A tutorial on PrincipalComponent#\nalysis

Lindsayl Smith

February26,2002



Chapter 1

Intr oduction

This tutorial is designedo give the readeranunderstandingf Principal Components
Analysis (PCA). PCA is a useful statisticaltechniquethat hasfound applicationin
fieldssuchasfacerecognitionandimagecompressionandis acommontechniquefor
finding patternsn dataof high dimension.

Beforegettingto a descriptionof PCA, this tutorial first introducesmathematical
conceptghatwill beusedin PCA. It coversstandardieviation, covariance gigervec-
torsandeigervalues. This backgroundknowledgeis meantto make the PCA section
very straightforward,but canbe skippedif the conceptsarealreadyfamiliar.

Thereareexamplesall the way throughthis tutorial thataremeantto illustratethe
conceptdeingdiscussedlf furtherinformationis required the mathematicsextbook
“ElementarylLinearAlgebra5e” by Howard Anton, PublisherJohnWiley & Sonsinc,
ISBN 0-471-85223-6s agoodsourceof informationregardingthemathematicaback-
ground.



Chapter 2

Background Mathematics

This sectionwill attemptto give someelementanpackgroundnathematicaskills that
will be requiredto understandhe processof Principal ComponentsAnalysis. The
topicsarecoveredindependentlypf eachother andexamplegyiven. It is lessimportant
to remembethe exactmechanic®f a mathematicatechniquethanit is to understand
thereasorwhy suchatechniquemaybeused andwhattheresultof theoperatiortells
usaboutour data.Not all of theseechniquesareusedin PCA, but theonesthatarenot
explicitly requireddo provide the groundingon which the mostimportanttechniques
arebased.

I have includeda sectionon Statisticswhich looks at distribution measurements,
or, how the datais spreadout. The othersectionis on Matrix Algebraandlooks at
eigervectorsandeigervaluesjmportantpropertiesof matriceshatarefundamentato
PCA.

2.1 Statistics

Theentiresubjectof statisticds basedaroundtheideathatyou have thisbig setof data,
andyou wantto analysethat setin termsof the relationshipshetweerthe individual
pointsin thatdataset.| amgoingto look at a few of themeasureyou candoona set
of data,andwhatthey tell you aboutthe dataitself.

2.1.1 Standard Deviation

To understandstandarddeviation, we needa dataset. Statisticiansare usually con-
cernedwith takinga sample of a population. To useelectionpolls asanexample,the
populationis all the peoplein the country whereasa sampleis a subsetof the pop-
ulation that the statisticiansmeasure.The greatthing aboutstatisticsis that by only
measuringin this caseby doingaphonesurwey or similar) asampleof thepopulation,
you canwork outwhatis mostlikely to bethe measuremerit you usedthe entirepop-
ulation. In this statisticssection,| am going to assumehat our datasetsare samples



of somebiggerpopulation. Thereis areferencdaterin this sectionpointingto more
informationaboutsamplesandpopulations.
Heres anexampleset:

X =[12461215254568 676598

I could simply usethe symbol X to refer to this entire setof numbers.If | wantto
referto anindividualnumberin this dataset,| will usesubscriptonthesymbol X to
indicatea specificnumber Eg. X3 refersto the 3rd numberin X, namelythenumber
4. Notethat X, is thefirst numberin the sequencenot X, like you may seein some
textbooks. Also, the symboln will be usedto referto the numberof elementsn the
setX

Therearea numberof thingsthatwe cancalculateabouta dataset. For example,
we cancalculatehemeanof thesample| assumehatthereademunderstandahatthe
meanof asampleis, andwill only givetheformula:

X = Z?:l Xi
n

Noticethesymbol X (said“X bar”) to indicatethemeanof thesetX . All thisformula
saysis “Add up all thenumbersandthendivide by how mary thereare”.

Unfortunately the meandoesnt tell us a lot aboutthe dataexceptfor a sort of
middle point. For example,thesetwo datasetshave exactly the samemean(10), but
areobviously quitedifferent;

(081220 ] and [89 11 12]

Sowhatis differentaboutthesetwo sets?lIt is the spread of the datathatis different.
The Standardeviation (SD) of adatasetis a measuref how spreacbut the datais.

How dowe calculatet? TheEnglishdefinitionof theSDis: “The averagedistance
from the meanof the datasetto a point”. The way to calculateit is to computethe
squareof the distancefrom eachdatapoint to the meanof the set,addthemall up,
divideby n — 1, andtake the positive squareroot. As aformula:

Z?:l(Xi — X)Z
(n—1)

Wheres is theusualsymbolfor standardleviationof asample | hearyouasking*Why
areyouusing(n — 1) andnotn?”. Well, theansweiis abit complicatedputin general,
if your datasetis a sample dataset,ie. you have takena subsebf thereal-world (like
suneying 500peopleabouttheelection)thenyou mustuse(n — 1) becausé turnsout
thatthis givesyou ananswerthatis closerto the standarddeviation thatwould result
if you hadusedthe entire population,thanif you'd usedn. If, however, you arenot
calculatingthe standarddeviation for a sample but for an entirepopulation,thenyou
shoulddivide by n insteadof (n — 1). For furtherreadingon this topic, thewebpage
http://mathcentral .uregina.ca/RR/database/RR.09.95/weston2.html describesstandard
deviation in a similar way, and also provides an exampleexperimentthat shavs the

S =



Setl:

X (X -X) (X-X)?
0 -10 100
8 -2 4
12 2 4
20 10 100
Total 208
Dividedby (n-1) 69.333
SquareRoot 8.3266
Set2:
X; (X;—X) (X;—X)?
8 -2 4
9 -1 1
11 1 1
12 2 4
Total 10
Dividedby (n-1) 3.333
SquareRoot 1.8257

Table2.1: Calculationof standarddeviation

differencebetweereachof thedenominatorslt alsodiscusseshe differencebetween
samplesaandpopulations.

