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You will learn how to fit a Gaussian process to 
data.  
 



Probability Theory 

C

R 

Deductive Logic 

C 

R 

Probability theory represents an extension of 
traditional logic, allowing us to reason in the 
face of uncertainty. 



P( R | C, I ) 

A probability is a degree of belief. This might be 
held by any agent – a human, a robot, a sensor, 
etc.  
 



We define our agents so that they can perform 
difficult inference for us. 

‘I’ is the totality of an agent’s prior information. 
An agent is defined by I. 



A dot-to-dot is an inference problem.  
 



A dot-to-dot is a problem with many possible 
solutions.  
 



Our prior information allows us to discriminate 
between solutions.  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A dot-to-dot requires us to do inference about 
functions, as can be seen more clearly in one 
dimension.  
 



y1 

y2 

mean 

The multivariate Gaussian distribution is 
wonderful; it is defined by a mean vector (which 
simply gives the centrepoint) and covariance 
matrix.  
 



3 1 0 0 
1 3 2 0 
0 2 4 -1 
0 0 -1 3 

K must be symmetric. 
 
The diagonal of K 
must be positive.  
 
K = RT R  for some 
upper triangular R. 
 
The eigenvalues of K 
are all ≥ 0. 

 
 

The covariance K must be a positive semi-
definite matrix; so for any vector x, xT K x ≥ 0. 
This implies that:  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We can represent any covariance K using the 
spherical parameterisation.  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K = 

The (i,j)th element of the covariance expresses 
how variable i is dependent upon variable j.  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K-1 = 

K = 

The (i,j)th  element of the inverse covariance 
(precision)  expresses how variable i is 
dependent upon variable j, conditioned on all 
other variables.  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p(y1 | I) 

p(y1 | y2=-5, I) 

The multivariate Gaussian distribution allows us 
to produce distributions for variables 
conditioned on any other observed variables.  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p(y1 | y2=-5, I) 
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The Gaussian distribution allows us to produce 
distributions for variables conditioned on any 
other observed variables.  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y2 



A Gaussian process is the generalisation of a 
multivariate Gaussian distribution to a 
potentially infinite number of variables.  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For a Gaussian process, we need to define mean 
and covariance functions, specified by 
hyperparameters φ.  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A Gaussian process represents a powerful way 
to perform Bayesian inference about functions. 



A Gaussian process produces a mean estimate.  
 

y 

x 



y 

x 

A Gaussian process produces a mean estimate 
along with an indication of the uncertainty in it.  
 

y 

x 



( )
),(),(),(),()|(

)(),(),()()|(

),(),(
),(),(

,
)(
)(

;),(

)(
)(

*
1

****

1
***

*

*****
*

**

xxKxxKxxKxxKyyC
xyxxKxxKxyym

xxKxxK
xxKxxK

x
x

y
y

Nyyp

xyy
xyy

ddddd

dddddd

ddd

d

dd
d

dd

−

−

+=

−+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

=

µµ

µ

µ

Predictants 
Data 

Mean 
Cov. 

All functions here are dependent 
upon hyperparameters. 

The posterior mean and covariance equations 
follow simply from Gaussian identities.  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A Gaussian process can accommodate noise. 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We usually consider making independent and 
identically distributed (IID) Gaussian noisy 
measurements z, of y; giving  
 



More generally, we could consider correlated 
noise, in which the noise contribution could 
itself be drawn from a GP.  
 



We often want to address functions of time, 
using Gaussian processes for tracking.  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using Gaussian processes for tracking.  
 



We often want to address functions of time, 
using Gaussian processes for tracking.  
 



We often want to address functions of time, 
using Gaussian processes for tracking.  
 



We often want to address functions of time, 
using Gaussian processes for tracking.  
 



We often want to address functions of time, 
using Gaussian processes for tracking.  
 



We often want to address functions of time, 
using Gaussian processes for tracking.  
 



We often want to address functions of time, 
using Gaussian processes for tracking.  
 



The prior mean function µ(x;φ) should be our 
best guess (of any form) for the function y(x) 
before any observations are made.  
 



The prior mean function is the function our 
inference will default to far from observations.  
 



Predictions required Mean function 
Interpolation µ(x;φ)=mean(yd ). 
Extrapolation Bespoke model built 

using domain 
knowledge. 

It’s rarely worth using a complicated mean 
function (with many hyperparameters), unless 
we’re concerned with prediction far from our 
observations.  
 



Function type Covariance function 
Improbably smooth Squared exponential. 
Less smooth Matérn. 
Polynomial Polynomial. 

There are a huge number of covariance 
functions (in spite of the requirement that they 
be positive semi-definite) appropriate for 
modelling functions of different types.  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Many covariance functions (including the 
squared exponential and Matérn) are of the 
metric form 
 



stationary functions non-stationary 
function 

We often want distances that are stationary (a 
function of x1-x2), implying that the function 
looks similar throughout its domain.  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w
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The hyperparameters h and w specify our 
expected length scales of the function in output 
(‘height’) and input (‘width’) spaces respectively.  
 



