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Abstract

We introduce our work on the backdoor key, a concept that
shows promise for characterizing problem hardness in back-
tracking search algorithms. The general notion of backdoors
was recently introduced to explain the source of heavy-tailed
behaviors in backtracking algorithms (Williams, Gomes, &
Selman 2003a; 2003b). We describe empirical studies that
show that the key faction,i.e., the ratio of the key size to the
corresponding backdoor size, is a good predictor of problem
hardness of ensembles and individual instances within an en-
semble for structure domains with large key fraction.

Introduction
Propositional reasoning (SAT) is the best-known NP-
complete problem in computer science. Even though a
class of SAT problems may be intractable in the worst case,
most of its instances may still be polynomial-time solvable
in practice and their hardness may vary significantly. It
has proven extremely difficult in practice to define realis-
tic problem ensembles where instances do not vary widely
in hardness (Kautz et al. 2001). Different instances have
widely varying hardness even in the well-known random 3-
SAT problem ensembles with fixed clause-to-variable ratios
(Kirkpatrick & Selman 1994). In such cases, it is crucial to
understand the hidden structures that can be used to identify
problem hardness and as points of attack for search heuris-
tics.

There has been considerable research interest in identify-
ing such structures for many years. One example of such
hidden structure is the backdoor set (Williams, Gomes, &
Selman 2003a). Given a SAT formula, a set of variables
forms a backdoor for a problem instance if there is a truth as-
signment to these variables such that the simplified formula
can be solved in polynomial time via use of the propaga-
tion and simplification mechanism of the SAT solver under
consideration.

The original motivation of the backdoor concept was to
explain the heavy-tailed behavior of backtracking search al-
gorithms (Williams, Gomes, & Selman 2003b). Williams
et al. went on to describe a variety of simple random-
ized “guessing” algorithms for solving problems with small
backdoor sets, and empirically showed than many interest-
ing benchmark SAT problems have surprisingly small back-
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doors (on the order of a few dozen variables). These al-
gorithms are best-case exponential in the size of the back-
door, and thus are practical for problems with backdoors up
to about size 20. For problems with larger backdoors —
which do indeed appear to be the vast majority of satisfia-
bility problems of interest — the best complete algorithms
remain ones based on Davis-Putnam-Loveland-Logemann
style backtracking search. Therefore it is important to in-
vestigate the precise connection between the backdoor prop-
erties of an problem instance or ensemble and problem
hardness as measured by solution time using backtracking
search.

Intuitively, the difficulty of identifying a backdoor set and
setting a correct assignment to the backdoor variables by a
backtracking solver is positively correlated to problem hard-
ness because once the backdoor set is assigned correctly, the
remaining problem becomes trivial. However, as we shall
describe below, problem hardness is not a simple function of
backdoor size. In particular, the backdoor size does not cap-
ture the dependencies among backdoor variables. We intro-
duce the concepts of backdoor key variables to capture such
dependencies. A backdoor key variable is a backdoor vari-
able whose value is logically determined by settings of other
backdoor variables. We define the key fraction of a problem
as the ratio of the key size to the corresponding backdoor
size, and investigate its relation with instance hardness and
ensemble hardness. Instance hardness is the hardness of an
individual instance, which we take as the median search cost
of a set of runs of a search algorithm applied to the given
instance. Ensemble hardness is the median hardness of an
ensemble of instances. Empirical results demonstrate that
key fractions are good predictors for both ensemble hard-
ness and instance hardness for structure domains with large
key fractions.

Previous Work on Hidden Structure
We first summarize prior work on identifying hidden struc-
tures that are linked to problem hardness. Next, we de-
scribe two structure benchmark domains used in our empir-
ical studies.