So, for our two datasetsabove, the calculationsof standarddeviation arein Ta-
ble2.1.

And so, asexpected,the first sethasa muchlarger standarddeviation dueto the

factthatthedatais muchmorespreadut from themean.Justasanotherexample the
dataset:

[10101010]
alsohasa meanof 10, but its standarddeviation is 0, becauseaill the numbersarethe
same.Noneof themdeviatefrom themean.
2.1.2 Variance

Varianceis anothermeasureof the spreadof datain a dataset. In factit is almost
identicalto the standardieviation. Theformulais this:
o XX X2
(n—1)



You will noticethatthisis simply the standarddeviation squaredjn boththe symbol
(s?) andthe formula (thereis no squareroot in the formula for variance). s2 is the
usualsymbolfor varianceof a sample.Both thesemeasurementare measure®f the
spreadof the data. Standarddeviation is the mostcommonmeasureput varianceis
alsoused.Thereasorwhy | have introducedvariancen additionto standardieviation
is to provide asolid platformfrom whichthenext section covariancegcanlaunchfrom.

Exercises

Find themean standardieviation, andvariancefor eachof thesedatasets.
e [12233444597098]
e [12152527328899]
e [15357882909597]

2.1.3 Covariance

Thelasttwo measuresve have lookedat arepurely 1-dimensional Datasetslik e this
couldbe: heightsof all the peoplein theroom, marksfor thelastCOMP10lexametc.
However mary datasetshave morethanonedimensionandthe aim of the statistical
analysisof thesedatasetsis usuallyto seeif thereis ary relationshipbetweenthe
dimensions. For example,we might have as our datasetboth the heightof all the
studentsn a class,andthe mark they recevedfor thatpaper We could thenperform
statisticalanalysisto seeif the heightof a studenthasary effectontheir mark.

Standarddeviation and varianceonly operateon 1 dimension,so that you could
only calculatethe standarddeviation for eachdimensionof the datasetindependently
of theotherdimensionsHowever, it is usefulto have a similarmeasureo find outhow
muchthedimensionsrary from the meanwith respect to each other.

Covarianceis sucha measure.Covarianceis always measuredetween 2 dimen-
sions. If you calculatethe covariancebetweenone dimensionanditsalf, you getthe
variance.So, if you hada 3-dimensionatiataset(z, y, z), thenyou couldmeasurehe
covariancebetweerthe x andy dimensionsthe z andz dimensionsandthey andz
dimensions Measuringthe covariancebetween: andz, or y andy, or z and z would
giveyouthevarianceof the z, y andz dimensiongespectiely.

Theformulafor covarianceis very similarto theformulafor variance.Theformula
for variancecouldalsobewritten lik e this:

Y (Xi = X)(Xi - X)
)

var(X) =

wherel have simply expandedhesquargermto showv bothparts.Sogiventhatknowl-
edge hereis theformulafor covariance:

Y (Xi - X)(¥i-Y)
(n—1)

cov(X,Y) =
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Figure2.1: A plot of the covariancedatashawving positive relationshipbetweenthe
numberof hoursstudiedagainsthe markreceved

It is exactly the sameexceptthatin the secondsetof braclets,the X's arereplacedy
Y’s. This says,in English,“For eachdataitem, multiply the differencebetweerthe x
valueandthe meanof z, by thethe differencebetweerthe y valueandthe meanof y.
Add all theseup, anddivide by (n — 1)".

How doesthis work? Lets usesomeexampledata.Imaginewe have goneinto the
world andcollectedsome2-dimensionatlata,say we have asked a bunchof students
how mary hoursin total thatthey spentstudyingCOSC241,andthe mark that they
receved. Sowe have two dimensionsthefirst is the H dimensionthe hoursstudied,
andtheseconds the M dimensionthemarkreceved. Figure2.2holdsmy imaginary
data,andthe calculationof cov(H, M), the covariancebetweenthe Hours of study
doneandthe Mark receved.

Sowhatdoesit tell us?Theexactvalueis notasimportantasit’s sign (ie. positive
or negative). If the valueis positive, asit is here,thenthat indicatesthat both di-
mensiongncrease together, meaningthat,in generalasthe numberof hoursof study
increasedsodid thefinal mark.

If thevalueis negative, thenasonedimensionincreasesthe otherdecreasedf we
hadendedup with a negative covariancehere thenthatwould have saidthe opposite,
thatasthe numberof hoursof studyincreasedhethefinal mark decreased.

In the lastcase,if the covarianceis zero, it indicatesthatthe two dimensionsare
independentf eachother

Theresultthat mark givenincreasessthe numberof hoursstudiedincreasesan
be easilyseenby drawing a graphof the data,asin Figure2.1.3. However, the luxury
of beingableto visualizedatais only availableat 2 and 3 dimensions.Sincethe co-
variancevaluecanbecalculatecbetweerary 2 dimensionsn adataset,thistechnique
is often usedto find relationshipsbetweendimensionsn high-dimensionatiatasets
wherevisualisationis difficult.

