
An Introduction to Fitting
Gaussian Processes to Data

Michael Osborne
Pattern Analysis and Machine Learning Research Group

Department of Engineering
University of Oxford

You will learn how to fit a Gaussian process to
data.  

Probability Theory

C

R

Deductive Logic

C

R

Probability theory represents an extension of
traditional logic, allowing us to reason in the
face of uncertainty.

P(R | C, I)

A probability is a degree of belief. This might be
held by any agent – a human, a robot, a sensor,
etc.  

We define our agents so that they can perform
difficult inference for us.

‘I’ is the totality of an agent’s prior information.
An agent is defined by I.

A dot-to-dot is an inference problem.  

A dot-to-dot is a problem with many possible
solutions.  

Our prior information allows us to discriminate
between solutions.  

y

x

A dot-to-dot requires us to do inference about
functions, as can be seen more clearly in one
dimension.  

y1

y2

mean

The multivariate Gaussian distribution is
wonderful; it is defined by a mean vector (which
simply gives the centrepoint) and covariance
matrix.  

3 1 0 0
1 3 2 0
0 2 4 -1
0 0 -1 3

K must be symmetric.

The diagonal of K
must be positive.  

K = RT R for some
upper triangular R.
 
The eigenvalues of K
are all ≥ 0.

The covariance K must be a positive semi-
definite matrix; so for any vector x, xT K x ≥ 0.
This implies that:  
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

=









3

2

1

32

321

21

T

00
00
00

)sin()sin(00
)cos()sin()sin(0

)cos()cos(1

h
h

h

R

RRK

θθ

θθθ

θθ

We can represent any covariance K using the
spherical parameterisation.  

0.32 0.56

0.56 1.09

K =

The (i,j)th element of the covariance expresses
how variable i is dependent upon variable j.  

1.67 -2 1.33
-2 3 -2
1.33 -2 1.67

3 2 0
2 3 2
0 2 3

K-1 =

K =

The (i,j)th element of the inverse covariance
(precision) expresses how variable i is
dependent upon variable j, conditioned on all
other variables.  

y1

y2

p(y1 | I)

p(y1 | y2=-5, I)

The multivariate Gaussian distribution allows us
to produce distributions for variables
conditioned on any other observed variables.  

y1

y2

p(y1 | y2=-5, I)

yx

x

The Gaussian distribution allows us to produce
distributions for variables conditioned on any
other observed variables.  

y1

y2

A Gaussian process is the generalisation of a
multivariate Gaussian distribution to a
potentially infinite number of variables.  

yx

x

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛











);,();,();,(
);,();,();,(
);,();,();,(

);(
);(
);(

332313

322212

312111

333231

232221

132111

3

2

1

3

2

1

φφφ

φφφ

φφφ

φµ

φµ

φµ

µ

µ

µ

xxKxxKxxK
xxKxxKxxK
xxKxxKxxK

KKK
KKK
KKK

x
x
x

For a Gaussian process, we need to define mean
and covariance functions, specified by
hyperparameters φ.  

y

x

A Gaussian process represents a powerful way
to perform Bayesian inference about functions.

A Gaussian process produces a mean estimate.  

y

x

y

x

A Gaussian process produces a mean estimate
along with an indication of the uncertainty in it.  

y

x

()
),(),(),(),()|(

)(),(),()()|(

),(),(
),(),(

,
)(
)(

;),(

)(
)(

*
1

1

*

*

**

xxKxxKxxKxxKyyC
xyxxKxxKxyym

xxKxxK
xxKxxK

x
x

y
y

Nyyp

xyy
xyy

ddddd

dddddd

ddd

d

dd
d

dd

−

−

+=

−+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

=

µµ

µ

µ

Predictants
Data

Mean
Cov.

All functions here are dependent
upon hyperparameters.

The posterior mean and covariance equations
follow simply from Gaussian identities.  

y

x

A Gaussian process can accommodate noise. 

y

x

()

()

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

+

=+=

+=

−+=

=

−

−




2

2212

21
2

11
2

*
1

1

2

),(),(
),(),(

),(),(

),(),(),(),()|(

)(),(),()()|(

,;)|(

σ

σ

σ

µµ

σ

xxKxxK
xxKxxK

IxxKxxV

xxKxxVxxKxxKzyC
xzxxVxxKxzym

IyzNyzp

ddddd

ddddd

dddddd

ddddd Identity matrix

We usually consider making independent and
identically distributed (IID) Gaussian noisy
measurements z, of y; giving  

More generally, we could consider correlated
noise, in which the noise contribution could
itself be drawn from a GP.  

