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Sequence Labeling

Sequence labeling problem definition I

Given a sequence of observations/feature vectors, determine an
appropriate label/state for each observation

We will assume the observations can be discrete or continuous, scalar
or vector

We assume the labels/states are discrete and from a finite set

Try to reduce errors by considering the relations between the
observations and states (observation-state) and the relation between
neighboring states (state-state)

t=1

Label 5 Label 2

yt =  5   5    5    5   5    2   2    2   2  …  
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Sequence Labeling

Sequence labeling applications

Speech recognition

Part-of-speech tagging

Shallow parsing

Handwriting recognition

Protein secondary structure prediction

Video analysis

Facial expression dynamic modeling
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Sequence Labeling

Urns and balls example

Assume there are two urns with black and white balls [Rabiner, 1989]

One urn has more black than white (90% vs 10%) and vice versa

Someone pulls out one ball at a time and shows us without revealing
which urn he uses and puts it back into the urn

He is more likely to use the same urn (90% chance) once he starts
using one

We are looking only at the sequence of balls and recording them
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Sequence Labeling

Questions about the urns and balls example

Questions of interest:
1 Can we predict which urn is used at a given time?
2 What is the probability of observing the sequence of balls shown to us?
3 Can we estimate/learn the ratio of balls in each urn by looking at a

long sequence of balls if we did not know the ratios beforehand?
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Sequence Labeling

Jason Eisner’s ice-cream example

Try to guess whether the weather was hot or cold by observing only
how many ice-creams (0, 1, 2 or 3+) Jason ate each day in a
sequence of 30 days

Two states and observations with 4 distinct values (discrete
observations)

Question: Can we determine if a day was hot or cold given the
sequence of ice-creams consumed by Jason?

Example excel sheet online (illustrates forward backward algorithm)

Example also adopted in [Jurafsky and Martin, 2008]
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Sequence Labeling

Human activity labeling in an exercise video

Assume we are given an exercise video of a single person and we are
interested in labeling actions of the person as either “standing”,
“squatting” or “lying down” (assume for now that no other action is
present)

We track the subject and have a bounding box around her/him at
each frame of the video

We consider as features xt = [ht ,wt ]
T where ht is the height of the

bounding box and wt is the width of the bounding box

So, we have continuous (real) observations and three labels

Question: Given the height and width of the bounding boxes in all
frames, can we determine the action type in each frame?
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Sequence Labeling

Approach, notation and variables

We will first analyze binary and multi-class classification with linear
models

Multi-class classification will be the basis for understanding the
sequence labeling problem

Then, we will introduce HMM, CRF, and structured SVM approaches
for sequence labeling

Notation:

x is an observed feature vector, xt a feature vector at sequence position
t, x1:T a sequence of feature vectors
y is a discrete label (or state), y ∈ Y where Y = {−1,+1} for binary
classification, Y = [M] = {1, 2, . . . ,M} for multi-class classification
yt is the label/state at sequence position t, y1:T is a sequence of
labels/states
w and w̃ are parameter vectors, wj is the jth component
F(x1:T , y1:T ) is a feature vector for CRF and structured SVM
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Binary Classifiers
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Binary Classifiers

Linear binary classification I

Given training data {(xi , yi ) : i ∈ [N]} where xi ∈ IRd and
yi ∈ Y = {−1,+1}
[N] = {1, . . . ,N}, xi = [xi ,1, xi ,2, . . . , xi ,d ]T are feature vectors, yi are
class identities

Find a weight vector w̃ ∈ IRd+1 such that for test data x, we obtain a
score w̃T x̃ = wTx + b where:

x̃ = [xT , 1]T is the augmented feature vector
w̃ = [wT , b]T is the augmented weight vector, b is called the bias term

w̃ represents a hyperplane in IRd+1, it is the normal vector to the
hyperplane {x̃ : w̃T x̃ = 0} that passes through the origin
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Binary Classifiers

Linear binary classification II

w

x

wTx+b=0 >0

<0

-b/||w||

(wTx+b)/||w||
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Binary Classifiers

Linear binary classification

The score can be used to classify a new sample x into one of two
classes by thresholding:

ŷ =

{
+1 if w̃T x̃ ≥ T

−1 if w̃T x̃ < T

We can obtain an ROC curve (or DET curve) by changing the
threshold T

By default, we may assume T = 0 since the bias term is included in
the model

One can also obtain posterior probabilities p(y |x) from the score w̃T x̃

The problem: how to obtain the “best” weight vector w̃?

We consider three different classifiers: Fisher’s linear discriminant,
logistic regression and support vector machines
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Binary Classifiers

Fisher’s linear discriminant (FLD) I

Assume each class’ data are multi-variate Gaussian distributed with a
common covariance matrix (homoscedastic)

p(x|y) = N (x;µy ,Σ) where Σ is the common covariance matrix, µy
are class means

N (x;µy ,Σ) =

exp

{
−1

2
(x − µy )TΣ−1(x − µy )

}
((2π)d |Σ|)1/2

Using Bayes’ therorem, we can show that

p(y = 1|x) =
p(x|y = 1)p(y = 1)∑

y ′∈Y p(x|y ′)p(y ′)
= σ(wTx + b)

where
σ(t) = (1 + exp(−t))−1
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Binary Classifiers

Fisher’s linear discriminant (FLD) II

is the logistic sigmoid function, and

w = Σ−1(µ1 − µ−1) (1)

b = −1

2
µT1 Σ−1µ1 +

1

2
µT−1Σ−1µ−1 + log(

p(y = 1)

p(y = −1)
)

