Automating the Tedious Stuff

(Functional programming and other Mathematica magic)

Connor Glosser

Michigan State University
Departments of Physics &
Electrical/Computer Engineering

m, 2014

1/22

Introduction

Table of Contents

@ Introduction
e “Formalism”

2/22

Introduction

Mathematica is great. ..

> Untitled-2 *

Fle Edit |nsert Format Cell Graphics Evaluation Palettes Window Help

+ - + X

Infz4]= DSolve[{y "'[x] +3 y "[x] +40 y[%x] =0, y[0] =1, ¥y'[0] =1/3},

y[=], =]
/ Irrve e
1 151 — 151 %)
Ommﬂ={{y[x}e L 3w 453COS{E44445} +11v151,sln[V X]
453 2 2 J
Assuming a list of rules | Use as a two—dimensional array instead
getsolution apply rules to variable apply rules to expr... convert rules to equations more [S]

3/22

I

Introduction

... but it’s also kind of stupi

T Untitled-2 * + - + x

Fle Edit Insert Format Cell Graphics Evaluation Palettes Window Help
In25)= Rotate[{0, 0, 1}, 30 °]
Ay
Out[25]= Qr
O
B2

1/22

Introduction

About this talk

@ An outline of more “idiomatic” ways to use Mathematica

o A sample of ways to use those idioms in research-like
contexts

o Bi-directional!

5/22

Introduction
e0

My #1 Mathematica tip

= Untitled-1 * + - + X

File Edit Insert Format Cell Graphics Evaluation Palettes Windew Help
In[il:= Button["Click me!", Remove["Glcbal +"]]
Cul1]= | Click me!

=

e “Reset” button for the current Mathematica session;
completely removes all variables and definitions

@ Sure, you could just run the Remove ["Global‘*"] cell, but
buttons are more fan convenient.

6/22

Introduction
oe

A little bit of syntactic sugar

= Untitled-1 * + - + X

File Edit Insert Format Cell Graphics Ewvaluation Palettes Window Help

In[43)= TreeForm[axA2 + Sin[b + xAc]]

Qut[43)//TreeForms=

7/22

Introduction
oe

A little bit of syntactic sugar

o Generally, we write math with infix notation

o Mathematica also offers prefix and postfix operators for
single-argument functions:

= Untitled-1 * + - + X

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help
nE3 = £ @ x

out[53]= £ [x]

In4p=x // £

out[54]= £ [x]

o Cuts down on tedious bracket-matching, but beware
associativity and operator precedence!

7/22

Introduction
oe

A little bit of syntactic sugar

@ 0 right-associates and has a high precedence:
— Untitled-1 * + — + x
File Edit Insert Format cCell Graphics Evaluation Palettes Window Help

nE5- f@gex + 2
out(ssl= 2 + £ [g[x]]
o // left-associates and has a low precedence:

ki Untitled-1 * + = + %

File Edit Insert Format Cell Graphics Evaluastion Palettes Window Help

Insel= 2 + % f/fag/fffE
outfsél= £ [g[2 +x]]

7/22

Functional Programming

Table of Contents

© Functional Programming
e Background
@ Pure functions & Modules
e Higher-order functions

8/22

Functional Prog
[o]

“History”

1936: Alan Turing

Alan Turing invents every programming language that will ever
be but is shanghaied by British Intelligence to be 007 before he
can patent them.

9/22

Functional Programming
[o]

“History”

1936: Alan Turing

Alan Turing invents every programming language that will ever
be but is shanghaied by British Intelligence to be 007 before he
can patent them.

1936: Alonzo Church

Alonzo Church also invents every language that will ever be but
does it better. His lambda-calculus is ignored because it is
insufficiently C-like. This criticism occurs in spite of the fact
that C has not yet been invented.

—James Iry

9/22

Functional Programming
oe

What is functional programming?

o Programs as functions from inputs to
outputs
e Higher-order functions
e Functions become a sort of datatype
e Avoids mutability /state (!!!!)

e Mathematical by construction (category
theory, formal computation)

o “What things are vs. what things do.”

o Lots of list manipulation

10/22

Functional Programming
L]

Pure functions

o No side-effects: functions depend only on inputs

f = Function[x, x + 3]

11/22

Functional Programming
L]

Pure functions

o No side-effects: functions depend only on inputs

f = Function[x, x + 3]

o Alternatively,

g = # + 3&;

11/22

Functional Programming
L]

Pure functions

o No side-effects: functions depend only on inputs

f = Function[x, x + 3]

o Alternatively,

g = # + 3&;

o Multiple arguments:

In[1] := h = #1 + 2*#2&;
Out [1] := 11

11/22

Functional Programming
L]

Pure functions

No side-effects: functions depend only on inputs

f = Function[x, x + 3]

o Alternatively,

g = # + 3&;

o Multiple arguments:

In[1] := h = #1 + 2*#2&;
Out [1] := 11

Use Block, With, or Module to localize variables in more
complicated function structures

11/22

Functional Programming
[eJe]e]

Transforming Data

Consider applying a simple (pure!) function to a set of data. ..
@ ...naively, with a for-loop:

For[i = 1, i < Length[input], i++,
output [[1]] = Sin[input[[il]],

12/22

Functional Programming
[eJe]e]

Transforming Data

Consider applying a simple (pure!) function to a set of data. ..
@ ...naively, with a for-loop:

For[i = 1, i < Length[input], i++,
output [[1]] = Sin[input[[il]],
]

@ ...with a Table command:

output = Table[Sin[input[[i]]], {i,1,n}]

(like a list comprehension in python!)