You might ask‘is cov(X,Y") equalto cov(Y, X)"? Well, aquick look at the for-
mula for covariancetells us that yes, they are exactly the samesincethe only dif-
ferencebetweencov(X,Y) andcov(Y, X) is that (X; — X)(Y; — Y) is replacedby
(Y; — Y)(X; — X). And sincemultiplication is commutatve, which meansthat it
doesnt matterwhich way aroundl multiply two numbers] alwaysgetthe samenum-
ber, thesetwo equationgive the sameanswer

2.1.4 The covariance Matrix

Recallthatcovariances alwaysmeasuredetweer? dimensionslf we have adataset
with morethan2 dimensionsthereis morethanonecovariancemeasuremerthatcan
be calculated. For example,from a 3 dimensionaldataset(dimensionsz, ¥, z) you
couldcalculatecov(z, y), (cov(z, z), andecov(y, z). In fact,for ann-dimensionabata

set,you cancalculatem differentcovariancevalues.



Hours(H) Mark(M)

Data 9 39
15 56
25 93
14 61
10 50
18 75
0 32
16 85
5 42
19 70
16 66
20 80
Totals 167 749

Averages 13.92 62.42

Covariance:
H M | (H;,—H)| (M; — M) | (H; — H)(M; — M)
9 39 -4.92 -23.42 115.23
15 56 1.08 -6.42 -6.93
25 93 11.08 30.58 338.83
14 61 0.08 -1.42 -0.11
10 50 -3.92 -12.42 48.69
18 75 4.08 12.58 51.33
0 32 -13.92 -30.42 423.45
16 85 2.08 22.58 46.97
5 42 -8.92 -20.42 182.15
19 70 5.08 7.58 38.51
16 66 2.08 3.58 7.45
20 80 6.08 17.58 106.89
Total 1149.89
Average 104.54

Table2.2: 2-dimensionatlatasetandcovariancecalculation



A usefulway to get all the possiblecovariancevaluesbetweenall the different
dimensionss to calculatethemall andput themin a matrix. | assumen this tutorial
thatyou arefamiliar with matricesandhow they canbedefined.So, the definitionfor
the covariancematrix for a setof datawith n dimensionss:

C™" = (¢35, ¢i,; = cov(Dimy, Dimj)),

whereC™*™ is amatrix with n rows andn columns,and Dim, is the zth dimension.
All thatthis ugly looking formula saysis thatif you have an n-dimensionaldataset,
thenthe matrix hasn rows andcolumns(sois square)andeachentryin the matrix is
theresultof calculatingthecovariancebetweertwo separatelimensionsEg. theentry
onrow 2, column3, is the covariancevaluecalculatecbetweerthe 2nd dimensionand
the 3rd dimension.

An example.We’ll make up the covariancematrix for animaginary3 dimensional
dataset,usingtheusualdimensions:, y andz. Then,thecovariancanatrixhas3 rows
and3 columnsandthevaluesarethis:

cov(z,x) cov(z,y) cov(x,z)
C=1 cov(y,z) cov(y,y) cov(y,z)
cov(z,x) cov(z,y) cov(z,z)

Somepointsto note: Down the maindiagonal you seethatthe covariancevalueis
betweeroneof the dimensionsanditself. Thesearethe variancedor thatdimension.
Theotherpointis thatsincecov(a, b) = cov(b, a), thematrixis symmetricalaboutthe
maindiagonal.

Exercises

Work out the covariancebetweenthe 2 andy dimensionsn the following 2 dimen-
sionaldataset,anddescribewvhattheresultindicatesaboutthe data.

ItemNumber:| 1 2 3|4 5
T 10| 39| 19| 23| 28
y 431 13| 32| 21| 20

Calculatethe covariancematrix for this 3 dimensionaketof data.

ltemNumber:| 1| 2 | 3
T 1|1-1| 4
y 21113
z 113 ]-1

2.2 Matrix Algebra

This sectionsenesto provide a backgroundor the matrix algebrarequiredin PCA.
Specificallyl will belooking ateigervectorsandeigervaluesof agivenmatrix. Again,
| assume basicknowledgeof matrices.
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Figure2.2: Exampleof onenon-eigernectorandoneeigervector
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Figure2.3: Exampleof how a scaledeigervectoris still andeigervector

2.2.1 Eigervectors

As you know, you canmultiply two matricestogether provided they are compatible
sizes.Eigervectorsarea specialcaseof this. Considetthetwo multiplicationsbetween
amatrix andavectorin Figure2.2.

In the first example,the resultingvectoris not an integer multiple of the original
vector whereasn the secondexample,the exampleis exactly 4 timesthe vectorwe
beganwith. Why is this? Well, the vectoris a vectorin 2 dimensionalspace. The

vector( g > (from the secondexamplemultiplication) representanarrov pointing

from the origin, (0, 0), to the point (3,2). The other matrix, the squareone, canbe
thoughtof as a transformationmatrix. If you multiply this matrix on the left of a
vector, theanswelis anothevectorthatis transformedrom it's original position.

