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Chapter 1

Intr oduction

This tutorial is designedto give thereaderanunderstandingof PrincipalComponents
Analysis (PCA). PCA is a useful statisticaltechniquethat hasfound applicationin
fieldssuchasfacerecognitionandimagecompression,andis acommontechniquefor
findingpatternsin dataof highdimension.

Beforegettingto a descriptionof PCA, this tutorial first introducesmathematical
conceptsthatwill beusedin PCA. It coversstandarddeviation,covariance,eigenvec-
torsandeigenvalues.This backgroundknowledgeis meantto make the PCA section
verystraightforward,but canbeskippedif theconceptsarealreadyfamiliar.

Thereareexamplesall theway throughthis tutorial thataremeantto illustratethe
conceptsbeingdiscussed.If furtherinformationis required,themathematicstextbook
“ElementaryLinearAlgebra5e” by HowardAnton,PublisherJohnWiley & SonsInc,
ISBN 0-471-85223-6is agoodsourceof informationregardingthemathematicalback-
ground.
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Chapter 2

Background Mathematics

Thissectionwill attemptto givesomeelementarybackgroundmathematicalskills that
will be requiredto understandthe processof Principal ComponentsAnalysis. The
topicsarecoveredindependentlyof eachother, andexamplesgiven.It is lessimportant
to remembertheexactmechanicsof a mathematicaltechniquethanit is to understand
thereasonwhy sucha techniquemaybeused,andwhattheresultof theoperationtells
usaboutourdata.Not all of thesetechniquesareusedin PCA,but theonesthatarenot
explicitly requireddo provide thegroundingon which themostimportanttechniques
arebased.

I have includeda sectionon Statisticswhich looks at distribution measurements,
or, how the datais spreadout. The othersectionis on Matrix Algebraandlooks at
eigenvectorsandeigenvalues,importantpropertiesof matricesthatarefundamentalto
PCA.

2.1 Statistics

Theentiresubjectof statisticsis basedaroundtheideathatyouhavethisbig setof data,
andyou want to analysethat set in termsof the relationshipsbetweenthe individual
pointsin thatdataset.I amgoingto look at a few of themeasuresyou cando on a set
of data,andwhatthey tell youaboutthedataitself.

2.1.1 Standard Deviation

To understandstandarddeviation, we needa dataset. Statisticiansareusuallycon-
cernedwith takinga sample of a population. To useelectionpolls asanexample,the
populationis all the peoplein the country, whereasa sampleis a subsetof the pop-
ulation that the statisticiansmeasure.The greatthing aboutstatisticsis that by only
measuring(in thiscaseby doingaphonesurvey or similar)asampleof thepopulation,
youcanwork outwhatis mostlikely to bethemeasurementif youusedtheentirepop-
ulation. In this statisticssection,I am going to assumethatour datasetsaresamples
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of somebiggerpopulation.Thereis a referencelater in this sectionpointing to more
informationaboutsamplesandpopulations.

Here’sanexampleset:
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�����������
���
�

I could simply usethe symbol
�

to refer to this entiresetof numbers.If I want to
referto anindividualnumberin this dataset,I will usesubscriptson thesymbol

�
to

indicatea specificnumber. Eg.
���

refersto the3rd numberin
�

, namelythenumber
4. Note that

���
is thefirst numberin thesequence,not

���
like you mayseein some

textbooks. Also, the symbol � will beusedto refer to thenumberof elementsin the
set
�
Therearea numberof thingsthatwe cancalculateabouta dataset. For example,

wecancalculatethemeanof thesample.I assumethatthereaderunderstandswhatthe
meanof a sampleis, andwill only give theformula:

�� � !"$# � � "
�

Noticethesymbol
��

(said“X bar”) to indicatethemeanof theset
�

. All this formula
saysis “Add upall thenumbersandthendivide by how many thereare”.

Unfortunately, the meandoesn’t tell us a lot aboutthe dataexcept for a sort of
middlepoint. For example,thesetwo datasetshave exactly the samemean(10), but
areobviouslyquitedifferent:

�&%'���&�
��%
��( �*) �+�
�,�����
�
�

Sowhat is differentaboutthesetwo sets?It is thespread of thedatathat is different.
TheStandardDeviation (SD)of adatasetis a measureof how spreadout thedatais.

How dowecalculateit? TheEnglishdefinitionof theSDis: “The averagedistance
from the meanof the datasetto a point”. The way to calculateit is to computethe
squaresof the distancefrom eachdatapoint to the meanof the set,addthemall up,
divideby �.- � , andtake thepositivesquareroot. As a formula:

/ � !"$# �10 � " - ��32540 ��- ��2

Where/ is theusualsymbolfor standarddeviationof asample.I hearyouasking“Why
areyouusing 0 �6- ��2 andnot � ?”. Well, theansweris abit complicated,but in general,
if your datasetis a sample dataset,ie. you have takena subsetof thereal-world (like
surveying 500peopleabouttheelection)thenyoumustuse 0 �7- ��2 becauseit turnsout
that this givesyou ananswerthat is closerto thestandarddeviation thatwould result
if you hadusedthe entire population,thanif you’d used� . If, however, you arenot
calculatingthestandarddeviation for a sample,but for anentirepopulation,thenyou
shoulddivide by � insteadof 0 �8- ��2 . For furtherreadingon this topic, thewebpage
http://mathcentral.uregina.ca/RR/database/RR.09.95/weston2.html describesstandard
deviation in a similar way, andalsoprovidesan exampleexperimentthat shows the
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Set1:

� 0 � - ��32 0 � - ��32 4
0 -10 100
8 -2 4
12 2 4
20 10 100
Total 208
Dividedby (n-1) 69.333
SquareRoot 8.3266

Set2:

� " 0 � " - ��32 0 � " - ��32 4
8 -2 4
9 -1 1
11 1 1
12 2 4
Total 10
Dividedby (n-1) 3.333
SquareRoot 1.8257

Table2.1: Calculationof standarddeviation

differencebetweeneachof thedenominators.It alsodiscussesthedifferencebetween
samplesandpopulations.