We often want to address functions of time,
using Gaussian processes for tracking.  

We often want to address functions of time,
using Gaussian processes for tracking.  

We often want to address functions of time,
using Gaussian processes for tracking.  

We often want to address functions of time,
using Gaussian processes for tracking.  

We often want to address functions of time,
using Gaussian processes for tracking.  

We often want to address functions of time,
using Gaussian processes for tracking.  

We often want to address functions of time,
using Gaussian processes for tracking.  

We often want to address functions of time,
using Gaussian processes for tracking.  

The prior mean function µ(x;φ) should be our
best guess (of any form) for the function y(x)
before any observations are made.  

The prior mean function is the function our
inference will default to far from observations.  

Predictions required Mean function
Interpolation µ(x;φ)=mean(yd).
Extrapolation Bespoke model built

using domain
knowledge.

It’s rarely worth using a complicated mean
function (with many hyperparameters), unless
we’re concerned with prediction far from our
observations.  

Function type Covariance function
Improbably smooth Squared exponential.
Less smooth Matérn.
Polynomial Polynomial.

There are a huge number of covariance
functions (in spite of the requirement that they
be positive semi-definite) appropriate for
modelling functions of different types.  

() ());,(;, 2 wxxdhwxxK jiji κ=

squared output scale

distance
function

input
scale

decreases with
increasing d

()
w
xx

wxxd ji
ji

−
=;,e.g.

Many covariance functions (including the
squared exponential and Matérn) are of the
metric form 

stationary functions non-stationary
function

We often want distances that are stationary (a
function of x1-x2), implying that the function
looks similar throughout its domain.  

w

h2

w

h

The hyperparameters h and w specify our
expected length scales of the function in output
(‘height’) and input (‘width’) spaces respectively.  

The squared exponential and Matérn
covariances allow us to model functions of
various degrees of smoothness.  

() ()
() () ()
() ());,(exp,,;,

);,(3exp);,(31,,;,

);,(exp,;,

2
2
1

Mtn

2
2
3

Mtn

2
2
12

SE

wxxdhwhxxK

wxxdwxxdhwhxxK

wxxdhwhxxK

jiji

jijiji

jiji

−==

−+==

−=

ν

ν

The squared exponential and Matérn
covariances allow us to model functions of
various degrees of smoothness.  

() ()djT
iji xWx+c=Wx,;x,xK 2

P

Polynomial covariances exist to model functions
that are known to be polynomial.  

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−−

−−

−

=

=

−





2100
1210
0121
0012

)ugly(

1K

K
function, one that
gives a sparse
precision matrix.
This allows
efficient
computation.

The Kalman filter is a Gaussian process with a
special covariance 

× (× +)
e.g.

We can create new covariance functions by
adding or multiplying other covariance
functions.  

When a function is the sum of two independent
functions, use a covariance that is the sum of
the covariances for those two functions.  

() () ()
()
())(x)µ(xµx,xK

+)(x)µ(xµx,xK
+x,xKx,xK=x,xK

a(x)b(x)=y(x)

aab

bba

bay

2121

2121

212121

When a function is the product of two
independent functions, use a covariance that is
(almost) the product of the covariances for those
two functions.  

1-dim

n-dim

derivative

periodic

Squared
exponential

Matern Polynomial Inputs

We can also modify covariance functions.  

() () ()jijiji xxWxxWxxd −−= −1T;,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

100
01

We.g.

We can modify covariance functions to
accommodate multiple input dimensions, using 

x

Hence we do not need simultaneous
observations of all outputs.

If there are multiple outputs, reframe the
problem as having a single output, and an
additional label input specifying the output.  

() ()() () ()jijijjii llKxxKlxlxK ,,,,, =

separable for
convenience

If L is not too large, we
could use the spherical
parameterisation.

If the inputs were previously x, and outputs
were labelled by l = 1, ..., L, we now need to
specify a covariance over both x and l, e.g.  

Many other modifications are possible, to build
covariances allowing for e.g. changepoints,
faults and sets.  

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

T
xx

π
w

=,xxd ji
ji sin1

We can modify covariance functions for
functions known to be periodic, by using the
distance  

Gaussian distributed variables are joint Gaussian
with any affine transform of them.  