Hidden Structures for Problem Hardness
An important step in understanding problem hardness is
to relate hardness with observations of phase transitions in
problem distributions as the underlying parameters are var-
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ied. Many NP-complete problems like satisfiability and con-
straint satisfaction display phase transition behavior in sol-
ubility and the easy-hard-easy pattern of search cost asso-
ciating with increasing constrainedness. Problems that are
under-constrained tend to have many solutions and thus gen-
erally easy to solve due to the high probability of guess-
ing a solution. On the other hand, problems that are over-
constrained tend to have no solution. These problems are
also generally easy to solve because there are many con-
straints and thus many possible solutions can be pruned ef-
ficiently. Hard problems are usually located at a critical-
constrained point, where roughly half the instances are sat-
isfiable and half the instances are unsatisfiable. One well-
know example is the random 3-SAT problem with varying
clause-to-variable ratio: instances with the ratio equals 4.25
are the most difficult ones on average (Mitchell, Selman,
& Levesque 1992). Other examples include the average
graph connectivity for graph coloring problem (Cheeseman,
Kanefsky, & Taylor 1991); constraint tightness (Smith 1994;
Prosser 1996) for constraint satisfaction problems. A gener-
alized the notion of constrainedness for an ensemble of in-
stances was introduced by Gent et al. (Gent et al. 1996).

However, information about the number of solutions does
not tell the whole story. Mammem et al. (Mammen & Hogg
1997) showed that the easy-hard-easy pattern still appears
for some search methods even the number of solution is held
constant. In these cases, the pattern appears to be due to
changes in the size of the minimal unsolvable subproblems,
rather than changing number of solutions.

Another important line of research has been focused on
the relationship between hardness and backbone variables.
For satisfiable SAT instances, the backbone is the set of lit-
erals which are logically entailed by the clauses of the in-
stance, that is, backbone variables take on the same values
in all solutions.

Achlioptas et al. (Achlioptas et al. 2000) demonstrated
that there is a phase transition phenomenon in the backbone
fraction–the ratio of the size of backbone to the total number
of variables–with changes in the number of unset variables
or “holes” created in solutions to Quasigroup with Holes
(QWH) instances. They also show that the phase transition
coincides with the hardness peak in local search. However,
the hardness peak of backtrack algorithms does not coincide
with the phase transition of backbone fraction seen in lo-
cal search. The relationships between the hardness peak and
backbone fraction is even less clear for optimization and ap-
proximation problems where backbone size has been found
to be negatively or positively correlated with hardness de-
pending on the domain at hand (Slaney & Walsh 2001).

In other work, Singer et al. (Singer, Gent, & Smaill 2000)
found that the number of solutions is only relevant for small-
backbone random 3-SAT instances. They introduced a mea-
sure of the backbone fragility of an instance, which indi-
cates how persistent the backbone is as clauses are removed.
The backbone fragility of an instance is positively correlated
with the problem hardness for local search.

Benchmark Domains and Solvers
We shall first investigate hardness and backdoor keys within
the benchmark domain of a version of the Quasigroup Com-
pletion Problem (QCP) (Gomes & Selman 1997). The basic

QCP problem is to complete a partially-filled Latin square,
where the “order” of the instance is the length of a side of
the square. We used a version called Quasigroup with Holes
(QWH), where problem instances are generated by erasing
values from a solved Latin square (Achlioptas et al. 2000;
Kautz et al. 2001). Note that QWH problems are satisfi-
able by definition as they are built from previously solved
problems.

We also will study problem hardness for a second prob-
lem domain, the morphed Graph Coloring Problem intro-
duced by Gent et al. (Gent et al. 1999). The Graph Col-
oring Problem (GCP) is a well-known combinatorial prob-
lem from graph theory. Given a graph G = (V, E), where
V = {v1, v2, ..., vn} is the set of vertices and E the set of
edges connecting the vertices, we seek to find a coloring
C : V → N , such that connected vertices always have dif-
ferent colors. The challenge is to decide whether a coloring
of the given graph exists for a particular number of colors.
A p-morph of two graphs A = (V, E1) and B = (V, E2) is
a graph C = (V, E) where E contains all the edges com-
mon to A and B, a fraction p of the edges from E1 − E2

(the remaining edges of A), and a fraction 1−p of the edges
from E2 − E1. The test sets considered here are obtained
by morphing regular ring lattices, where the vertices are or-
dered cyclically and each vertex is connected to its k closest
in this ordering, and random graphs from the well-known
class Gnm. The morphing ratio p controls the amount of
structure in the problem instances. The test sets used in our
studies are from (sat ).