So, for our two datasetsabove, the calculationsof standarddeviation are in Ta-
ble2.1.

And so,asexpected,the first sethasa muchlarger standarddeviation dueto the
factthatthedatais muchmorespreadout from themean.Justasanotherexample,the
dataset: ���
%��
%��&%��&%
�
alsohasa meanof 10, but its standarddeviation is 0, becauseall thenumbersarethe
same.Noneof themdeviatefrom themean.

2.1.2 Variance

Varianceis anothermeasureof the spreadof datain a dataset. In fact it is almost
identicalto thestandarddeviation. Theformulais this:

/ 4 � !"9# � 0 � " - ��32 40 �:- ��2
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You will noticethat this is simply thestandarddeviation squared,in both thesymbol
( / 4 ) andthe formula (thereis no squareroot in the formula for variance). / 4 is the
usualsymbolfor varianceof a sample.Both thesemeasurementsaremeasuresof the
spreadof the data. Standarddeviation is the mostcommonmeasure,but varianceis
alsoused.Thereasonwhy I have introducedvariancein additionto standarddeviation
is to provideasolidplatformfrom whichthenext section,covariance,canlaunchfrom.

Exercises

Find themean,standarddeviation,andvariancefor eachof thesedatasets.

; [12 2334 44 59 70 98]

; [12 1525 27 32 88 99]

; [15 3578 82 90 95 97]

2.1.3 Covariance

Thelasttwo measureswe have lookedat arepurely1-dimensional.Datasetslike this
couldbe: heightsof all thepeoplein theroom,marksfor thelastCOMP101exametc.
However many datasetshave morethanonedimension,andtheaim of thestatistical
analysisof thesedatasetsis usually to seeif thereis any relationshipbetweenthe
dimensions.For example,we might have as our dataset both the height of all the
studentsin a class,andthemark they receivedfor thatpaper. We could thenperform
statisticalanalysisto seeif theheightof a studenthasany effecton theirmark.

Standarddeviation andvarianceonly operateon 1 dimension,so that you could
only calculatethestandarddeviation for eachdimensionof thedatasetindependently
of theotherdimensions.However, it is usefulto haveasimilarmeasureto find outhow
muchthedimensionsvary from themeanwith respect to each other.

Covarianceis sucha measure.Covarianceis alwaysmeasuredbetween 2 dimen-
sions. If you calculatethe covariancebetweenonedimensionand itself, you get the
variance.So,if youhada 3-dimensionaldataset(< , = , > ), thenyoucouldmeasurethe
covariancebetweenthe < and = dimensions,the < and > dimensions,andthe = and >
dimensions.Measuringthecovariancebetween< and < , or = and = , or > and > would
giveyou thevarianceof the < , = and > dimensionsrespectively.

Theformulafor covarianceis verysimilar to theformulafor variance.Theformula
for variancecouldalsobewritten like this:

? (+@ 0 �A2�� !"9# � 0 � " - ��32 0 � " - ��A20 �:- ��2

whereI havesimplyexpandedthesquaretermto show bothparts.Sogiventhatknowl-
edge,hereis theformulafor covariance:

B&CD? 0 �8E+F�2G� !"9# � 0 � " - ��32 0 F " - �F�20 �.- ��2
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includegraphicscovPlot.ps

Figure2.1: A plot of the covariancedatashowing positive relationshipbetweenthe
numberof hoursstudiedagainstthemarkreceived

It is exactly thesameexceptthatin thesecondsetof brackets,the
�

’s arereplacedbyF
’s. This says,in English,“For eachdataitem,multiply thedifferencebetweenthe <

valueandthemeanof < , by thethedifferencebetweenthe = valueandthemeanof = .
Add all theseup,anddivideby 0 �.- ��2 ”.

How doesthis work? Letsusesomeexampledata.Imaginewe havegoneinto the
world andcollectedsome2-dimensionaldata,say, we have askeda bunchof students
how many hoursin total that they spentstudyingCOSC241,andthe mark that they
received. Sowe have two dimensions,thefirst is the H dimension,thehoursstudied,
andthesecondis the I dimension,themarkreceived.Figure2.2holdsmy imaginary
data,and the calculationof B&CD? 0 H E I 2 , the covariancebetweenthe Hoursof study
doneandtheMark received.

Sowhatdoesit tell us?Theexactvalueis not asimportantasit’s sign(ie. positive
or negative). If the value is positive, as it is here, then that indicatesthat both di-
mensionsincrease together, meaningthat,in general,asthenumberof hoursof study
increased,sodid thefinal mark.

If thevalueis negative,thenasonedimensionincreases,theotherdecreases.If we
hadendedup with a negativecovariancehere,thenthatwould have saidtheopposite,
thatasthenumberof hoursof studyincreasedthethefinal markdecreased.

In the last case,if the covarianceis zero,it indicatesthat the two dimensionsare
independentof eachother.

Theresultthatmarkgivenincreasesasthenumberof hoursstudiedincreasescan
beeasilyseenby drawing a graphof thedata,asin Figure2.1.3.However, theluxury
of beingableto visualizedatais only availableat 2 and3 dimensions.Sincethe co-
variancevaluecanbecalculatedbetweenany 2 dimensionsin adataset,this technique
is often usedto find relationshipsbetweendimensionsin high-dimensionaldatasets
wherevisualisationis difficult.