It is the natureof the transformatiorthat the eigervectorsarisefrom. Imaginea
transformationmatrix that, when multiplied on the left, reflectedvectorsin the line
y = z. Thenyou canseethatif therewerea vectorthatlay on theline y = z, it's
reflectionit itself. Thisvector(andall multiplesof it, becausét wouldn’t matterhow
long thevectorwas),would beaneigervectorof thattransformatiormatrix.

Whatpropertiesdo theseeigervectorshave? You shouldfirst know thateigervec-
tors canonly be found for square matrices. And, not every squarematrix haseigen-
vectors.And, givenann x n matrix thatdoeshave eigervectorstherearen of them.
Givena3 x 3 matrix,thereare3 eigervectors.

Anotherpropertyof eigervectorsis thatevenif | scalethe vectorby someamount
beforel multiply it, | still getthe samemultiple of it asaresult,asin Figure2.3. This
is becauséf you scaleavectorby someamountall you aredoingis makingit longer,



not changingit’s direction. Lastly, all the eigervectorsof a matrix areperpendicular,
ie. atright angleso eachother, no matterhow mary dimensionsgouhave. By theway,
anothemwvordfor perpendiculaiin mathstalk, is orthogonal. Thisis importantbecause
it meansthat you canexpressthe datain termsof theseperpendiculaeigervectors,
insteadof expressinghemin termsof the z andy axes. We will be doingthis laterin
thesectionon PCA.

Anotherimportantthing to know is that when mathematicianéind eigervectors,
they like to find the eigervectorswhoselengthis exactly one. This is becauseasyou
know, thelengthof a vectordoesnt affect whetherit’s an eigervectoror not, whereas
the directiondoes. So, in orderto keepeigervectorsstandardwheneer we find an
eigervectorwe usuallyscaleit to make it have alengthof 1, sothatall eigervectors
have the sameength.Here’s a demonstratiorfirom our exampleabove.

3
2
is aneigervector andthe lengthof thatvectoris
V(32 +2%) =13

sowe divide the original vectorby this muchto make it have alengthof 1.

3\ . 3/v/13
(2)=vi-(30)

How doesone go aboutfinding thesemystical eigervectors? Unfortunately it's
only easy(ish)f you have arathersmallmatrix, like no biggerthanabout3 x 3. After
that, the usualway to find the eigervectorsis by somecomplicatediterative method
whichis beyondthe scopeof thistutorial (andthis author).If you ever needto find the
eigervectorsof amatrixin aprogram,justfind a mathslibrary thatdoesit all for you.
A usefulmathspackagecallednavmat,is availableat http: //webnz.com/robert/ .

Furtherinformationabouteigervectorsin generalhow to find them,andorthogo-
nality, canbefoundin thetextbook“ElementanylLinearAlgebra5e” by HowardAnton,
PublisherdJohnWiley & Sonsinc, ISBN 0-471-85223-6.

2.2.2 Eigervalues

Eigervaluesarecloselyrelatedto eigervectors,in fact, we sav an eigervaluein Fig-
ure2.2. Notice how, in boththoseexamplesthe amountby which the original vector
was scaledafter multiplication by the squarematrix wasthe same?In thatexample,
thevaluewas4. 4 is the eigenvalue associatedvith thateigervector No matterwhat
multiple of the eigervectorwe took beforewe multiplied it by the squarematrix, we
would alwaysget4 timesthescaledvectorasour result(asin Figure2.3).

Soyou canseethateigervectorsandeigervaluesalwayscomein pairs.Whenyou
getafang/ programmindibrary to calculateyour eigervectorsfor you, you usuallyget
theeigervaluesaswell.

10



Exercises

For thefollowing squarematrix:

3 0 1
-4 1 2
-6 0 -2

Decidewhich, if any, of the following vectorsare eigervectorsof that matrix and
givethecorrespondingigervalue.

)G

11



Chapter 3

Principal ComponentsAnalysis

Finally we cometo Principal ComponentsAnalysis (PCA). Whatis it? It is a way
of identifying patternsin data,and expressingthe datain sucha way asto highlight
their similaritiesanddifferences.Sincepatternsn datacanbe hardto find in dataof
high dimensionwherethe luxury of graphicalrepresentatiors not available,PCA is
apowerful tool for analysingdata.

Theothermainadvantageof PCAis thatonceyou have foundthesepatternsn the
data,andyou compresghe data,ie. by reducingthe numberof dimensionswithout
muchlossof information. This techniqueusedin imagecompressionaswe will see
in alatersection.

This chapterwill take you throughthe stepsyou neededto performa Principal
ComponentsAnalysison a setof data. | am not going to describeexactly why the
techniqueworks, but | will try to provide anexplanationof whatis happeningat each
point so that you can make informed decisionswhen you try to usethis technique
yourself.

3.1 Method

Step1: Get somedata

In my simpleexample,| am goingto usemy own made-updataset. It's only got 2
dimensionsandthereasonwhy | have choserthisis sothat! canprovide plots of the
datato shav whatthe PCA analysisis doingat eachstep.

Thedatal have usedis foundin Figure3.1,alongwith a plot of thatdata.

Step2: Subtract the mean

For PCAto work properly, you have to subtracthe meanfrom eachof thedatadimen-
sions. The meansubtracteds the averageacrossachdimension.So, all the x values
have z (themeanof the x valuesof all the datapoints)subtractedandall they values
have i subtractedrom them.This producesa datasetwhosemeanis zero.