Finally, we consider domains of logistics planning (Kautz
& Selman 1996) and circuit synthesis problems (Kamath et
al. 1993). All instances of these domains are satisfiable
and encoded in propositional encodings. The solver we used
was Satz-Rand (Gomes, Selman, & Kautz 1998), a random-
ized version of the Satz system (Li & Anbulagan 1997) with
powerful variable selection heuristics, and zChaff (version
Z2001.2.17) (Zhang et al. 2001).

Backdoors
The backdoor (Williams, Gomes, & Selman 2003a; 2003b)
of a problem aims to capture structural properties in a prob-
lem that underlie heavy-tailed behaviors in backtracking al-
gorithms. A set of variables forms a backdoor for a prob-
lem instance if there is a truth assignment for these variables
such that the simplified formula can be solved in polyno-
mial time by the propagation and simplification mechanism
of the SAT solver under consideration. That is, after setting
the backdoor variables correctly, the simplified formula falls
in a polynomially solvable class.

Given a Boolean formula F , let V be the set of variables
in F . Let AB : B ⊆ V → {True, False} be a partial
truth assignment and F [AB ] denote the simplified formula
obtained from the formula F by setting the partial truth as-
signment AB .

A set of backdoor variables is defined with respect to a
particular search algorithm; once the backdoor variables are
assigned certain values, the problem becomes polynomial
time solvable by the algorithm. Such algorithms are called
sub-solvers (Williams, Gomes, & Selman 2003a). A sub-
solver S always runs in polynomial time. Given a formulaF
as the input, S either rejects F , or determines F correctly as
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Figure 1: Normalized backdoor sizes and ensemble hardness. Left: Morphed GCP and its x-axis is the morphed ratio. Right:
QWH of order 33 and its x-axis is the number of holes. For hardness, each data point represents the median value of the
run-time of Satz-rand on 100 instances. For backdoor size, data points represent the mean value of 100 instances
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Figure 2: Backdoor sizes and instance hardness. The x-axis represents the backdoor size and the y-axis is the instance hardness.
Left: Morphed GCP with morphed ratio = 2−6. Right: QWH of order 33 and 363 holes. For each data point (x, y), y represents
the median search cost of 100 runs of Satz-rand and x represents the mean size of 100 backdoor sets.

unsatisfiable or satisfiable, returning a solution if satisfiable.
Given a sub-solver S, a formula F and its variables set V ,

we can definite formally the notion of backdoor.

Definition 1 (Backdoor) A nonempty subset B of the vari-
able set V is a backdoor for F w.r.t S if for some partial
truth assignment AB , namely, a backdoor truth assignment,
S returns a satisfying assignment of F [AB ].

Note that, by definition, backdoor sets exist only for sat-
isfiable instances. A corresponding notion of strong back-
doors can be defined for unsatisfiable instances (Williams,
Gomes, & Selman 2003a). We will not discuss strong back-
doors.

Note that any superset of a backdoor set is also a backdoor
set. We are interested in backdoor sets with no unnecessarily
variables, which we refer to as minimal backdoor sets.

Definition 2 (Minimal Backdoor) A nonempty backdoor
set B for F w.r.t S is minimal if for any v ∈ B such that
B − v is not a backdoor set for F w.r.t S.

For the rest of this paper, unless otherwise specified, we
assume that a backdoor set is minimal.