You might ask“is B1CD? 0 �8E1F,2 equalto B&CD? 0 FJEK�A2 ”? Well, a quick look at the for-
mula for covariancetells us that yes, they are exactly the samesincethe only dif-
ferencebetweenB1CD? 0 �8E1F,2 and B&CD? 0 FLEM�N2 is that 0 � " - ��A2 0 F " - �F72 is replacedby0 F " - �F�2 0 � " - ��A2 . And sincemultiplication is commutative, which meansthat it
doesn’t matterwhich wayaroundI multiply two numbers,I alwaysgetthesamenum-
ber, thesetwo equationsgive thesameanswer.

2.1.4 The covarianceMatrix

Recallthatcovarianceis alwaysmeasuredbetween2 dimensions.If wehaveadataset
with morethan2 dimensions,thereis morethanonecovariancemeasurementthatcan
be calculated.For example,from a 3 dimensionaldataset (dimensions< , = , > ) you
couldcalculateB&CD? 0 < E = 2 , 0 B&CD? 0 < E > 2 , and B&CD? 0 = E > 2 . In fact,for an � -dimensionaldata
set,you cancalculate !POQ !SR 4DT O U 4 differentcovariancevalues.
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Hours(H) Mark(M)
Data 9 39

15 56
25 93
14 61
10 50
18 75
0 32
16 85
5 42
19 70
16 66
20 80

Totals 167 749
Averages 13.92 62.42

Covariance:

H I 0 H " - �H 2 0 I " - �I 2 0 H " - �H 2 0 I " - �I 2
9 39 -4.92 -23.42 115.23
15 56 1.08 -6.42 -6.93
25 93 11.08 30.58 338.83
14 61 0.08 -1.42 -0.11
10 50 -3.92 -12.42 48.69
18 75 4.08 12.58 51.33
0 32 -13.92 -30.42 423.45
16 85 2.08 22.58 46.97
5 42 -8.92 -20.42 182.15
19 70 5.08 7.58 38.51
16 66 2.08 3.58 7.45
20 80 6.08 17.58 106.89

Total 1149.89
Average 104.54

Table2.2: 2-dimensionaldatasetandcovariancecalculation
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A useful way to get all the possiblecovariancevaluesbetweenall the different
dimensionsis to calculatethemall andput themin a matrix. I assumein this tutorial
thatyouarefamiliarwith matrices,andhow they canbedefined.So,thedefinitionfor
thecovariancematrix for a setof datawith � dimensionsis:

V !PWS! � 0 B "MX Y E B "ZX Y � B&CD? 0M[]\_^ " E [`\Z^ Y 2a2ME

where
V !PWS! is a matrix with � rowsand � columns,and [`\Z^�b is the < th dimension.

All that this ugly looking formulasaysis that if you have an � -dimensionaldataset,
thenthematrix has� rows andcolumns(so is square)andeachentry in thematrix is
theresultof calculatingthecovariancebetweentwo separatedimensions.Eg. theentry
onrow 2, column3, is thecovariancevaluecalculatedbetweenthe2nddimensionand
the3rddimension.

An example.We’ll makeup thecovariancematrix for animaginary3 dimensional
dataset,usingtheusualdimensions< , = and > . Then,thecovariancematrixhas3 rows
and3 columns,andthevaluesarethis:

V � B&CD? 0 < E < 2 B&CD? 0 < E = 2 B&CD? 0 < E > 2B&CD? 0 = E < 2 B&CD? 0 = E = 2 B&CD? 0 = E > 2B&CD? 0 > E < 2 B&CD? 0 > E = 2 B&CD? 0 > E > 2

Somepointsto note:Down themaindiagonal,you seethatthecovariancevalueis
betweenoneof thedimensionsanditself. Thesearethevariancesfor thatdimension.
Theotherpoint is thatsince B&CD? 0 (�E+c+2�� B1CD? 0 c&E1(P2 , thematrix is symmetricalaboutthe
maindiagonal.

Exercises

Work out the covariancebetweenthe < and = dimensionsin the following 2 dimen-
sionaldataset,anddescribewhattheresultindicatesaboutthedata.

Item Number: 1 2 3 4 5
< 10 39 19 23 28
= 43 13 32 21 20

Calculatethecovariancematrix for this 3 dimensionalsetof data.

Item Number: 1 2 3
< 1 -1 4
= 2 1 3
> 1 3 -1

2.2 Matrix Algebra

This sectionservesto provide a backgroundfor the matrix algebrarequiredin PCA.
SpecificallyI will belookingateigenvectorsandeigenvaluesof agivenmatrix. Again,
I assumea basicknowledgeof matrices.
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Figure2.2: Exampleof onenon-eigenvectorandoneeigenvector
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Figure2.3: Exampleof how ascaledeigenvectoris still andeigenvector

2.2.1 Eigenvectors

As you know, you canmultiply two matricestogether, provided they arecompatible
sizes.Eigenvectorsareaspecialcaseof this. Considerthetwo multiplicationsbetween
amatrix andavectorin Figure2.2.

In the first example,the resultingvectoris not an integermultiple of the original
vector, whereasin the secondexample,the exampleis exactly 4 timesthe vectorwe
beganwith. Why is this? Well, the vector is a vector in 2 dimensionalspace.The

vector
d
� (from thesecondexamplemultiplication) representsanarrow pointing

from the origin, 0 %SEh%�2 , to the point 0 dSEh��2 . The othermatrix, the squareone,canbe
thoughtof as a transformationmatrix. If you multiply this matrix on the left of a
vector, theansweris anothervectorthatis transformedfrom it’soriginalposition.