12



X y X y
25] 24 .69 49
05| 0.7 -1.31| -1.21
22129 .39 .99
19|22 .09 .29

Data= 3.1 3.0 DataAdjust= 1.29 | 1.09
23| 27 49 .79
2 |16 A9 | -31
1 ]11 -81 | -.81
15|16 -31 | -31
1.1] 09 -71 | -1.01

Original PCA data
4 T

I "./PCAdata.tljat" +

Figure3.1: PCAexampledata,original dataon theleft, datawith themeanssubtracted
ontheright, andaplot of thedata
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Step3: Calculate the covariance matrix

Thisis donein exactly the sameway aswasdiscussedn section2.1.4. Sincethe data
is 2 dimensionalthe covariancematrix will be2 x 2. Thereareno surprisesere,sol
will justgive youtheresult:

cov — .616555556 .615444444
T\ .615444444 716555556

So, sincethe non-diagonaklementdn this covariancematrix are positive, we should
expectthatboththex andy variableincreasdogether

Step4: Calculate the eigervectorsand eigervaluesof the covariance
matrix

Sincethe covariancematrix is squarewe cancalculatethe eigervectorsandeigerval-
uesfor this matrix. Theseareratherimportant,asthey tell ususefulinformationabout
our data. | will shav you why soon. In the meantime herearethe eigervectorsand
eigervalues:

.0490833989
1.28402771

etgenvalues = (

—.735178656 —.677873399 )

ef’genvec’for‘s_( 677873399 —.735178656

It is importantto notice that theseeigervectorsare both unit eigervectorsie. their
lengthsareboth 1. Thisis veryimportantfor PCA, but luckily, mostmathspackages,
whenasledfor eigervectorswill giveyou unit eigervectors.

Sowhatdothey mean?f youlook attheplot of thedatain Figure3.2thenyoucan
seehow the datahasquite a strongpattern. As expectedfrom the covariancematrix,
they two variablesdo indeedincreasdogether On top of the datal have plottedboth
the eigervectorsaswell. They appearasdiagonaldottedlines on the plot. As stated
in theeigervectorsection they areperpendiculato eachother But, moreimportantly
they provide us with informationaboutthe patternsin the data. Seehow one of the
eigervectorsgoesthroughthe middle of thepoints,like drawing aline of bestfit? That
eigervectoris shaving us how thesetwo datasetsare relatedalongthatline. The
secondeigervectorgivesus the other, lessimportant, patternin the data,thatall the
pointsfollow themainline, but areoff to the sideof themainline by someamount.

So, by this processof taking the eigervectorsof the covariancematrix, we have
beenableto extractlinesthatcharacteris¢he data. Therestof the stepsinvolve trans-
forming thedatasothatit is expressedn termsof themlines.

Step5: Choosingcomponentsand forming a feature vector

Hereis wherethe notion of datacompressiorandreduceddimensionalitycomesinto
it. If you look at the eigervectorsand eigervaluesfrom the previous section,you

14



Mean adjusted data with eigenvectors overlayed
2 N T T T

"PCAdataadjLIJst.dat" i
(-.740682469/.671855252)*x -
(-.671855252/-.740682469)*x --

Figure3.2: A plot of the normaliseddata(meansubtractedith the eigervectorsof
the covariancematrix overlayedon top.
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will notice that the eigervaluesare quite differentvalues. In fact, it turns out that
the eigervectorwith the highest eigervalueis the principle component of the dataset.
In our example,the eigervectorwith the largeseigervalue wasthe onethat pointed
down the middle of the data. It is the mostsignificantrelationshipbetweenthe data
dimensions.

In general,onceeigervectorsare found from the covariancematrix, the next step
is to orderthemby eigervalue, highestto lowest. This givesyou the componentsn
orderof significance.Now, if you like, you candecideto ignore the componentf
lessersignificance.You dolosesomeinformation,but if the eigervaluesaresmall,you
don't losemuch. If you leave out somecomponentsthe final datasetwill have less
dimensionghanthe original. To be precise,if you originally have n dimensionsn
your data,and soyou calculaten eigervectorsandeigervalues,andthenyou choose
only thefirst p eigervectorsthenthefinal datasethasonly p dimensions.

What needsto be donenow is you needto form a feature vector, which is just
a fang/ namefor a matrix of vectors. This is constructedy taking the eigervectors
thatyou wantto keepfrom thelist of eigervectors,andforming a matrix with these
eigervectorsin thecolumns.

FeatureVector = (eigy eigs eigs .... €ign)

Givenour examplesetof data,andthe factthatwe have 2 eigervectors,we have
two choices.We caneitherform afeaturevectorwith bothof the eigervectors:

—.677873399 —.735178656
—.735178656  .677873399

or, we canchooseto leave out the smaller lesssignificantcomponenandonly have a
singlecolumn:

—.735178656

We shallseetheresultof eachof thesen the next section.

( —.677873399 )

Step5: Deriving the new data set

Thisthefinal stepin PCA, andis alsotheeasiestOncewe have choserthecomponents
(eigervectors)thatwe wish to keepin our dataandformeda featurevector, we simply
take the transposeof the vector and multiply it on the left of the original dataset,
transposed.