The squared exponential and Matérn 
covariances allow us to model functions of 
various degrees of smoothness.  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The squared exponential and Matérn 
covariances allow us to model functions of 
various degrees of smoothness.  
 



( ) ( )djT
iji xWx+c=Wx,;x,xK 2

P

Polynomial covariances exist to model functions 
that are known to be polynomial.  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function, one that 
gives a sparse 
precision matrix. 
This allows 
efficient 
computation. 

The Kalman filter is a Gaussian process with a 
special covariance 
 



× ( × + ) 
e.g. 

We can create new covariance functions by 
adding or multiplying other covariance 
functions.  
 



When a function is the sum of two independent 
functions, use a covariance that is the sum of 
the covariances for those two functions.  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When a function is the product of two 
independent functions, use a covariance that is 
(almost) the product of the covariances for those 
two functions.  
 



1-dim 

n-dim  
 
derivative 

periodic 

Squared 
exponential 

Matern Polynomial Inputs 

We can also modify covariance functions.  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We can modify covariance functions to 
accommodate multiple input dimensions, using 
 



x 

Hence we do not need simultaneous 
observations of all outputs. 

If there are multiple outputs, reframe the 
problem as having a single output, and an 
additional label input specifying the output.  
 



( ) ( )( ) ( ) ( )jijijjii llKxxKlxlxK ,,,,, =

separable for 
convenience 

If L is not too large, we 
could use the spherical 
parameterisation. 

If the inputs were previously x, and outputs 
were labelled by l = 1, ..., L,  we now need to 
specify a covariance over both x and l, e.g.  
 



Many other modifications are possible, to build 
covariances allowing for e.g. changepoints, 
faults and sets.  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We can modify covariance functions for 
functions known to be periodic, by using the 
distance  
 



Gaussian distributed variables are joint Gaussian 
with any affine transform of them.  
 



A function over which we have a Gaussian 
process is joint Gaussian with any integral or 
derivative of it, as integration and differentiation 
are affine.  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observation at 
xi and function 
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derivative 
observation at 
xi and derivative 
observation at 
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We can modify covariance functions to manage 
derivative or integral observations.  
 



We can modify the squared exponential 
covariance to manage derivative observations.  
 



We can improve our inference by including 
observations of the gradient of a function.  
 



We can improve our inference by including 
observations of the gradient of a function. 
 



We can use observations of an integrand ℓ in 
order to perform inference for its integral, Z: 
this is known as Bayesian Quadrature. 



Consider the 
integral 
 
                            . 
 
Bayesian 
quadrature 
achieves more 
accurate results 
than Monte Carlo, 
and provides an 
estimate of our 
uncertainty. 



Unfortunately, these integrals are non-analytic. 

The enormous flexibility afforded by covariance 
functions comes at a price: hyperparameters, 
which must be marginalised.  
 



likelihood prior 

Given that we don’t to fix y*, the two important 
terms in our integrands are the likelihood and 
the prior (specifically, their product, 
proportional to the posterior for φ).  
 



The hyperparameter priors can have a 
significant influence on our inference. Prior A 
favours small input scale, prior C favours large 
input scale and prior B is uninformative.  
 



Prior 

Use what you know. 

Selecting priors is easy.  
 



Model ( I ) 

Predictions 

Probability 
theory Our expectations 

≈	


? 

If probability theory makes ‘wrong’ predictions, 
then we have learned something!  
 



Model ( I ) 

Predictions 

Probability 
theory Our expectations 

≠	



One of these 
two must be 
wrong 

If probability theory makes ‘wrong’ predictions, 
then we have learned something!  
 



In this way, we are led to construct successively 
better models.  
 



Marginalisation requires quadrature, which 
presents two challenges: integrand exploration, 
and integral estimation.  

log-
likelihood 

hyperparameters 



log-likelihood 

There are many different approaches to 
quadrature for probabilistic integrals; integrand 
estimation is usually undervalued.  
 



Optimisation (as in maximum likelihood), 
particularly using global optimisers, gives a 
reasonable heuristic for exploring the integrand.  
 



However, maximum likelihood is an 
unreasonable way of estimating a multi-modal 
likelihood integrand: why throw away all those 
other samples? 
 



Monte Carlo schemes give a another reasonable 
method of exploration.  
 



Monte Carlo schemes give a fairly reasonable 
method of exploration; but a less reasonable 
means of integrand estimation.  
 



Bayesian Monte Carlo uses samples obtained via 
Monte Carlo within a Bayesian quadrature 
framework to give an estimate for the integral. 



With Bayesian quadrature, we can also estimate 
the posterior distributions for any 
hyperparameters.  
 



Likelihood Marginalisation 

Unimodal or high 
dimensional 

Maximum likelihood. 

Multimodal or 
computationally 
expensive 

Bayesian Monte 
Carlo. 