It is the natureof the transformationthat the eigenvectorsarisefrom. Imaginea
transformationmatrix that, whenmultiplied on the left, reflectedvectorsin the line
= � < . Thenyou canseethat if therewerea vectorthat lay on the line = � < , it’s
reflectionit itself. This vector(andall multiplesof it, becauseit wouldn’t matterhow
long thevectorwas),wouldbeaneigenvectorof thattransformationmatrix.

Whatpropertiesdo theseeigenvectorshave? You shouldfirst know thateigenvec-
tors canonly be found for square matrices.And, not every squarematrix haseigen-
vectors.And, givenan � f � matrix thatdoeshave eigenvectors,thereare � of them.
Givena

d f d matrix, thereare3 eigenvectors.
Anotherpropertyof eigenvectorsis thatevenif I scalethevectorby someamount

beforeI multiply it, I still getthesamemultiple of it asa result,asin Figure2.3. This
is becauseif you scaleavectorby someamount,all you aredoingis makingit longer,
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not changingit’s direction. Lastly, all theeigenvectorsof a matrix areperpendicular,
ie. at right anglesto eachother, nomatterhow many dimensionsyouhave. By theway,
anotherwordfor perpendicular, in mathstalk, is orthogonal. This is importantbecause
it meansthat you canexpressthe datain termsof theseperpendiculareigenvectors,
insteadof expressingthemin termsof the < and= axes.We will bedoingthis laterin
thesectionon PCA.

Another importantthing to know is that whenmathematiciansfind eigenvectors,
they like to find theeigenvectorswhoselengthis exactly one.This is because,asyou
know, thelengthof a vectordoesn’t affect whetherit’s aneigenvectoror not,whereas
the directiondoes. So, in order to keepeigenvectorsstandard,whenever we find an
eigenvectorwe usuallyscaleit to make it have a lengthof 1, so that all eigenvectors
havethesamelength.Here’sa demonstrationfrom ourexampleabove.

d
�

is aneigenvector, andthelengthof thatvectoris

0 d 4�i � 4 2��kj �ld

sowe divide theoriginal vectorby this muchto make it havea lengthof 1.

d
� m j �
dn�

dSo j �&d
�So j �&d

How doesonego aboutfinding thesemysticaleigenvectors? Unfortunately, it’s
only easy(ish)if youhavea rathersmallmatrix, likeno biggerthanabout

d f d . After
that, the usualway to find the eigenvectorsis by somecomplicatediterative method
which is beyondthescopeof this tutorial (andthisauthor).If youeverneedto find the
eigenvectorsof a matrix in a program,just find a mathslibrary thatdoesit all for you.
A usefulmathspackage,callednewmat,is availableat http://webnz.com/robert/ .

Furtherinformationabouteigenvectorsin general,how to find them,andorthogo-
nality, canbefoundin thetextbook“ElementaryLinearAlgebra5e” by HowardAnton,
PublisherJohnWiley & SonsInc, ISBN 0-471-85223-6.

2.2.2 Eigenvalues

Eigenvaluesarecloselyrelatedto eigenvectors,in fact,we saw an eigenvaluein Fig-
ure2.2. Noticehow, in boththoseexamples,theamountby which theoriginal vector
wasscaledafter multiplication by the squarematrix wasthe same?In that example,
thevaluewas4. 4 is theeigenvalue associatedwith thateigenvector. No matterwhat
multiple of the eigenvectorwe took beforewe multiplied it by the squarematrix, we
wouldalwaysget4 timesthescaledvectorasour result(asin Figure2.3).

Soyou canseethateigenvectorsandeigenvaluesalwayscomein pairs.Whenyou
getafancy programminglibrary to calculateyoureigenvectorsfor you,youusuallyget
theeigenvaluesaswell.
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Exercises

For thefollowing squarematrix:

d % �
- 	 � �
- �p% - �

Decidewhich, if any, of the following vectorsareeigenvectorsof thatmatrix and
give thecorrespondingeigenvalue.

�
�
- �

- �%
�

- ��
d

%
�
%

d
�
�
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Chapter 3

Principal ComponentsAnalysis

Finally we cometo PrincipalComponentsAnalysis (PCA). What is it? It is a way
of identifying patternsin data,andexpressingthe datain sucha way asto highlight
their similaritiesanddifferences.Sincepatternsin datacanbehardto find in dataof
high dimension,wherethe luxury of graphicalrepresentationis not available,PCA is
apowerful tool for analysingdata.

Theothermainadvantageof PCAis thatonceyouhavefoundthesepatternsin the
data,andyou compressthe data,ie. by reducingthe numberof dimensions,without
muchlossof information. This techniqueusedin imagecompression,aswe will see
in a latersection.

This chapterwill take you throughthe stepsyou neededto perform a Principal
ComponentsAnalysison a setof data. I am not going to describeexactly why the
techniqueworks,but I will try to provide anexplanationof what is happeningat each
point so that you can make informed decisionswhen you try to usethis technique
yourself.

3.1 Method

Step1: Get somedata

In my simpleexample,I am going to usemy own made-updataset. It’s only got 2
dimensions,andthereasonwhy I have chosenthis is sothatI canprovideplotsof the
datato show whatthePCA analysisis doingat eachstep.

ThedataI haveusedis foundin Figure3.1,alongwith a plot of thatdata.