Fisher’s linear discriminant yields a linear boundary for classification

Fisher’s linear discriminant is a generative model for x conditioned
on y

It seems a waste to find two class means (of size 2d) and a common
covariance matrix (size d(d + 1)/2) where in the end what matters for
classification is the weight vector w and the bias b (size d + 1 only)

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Binary Classifiers
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Binary Classifiers

Logistic regression I

Discriminative linear model as opposed to FLD which is a generative
model

Assume p(y = 1|x) = σ(w̃T x̃) where σ(.) is the logistic sigmoid
[Bishop, 2006]

Find parameters w̃ by maximizing the conditional log-likelihood (CLL)
of the class identities y , p(y |x) (instead of p(x|y) in FLD, a
generative model) using the training data

Define πi (w̃) = σ(w̃T x̃i )

ˆ̃w = arg max
w̃

∑
yi=1

log(πi (w̃)) +
∑

yi=−1

log(1− πi (w̃))
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Binary Classifiers

Logistic regression II

Gradient of the log-likelihood wrt to the parameters is [Bishop, 2006]

∇L(w̃) =
∑
yi=1

xi (πi (w̃)− 1) +
∑

yi=−1

xiπi (w̃)

There is an iterative reweighted least squares (IRLS) algorithm to
solve for w̃ given in [Bishop, 2006]

We only estimate d + 1 parameters from data directly

There is no need to assume a distribution p(x|y) since x’s are given
to us in a training scenario

So, we only model p(y |x) which becomes “discriminative modeling”

The assumed parametric form of p(y |x) comes from the generative
FLD model though!

Question: Can I get back a discriminatively trained conditional
Gaussian distributions from logistic regression result w̃?
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Binary Classifiers

Logistic regression III

Answer is yes, choosing µy and Σ consistent with w̃ obtained through
logistic regression using equation 2 will give discriminatively trained
parameters for Gaussians (note that they will not be ML trained
parameters)

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Binary Classifiers
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Binary Classifiers

Support vector machines I

A discriminative classifier that tries to maximize the soft margin
between classes to increase generalizibility

min
1

2
||w||2 + C

N∑
i=1

ξi

subject to:

yi (wTxi + b) ≥ 1− ξi (2)

ξi ≥ 0 (3)
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Binary Classifiers

Support vector machines II

The constraint optimization is simply equivalent to minimizing the
following objective function wrt w and b without constraints (called
the primal formulation)

min
1

2
||w||2 + C

N∑
i=1

(1− yi (wTx + b))+

where (x)+ = max(x , 0) and C is a fixed parameter to be determined
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Binary Classifiers

Support vector machines III

Usually, the dual formulation is used to solve the SVM problem since
it appears to be easier, results in sparsity due to support vectors and
enables using kernel functions for nonlinear separability

max
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

subject to

N∑
i=1

αiyi = 0 (4)

0 ≥ αi ≥ C (5)

where αi are the dual variables (Lagrange multipliers for each
constraint, that is training sample). Optimal weight vector can be
found by w =

∑N
i=1 αiyixi
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Binary Classifiers

Support vector machines IV

wTx+b=0

=1

=-1
ξ=0,α=0 (irrelevant)

ξ=0, 0<α<C (non-boundary SV)

ξ >0, α=C (boundary SV)

2/||w||

There is sparsity
in αi and most αi

turn out to be
zero

The xi that
correspond to
nonzero αi are
called support
vectors

If αi = C , then xi
are boundary
support vectors
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Binary Classifiers

Support vector machines V

The support vectors are the only training samples that matter in
determining the optimal weights (hence the separating hyperplane)

To find optimal b, take any nonzero αi and use the equation
αi

(
yi (wTxi + b)− 1

)
= 0 (comes from KKT conditions) or average

values from all nonzero αi ’s.
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Binary Classifiers

Regularized empirical risk (RER) minimization I

Unifying framework for different linear classifiers

Consider a predictor function fθ(x) : IRd → IRm that can be used to
predict output labels y from features x, m is the number of prediction
values (discriminants)

For the linear binary classification problem, m = 1, θ = w̃ and
fw̃(x) = w̃T x̃

Define a “loss function” L : IRm × Y → IR+ that measures the cost
of prediction

We define the expected risk as follows:

R(θ) =

∫
L (fθ(x), y) p(x, y)dxdy
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Binary Classifiers

Regularized empirical risk (RER) minimization II

Since the joint distribution p(x, y) is usually unknown, we can find an
estimate of the risk from the training data called the “empirical risk”
which needs to be minimized wrt the parameters θ

R̂(θ) =
1

N

N∑
i=1

L (fθ(xi ), yi )

This can be interpreted as the training set error rate

Usually we add a penalty term Ω(θ) for the parameters which
penalizes complex (or large) predictor functions to arrive at what is
called the “regularized empirical risk”

R̂(θ) =
1

N

N∑
i=1

L (fθ(xi ), yi ) + Ω(θ)
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Binary Classifiers

Regularized empirical risk (RER) minimization III

Note that “structured risk” minimization is similar where the
regularization function is replaced by the Vapnik-Chervonenkis (VC)
confidence of the predictor function (which is also a measure of
complexity of the predictor)

All previous methods (FLD, LR and SVM) can be seen as variants of
regularized empirical risk minimization by utilization of a different loss
function as we elaborate in the following slides
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Binary Classifiers

Loss functions I

RER for linear binary classification is as follows:

R̂(w̃) =
1

N

N∑
i=1

L
(

w̃T x̃i , yi
)