A function over which we have a Gaussian
process is joint Gaussian with any integral or
derivative of it, as integration and differentiation
are affine.  

() ()

() ()
j

i

i

xxxx
jiDD

xx
jjiD

xxK
xx

xxK

xxK
x

xxK

==

=

∂

∂

∂

∂
=

∂

∂
=

'

, ',
'

,

,,
derivative
observation at
xi and function
observation at
xj.

derivative
observation at
xi and derivative
observation at
xj.

We can modify covariance functions to manage
derivative or integral observations.  

We can modify the squared exponential
covariance to manage derivative observations.  

We can improve our inference by including
observations of the gradient of a function.  

We can improve our inference by including
observations of the gradient of a function.

We can use observations of an integrand ℓ in
order to perform inference for its integral, Z:
this is known as Bayesian Quadrature.

Consider the
integral

 .

Bayesian
quadrature
achieves more
accurate results
than Monte Carlo,
and provides an
estimate of our
uncertainty.

Unfortunately, these integrals are non-analytic.

The enormous flexibility afforded by covariance
functions comes at a price: hyperparameters,
which must be marginalised.

likelihood prior

Given that we don’t to fix y*, the two important
terms in our integrands are the likelihood and
the prior (specifically, their product,
proportional to the posterior for φ).  

The hyperparameter priors can have a
significant influence on our inference. Prior A
favours small input scale, prior C favours large
input scale and prior B is uninformative.  

Prior

Use what you know.

Selecting priors is easy.  

Model (I)

Predictions

Probability
theory Our expectations

≈	

?

If probability theory makes ‘wrong’ predictions,
then we have learned something!  

Model (I)

Predictions

Probability
theory Our expectations

≠	

One of these
two must be
wrong

If probability theory makes ‘wrong’ predictions,
then we have learned something!  

In this way, we are led to construct successively
better models.  

Marginalisation requires quadrature, which
presents two challenges: integrand exploration,
and integral estimation.

log-
likelihood

hyperparameters

log-likelihood

There are many different approaches to
quadrature for probabilistic integrals; integrand
estimation is usually undervalued.  

Optimisation (as in maximum likelihood),
particularly using global optimisers, gives a
reasonable heuristic for exploring the integrand.  

However, maximum likelihood is an
unreasonable way of estimating a multi-modal
likelihood integrand: why throw away all those
other samples? 

Monte Carlo schemes give a another reasonable
method of exploration.  

Monte Carlo schemes give a fairly reasonable
method of exploration; but a less reasonable
means of integrand estimation.  

Bayesian Monte Carlo uses samples obtained via
Monte Carlo within a Bayesian quadrature
framework to give an estimate for the integral.

With Bayesian quadrature, we can also estimate
the posterior distributions for any
hyperparameters.  

Likelihood Marginalisation

Unimodal or high
dimensional

Maximum likelihood.

Multimodal or
computationally
expensive

Bayesian Monte
Carlo.

There are many approaches to hyperparameter
marginalisation, but only two are recommended.  

We can put Gaussian processes to work not just
for regression, but also for classification.  

To do so, use a Gaussian process to model a
latent variable, mapped through a sigmoid to a
discrete class label.

Unfortunately, using this sigmoid makes
inference intractable. Approximate inference can
be achieved using a number of algorithms.

Algorithm Speed Accuracy

Laplace
approximation

Very fast Low.

Expectation
Propagation

Fast High.

Markov Chain
Monte Carlo

Very slow Very high.

x Objective
function

y

We treat global optimisation as a Bayesian
decision problem. 

We can also use Gaussian processes for
optimisation.  

We can also use Gaussian processes for
optimisation.  

We can also use Gaussian processes for
optimisation.  

We can also use Gaussian processes for
optimisation.  

We can also use Gaussian processes for
optimisation.  

We can also use Gaussian processes for
optimisation.  

We can also use Gaussian processes for
optimisation.  

We can also use Gaussian processes for
optimisation.  

We can also use Gaussian processes for
optimisation.  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−





3

2

1
1

333231

232221

132111

v
v
v

KKK
KKK
KKK

The key computational bottleneck associated
with Gaussian processes is resolving inv(K) v, or,
equivalently, solving v = K x for x.  
 

Covariance matrix Solving method

Poorly conditioned Improve conditioning,
then see below.