Backdoor Size and Hardness
We performed empirical studies to test the relation between
backdoor sizes and hardness on the morphed GCP, QWH,
circuit synthesis, and logistics planning domains. We modi-
fied the SAT solver Satz-rand to keep track of the set of vari-
ables selected for branching and their truth assignments in a
solution. We also used Satz as a sub-solver by turning off its

variable branching function, i.e., allowing only unit propa-
gation and simplification. By the definition of backdoor, the
set of branching variables in a solution contains a backdoor
set. Unnecessary variables were randomly removed one by
one from the set of branching variables until the remaining
set of variables is a minimal backdoor set. For each ensem-
ble, we collected data of 100 instances; for each instance,
we generated 100 backdoor sets.

Recall that a backdoor is a set of variables that, if set cor-
rectly, renders the remaining problem trivial to solve. Thus,
the difficulty of identifying and assigning backdoor vari-
ables correctly is proportional to the difficulty of solving a
problem. It is reasonable to assume that the backdoor of
a problem reflects a core structural property that is closely
linked to the problem hardness of the problem. However, we
have found that the straightforward way of using backdoor
size as a predictor does not correlate well with ensemble or
instance hardness.

Figure 1 shows that there is no significant correlation be-
tween backdoor size and ensemble hardness for either mor-
phed GCP or QWH domains. For morphed GCP, the back-
door size increases with increasing morphing ratio p, or the
declining amount of structure in the problem instances. This
is consistent with prior observations that structured domains
tend to have smaller backdoor sizes, while random domains
tend to have larger backdoor sizes (Williams, Gomes, & Sel-
man 2003a).

We have also noted that ensemble hardness for morphed
GCP does not increase monotonically with increasing back-
door size. Instead, the ensemble with the largest backdoor

126    COMPLEXITY   



size is the easiest to solve and the peak of hardness is located
at some intermediate point between the totally random and
totally structured ensembles. The same observation applies
to QWH problems: Backdoor size increases monotonically
with the increasing number of holes while the peak of hard-
ness is located at some intermediate point.

We additionally discovered that there is poor correlation
between backdoor sizes and instance hardness within an en-
semble. In Figure 2, the graph on the left captures results ob-
tained with morphed GCP, showing a weak negative corre-
lation while the right figure for QWH shows a weak positive
correlation. Empirical studies using zChaff demonstrated
similar results, i.e., no significant correlation between back-
door sizes and ensemble or instance hardness, which are not
shown here due to limitation of space.

We believe that the reason that the size of a backdoor set
alone is not enough to predict hardness is that the back-
door size does not capture the dependencies among back-
door variables, i.e., the “dependent” variables whose truth
values are completely determined by other variables in the
backdoor set. For an example, in the case of morphed GCP,
although the backdoor sizes of the totally random ensem-
ble are larger, there are few dependent variables. There-
fore, the probability of setting some backdoor variable to
the “wrong” value is smaller, even though more backdoor
variables must be set. On the other hand, for instances at the
hardness peak, the dependencies among backdoor variables
are higher and there are more dependent variables. In these
cases, it is likely that a backdoor variable will be set to a
value that makes the remaining problem unsatisfiable.

This observation suggests that problem hardness is the re-
sult of the interaction between backdoor size and dependen-
cies among backdoor variables, which we will address in the
next section.

Backdoor Keys
In the last section, we showed that problem hardness is not
a simple function of backdoor size, and proposed the need
for considering the dependencies among backdoor variables.
To capture such dependencies, we introduce the notion of
the backdoor key and examine its relationship with problem
hardness.

Definitions
Given a sub-solver S, let B be a backdoor of a formula F
with respect to S, and AB be a backdoor truth assignment,
i.e., a value setting of B such that S returns a satisfiable
assignment of F . We use B − v as a simple denotation of
B −{v}, for any v ∈ V . Before our exposition of backdoor
keys, we need to define the notion of a dependent variable.