+ Ω(w̃)

Using different loss functions yield different methods for linear binary
classification
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Binary Classifiers

LS loss

L(w̃T x̃, y) = (w̃T x̃− ty )2

Here ty are regression targets for each class in least squares
regression. Using LS loss with no regularization is equivalent to FLD

when ty = y
N

Ny
where Ny is the number of samples in class y

[Bishop, 2006]

LS-SVM uses ty = y and a quadratic regularizer [Suykens and
Vandewalle, 1999]. Without regularization, LS-SVM is similar to FLD

Regularized LDA [Friedman, 1989] is equivalent to using a
regularization function in the RER framework
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Binary Classifiers

BNLL loss

L(w̃T x̃, y) = log
(

1 + exp
{
−yw̃T x̃

})
Using binomial negative log-likelihood (BNLL) loss function with no
regularization is equivalent to performing a logistic regression
classification
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Binary Classifiers

Hinge loss

L(w̃T x̃, y) = (1− yw̃T x̃)+

Using hinge loss function and a regularization function
Ω(w̃) = λw̃TDw̃ (where D is a diagonal matrix with all ones in the
diagonal except for the last entry which is zero) is equivalent to
performing an SVM classification

Note that Ω(w̃) = λw̃T w̃ is also used which is slightly different (in
liblinear [Fan et al., 2008])
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Binary Classifiers

Other loss functions

There are many other loss functions defined in the literature [LeCun
et al., 2006]

Huber-hinge loss is one which smooths the edge of the hinge loss so
that we end up with a differentiable loss function

Squared-hinge loss is the square of the hinge loss which is also
differentiable (called L2-SVM)
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Binary Classifiers

Loss function plots
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Binary Classifiers

Regularization functions I

Although originally FLD and LR do not use regularization, it was
shown to be beneficial in all cases

Typically an L2-norm regularization Ω(w̃) = λ||w̃||2 is used

λ is a hyper-parameter that needs to be determined (next slide)

Regularization helps in all classifiers arguably due to

improving test accuracy due to penalizing the complexity of the
classifier
avoiding overtraining/overfitting
avoiding numerical problems in implementation.

L1-norm is used when sparse parameter vectors are desired

For example L1-regularized L1-SVM is considered in [Mangasarian,
2006].
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Binary Classifiers

Estimating the hyperparameters I

The hyperparameter λ can be found by grid search on validation data,
that is by evaluating the performance of the trained classifier on the
validation data

Multiple fold cross-validation on the training data can also be
performed for this purpose

Bayesian “evidence framework” may be used with some losses to find
the hyperparameters, this requires re-interpreting the empirical risk
optimization as a maximum aposteriori probability (MAP) estimation
problem [Hoffmann, 2007] - Bayesian LDA

Perturbation analysis may be used [Zheng et al., 2009]

Other ad-hoc methods exist as well
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Binary Classifiers

RER optimization methods

LS and logistic losses are differentiable, so primal algorithms such as
Newton’s method work very well

LS loss has closed form solution

For logistic loss, Newton’s method results in iterative re-weighted
least squares (IRLS) formulation

For hinge loss, one needs to go to the dual QP problem and solve it in
the dual

For squared-hinge or huber-hinge losses, one can solve it in the primal
domain as well

libsvm and liblinear are good libraries for solving RER formulations
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Binary Classifiers

How to obtain nonlinear classifiers? I
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Sometimes, class data are not
separable by a line!

Replace x with φ(x) which is a
nonlinear mapping into a higher
dimensional space

If φ(x) is known explicity, you
may use it instead of x to solve
the problem

Use the kernel trick to replace inner products with the kernel
function: φ(xi )

Tφ(xj) = K (xi , xj)
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Binary Classifiers

How to obtain nonlinear classifiers? II

No need to know what φ(.) is, if we use the kernel trick (φ can be
infinite dimensional) → just replace inner products with the kernel
function

Kernel versions usually solved in the dual, but it was shown it is
possible to solve in the primal as well [Chapelle, 2007]

We will not focus on kernel versions of these classifiers in this talk!

linear classifiers are as good as or better than kernel versions for large
scale learning [Fan et al., 2008]
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Multi-class classification

Multi-class classification

Using multiple binary classifiers and combining them (multiple
machine)

One-vs-all
One-vs-one
Error correcting output codes (ECOC)

Direct multi-class classification (single machine) (explanation next
slide)

A paper compared these approaches and found that one-vs-one gave
the best result (used in libsvm) [Hsu and Lin, 2002]

For structured classification, we need direct multi-class classification
since almost impossible to enumerate all possible output labels (topic
of future lectures)
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Multi-class classification

Linear multi-class classification

Given training data {(xi , yi ) : i ∈ [N]} where xi ∈ IRd and
yi ∈ Y = [M]

xi = [xi ,1, xi ,2, . . . , xi ,d ]T are feature vectors, yi are class identities

Find a set of weight vectors w̃y ∈ IRd+1 such that for test data x, we
obtain a score for class y as w̃T

y x̃ = wT
y x + by

Classification is done by ŷ = arg maxy w̃T
y x̃

Each w̃y represents a hyperplane in IRd+1
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Multi-class classification

Geometry of linear multi-class discriminants
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Multi-class classification

Generative multi-class classification I

Given class conditional probability distributions p(x|y)

Obtain class posteriors as:

p(y |x) =
p(x|y)p(y)∑
y ′ p(x|y ′)p(y ′)

If class conditional probability distributions are from the exponential
family

p(x|y ;θy ) = h(x) exp
{
θT
y t(x)− A(θy )

}
where θ are the parameters (or transformed parameters) of the pdf,
t(x) is the sufficient statistics vector, A(θ) is the log-partition
function and h(x) is a base measure independent of the parameters.
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Multi-class classification

Generative multi-class classification II

Then, the conditional likelihood has the form:

p(y |x) =
exp{w̃T

y φ(x)}∑
y ′ exp{w̃T

y ′φ(x)}

where w̃y =
[
θT
y ,−A(θy ) + log(p(y))

]T
and φ(x) =

[
t(x)T , 1

]T
This form of the conditional likelihood is called normalized
exponential or softmax function.