Step2: Subtract the mean

For PCAto work properly, youhaveto subtractthemeanfrom eachof thedatadimen-
sions.Themeansubtractedis theaverageacrosseachdimension.So,all the < values
have
�< (themeanof the < valuesof all thedatapoints)subtracted,andall the = values

have
�= subtractedfrom them.This producesa datasetwhosemeanis zero.
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Data=

x y
2.5 2.4
0.5 0.7
2.2 2.9
1.9 2.2
3.1 3.0
2.3 2.7
2 1.6
1 1.1

1.5 1.6
1.1 0.9

DataAdjust=

x y
.69 .49

-1.31 -1.21
.39 .99
.09 .29
1.29 1.09
.49 .79
.19 -.31
-.81 -.81
-.31 -.31
-.71 -1.01

-1

0

1

2

3

4

-1 0 1 2 3 4

Original PCA data

"./PCAdata.dat"

Figure3.1: PCAexampledata,originaldataontheleft, datawith themeanssubtracted
on theright, andaplot of thedata
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Step3: Calculate the covariancematrix

This is donein exactly thesameway aswasdiscussedin section2.1.4.Sincethedata
is 2 dimensional,thecovariancematrix will be

� f � . Thereareno surpriseshere,soI
will justgiveyou theresult:

B&CD? � q �r�
������������� q �r�
��	�	�	�	�	�	
q �r�
��	�	�	�	�	�	 q ���
�������������

So,sincethenon-diagonalelementsin this covariancematrix arepositive, we should
expectthatboththe < and= variableincreasetogether.

Step4: Calculate the eigenvectorsand eigenvaluesof the covariance
matrix

Sincethecovariancematrix is square,we cancalculatetheeigenvectorsandeigenval-
uesfor this matrix. Theseareratherimportant,asthey tell ususefulinformationabout
our data. I will show you why soon. In the meantime,herearethe eigenvectorsand
eigenvalues:

s \Zt s � ? (�uwv sx/ � q %�	���%���d�d������� q ����	�%��������

s \_t s � ?rsyBZz1C @ / � - q �
d������
������� - q �����
���&d�d����
q �r���&���
d�d���� - q �
d������&�������

It is importantto notice that theseeigenvectorsare both unit eigenvectorsie. their
lengthsareboth1. This is very importantfor PCA,but luckily, mostmathspackages,
whenaskedfor eigenvectors,will giveyouunit eigenvectors.

Sowhatdothey mean?If youlook at theplot of thedatain Figure3.2thenyoucan
seehow thedatahasquitea strongpattern.As expectedfrom thecovariancematrix,
they two variablesdo indeedincreasetogether. On top of thedataI have plottedboth
the eigenvectorsaswell. They appearasdiagonaldottedlines on the plot. As stated
in theeigenvectorsection,they areperpendicularto eachother. But, moreimportantly,
they provide us with informationaboutthe patternsin the data. Seehow oneof the
eigenvectorsgoesthroughthemiddleof thepoints,likedrawing a line of bestfit? That
eigenvector is showing us how thesetwo datasetsare relatedalong that line. The
secondeigenvectorgivesus the other, lessimportant,patternin the data,that all the
pointsfollow themainline, but areoff to thesideof themainline by someamount.

So, by this processof taking the eigenvectorsof the covariancematrix, we have
beenableto extractlinesthatcharacterisethedata.Therestof thestepsinvolve trans-
forming thedatasothatit is expressedin termsof themlines.

Step5: Choosingcomponentsand forming a feature vector

Hereis wherethenotionof datacompressionandreduceddimensionalitycomesinto
it. If you look at the eigenvectorsand eigenvaluesfrom the previous section,you
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Mean adjusted data with eigenvectors overlayed

"PCAdataadjust.dat"
(-.740682469/.671855252)*x

(-.671855252/-.740682469)*x

Figure3.2: A plot of the normaliseddata(meansubtracted)with the eigenvectorsof
thecovariancematrixoverlayedon top.
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will notice that the eigenvaluesare quite different values. In fact, it turns out that
theeigenvectorwith thehighest eigenvalueis theprinciple component of thedataset.
In our example,the eigenvectorwith the largeseigenvaluewas the one that pointed
down the middle of the data. It is the mostsignificantrelationshipbetweenthe data
dimensions.

In general,onceeigenvectorsarefound from thecovariancematrix, thenext step
is to orderthemby eigenvalue,highestto lowest. This givesyou the componentsin
orderof significance.Now, if you like, you candecideto ignore the componentsof
lessersignificance.Youdolosesomeinformation,but if theeigenvaluesaresmall,you
don’t losemuch. If you leave out somecomponents,the final datasetwill have less
dimensionsthan the original. To be precise,if you originally have � dimensionsin
your data,andsoyou calculate� eigenvectorsandeigenvalues,andthenyou choose
only thefirst { eigenvectors,thenthefinal datasethasonly { dimensions.

What needsto be donenow is you needto form a feature vector, which is just
a fancy namefor a matrix of vectors. This is constructedby taking the eigenvectors
that you want to keepfrom the list of eigenvectors,andforming a matrix with these
eigenvectorsin thecolumns.

| s ( z v�@ sy}~syBZz1C @n� 0 s \Zt � s \Zt 4 s \Zt � q�q�q�q s \Zt !
2

Givenour examplesetof data,andthe fact thatwe have 2 eigenvectors,we have
two choices.We caneitherform a featurevectorwith bothof theeigenvectors:

- q �r���&���
d�d���� - q �&d������
�������
- q �&d��r���
������� q �����
���&d�d����

or, we canchooseto leave out thesmaller, lesssignificantcomponentandonly have a
singlecolumn:

- q �����
���&d�d����
- q �
d������&�������

We shallseetheresultof eachof thesein thenext section.