There are many approaches to hyperparameter 
marginalisation, but only two are recommended.  
 



We can put Gaussian processes to work not just 
for regression, but also for classification.  
 



To do so, use a Gaussian process to model a 
latent variable, mapped through a sigmoid to a 
discrete class label.  



Unfortunately, using this sigmoid makes 
inference intractable. Approximate inference can 
be achieved using a number of algorithms. 

Algorithm Speed Accuracy 

Laplace 
approximation 

Very fast Low. 

Expectation 
Propagation 

Fast High. 

Markov Chain 
Monte Carlo 

Very slow Very high.  



x Objective 
function 

y 

We treat global optimisation as a Bayesian 
decision problem. 
 



We can also use Gaussian processes for 
optimisation.  
 



We can also use Gaussian processes for 
optimisation.  
 



We can also use Gaussian processes for 
optimisation.  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We can also use Gaussian processes for 
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We can also use Gaussian processes for 
optimisation.  
 



We can also use Gaussian processes for 
optimisation.  
 



We can also use Gaussian processes for 
optimisation.  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The key computational bottleneck associated 
with Gaussian processes is resolving inv(K) v, or, 
equivalently, solving v = K x for x.  
 
 



Covariance matrix Solving method 

Poorly conditioned Improve conditioning, 
then see below. 

(Just) positive semi-
definite 

Cholesky factorisation. 

Toeplitz Toeplitz solver. 

Kronecker product Kronecker solver. 

Too big and dense Sparsification. 

Updated version of 
previous matrix  

Update, dependent on 
above. 

Our choice of a method to solve v = K x for x 
depends on the structure of covariance K.  
 



Inversion is slow, O(n3) in matrix size n. 

Inversion is also unstable; conditioning 
errors are significant. 
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You should never actually invert a matrix.  
 



 
 
 
 
The condition number (cond) of a covariance 
matrix is the ratio of the largest to the smallest 
eigenvalue; in Matlab, things break down at 
about cond(K) = 1016. 

1 0.9999 0 0 

0.9999 1 0 0 

0 0 1 0.1 

0 0 0.1 1 

Too 
similar 

Conditioning becomes an issue when we have 
multiple close observations, giving rows in the 
covariance matrix that are very similar.  
 



1.01 0.9999 0 0 

0.9999 1.01 0 0 

0 0 1.01 0.1 

0 0 0.1 1.01 

Sufficiently 
dissimilar 

The solution to conditioning problems is to add 
a small positive quantity (jitter) to the diagonal 
of the covariance matrix.  
 
 
 



As jitter is effectively imposed noise, adding 
jitter to all diagonal elements (unnecessarily) 
dilutes the informativeness of our data.  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The Cholesky factorisation of a positive semi-
definite matrix K is relatively fast (1/3 O(n3) in 
matrix size n) and more numerically stable.  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The upper triangular Cholesky factor can then 
be stored and used to solve v = K x for x very 
quickly (O(n2) in matrix size n) by back 
substitution.  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If K is Toeplitz, there exists a very efficient 
method to solve v = K x for x (O(4n2) in matrix 
size n). 

A symmetric matrix K is Toeplitz if it can be 
written as  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A Gaussian process has a Toeplitz covariance 
matrix if we have linearly spaced observations 
and a stationary covariance function.  
 



e.g. 

Some special large matrices can be represented 
in a compact way using the Kronecker product.  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Recall that solving 
operations are typically O

(n3)! 

If K is a Kronecker product, there exists a very 
efficient method to solve v = K x for x 
(particularly when v is itself a Kronecker 
product): 



A Gaussian process will have a Kronecker 
product for a covariance matrix if we use a 
product covariance function and a grid of 
samples.  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If a very large covariance matrix is not 
decomposable as a Kronecker product (or 
otherwise), we may wish to attempt 
sparsification.  
 



There are many ways to sparsify our data; the 
simplest involve selecting a subset. Windowing 
represents a reasonable way to do this.  
 



A Gaussian process assumes all variables f are 
correlated. 

[image courtesy 
C. Rasmussen] 



Imagine introducing additional, unobserved 
inducing variables u.  

[image courtesy 
C. Rasmussen] 



We can sparsify data by using inducing variables 
to mediate the interactions between test and 
training variables. 

[image courtesy 
C. Rasmussen] 



There are many such schemes for sparsification, 
that differ in the choice of inducing inputs. 

[image courtesy 
C. Rasmussen] 



Finally, if we already have the Cholesky factor 

),chol( 1111 KR =

we can efficiently determine the updated factor 
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and similar for other types of Cholesky updates 
and downdates, and for solutions based upon 
them. A Toeplitz update is probably also 
possible. 



We want to evaluate a large number of 
hyperparameter samples to explore 
hyperparameter space. Fortunately, each sample 
can be evaluated in parallel (possibly on a 
graphics card).  
 



I hope you have learned how to fit Gaussian 
processes to data.  
 