Hence, if we map the features x using the sufficient statistics and add
a constant feature, conditional likelihood will have a log-linear form

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Multi-class classification

Generative multi-class classification III

For example, for the Gaussian setup with means µy and equal
covariances (known Σ) (multi-class FLD), we get the following

θy = µy

t(x) = x

wy = Σ−1µy

by = −1

2
µTy Σ−1µy + log(p(y)) (6)

Exercise: Perform the same analysis when both µy and Σy are
different for each class. What are the sufficient statistics and
parameters then?
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Multi-class classification

Multi-class (multinomial) logistic regression I

Assuming p(y |x) =
exp{w̃T

y φ(x)}∑
y ′ exp{w̃T

y ′φ(x)}
we can maximize the

conditional log-likelihood of the training data

log p(y1, . . . , yN |x1, . . . , xN) =
N∑
i=1

log p(yi |xi )

This yields the following negative log likelihood (NLL) objective
function to minimize

N∑
i=1

−w̃T
yi
φ(xi ) + log

∑
y ′

exp{w̃T
y ′φ(xi )}


This objective can be minimized using gradient-based techniques.
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Multi-class classification

Multiclass SVM I

Multiclass SVM was formulated in [Crammer and Singer, 2001] as
follows

First define w = [wT
1 ,w

T
2 , . . . ,w

T
M ]T as concatenation of weight

vectors.

min
1

2
||w||2 + C

N∑
i=1

ξi

subject to:

w̃T
yi

x̃i − w̃T
y ′ x̃i ≥ 1− ξi , ∀i , y ′ 6= yi

ξi ≥ 0 (7)

Let ȳi = arg maxy ′ 6=yi w̃T
y ′ x̃i
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Multi-class classification

Multiclass SVM II

The first set of inequalities can also be written as:

w̃T
yi

x̃i − w̃T
ȳi

x̃i ≥ 1− ξi , ∀i

The problem can be formulated as an unconstrained minimization
problem as follows:

min
1

2
||w||2 + C

N∑
i=1

(1− w̃T
yi

x̃i + max
y ′ 6=yi

w̃T
y ′ x̃i )+

In multi-class classification, some class pairs may be less costly to be
confused, so we can define a label-loss function ∆(y , y ′) which gives
a cost to replacing y with y ′ during classification, which can be
incorporated in the SVM constraints formulation [Tsochantaridis
et al., 2005]
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Multi-class classification

Multiclass SVM III

“Margin rescaling” yields the set of constraints

w̃T
yi

x̃i − w̃T
y ′ x̃i ≥ ∆(yi , y

′)− ξi , ∀i , y ′ 6= yi

whereas “slack rescaling” yields the following set of constraints

w̃T
yi

x̃i − w̃T
y ′ x̃i ≥ 1− ξi

∆(yi , y ′)
, ∀i , y ′ 6= yi

There is a cutting-plane algorithm in [Tsochantaridis et al., 2005]
which solves a series of constrained optimization algorithms to solve
these problems

Furthermore, [Joachims et al., 2009] introduced 1-slack constraints,
1-slack formulation with margin rescaling uses the constraints

1

N

N∑
i=1

(w̃T
yi

x̃i − w̃T
y ′i

x̃i ) ≥
1

N

N∑
i=1

∆(yi , y
′
i )− ξ, ∀(y ′i )

N
i=1
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Multi-class classification

Multiclass SVM IV

1-slack formulation with slack rescaling is also provided in the same
paper

There are efficient cutting-plane algorithms in [Joachims et al., 2009]
for solving 1-slack problems in the dual space

These solvers are provided in the svm-struct package
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Multi-class classification

Regularized empirical risk for multi-class I

Remembering RER

R̂(θ) =
1

N

N∑
i=1

L (fθ(xi ), yi ) + Ω(θ)

For multi-class, the parameters are w̃ = [w̃T
1 , . . . , w̃

T
M ]T and the loss

functions for each type are as follows:

multi-class FLD:

L (fw̃(xi ), yi ) =
M∑
y=1

(w̃T
y x̃i − t(y , yi ))2

where t(y , yi ) are appropriate targets for class y for least squares
regression when the true class is yi
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Multi-class classification

Regularized empirical risk for multi-class II

[Ye, 2007] shows that using t(y , yi ) =
√
N/Ny −

√
Ny/N when

y = yi and t(y , yi ) = −
√

Nyi/N otherwise, is equivalent to linear
discriminant analysis

FLD is equivalent to using a least squares loss function

multi-class LR:

L (fw̃(xi ), yi ) = −w̃T
yi

x̃i + log

∑
y ′

exp{w̃T
y ′ x̃i}


multi-class SVM:

L (fw̃(xi ), yi ) = (1− w̃T
yi

x̃i + max
y ′ 6=yi

w̃T
y ′ x̃i )+
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Multi-class classification