Step5: Deriving the new data set

Thisthefinal stepin PCA,andis alsotheeasiest.Oncewehavechosenthecomponents
(eigenvectors)thatwewish to keepin ourdataandformeda featurevector, wesimply
take the transposeof the vector and multiply it on the left of the original dataset,
transposed.

| \ � (�u [ ( z (6�k� CD� | s ( z v�@ sx}7syBZz1C @ f � CD� [ ( z (�� )�� v /hz E

where
� CD� | s ( z v�@ sy}6syBZz1C @ is thematrix with theeigenvectorsin thecolumnstrans-

posed sothattheeigenvectorsarenow in therows,with themostsignificanteigenvec-
tor at thetop,and

� CD� [ ( z (�� )�� v /hz is themean-adjusteddatatransposed, ie. thedata
itemsarein eachcolumn,with eachrow holding a separatedimension. I’m sorry if
this suddentransposeof all our dataconfusesyou, but theequationsfrom hereon are
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easierif wetakethetransposeof thefeaturevectorandthedatafirst, ratherthathaving
alittle T symbolabovetheirnamesfrom now on.

| \ � (�u [ ( z ( is thefinal dataset,with
dataitemsin columns,anddimensionsalongrows.

Whatwill thisgiveus?It will giveustheoriginaldatasolely in terms of the vectors
we chose. Our original datasethadtwo axes, < and = , so our datawasin termsof
them. It is possibleto expressdatain termsof any two axesthat you like. If these
axesareperpendicular, thentheexpressionis themostefficient. This waswhy it was
importantthateigenvectorsarealwaysperpendicularto eachother. We have changed
our datafrom beingin termsof theaxes < and = , andnow they arein termsof our 2
eigenvectors.In thecaseof whenthenew datasethasreduceddimensionality, ie. we
have left someof theeigenvectorsout, thenew datais only in termsof thevectorsthat
wedecidedto keep.

To show this on our data,I have donethe final transformationwith eachof the
possiblefeaturevectors.I have takenthe transposeof the resultin eachcaseto bring
thedatabackto thenicetable-like format. I have alsoplottedthefinal pointsto show
how they relateto thecomponents.

In thecaseof keepingbotheigenvectorsfor thetransformation,wegetthedataand
theplot foundin Figure3.3. This plot is basicallytheoriginal data,rotatedsothat the
eigenvectorsaretheaxes.This is understandablesincewe have lost no informationin
thisdecomposition.

The othertransformationwe canmake is by taking only the eigenvectorwith the
largesteigenvalue. The tableof dataresultingfrom that is found in Figure3.4. As
expected,it only hasa singledimension. If you comparethis datasetwith the one
resultingfrom usingbotheigenvectors,you will noticethat this datasetis exactly the
first columnof theother. So, if you wereto plot this data,it would be1 dimensional,
andwould be pointson a line in exactly the < positionsof the points in the plot in
Figure3.3. We have effectively thrown away thewholeotheraxis,which is theother
eigenvector.

So what have we donehere? Basicallywe have transformedour dataso that is
expressedin termsof thepatternsbetweenthem,wherethepatternsarethe lines that
mostcloselydescribethe relationshipsbetweenthe data. This is helpful becausewe
have now classifiedour datapoint asa combinationof thecontributionsfrom eachof
thoselines. Initially we had the simple < and = axes. This is fine, but the < and =
valuesof eachdatapointdon’t really tell usexactlyhow thatpoint relatesto therestof
thedata.Now, thevaluesof thedatapointstell usexactlywhere(ie. above/below) the
trendlinesthedatapointsits. In thecaseof thetransformationusingboth eigenvectors,
we have simply alteredthe dataso that it is in termsof thoseeigenvectorsinsteadof
theusualaxes.But thesingle-eigenvectordecompositionhasremovedthecontribution
dueto thesmallereigenvectorandleft uswith datathatis only in termsof theother.

3.1.1 Getting the old data back

Wanting to get the original databack is obviously of greatconcernif you areusing
thePCA transformfor datacompression(anexampleof which to will seein thenext
section).Thiscontentis takenfrom
http://www.vision.auc.dk/sig/Teaching/Flerdim/Current/hotelling/hotelling.html
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TransformedData=

< =
-.827970186 -.175115307
1.77758033 .142857227
-.992197494 .384374989
-.274210416 .130417207
-1.67580142 -.209498461
-.912949103 .175282444
.0991094375 -.349824698
1.14457216 .0464172582
.438046137 .0177646297
1.22382056 -.162675287

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Data transformed with 2 eigenvectors

"./doublevecfinal.dat"

Figure3.3: The tableof databy applyingthe PCA analysisusingboth eigenvectors,
anda plot of thenew datapoints.
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TransformedData(Singleeigenvector)
<

-.827970186
1.77758033
-.992197494
-.274210416
-1.67580142
-.912949103
.0991094375
1.14457216
.438046137
1.22382056

Figure3.4: Thedataaftertransformingusingonly themostsignificanteigenvector

So,how do we get the original databack? Beforewe do that, rememberthat only if
we took all theeigenvectorsin our transformationwill wegetexactly theoriginaldata
back. If we have reducedthenumberof eigenvectorsin thefinal transformation,then
theretrieveddatahaslost someinformation.