FinalData = RowFeatureV ector x RowDataAdjust,

where Row FeatureV ector is the matrix with the eigervectorsin the columnstrans-
posed sothatthe eigervectorsarenow in therows, with the mostsignificanteigervec-
tor atthetop, and Row Data Adjust is the mean-adjustedatatransposed, ie. the data
itemsarein eachcolumn,with eachrow holding a separatelimension.I'm sorry if
this suddentransposef all our dataconfusesyou, but the equationdrom hereon are

16



easielif wetake thetransposef thefeaturevectorandthedatafirst, ratherthathaving
alittle T symbolaboretheirnamesrom now on. Final Data is thefinal dataset,with
dataitemsin columns,anddimensionsalongrows.

Whatwill thisgiveus?It will give ustheoriginal datasolely in terms of the vectors
we chose. Our original datasethadtwo axes,z andy, so our datawasin termsof
them. It is possibleto expressdatain termsof ary two axesthatyou like. If these
axesareperpendicularthenthe expressioris the mostefficient. This waswhy it was
importantthat eigervectorsare alwaysperpendiculato eachother We have changed
our datafrom beingin termsof the axesx andy, andnow they arein termsof our 2
eigervectors.In the caseof whenthe new datasethasreduceddimensionalityie. we
have left someof the eigervectorsout, the new datais only in termsof the vectorsthat
we decidedto keep.

To show this on our data,| have donethe final transformationwith eachof the
possiblefeaturevectors.| have takenthe transposef the resultin eachcaseto bring
the databackto the nicetable-like format. | have alsoplottedthefinal pointsto show
how they relateto thecomponents.

In the caseof keepingbotheigervectorsfor thetransformationye getthedataand
theplot foundin Figure3.3. This plot is basicallythe original data,rotatedsothatthe
eigervectorsarethe axes. This is understandablsincewe have lost no informationin
this decomposition.

The othertransformationwve canmake is by taking only the eigervectorwith the
largesteigervalue. The table of dataresultingfrom thatis foundin Figure 3.4. As
expected,it only hasa singledimension. If you comparethis datasetwith the one
resultingfrom usingboth eigervectors,you will noticethatthis datasetis exactly the
first columnof the other So,if you wereto plot this data,it would be 1 dimensional,
andwould be pointson a line in exactly the z positionsof the pointsin the plot in
Figure 3.3. We have effectively thrown away the whole otheraxis, which is the other
eigervector

So what have we donehere? Basically we have transformedour dataso that is
expressedn termsof the patternsbetweenthem,wherethe patternsarethe lines that
mostclosely describethe relationshipsbetweenthe data. This is helpful becauseave
have now classifiedour datapoint asa combinationof the contributionsfrom eachof
thoselines. Initially we hadthe simplex andy axes. This is fine, but the z andy
valuesof eachdatapointdon't really tell usexactly how thatpointrelatesto therestof
thedata.Now, thevaluesof thedatapointstell usexactly where(ie. above/belaw) the
trendlinesthedatapointsits. In the caseof thetransformatiorusingboth eigervectors,
we have simply alteredthe datasothatit is in termsof thoseeigervectorsinsteadof
theusualaxes.But the single-eigemectordecompositiorhasremovedthe contribution
dueto the smallereigervectorandleft uswith datathatis only in termsof the othet

3.1.1 Getting the old data back

Wantingto getthe original databackis obviously of greatconcernif you are using
the PCA transformfor datacompressiorfan exampleof which to will seein the next
section).This contentis takenfrom
http://www.vision.auc.dksig/Teaching/Flerdim/Current/hotelling/kaling.html
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Transformedata= -1.67580142

r y
-.827970186| -.175115307
1.77758033| .142857227
-.992197494| .384374989
-.274210416| .130417207
-.209498461
-.912949103| .175282444
.0991094375| -.349824698
1.14457216 | .0464172582
438046137 | .0177646297
1.22382056 | -.162675287

Data transformed with 2 eigenvectors

15

05 |

" doublevecfinal.dat"

-05

-2 1

-2 -15

Figure 3.3: The table of databy applyingthe PCA analysisusingboth eigervectors,

anda plot of the new datapoints.
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TransformedData(Singleeigervector)
xz

~ -.827970186
1.77758033
-.992197494
-.274210416
-1.67580142
-.912949103
.0991094375
1.14457216
438046137
1.22382056

Figure3.4: The dataaftertransformingusingonly the mostsignificanteigervector

So, how do we getthe original databack? Beforewe do that, remembethat only if
wetook all the eigervectorsin our transformatiorwill we getexactly the original data
back. If we have reducedhe numberof eigervectorsin thefinal transformationthen
theretrieveddatahaslost someinformation.

Recallthatthefinal transformis this:

FinalData = RowFeatureV ector x RowDataAdjust,

which canbeturnedaroundsothat,to gettheoriginal databack,

RowDataAdjust = RowFeatureVector~! x FinalData

whereRowFeatureVector—! istheinverseof RowFeatureV ector. However, when
we take all the eigervectorsin our featurevector, it turnsout that the inverseof our
featurevectoris actuallyequalto the transposef our featurevector Thisis only true
becausdhe elementsf the matrix areall the unit eigervectorsof our dataset. This
makesthereturntrip to our dataeasieybecause¢he equationrbecomes

RowDataAdjust = RowFeatureVector? x FinalData

But, to getthe actualoriginal databack,we needto addon the meanof that original
data(remembeme subtractedt right atthe start). So,for completeness,

RowOriginal Data = (RowFeatureVector” x Final Data) + Original Mean

This formulaalsoappliesto whenyou do not have all the eigervectorsin the feature
vector Soevenwhenyou leave out someeigervectors the above equationstill makes
thecorrecttransform.