Definition 3 (Dependent Variable) A variable v ∈ V is a
dependent variable of formula F with respect to a partial
truth assignment AB if F [AB ] determines v, i.e., there is a
unique value assignment x of v such that F [AB ∪ {v/x}] is
satisfiable.

To capture the dependencies among backdoor variables,
we introduce the definition of a backdoor key, which we de-
fine formally as follows:

Definition 4 (Backdoor Key) A backdoor variable v is in
the backdoor key set of B with respect to a backdoor truth

assignment AB if and only if v is a dependent variable in F
with respect to the partial truth assignment AB−v

In distinction to variables with superficial dependencies,
which can be easily detected by unit-propagation and sim-
plification, a backdoor key set represent a deep depen-
dency whose detection requires extra effort beyond unit-
propagation and simplification. We believe that such deep
dependencies provide a view onto the core structural prop-
erties that lay at the foundations of problem hardness.

We know that once the backdoor variables are set cor-
rectly, the remaining problem becomes trivial. Thus, the
difficulty of solving a problem is proportional to the diffi-
culty of identifying and assigning backdoor variables. We
do not yet know how to estimate the difficulty of identifying
backdoor variables; this is an open challenge. It is generally
believed that modern variable selection heuristics have done
reasonably well at identifying backdoor variables from the
success of the state-of-the-art backtrack search algorithms.

We believe that the difficulty of assigning backdoor vari-
ables correctly is captured by the notion of a backdoor key,
because the dependent variables are the ones which are
likely to be assigned incorrectly. Thus, the size of a back-
door key is a prime candidate for predicting problem hard-
ness. Another candidate is the relative size of a backdoor
key set, which we refer to as the backdoor key fraction:

Definition 5 (Backdoor Key Fraction) A backdoor key
fraction is the ratio of the size of the backdoor key set to the
size of the corresponding backdoor set.

We will see that in many domains the key fraction is a
precise predictor of problem hardness.

Experiments
We performed a set of empirical studies to test our hypoth-
esis. We used the method described in previous section to
collect minimal backdoor sets and then calculated the key
size for each backdoor set by testing whether a backdoor
variable is in the key set with respect to the truth assignment
of the backdoor set.

Fig. 3 shows the relation between ensemble hardness and
key fractions as well as key sizes. The graph at the left dis-
plays results for the morphed GCP domain and the graph on
the right shows results for the QWH domain. For both prob-
lem domains, the peaks of key fraction coincide with those
of ensemble hardness, which illustrates a strong correlation
between key fraction and ensemble hardness. On the other
hand, there is little or no correlation between key size and
problem hardness. For morphed GCP, the peak of backdoor
key size shifts to the left of the hardness peak. For QWH,
the size of backdoor key increases monotonically, which
does not coincide with the easy-hard-easy pattern of prob-
lem hardness. Empirical studies using zChaff demonstrated
similar results.

In predicting instance hardness within an ensemble, the
key fraction also shows the strongest correlation. Fig. 4
shows the correlation between key fraction and instance
hardness. For both domains, the overall shapes suggest lin-
ear correlations between the key fraction and the log of in-
stance hardness. We performed linear regression on the data
and summarized the results in table 1. As a comparison, we
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Figure 3: Normalized key sizes, key fractions and ensemble hardness. Left: Morphed GCP where the x-axis represents the
morphed ratio. Right: QWH where the x-axis represents the number of unset variables or holes, removed from prior solutions.
For hardness, each data point represents the median hardness of 100 instances solved by Satz-rand. For backdoor size, the data
points represent the mean value of 100 instances.
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Figure 4: Key fractions and instance hardness. The x-axis is the key fraction (the ratio of key size and backdoor size) and the
y-axis is the instance hardness. Left: Morphed GCP with morphed ratio = 2−6. Right: QWH of order 33 and 363 holes. For
each data point (x, y), y represents the median search cost of 100 runs of Satz-rand and x represents the mean key fraction of
100 backdoor sets.

also include results for backdoor size and key size. We re-
port correlation coefficients as well as two error measures
for linear regression, the root mean squared error (RMSE)
and mean absolute error (MAE). The table shows that the
key fraction is the best predictor for problem hardness in all
aspects.