(Just) positive semi-
definite

Cholesky factorisation.

Toeplitz Toeplitz solver.

Kronecker product Kronecker solver.

Too big and dense Sparsification.

Updated version of
previous matrix

Update, dependent on
above.

Our choice of a method to solve v = K x for x
depends on the structure of covariance K.  

Inversion is slow, O(n3) in matrix size n.

Inversion is also unstable; conditioning
errors are significant.

1

333231

232221

131211
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

KKK
KKK
KKK

You should never actually invert a matrix.  

The condition number (cond) of a covariance
matrix is the ratio of the largest to the smallest
eigenvalue; in Matlab, things break down at
about cond(K) = 1016.

1 0.9999 0 0

0.9999 1 0 0

0 0 1 0.1

0 0 0.1 1

Too
similar

Conditioning becomes an issue when we have
multiple close observations, giving rows in the
covariance matrix that are very similar.  

1.01 0.9999 0 0

0.9999 1.01 0 0

0 0 1.01 0.1

0 0 0.1 1.01

Sufficiently
dissimilar

The solution to conditioning problems is to add
a small positive quantity (jitter) to the diagonal
of the covariance matrix.  
 
 

As jitter is effectively imposed noise, adding
jitter to all diagonal elements (unnecessarily)
dilutes the informativeness of our data.  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

=

nn

n

n

R

RR
RRR

KR

RRK







00

0
)chol(222

11211

T

The Cholesky factorisation of a positive semi-
definite matrix K is relatively fast (1/3 O(n3) in
matrix size n) and more numerically stable.  
  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

=

=

nnn

n

n

n x

x
x

R

RR
RRR

v

v
v
Rxx
xRv

Kxv

'

'
'

00

0

'
'

2

1

222

11211

2

1

T










The upper triangular Cholesky factor can then
be stored and used to solve v = K x for x very
quickly (O(n2) in matrix size n) by back
substitution.  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1

1234

2123

3212

4321

kk

kkkk
kkkk
kkkk

kkkkk

K

n

n





If K is Toeplitz, there exists a very efficient
method to solve v = K x for x (O(4n2) in matrix
size n).

A symmetric matrix K is Toeplitz if it can be
written as  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1007.605.1311.103.000
7.601007.605.1311.103.00
5.137.601007.605.1311.103.0
11.15.137.601007.605.1311.1
03.011.15.137.601007.605.13
003.011.15.137.601007.60
0003.011.15.137.60100

=K

A Gaussian process has a Toeplitz covariance
matrix if we have linearly spaced observations
and a stationary covariance function.  

e.g.

Some special large matrices can be represented
in a compact way using the Kronecker product.  

() ()
() ()bbaa

baba

vKvK

vvKKx
11

1

−−

−

⊗=

⊗⊗=

size na ₓ nb

size na size nb

Recall that solving
operations are typically O

(n3)!

If K is a Kronecker product, there exists a very
efficient method to solve v = K x for x
(particularly when v is itself a Kronecker
product):

A Gaussian process will have a Kronecker
product for a covariance matrix if we use a
product covariance function and a grid of
samples.  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nnK

KK
KKK

KKK
KK

K

0

00
0

0
000

4443

343332

232221

1211





If a very large covariance matrix is not
decomposable as a Kronecker product (or
otherwise), we may wish to attempt
sparsification.  

There are many ways to sparsify our data; the
simplest involve selecting a subset. Windowing
represents a reasonable way to do this.  

A Gaussian process assumes all variables f are
correlated.

[image courtesy
C. Rasmussen]

Imagine introducing additional, unobserved
inducing variables u.

[image courtesy
C. Rasmussen]

We can sparsify data by using inducing variables
to mediate the interactions between test and
training variables.

[image courtesy
C. Rasmussen]

There are many such schemes for sparsification,
that differ in the choice of inducing inputs.

[image courtesy
C. Rasmussen]

Finally, if we already have the Cholesky factor

),chol(1111 KR =

we can efficiently determine the updated factor

,chol
0 2212

1211

22

1211
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

KK
KK

R
RR

and similar for other types of Cholesky updates
and downdates, and for solutions based upon
them. A Toeplitz update is probably also
possible.

We want to evaluate a large number of
hyperparameter samples to explore
hyperparameter space. Fortunately, each sample
can be evaluated in parallel (possibly on a
graphics card).  

I hope you have learned how to fit Gaussian
processes to data.  