Recallthatthefinal transformis this:

| \ � (�u [ ( z (6�k� CD� | s ( z v�@ sx}7syBZz1C @ f � CD� [ ( z (�� )�� v /hz E

whichcanbeturnedaroundsothat,to gettheoriginaldataback,

� CD� [ ( z (�� )�� v /hz ��� CD� | s ( z v�@ sx}7syBZz1C @ R
�
f | \ � (�u [ ( z (

where
� CD� | s ( z v�@ sy}6syBZz1C @ R

�
is theinverseof

� CD� | s ( z v�@ sx}7syBZz1C @ . However, when
we take all the eigenvectorsin our featurevector, it turnsout that the inverseof our
featurevectoris actuallyequalto thetransposeof our featurevector. This is only true
becausethe elementsof the matrix areall the unit eigenvectorsof our dataset. This
makesthereturntrip to our dataeasier, becausetheequationbecomes

� CD� [ ( z (�� )�� v /hz ��� CD� | s ( z v�@ sy}7sxBMz1C @�� f | \ � (�u [ ( z (

But, to get the actualoriginal databack,we needto addon the meanof thatoriginal
data(rememberwesubtractedit right at thestart).So,for completeness,

� CD�7� @ \Zt�\ � (�u [ ( z (7� 0 � CD� | s ( z v�@ sy}6syBZz1C @�� f | \ � (�u [ ( z (P2 i � @ \Zt�\ � (�u I s ( �
This formulaalsoappliesto whenyou do not have all the eigenvectorsin the feature
vector. Soevenwhenyou leave out someeigenvectors,theaboveequationstill makes
thecorrecttransform.

I will notperformthedatare-creationusingthecomplete featurevector, becausethe
resultis exactly thedatawestartedwith. However, I will do it with thereducedfeature
vectorto show youhow informationhasbeenlost. Figure3.5show thisplot. Compare
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4
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Original data restored using only a single eigenvector

"./lossyplusmean.dat"

Figure3.5:Thereconstructionfrom thedatathatwasderivedusingonly asingleeigen-
vector

it to the original dataplot in Figure3.1 andyou will noticehow, while the variation
alongtheprincipleeigenvector(seeFigure3.2 for theeigenvectoroverlayedon top of
the mean-adjusteddata)hasbeenkept, the variationalongthe othercomponent(the
othereigenvectorthatwe left out)hasgone.

Exercises
; Whatdo theeigenvectorsof thecovariancematrixgiveus?

; At what point in the PCA processcanwe decideto compressthe data? What
effectdoesthis have?

; For anexampleof PCAandagraphicalrepresentationof theprincipaleigenvec-
tors,researchthetopic ’Eigenfaces’,whichusesPCAto do facialrecognition
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Chapter 4

Application to Computer Vision

This chapterwill outline the way that PCA is usedin computervision, first showing
how imagesareusuallyrepresented,andthenshowing what PCA canallow us to do
with thoseimages.Theinformationin this sectionregardingfacialrecognitioncomes
from “FaceRecognition:Eigenface,ElasticMatching,andNeuralNets”,JunZhanget
al. Proceedingsof theIEEE,Vol. 85,No. 9,September1997.Therepresentationinfor-
mation,is takenfrom “Digital ImageProcessing”RafaelC. GonzalezandPaul Wintz,
Addison-Wesley PublishingCompany, 1987.It is alsoanexcellentreferencefor further
informationon the K-L transformin general.The imagecompressioninformationis
takenfromhttp://www.vision.auc.dk/ sig/Teaching/Flerdim/Current/hotelling/hotelling.html,
whichalsoprovidesexamplesof imagereconstructionusingavaryingamountof eigen-
vectors.

4.1 Representation

Whenusingthesesortof matrixtechniquesin computervision,wemustconsiderrepre-
sentationof images.A square,� by � imagecanbeexpressedasan � 4 -dimensional
vector

��� < � < 4 < � q q <����
wherethe rows of pixels in the imageareplacedoneafter the other to form a one-
dimensionalimage. E.g. The first � elements(< � -g< � will be the first row of the
image,thenext � elementsarethenext row, andsoon. Thevaluesin thevectorare
theintensityvaluesof theimage,possiblyasinglegreyscalevalue.

4.2 PCA to find patterns

Saywe have 20 images. Eachimageis � pixels high by � pixels wide. For each
imagewe cancreatean imagevectorasdescribedin the representationsection. We
canthenput all theimagestogetherin onebig image-matrixlike this:
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which givesusa startingpoint for our PCA analysis.Oncewe have performedPCA,
we have our original datain termsof the eigenvectorswe found from the covariance
matrix. Why is this useful?Saywe want to do facial recognition,andsoour original
imageswereof peoplesfaces.Then,the problemis, givena new image,whoseface
from the original set is it? (Note that the new imageis not oneof the 20 we started
with.) The way this is doneis computervision is to measurethe differencebetween
thenew imageandtheoriginal images,but not alongtheoriginal axes,alongthenew
axesderivedfrom thePCAanalysis.

It turnsout that theseaxesworks muchbetterfor recognisingfaces,becausethe
PCA analysishasgiven us the original imagesin terms of the differences and simi-
larities between them. The PCA analysishasidentifiedthe statisticalpatternsin the
data.

Sinceall thevectorsare � 4 dimensional,wewill get � 4 eigenvectors.In practice,
we areableto leave out someof the lesssignificanteigenvectors,andtherecognition
still performswell.

4.3 PCA for imagecompression

UsingPCAfor imagecompressionalsoknow astheHotelling,or KarhunenandLeove
(KL), transform.If wehave20 images,eachwith � 4 pixels,we canform � 4 vectors,
eachwith 20dimensions.Eachvectorconsistsof all theintensityvaluesfrom thesame
pixel from eachpicture.This is differentfrom thepreviousexamplebecausebeforewe
hadavectorfor image, andeachitemin thatvectorwasadifferentpixel, whereasnow
wehavea vectorfor eachpixel, andeachitem in thevectoris from a differentimage.