An intuitive explanation for the success of the key frac-
tion in predicting hardness is that it represents the probabil-
ity that a backdoor variable is dependent. We have argued
that variable selection heuristics essentially attempt to iden-
tify backdoor variables, that only dependent backdoor vari-
ables can be set to incorrect values (values that rule out all
solutions), and that large backtracking trees and long runs
result when backdoor variables are initially set to incorrect
values. Putting these arguments together makes the predic-
tion that as the key fraction increases the probability that the
solver has a long run should increase as well. Our experi-
mental results show that this is exactly the case.

The concept of backdoor keys works well for domains
with relatively large key fractions, such as QWH and mor-
phed GCP. We did the same investigation for the logistics
and circuit synthesis domains but found no significant cor-
relations. It turns out that for the two latter domains, most in-
stances from the two domains have key sets of size zero! In
other words, given any backdoor and its corresponding solu-
tion, you can flip the truth assignment of any single variable
in the backdoor and still extend the backdoor to a solution.

A similar issue was highlighted in work that looked at

the phenomena of backbones in graph coloring problems
(Culberson & Gent 2001). By the original definition of
backbone—a variable that is fixed in all solutions—the prob-
lems had no backbones. Culberson and Gent therefore
adopted a new definition of backbone in terms of pairs of
variables that must take on different values in all solutions.
We are currently pursuing a similar generalized notion of
backdoor key to take into consideration special problems
where the key fails to be predictive of hardness. For exam-
ple, one can define dependent pairs of variables with respect
to a partial truth assignment, and then analogously define the
set of backdoor key pairs.

Conclusion and Research Directions
We extended the notion of backdoor variables by introduc-
ing and investigating the concept of backdoor keys. Back-
door keys capture the link between dependencies among
backdoor variables and problem complexity. To examine the
relationship between the backdoor key of a problem and its
hardness, we performed experiments on several structured
domains. Our analysis suggests that the key fraction is a
good predictor for both ensemble and instance hardness for
domains with relatively large key fractions.

We are pursuing a deeper understanding of backdoors
and backdoor keys, as well as their relationships to prob-
lem hardness. In parallel, we are seeking to apply the back-
door and backdoor key concepts to inform problem-solving
methods. Moving beyond backdoor keys, we are seeking to
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Satz-rand zChaff
Measures QWH GCP QWH GCP

F K B F K B F K B F K B
Correlation Coefficient 0.86 0.79 0.42 0.78 0.56 -0.26 0.70 0.70 0.42 0.54 0.53 0.01

RMSE 0.41 0.47 0.71 0.24 0.37 0.38 0.39 0.68 0.87 0.37 0.37 0.38
MAE 0.29 0.37 0.57 0.29 0.28 0.28 0.29 0.53 0.69 0.31 0.31 0.32

Table 1: Results of linear regression analysis for instance hardness, where F represents key fraction, K represents key size and
B represents backdoor size

understand more about the hidden structure of problems. We
are particularly interested in understanding structure among
variables in the backdoor set for domains with small key
fractions. The presence and nature of such hidden struc-
tures may be related to the difficulty of identifying backdoor
variables. Finally, we interested in investigating the effect of
clause learning on backdoor and key sizes. Clause learning
(Marques-Silva & Sakallah 1996; Bayardo & Schrag 1997;
Zhang 1997; Moskewicz et al. 2001; Zhang et al. 2001)
can be seen as a mechanism that helps to identify variable
dependencies. Our hypothesis is that the effectiveness of
clause learning may be related to the variation in backdoor
or key sizes during the learning process.
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