Regularized empirical risk for multi-class III

Re-writing the SVM loss function is possible as follows:

L (fw̃(xi ), yi ) = −w̃T
yi

x̃i + max
y ′

(w̃T
y ′ x̃i + 1− δy ,yi )

This form is equivalent to the one before since this is guaranteed to
be nonnegative

We can generalize using label-loss ∆(y , y ′) and “margin rescaling”
introduced before to get

L (fw̃(xi ), yi ) = −w̃T
yi

x̃i + max
y ′

(w̃T
y ′ x̃i + ∆(yi , y

′))

We can replace the max with a softmax (log-sum-exp) to get an
“approximation” SVM-softmax

L (fw̃(xi ), yi ) = −w̃T
yi

x̃i + log

∑
y ′

exp{w̃T
y ′ x̃i + ∆(yi , y

′)}


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Multi-class classification

Regularized empirical risk for multi-class IV

Comparing the LR loss function with the SVM-softmax one, we see
that they are similar except for the addition of the label-loss function
to provide additional margin for confusable classes in the
SVM-softmax

It is possible to get the RER expression for “slack rescaling” and
1-slack versions of margin and slack rescaling as well

For other possible loss functions, for example see [LeCun et al., 2006]
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Multi-class classification

Optimization algorithms I

Multi-class FLD has closed form solution

Multi-class LR can be solved using Newton’s method in the primal
yielding an iterative re-weighted least squares algorithm

Multi-class SVM can be directly solved from the dual problem
[Crammer and Singer, 2001, Fan et al., 2008] especially if number of
training samples N is small

Cutting-plane algorithms are attractive alternatives [Tsochantaridis
et al., 2005, Joachims et al., 2009]
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Multi-class classification

Optimization algorithms II

Multi-class SVM-softmax can be solved using Newton’s method in
the primal

If Newton algorithm’s Hessian is too big to be computed efficiently,
L-BFGS can be used

Stochastic gradient algorithms are fast and applicable, but need to be
careful with convergence and choosing step sizes [Bottou, 2004]

The optimal choice of the algorithm depends on the values of feature
dimension d , number of classes M and number of training samples N
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Multi-class classification

Log-linear models

A general log-linear conditional model is given by:

p(y |x; w) =
1

Z (x ,w)
exp

∑
j

wjFj(x, y)


where

Z (x ,w) =
∑
y ′

exp

∑
j

wjFj(x, y ′)


is called the partition function.

Note that multi-class LR is a log-linear model where we define a
concatenated weight vector w = [w̃T

1 , . . . , w̃
T
M ]T and where the

feature vector F (x, y) = x̃⊗ ey where ey is the unit vector with one in
position y and zeros elsewhere and ⊗ denotes the Kronecker product.
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Hidden Markov Models

Outline
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2 Binary Classifiers
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Hidden Markov Models

Sequence labeling problem definition I

Given a sequence of features x1:T , find appropriate labels y1:T where
each yt ∈ Y, we can assume wlog that Y = [M], a finite set

This is a hard problem and the number of possible y1:T is too high,
namely MT

We need additional assumptions on output labels yt , such as being
Markov

Supervised learning problem: given training data sequences{
(x

(i)
1:T , y

(i)
1:T ) : i = 1, . . . ,N

}
, find a model that will predict y1:T

given testing data x1:T

Note that, training (as well as test) sequences can be of different
length T , but we do not explicitly indicate it to avoid clutter in our
representation
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Hidden Markov Models

Sequence labeling problem definition II

Partially supervised learning: We do not know the label sequence

y
(i)
1:T , but we know a sequence-specific grammar that the label

sequence should obey (common case in speech recognition)

t=1

Label 5 Label 2

yt =  5   5    5    5   5    2   2    2   2  …  
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Hidden Markov Models

What is a hidden Markov model? I

A tool that helps us solve sequence labeling problems

Observations x1:T are modeled by a state machine (that is hidden)
that generates them (generative model)

States yt correspond to labels, state sequence is y1:T

A finite set of labels is possible, yt ∈ Y where |Y| is finite

Markov assumption p(yt |yt−1, yt−2, . . . , y1) = p(yt |yt−1)

Transition from one state (yt−1) to another (yt) occurs at each time
instant

Meanwhile an observation (xt) is emitted after the transition

Parameters of the model:

Probabilities of transitions among states
Probabilities of emission of observations from states
Probabilities of starting at states
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Hidden Markov Models

Three views of HMMs

An HMM can be viewed in three different ways

State transition diagram

Graphical model

Trellis / lattice diagram

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Hidden Markov Models

State transition diagram - fully connected

1

3

2

start

3

Time is not explicitly shown in this diagram, at each time instant a
transition followed by an emission occurs
All transitions are possible with a certain probability in this example
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Hidden Markov Models

State transition diagram - left-to-right

1 32start stop1 32start stop

Some transitions are not possible (their probabilities are set to zero)
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Hidden Markov Models

Graphical model

y1

x1

y2

x2

yT

xT

y3

x3
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Hidden Markov Models

Trellis / lattice

y=1

y=2

y=3

t=1 t=2 t=4t=3 t=T

y=3

Observations are not shown, the labels (states) are explicitly shown
Graphical model is expanded at each time instant to reveal all possible
states
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Hidden Markov Models

A possible alignment

HMM state 

sequence

Observed 

sequence 

of feature 

vectors

t=0 t=T

Depicting a possibility of alignment of observed data to an underlying
left-to-right HMM
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Hidden Markov Models

