid to a
discrete class label.

| Il

]
I data |
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mean
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Unfortunately, using this sigmoid makes
inference intractable. Approximate inference can
be achieved using a number of algorithms.

Algorithm Speed Accuracy

Laplace Very fast  Low.
approximation

Expectation Fast High.
Propagation

Markov Chain Very slow Very high.
Monte Carlo
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We treat global optimisation as a Bayesian
decision problem.




We can also use Gaussian processes for

optimisation.
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We can also use Gaussian processes for
optimisation.

Function Evaluation 2
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We can also use Gaussian processes for
optimisation.

Function Evaluation 3
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We can also use Gaussian processes for
optimisation.

Function Evaluation 4
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We can also use Gaussian processes for
optimisation.

Function Evaluation 5
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We can also use Gaussian processes for
optimisation.

Function Evaluation 6
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We can also use Gaussian processes for
optimisation.

Function Evaluation 7
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We can also use Gaussian processes for
optimisation.

Function Evaluation 8
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We can also use Gaussian Processes for
optimisation.
Function Evaluation 9
0.1—
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The key computational bottleneck associated
with Gaussian processes is resolving inv(K) v, or,
equivalently, solving v = K x for x.

(K, Ky Ky o) (m)
K, K, Ky V)
K; Ky Ky Vs
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Our choice of a method to solve v = K x for x
depends on the structure of covariance K.

Covariance matrix  Solving method

Poorly conditioned Improve conditioning,
then see below.

(Just) positive semi-  Cholesky factorisation.
definite
Toeplitz Toeplitz solver.

Kronecker product Kronecker solver.
Too big and dense Sparsification.

Updated version of Update, dependent on
previous matrix above.
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You should never actually invert a matrix.

Inversion is slow, O(n3) in matrix size n.

Inversion is also unstable; conditioning
errors are significant.
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Conditioning becomes an issue when we have
multiple close observations, giving rows in the
covariance matrix that are very similar.

2 0.9999 0
0.9999 1 0
0 0 1

0 0 0.1

0o

0
0.1

1

Too
similar

The condition number (cond) of a covariance
matrix is the ratio of the largest to the smallest
eigenvalue; in Matlab, things break down at
about cond(K) = 1076,




The solution to conditioning problems is to add
a small positive quantity (jitter) to the diagonal
of the covariance matrix.

7101 0.9999 0 0o Sufficiently
0.9999 1.01 O 0 dissimilar
0 0 1.01 0.1

\.0 0 0.1 1.01_/




As jitter is effectively imposed noise, adding
jitter to all diagonal elements (unnecessarily)
dilutes the informativeness of our data.
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The Cholesky factorisation of a positive semi-
definite matrix K is relatively fast (1/3 O(n3) in
matrix size n) and more numerically stable.

K=R'R
(R, R, - R

0 R. ... R
R=chol(K)=| . 2 >

0 0 - R,




The upper triangular Cholesky factor can then
be stored and used to solve v = K x for x very
quickly (O(n%) in matrix size n) by back
substitution.

v =KX

v=R'x

X'= Rx

(v, (R, R, - R \/x'\)
v, 0O R, -+ R, | X,




A symmetric matrix Kis Toeplitz if it can be
written as

ok k, k, k, - ko
k2 kl k2 k3
K _ k3 k2 kl k2
k, k k, k
K, ki )

If Kis Toeplitz, there exists a very efficient
method to solve v = K x for x (O(4n?) in matrix
Size n).
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A Gaussian process has a Toeplitz covariance
matrix if we have linearly spaced observations
and a stationary covariance function.

15
* Data

101 —  Mean 100 60.7 13.5 1.11 0.03 0 0

15D 60.7 100 607 13.5 1.11 003 0

> 135 607 100 607 13.5 1.11 0.03

Y - K=|1.11 135 60.7 100 60.7 13.5 1.11

0.03 1.11 13.5 60.7 100 60.7 13.5

-5 0 003 111 135 607 100 60.7

0. 0 0 003 111 135 60.7 100
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Some special large matrices can be represented
in 2 compact way using the Kronecker product.

a‘llB e a’lnB

A @' B - : .. : .
A1 B e a‘mnB
aj1byy  aybyp - a‘llblq cee e Appbyy @rpbipy - a-lnblq
ajrbyy  ayibyy - 0-11b2q ceeeee Aipbyy  Agpbyy - ﬂ-l-anq
a‘llbpl a‘llpr e a‘llbpq ooty a‘lnbpl a‘lnbp2 e a‘lnbpq
AxB =

Am1 bll Am1 b12 Tt Oy blq R ¢ 5770 ) bll Amn bl? "t Omn blq
Am1 b21 Am1 b22 SR PP | b2q et ottt O b21 Amn b22 "t Omn b2q

_avnl bpl Am1 bp? Tt Oy bpq et ottt Omp bpl Amn pr "t Omn bpq_

(1-0 1-5 2-0 2-5] [0 5 0 10]

1 9] fo5] |16 172627 |6 7 12 14

€.9. L 4]® [6 7]“ 3.0 3.5 4-0 4.5 10 15 0 20|
3.6 3.7 4.6 4-7] |18 21 24 28




If Kis a Kronecker product, there exists a very
efficient method to solve v= K x for x
(particularly when v is itself a Kronecker

product):
SiZe na x Ny,
[ |

size n, size n,

Recall that solving
operations are typically O
(n3)!
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A Gaussian process will have a Kronecker
product for a covariance matrix if we use a
product covariance function and a grid of
samples.

10

K((0,0), (z1,22))
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If a very large covariance matrix is not

decomposable as a Kronecker product (or

otherwise), we may wish to attempt

sparsification.
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There are many ways to sparsify our data; the
simplest involve selecting a subset. Windowing
represents a reasonable way to do this.

Tide Heights, Independent Sensor 1

0 02 04 06 038
t (days)

+1SD

Mean

o Discarded Observations
o Old Observations

°© New Observations




A Gaussian process assumes all variables fare
correlated.

[image courtesy
C. Rasmussen]




Imagine introducing additional, unobserved
inducing variables w.

$2
$1

w
1 *
Ui 1]
¥
X1 fl fi
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= ©
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\X O [image courtesy
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We can sparsify data by using inducing variables
to mediate the interactions between test and

training variables. s
S1
U1
X1 fl
Uz X5
A2 ~
= ©
Y3 f3
/
X3
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There are many such schemes for sparsification,
that differ in the choice of inducing inputs.
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Finally, if we already have the Cholesky factor
R,, =chol(K,,),

we can efficiently determine the updated factor

Rll R12 _ ChOl Kll KIZ
O R22 KIZ K22 ,

and similar for other types of Cholesky updates
and downdates, and for solutions based upon
them. A Toeplitz update is probably also
possible.




We want to evaluate a large number of
hyperparameter samples to explore
hyperparameter space. Fortunately, each sample
can be evaluated in parallel (possibly on a
graphics card).




| hope you have learned how to fit Gaussian
processes to data.

Mean Covariance
function function
| I |
Hyper-parameter Solving
priors method

Hyper-parameter
marginalisation