12/22

Functional Programming
[eJe]e]

Transforming Data

Consider applying a simple (pure!) function to a set of data. ..
@ ...naively, with a for-loop:

For[i = 1, i < Length[input], i++,
output [[1]] = Sin[input[[il]],
]

@ ...with a Table command:

output = Table[Sin[input[[i]]], {i,1,n}]

(like a list comprehension in python!)
o ...with a Map:

output = Map[Sin, input]

12/22

Functional Programming
[eJe]e]

Transforming Data

Consider applying a simple (pure!) function to a set of data. ..
@ ...naively, with a for-loop:

For[i = 1, i < Length[input], i++,
output [[1]] = Sin[input[[il]],
]

@ ...with a Table command:

output = Table[Sin[input[[i]]], {i,1,n}]

(like a list comprehension in python!)
o ...with a Map:

output = Map[Sin, input]

o ...by cheating with the Listable attribute:

output = Sin[input]

12/22

Functional Programming
[e] Te]e]

Higher-order Functions: Map

Map applies a function to each element of a collection without
modifying the original. J

In[1]
Out [1]

Map [f,{1,2,3,x,y,2z}]
{f£01],£[2],£[3],f[x],f[y]l,f[=z]}

o Automatically handles length
o Easily parallelized with ParallelMap

e Common enough to warrant special syntax:

In[2]
Out [2]

f/0{1,2,3,x,y,2z}
{£01],£f[2],£[3],f[x],f[yl,f[=z]}

13/22

Functional Programming
[e]e] o]

Higher-order functions: Apply

Apply turns a list of things into formal arguments of a
function—it essentially “strips off” a set of {}.

o Similar to Map, transforms a list:

In[1] := Applylf, {1, 2, 3, a, b, c}]
Qut[1] := f[1, 2, 3, a, b, c]

o Can operate on levels' (default = 0, use @@@ for level 1)

In[2] Apply [f, {{1},{2},{3}}, {1}]
Out [2] {£[1], f£[2], £[3]1} (*level 1%)

@ Plus & Subtract become really useful wtih Apply

14 of indices required to specify element
14/22

Functional Programming
[e]e]e])

Higher-order functions: Nest & NestList

o Nest repeatedly applies a function to an expression

o NestList does the same, producing a list of the
intermediate results

e Captures iteration as a recursive application of functions

In[1] := Nest[f, x, 3]
Out [1] := f[f[f[x]1]]

While Map, Apply, & Nest are all built-in functions, none rely on
ideas exclusive to Mathematica; as functional constructs, they
very naturally capture specific types of problems & ideas.

15/22

Patterns, Rules, & Attributes

Table of Contents

© Patterns, Rules, & Attributes

16/22

Patterns, Rules, & Attributes
@00

Patterns

Patterns represent classes of expressions which can be used to
“automatically” simplify or restructure expressions. For example,
f[_] and £ [x_] both represent the pattern of “a function named
f with anything as its argument”, but f [x_] gives the name x to
the argument (whatever it is).

Common patterns:

x_: anything (with “the anything” given the name x)

x_Integer: any integer (given the name x)
e x_"n_: anything to any explicit power (guess their names)
o flr_,r_]: a function with two identical arguments

e and so on

17/22

Patterns, Rules, & Attributes

oeo

The Replacement Idiom

“/. applies a rule or list of rules in an attempt to transform each

subpart of an expression”

In[1]
Out [1]

{a, a"2, y, z}

{x, x°2, y, z} /. x -> a

@ The rule can make use of Mathematica’s pattern-matching

capabilities:
In[2] := 1 + x°2 + x°4 /. x"p_ -> flp]
Out [2] := 1 + f[2] + f[4]

o Useful for structuring solvers:

f = x /. DSolvel[x’’[t] ==

x[t]l, x, t1[[1]]

18/22

Patterns, Rules, & Attributes
[efe]]

Attributes

Attributes let you define general properties of functions,
without necessarily giving explicit values.

o The Listable attribute automatically threads a function
over lists that appear as arguments.

In[1] := SetAttributes[f, Listable]
f[{1,2,3},x]
OQut [1] := {f[1,x], fl[2,x], f[3,x]}

@ Flat, Orderless used to define things like associativity &
commutativity (a+b == b+a for the purposes of pattern
matching)

19/22

Closing

Table of Contents

@ Closing

@ Further resources

20/22

Some final thoughts

@ Functional programming and pattern matching are both
hard and obtuse (at first), but they can be a very elegant
way of attacking problems

e Also good for parallel programing!

@ The best method usually requires a bit of trial-and-error.
Experiment!

@ Further resources:

o The Mathematica documentation is excellent

e The Wolfram Blog frequently has cool examples in a variety
of subjects

o Essential Mathematica for Students of Science has lots of
detailed notebooks for scientific applicaitons

e Power Programming with Mathematica: antequated, but
good

21/22

http://blog.wolfram.com/
http://www.physics.umd.edu/courses/CourseWare/EssentialMathematica/

Figure: https://www.msu.edu/~glosserl/works.html

Thanks for listening!

22/22

https://www.msu.edu/~glosser1/works.html

	Introduction
	``Formalism"

	Functional Programming
	Background
	Pure functions & Modules
	Higher-order functions

	Patterns, Rules, & Attributes
	Closing
	Further resources