Variables

Observations x1:T

xt ∈ IRd for continuous observations HMM
xt ∈ [No ] for discrete observations HMM

y1:T state sequence, yt ∈ [M] is the state at time t

λ = (A,B,π): model parameters

A where Aij = p(yt+1 = j |yt = i) is the transition matrix
For discrete observations B is a matrix where Bik = p(xt = k|yt = i)
are emission probabilities
For continuous observations with Gaussian emission distributions we
have p(xt |yt = i) = N (xt ;µi ,Σi ), we may think of B as the set of
mean and (co)variance parameters (µi ,Σi )

M
i=1

π where πi = p(y1 = i) initial state probabilities, we can remove π if
we introduce a “start” state which has initial probability of one
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Hidden Markov Models

Rabiner’s three problems of HMMs

Problem 1: Probability/likelihood calculation: Given an observation
sequence, how can I calculate the probability of observing it given an
underlying HMM model p(x1:T |λ)

Problem 2: Alignment/decoding/inference: What is the most likely
state sequence given an observation sequence and an HMM model?
y∗1:T = arg maxy1:T

p(y1:T |x1:T , λ)

We may also be interested in y∗t = arg maxyt p(yt |x1:T , λ)

Problem 3: Training/learning: How can I train the parameters of an

HMM given training data x
(i)
1:T ? How to choose λ to maximize∏

i p(x
(i)
1:T |λ) ?

Note that, if we are given (x
(i)
1:T , y

(i)
1:T ) (aka fully supervised training),

maximum-likelihood training becomes just a counting process
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Hidden Markov Models

Problem 1: Computing P(x1:T |λ)

p(x1:T |λ) =
∑
y1:T

p(x1:T , y1:T |λ)

=
∑
y1:T

p(x1:T |y1:T , λ)p(y1:T |λ)

where p(x1:T |y1:T , λ) =
∏

t p(xt |yt , λ) is the multiplication of emission
probabilities and p(y1:T |λ) =

∏
t p(yt |yt−1, λ) is the multiplication of

transition probabilities

Hard to enumerate all state sequences y1:T

Almost impossible to find the result using this way

Instead, we use an iterative method (dynamic programming) called
the forward algorithm
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Hidden Markov Models

Forward algorithm

Define partial probabilities αt(j) = p(x1:t , yt = j |λ), note that∑
j αT (j) is the desired probability of observation p(x1:T |λ)

Iteratively update α’s in time αt(j) =
∑M

i=1 αt−1(i)aijp(xt |j)
We can visualize this on a trellis

The algorithm

1 Initialize α1(j) = πjp(x1|j) for j = 1, . . . ,M

2 Update αt(j) =
∑M

i=1 αt−1(i)aijp(xt |j) for j = 1, . . . ,M

3 Terminate: p(x1:T |λ) =
∑M

j=1 αT (j)
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Hidden Markov Models

Forward algorithm on a trellis

y=1

y=2

y=3

t=1 t=2 t=4t=3 t=T

y=3

[ ]

1

1

2 1 11 1 21 1 31 2

( ) ( ) ( | )

(1) (1) (2) (2) ( |1)

M

t t ij t

i

j i a p x j

a a a p x

α α

α α α α

−

=

=

= + +

∑
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Hidden Markov Models

Problem 2: Alignment/decoding/inference

We would like to find optimal y∗1:T = arg maxy1:T
p(y1:T |x1:T , λ)

Use another dynamic programming algorithm called Viterbi algorithm

Simply replace the sum in the forward algorithm with a max operation

Also, hold a backpointer at each state to remember the maximum
scoring path

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Hidden Markov Models

Viterbi algorithm

Define partial maximal probabilities
Vt(j) = maxy1:t−1 p(x1:t , y1:t−1, yt = j |λ)

Iteratively update V ’s in time Vt(j) = maxMi=1 Vt−1(i)aijp(xt |j)
We can visualize this on a trellis (same picture as forward algorithm,
replace sum with max)

The algorithm

1 Initialize V1(j) = πjp(x1|j)
2 Update

Vt(j) = maxMi=1 Vt−1(i)aijp(xt |j)
Hold a backpointer ψt(j) = arg maxi Vt−1(i)aijp(xt |j)

3 Terminate

Perform the update at step T
Trace back the path from ψT (y∗T ) where y∗T is the maximum likely end
state
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Hidden Markov Models

Problem 3: Training I

Given (x
(i)
1:Ti

)Ni=1, maximum likelihood training requires finding

λ̂ = arg max
λ

N∑
i=1

log
(
p(x

(i)
1:Ti
|λ)
)

For simplicity, assume single sequence x1:T for training, generalization
to multiple sequences is trivial

Direct maximization is not easy, use Expectation Maximization (EM)
algorithm

Latent data is the label sequence (y1:T )
1 Start with an initial λold

2 Expectation step (E-step): Compute posterior probability of the latent
variables p(y1:T |x1:T , λ

old)
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Hidden Markov Models

Problem 3: Training II

3 Maximization step (M-step): Find λ that maximizes the auxiliary
function which is the expected log-likelihood of the complete data
under the posterior found in the E-step

Q(λ, λold) =
∑
y ′

1:T

p(y ′1:T |x1:T , λ
old) log p(x1:T , y

′
1:T |λ)

Initialization is very important and it can be more art than science

In case of HMMs, EM algorithm is called the forward-backward
algorithm

Need to propagate forward and backward variables for the E-step
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Hidden Markov Models

Backward Algorithm

Similar to forward algorithm, we need a backward algorithm where we
define

βt(i) = p(xt+1:T |yt = i , λ)