I will notperformthedatare-creatiorusingthecomplete featurevector becausé¢he
resultis exactly thedatawe startedwith. However, | will doit with thereducedeature
vectorto shov you how informationhasbeenlost. Figure3.5show this plot. Compare

19



Original data restored using only a single eigenvector
4 T

T T
"Jlossyplusmean.dat"  +

Figure3.5: Thereconstructiorfirom thedatathatwasderivedusingonly asingleeigen-
vector

it to the original dataplot in Figure3.1 andyou will notice how, while the variation
alongthe principle eigervector(seeFigure3.2 for the eigervectoroverlayedon top of
the mean-adjustedata)hasbeenkept, the variation alongthe othercomponentithe
othereigervectorthatwe left out) hasgone.
Exercises

e Whatdotheeigervectorsof the covariancematrix give us?

e At whatpoint in the PCA processcanwe decideto compresshe data? What
effectdoesthis have?

e For anexampleof PCA andagraphicalrepresentationf the principaleigervec-
tors,researchhetopic 'Eigenfaces’ which usesPCAto do facialrecognition

20



Chapter 4

Application to Computer Vision

This chapterwill outline the way that PCA is usedin computervision, first shaving
how imagesare usuallyrepresentedandthenshaving what PCA canallow usto do
with thoseimages.Theinformationin this sectionregardingfacial recognitioncomes
from “FaceRecognition:Eigenface ElasticMatching,andNeuralNets”, JunZhanget
al. Proceedingsf thelEEE, Vol. 85,No. 9, Septembet997. Therepresentatiomfor-
mation,is takenfrom “Digital ImageProcessingRafaelC. GonzalezandPaul Wintz,
Addison-Wesley PublishingCompaly, 1987.1t is alsoanexcellentreferencdor further
informationon the K-L transformin general. The imagecompressionnformationis
takenfrom http:/Aww.vision.auc.dk/ sig/Teaching/FlerdinmyCurrent/hotelling/hotel ling.htm,
whichalsoprovidesexamplesof imagereconstructiomsingavaryingamountof eigen-
vectors.

4.1 Representation

Whenusingthesesortof matrixtechniquesn computewision,we mustconsiderepre-
sentatiorof images.A square N by NV imagecanbe expressedsan N 2-dimensional
vector

X:(ml To T3 . . :rN2)

wherethe rows of pixelsin the imageare placedone after the otherto form a one-
dimensionaimage. E.g. Thefirst V elementgz; — zx will bethefirst row of the
image,the next N elementsarethe next row, andsoon. Thevaluesin the vectorare
theintensityvaluesof theimage,possiblya singlegreyscalevalue.

4.2 PCAto find patterns

Saywe have 20 images. Eachimageis N pixels high by N pixelswide. For each
imagewe can createan imagevectorasdescribedn the representatiosection. We
canthenputall theimagestogethelin onebig image-matrixik e this:
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ImageVecl
ImageVec2
ImagesMatrix =

ImageVec20

which givesusa startingpoint for our PCA analysis.Oncewe have performedPCA,
we have our original datain termsof the eigervectorswe found from the covariance
matrix. Why is this useful? Saywe wantto do facial recognition,andso our original
imageswereof peoplesfaces.Then,the problemis, givena new image,whoseface
from the original setis it? (Note thatthe new imageis not one of the 20 we started
with.) Theway this is doneis computervision is to measurehe differencebetween
the new imageandthe originalimages but not alongthe original axes,alongthe new
axesderivedfrom the PCA analysis.

It turnsout that theseaxesworks muchbetterfor recognisingfaces,becausehe
PCA analysishasgiven us the original imagesin terms of the differences and simi-
larities between them. The PCA analysishasidentifiedthe statisticalpatternsin the
data.

Sinceall thevectorsare N2 dimensionalwe will get N2 eigervectors.In practice,
we areableto leave out someof the lesssignificanteigervectors,andthe recognition
still performswell.

4.3 PCA for imagecompression

UsingPCAfor imagecompressiomlsoknow astheHotelling, or KarhunerandLeove
(KL), transform.If we have 20imagesgeachwith N2 pixels,we canform N? vectors,
eachwith 20 dimensionsEachvectorconsistf all theintensityvaluesfrom the same
pixel from eachpicture. Thisis differentfrom the previousexamplebecausdeforewe
hadavectorfor image, andeachitemin thatvectorwasadifferentpixel, whereasiow
we have avectorfor eachpixel, andeachitemin thevectoris from a differentimage.

Now we performthe PCA on this setof data.We will get20 eigervectorshecause
eachvectoris 20-dimensionalTo compresshe data,we canthenchooseo transform
the dataonly using, say 15 of the eigervectors. This gives us a final datasetwith
only 15dimensionswhich hassavedus1/4 of the space However, whenthe original
datais reproducedthe imageshave lost someof the information. This compression
techniques saidto belossy becausehe decompresseiinageis not exactly the same
astheoriginal, generallyworse.
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Appendix A

Implementation Code

This is codefor usein Scilab, a freeware alternatve to Matlah | usedthis codeto
generateall the examplesin the text. Apart from the first macro, all the restwere
written by me.