Now we performthePCA on this setof data.We will get20 eigenvectorsbecause
eachvectoris 20-dimensional.To compressthedata,we canthenchooseto transform
the dataonly using, say 15 of the eigenvectors. This givesus a final dataset with
only 15 dimensions,which hassavedus

��o1	
of thespace.However, whentheoriginal

datais reproduced,the imageshave lost someof the information. This compression
techniqueis saidto be lossy becausethedecompressedimageis not exactly thesame
astheoriginal,generallyworse.
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Appendix A

Implementation Code

This is codefor usein Scilab,a freewarealternative to Matlab. I usedthis codeto
generateall the examplesin the text. Apart from the first macro,all the rest were
writtenby me.

// This macro taken from
// http://www.cs.montana.edu/˜harkin/co urses/ cs530 /scil ab/mac ros/c ov.sc i
// No alterations made

// Return the covariance matrix of the data in x, where each column of x
// is one dimension of an n-dimensional data set. That is, x has x columns
// and m rows, and each row is one sample.
//
// For example, if x is three dimensional and there are 4 samples.
// x = [1 2 3;4 5 6;7 8 9;10 11 12]
// c = cov (x)

function [c]=cov (x)
// Get the size of the array
sizex=size(x);
// Get the mean of each column
meanx = mean (x, "r");
// For each pair of variables, x1, x2, calculate
// sum ((x1 - meanx1)(x2-meanx2))/(m-1)
for var = 1:sizex(2),

x1 = x(:,var);
mx1 = meanx (var);
for ct = var:sizex (2),

x2 = x(:,ct);
mx2 = meanx (ct);
v = ((x1 - mx1)’ * (x2 - mx2))/(sizex(1) - 1);

23



cv(var,ct) = v;
cv(ct,var) = v;
// do the lower part of c also.

end,
end,
c=cv;

// This a simple wrapper function to get just the eigenvectors
// since the system call returns 3 matrices
function [x]=justeigs (x)
// This just returns the eigenvectors of the matrix

[a, eig, b] = bdiag(x);

x= eig;

// this function makes the transformation to the eigenspace for PCA
// parameters:
// adjusteddata = mean-adjusted data set
// eigenvectors = SORTEDeigenvectors (by eigenvalue)
// dimensions = how many eigenvectors you wish to keep
//
// The first two parameters can come from the result of calling
// PCAprepare on your data.
// The last is up to you.

function [finaldata] = PCAtransform(adjusteddata,eigenvectors ,dime nsion s)
finaleigs = eigenvectors(:,1:dimensions);
prefinaldata = finaleigs’*adjusteddata’;
finaldata = prefinaldata’;

// This function does the preparation for PCA analysis
// It adjusts the data to subtract the mean, finds the covariance matrix,
// and finds normal eigenvectors of that covariance matrix.
// It returns 4 matrices
// meanadjust = the mean-adjust data set
// covmat = the covariance matrix of the data
// eigvalues = the eigenvalues of the covariance matrix, IN SORTEDORDER
// normaleigs = the normalised eigenvectors of the covariance matrix,
// IN SORTEDORDERWITH RESPECTTO
// THEIR EIGENVALUES, for selection for the feature vector.
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//
// NOTE: This function cannot handle data sets that have any eigenvalues
// equal to zero. It’s got something to do with the way that scilab treats
// the empty matrix and zeros.
//
function [meanadjusted,covmat,sorteigvalues,s ortno rmale igs] = PCAprepare (data)
// Calculates the mean adjusted matrix, only for 2 dimensional data
means = mean(data,"r");
meanadjusted = meanadjust(data);
covmat = cov(meanadjusted);
eigvalues = spec(covmat);
normaleigs = justeigs(covmat);
sorteigvalues = sorteigvectors(eigvalues’,eigvalue s’);
sortnormaleigs = sorteigvectors(eigvalues’,normale igs);

// This removes a specified column from a matrix
// A = the matrix
// n = the column number you wish to remove
function [columnremoved] = removecolumn(A,n)
inputsize = size(A);
numcols = inputsize(2);
temp = A(:,1:(n-1));
for var = 1:(numcols - n)

temp(:,(n+var)-1) = A(:,(n+var));
end,
columnremoved = temp;

// This finds the column number that has the
// highest value in it’s first row.
function [column] = highestvalcolumn(A)
inputsize = size(A);
numcols = inputsize(2);
maxval = A(1,1);
maxcol = 1;
for var = 2:numcols

if A(1,var) > maxval
maxval = A(1,var);
maxcol = var;

end,
end,
column = maxcol
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// This sorts a matrix of vectors, based on the values of
// another matrix
//
// values = the list of eigenvalues (1 per column)
// vectors = The list of eigenvectors (1 per column)
//
// NOTE: The values should correspond to the vectors
// so that the value in column x corresponds to the vector
// in column x.
function [sortedvecs] = sorteigvectors(values,vectors)
inputsize = size(values);
numcols = inputsize(2);
highcol = highestvalcolumn(values);
sorted = vectors(:,highcol);
remainvec = removecolumn(vectors,highcol);
remainval = removecolumn(values,highcol);
for var = 2:numcols

highcol = highestvalcolumn(remainval);
sorted(:,var) = remainvec(:,highcol);
remainvec = removecolumn(remainvec,highcol);
remainval = removecolumn(remainval,highcol);

end,
sortedvecs = sorted;

// This takes a set of data, and subtracts
// the column mean from each column.
function [meanadjusted] = meanadjust(Data)
inputsize = size(Data);
numcols = inputsize(2);
means = mean(Data,"r");
tmpmeanadjusted = Data(:,1) - means(:,1);
for var = 2:numcols

tmpmeanadjusted(:,var) = Data(:,var) - means(:,var);
end,
meanadjusted = tmpmeanadjusted
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