The update is from final time to the beginning time and the update rule
becomes (follows from probabilities and graphical model of HMMs)

βt(i) =
M∑
j=1

aijp(xt+1|j)βt+1(j), ∀i = 1, . . . ,M

We can visualize this on a trellis
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Hidden Markov Models

Backward algorithm on a trellis
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Hidden Markov Models

Posterior probabilities I

For the EM algorithm, we need to sum over exponentially many∑
y ′1:T

p(y ′1:T |x1:T , λ
old) log p(x1:T , y

′
1:T |λ), but both terms in the sum

can be factorized due to the graphical model of the HMM

Using the forward-backward algorithm we obtain local posteriors:

ξt(i , j) = p(yt−1 = i , yt = j |x1:T , λ
old)

and
γt(j) = p(yt = j |x1:T , λ

old)

then it is easy to maximize the auxiliary function Q(λ, λold) which
factorizes as follows [Bishop, 2006]

M∑
j=1

γ1(j) log πj +
T∑
t=2

M∑
i ,j=1

ξt(i , j) log aij +
T∑
t=1

M∑
j=1

γt(j) log p(xt |j)
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Hidden Markov Models

Posterior probabilities II

Once we can obtain the posterior probabilities using previous
iteration’s parameters (λold), we can update the emission parameters
using γt(j) and transition parameters using ξt(i , j)

We can obtain these two sets of variables using forward-backward
probabilities

After performing one forward and one backward pass, we have all α
and β parameters

Then,

γt(j) =
αt(j)βt(j)

p(x1:T |λ)

and

ξt(i , j) =
αt−1(i)aijp(xt |j)βt(j)

p(x1:T |λ)
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Hidden Markov Models

Updating the parameters I

Assume there is only a single training sequence (x1:T )

After γt(j) and ξt(i , j) parameters are found, the parameter
estimation becomes like a weighted counting procedure

For transition parameters âij =

∑T
t=2 ξt(i , j)∑T

t=2

∑M
j=1 ξt(i , j)

For emission parameters:

Discrete case: p(x |j) :=

∑T
t=1 γt(j)δxt ,x∑T

t=1 γt(j)
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Hidden Markov Models

Updating the parameters II

Gaussian case: The means and variances are updated using weighted
sample averages where weights are γt(j) for each state j
So, when there is one training sequence, mean update is as follows

µ̂j =

∑T
t=1 γt(j)xt∑T
t=1 γt(j)

And the covariance update is similarly

Σ̂j =

∑T
t=1 γt(j)xtxTt∑T

t=1 γt(j)
− µ̂j µ̂

T
j

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Hidden Markov Models

Gaussian mixture observations I

Gaussian mixture model (GMM) distributions are used a lot in HMMs
(e.g. for speech recognition)

The emission probabilities are represented as a GMM

m1

y1

m2

y2

m3

y3

mT

yT

x1 x2 x3 xT

p(x|y) =
∑

m p(x|m, y)p(m|y) =
∑

mN (x;µy ,m,Σy ,m)cy ,m
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Hidden Markov Models

Gaussian mixture observations II

The emission parameter updates will depend on mixture posteriors

γt(j ,m) = p(yt = j ,mt = m|x1:T )

= p(yt = j |x1:T )p(mt = m|yt = j , x1:T )

= γt(j)
cj ,mp(xt |j ,m)∑
m′ cj ,m′p(xt |j ,m′)

Then, when there is a single sequence for training, mean updates will
be as follows:

µ̂j ,m =

∑T
t=1 γt(j ,m)xt∑T
t=1 γt(j ,m)

(co)variances can be updated in a similar fashion
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Hidden Markov Models

Conditional likelihood for an HMM I

The form of the conditional likelihood is

p(y1:T |x1:T ;λ) =
p(x1:T |y1:T )p(y1:T )∑
y ′1:T

p(x1:T |y ′1:T )p(y1:T )

=
1

Z (x1:T ;λ)

T∏
t=1

p(xt |yt)
T∏
t=1

p(yt |yt−1) (8)

If the emission distributions p(xt |yt) are from the exponential family

p(xt |yt) = h(xt) exp
{
θT
yt t(xt)− A(θyt )

}
where θy denotes the set of (transformed) parameters of the
conditional pdf for state y
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Hidden Markov Models

Conditional likelihood for an HMM II

Then, we get (hiding λ dependence, h(x) cancels out)

p(y1:T |x1:T ) =
1

Z (x1:T )
exp

{
T∑
t=1

θT
yt t(xt)− A(θyt ) + log ayt−1,yt

}

Clearly this has a log-linear form:

p(y1:T |x1:T ) =
1

Z (x1:T )
exp


Nf∑
j=1

wj

T∑
t=1

fj(yt−1, yt , xt , t)


where

f(yt−1, yt , xt , t) =

(
φ(xt)⊗ eyt
eyt−1 ⊗ eyt

)
and φ(x) =

[
t(x)T , 1

]T
as before and ⊗ denotes the Kronecker

product
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Hidden Markov Models

Other related models

Hidden Semi-Markov models: assigns a single label to a segment
instead of labeling each observation separately, enables explicit
duration model

Factorial HMM: multiple states explain the observation at the same
time

Multi-stream HMM: the observations are handled in separate streams
each of which are independently modeled by a different emission
model

Coupled HMM: two state sequences generate two streams, they
interact through their states
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Generative vs Discriminative Models