/[ This macro taken from
/I http:/lwww.cs.montana.edu/"harkin/co urses/ ¢s530 /scil ab/mac ros/c ov.sc i
/I No alterations made

/I Return the covariance matrix of the data in x, where each column of x

/I is one dimension of an n-dimensional data set. That is, x has x columns
// and mrows, and each row is one sample.
I

/I For example, if x is three dimensional and there are 4 samples.
I x =[1 234 567 8 910 11 127]
I c cov (x)

function [c]=cov  (x)
/I Get the size of the array
sizex=size(X);
/I Get the mean of each column
meanx = mean (x, "r');
/I For each pair of variables, x1, x2, calculate
Il sum ((x1 - meanxl)(x2-meanx2))/(m-1)
for var = 1l:sizex(2),

x1 = x(:,var);

mx1 = meanx (var);

for ct = varsizex (2),

x2 = Xx(:ct);
mx2 = meanx (ct);
v = (x1 - mx1l) * (x2 - mx2))/(sizex(1) - 1)
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cv(var,ct) v,
cv(ct,var) v,
/I do the Ilower part of c also.

end,

end,
c=cv,

I
I

This a simple wrapper function to get just the eigenvectors
since the system call returns 3 matrices

function [X]=justeigs (x)

I

This just returns the eigenvectors of the matrix

[a, eig, b] = bdiag(x);

X= eig;

/I this  function makes the transformation to the eigenspace for PCA
/l parameters:

/I adjusteddata = mean-adjusted data set

/I eigenvectors = SORTEDeigenvectors (by eigenvalue)

/I dimensions = how many eigenvectors you wish to keep

1

/[ The first two parameters can come from the result of calling

/I PCAprepare on your data.

/I The last is up to you.

function [finaldata] = PCAtransform(adjusteddata,eigenvectors ,dime nsion s)
finaleigs = eigenvectors(:,1:dimensions);

prefinaldata = finaleigs™adjusteddata’;

finaldata = prefinaldata’;

I
I
I
I
I
I
I
I
I
I

This function does the preparation for PCA analysis

It adjusts the data to subtract the mean, finds the covariance  matrix,
and finds normal eigenvectors of that covariance  matrix.

It returns 4 matrices

meanadjust = the mean-adjust data set

covmat = the covariance matrix of the data

eigvalues = the eigenvalues of the covariance  matrix, IN SORTEDORDER
normaleigs = the normalised eigenvectors of the covariance  matrix,

IN SORTEDORDERWITH RESPECTTO
THEIR EIGENVALUES, for selection for the feature vector.
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/I NOTE: This function cannot handle data sets that have any eigenvalues

/I equal to zero. Its got something to do with the way that scilab treats

/[ the empty matrix and zeros.

1

function [meanadjusted,covmat,sorteigvalues,s ortno rmale igs] = PCAprepare (data)

/I Calculates the mean adjusted  matrix, only for 2 dimensional data
means = mean(data,"r");

meanadjusted = meanadjust(data);

covmat = cov(meanadjusted);

eigvalues = spec(covmat);

normaleigs = justeigs(covmat);

sorteigvalues = sorteigvectors(eigvalues’,eigvalue s");
sortnormaleigs = sorteigvectors(eigvalues’,normale igs);

/[ This removes a specified column from a matrix
/I A = the matrix
/I 'n = the column number you wish to remove

function [columnremoved] = removecolumn(A,n)
inputsize = size(A);
numcols = inputsize(2);
temp = A(:,1:(n-1));
for var = l:(numcols - n)
temp(:,(n+var)-1) = A(,(n+var));
end,
columnremoved = temp;

/I This finds the column number that has the
I/l highest wvalue in it's first row.

function [column] = highestvalcolumn(A)
inputsize = size(A);

numcols = inputsize(2);

maxval = A(1,1);

maxcol = 1,

for var = 2:numcols
if  A(l,var) > maxval
maxval = A(1,var);
maxcol = var;
end,
end,
column = maxcol
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/I This sorts a matrix of vectors, based on the values of
/I another matrix

"

/I values = the list of eigenvalues (1 per column)
/I vectors = The list of eigenvectors (1 per column)
I

/I NOTE: The values should correspond to the vectors
/I so that the value in column x corresponds to the vector
/[ in column x.

function [sortedvecs] = sorteigvectors(values,vectors)

inputsize = size(values);

numcols = inputsize(2);

highcol = highestvalcolumn(values);

sorted = vectors(:,highcol);

remainvec = removecolumn(vectors,highcol);

remainval = removecolumn(values,highcol);

for var = 2:numcols
highcol = highestvalcolumn(remainval);
sorted(:,var) = remainvec(:,highcol);
remainvec = removecolumn(remainvec,highcol);
remainval = removecolumn(remainval,highcol);

end,

sortedvecs = sorted;

/I This takes a set of data, and subtracts
/[ the column mean from each column.
function [meanadjusted] = meanadjust(Data)
inputsize = size(Data);
numcols = inputsize(2);
means = mean(Data,"r");
tmpmeanadjusted = Data(;,1) - means(;,1);
for var = 2:numcols

tmpmeanadjusted(;,var) = Data(;,var) - means(:,var);
end,
meanadjusted = tmpmeanadjusted
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