Outline

1 Sequence Labeling
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Generative vs Discriminative Models

Generative vs Discriminative - HMM vs MEMM I

Generative models (e.g. FLD) and logistic regression are
generative-discriminative pairs

MEMM is an attempt to get a discriminative version of HMM

Depends on writing the conditional likelihood as

p(y1:T |x1:T ) =
T∏
t=1

p(yt |yt−1, xt)

This may not be a good assumption

This turns out not to be a good way to obtain a discriminative model
from HMM

Leads to a problem called “label bias”
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Generative vs Discriminative Models

Generative vs Discriminative - HMM vs MEMM II

Solution: Directly model p(y1:T |x1:T ) (conditional random fields)

without assuming probabilistic dependencies among yt , yt−1 and xt
Directly use a log-linear model

But use only local features in the log-linear model that depend on yt
and yt−1 only! (to enable dynamic programming)

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Generative vs Discriminative Models

Graphical models I

HMM graphical model:

y1

x1

y2

x2

yT

xT

y3

x3
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Generative vs Discriminative Models

Graphical models II

MEMM graphical model:

y1

x1

y2

x2

yT

xT

y3

x3
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Generative vs Discriminative Models

Graphical models III

CRF graphical model:

y1

x1

y2

x2

yT

xT

y3

x3

cloud of x
1:T
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Generative vs Discriminative Models

Remembering problem setup I

Given a sequence of features x1:T , find appropriate labels y1:T where
each yt ∈ Y, we can assume wlog that Y = [M], a finite set

This is a hard problem and the number of possible y1:T is too high,
namely MT

We may need additional assumptions on output labels yt , such as
being Markov
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Conditional random fields
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Conditional random fields

Conditional Random Fields I

In CRF, we model the conditional probability of labels wrt observations as
follows:

p(y1:T |x1:T ) =
1

Z (x1:T ,w)
exp


Nf∑
j=1

wjFj(x1:T , y1:T )


Key thing is to assume that the global feature functions Fj(y1:T , x1:T )
should be able to be written as a sum of local features

Fj(x1:T , y1:T ) =
T∑
t=1

fj(yt−1, yt , x1:T , t)

This assumption is necessary to be able to use dynamic programming
algorithms in calculations
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Conditional random fields

Conditional Random Fields II

Each local feature may depend on all x1:T since they are given to us

This assumption yields a Markovian label sequence

Local feature functions can specialize in depending on any
combination of their inputs, they do not have to depend on all of
their arguments

For example, a transition feature will depend only on yt and yt−1

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Conditional random fields

Problems of interest

To be able to solve inference problems in CRFs, we need to be able to
compute the most likely label sequence:

y∗1:T = arg max
y ′1:T

p(y ′1:T |x1:T ; w)

and for the learning problem, we need to calculate the partition function

Z (x1:T ,w) =
∑
y ′1:T

exp


Nf∑
j=1

wjFj(x1:T , y
′
1:T )


Note that direct calculation of these two quantities is highly expensive due
to exponential amount of all possible y1:T that is needed to be considered
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Conditional random fields

Finding the most likely labeling - Viterbi algorithm I

It is easy to show that:

y∗1:T = arg max
y ′1:T

∑
j

wjFj(x1:T , y
′
1:T )

and after expanding the features

y∗1:T = arg max
y ′1:T

∑
j

wj

T∑
t=1

fj(y
′
t−1, y

′
t , x1:T , t)

Let gt(yt−1, yt) =
∑

j wj fj(yt−1, yt , x1:T , t) to simplify notation. Define
partial maximums:

V (y , t) = max
y ′1:t−1

(
t−1∑
τ=1

gτ (y ′τ−1, y
′
τ ) + gt(y

′
t−1, y)

)
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Conditional random fields

Finding the most likely labeling - Viterbi algorithm II

Clearly, this leads to a recursion:

V (y , t) = max
y ′

(
V (y ′, t − 1) + gt(y

′, y)
)

Similar to HMMs, we need to hold a backpointer to the maximizer
label (state) after each time step

We can view this procedure in a trellis

In the end we can trace back from V (y∗T ,T ) to obtain the most likely
label sequence y∗1:T .
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Conditional random fields

Forward-backward algorithm for CRFs I

Remember that:

Z (x1:T ,w) =
∑
y ′1:T

exp


Nf∑
j=1

wjFj(x1:T , y
′
1:T )


We need to sum over exponentially many sequence labelings which is
impractical

Similar to forward-backward algorithm in HMMs, we can perform a
dynamic programming algorithm like that to compute Z
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Conditional random fields

Forward-backward algorithm for CRFs II

We need to use the local features summed over time to do that

Z (x1:T ,w) =
∑
y ′1:T

exp


T∑
τ=1

Nf∑
j=1

wj fj(y
′
τ−1, y

′
τ , x1:T , τ)


Z (x1:T ,w) =

∑
y ′1:T

T∏
τ=1

Gτ (y ′τ−1, y
′
τ )

where we define Gt(y1, y2) = exp gt(y1, y2), and
gt(y1, y2) =

∑
j wj fj(y1, y2, x1:T , t) as defined earlier

and define partial sums up to time t

α(y , t) =
∑
y ′1:t−1

(
t−1∏
τ=1

Gτ (y ′τ−1, y
′
τ )Gt(y

′
t−1, y)

)
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Conditional random fields

Forward-backward algorithm for CRFs III

We can update α(y , t) by the following forward recursion

α(y , t) =
∑
y ′

α(y ′, t − 1)Gt(y
′, y)

Similarly we define backward partial sums

β(y , t) =
∑
y ′t+1:T

(
Gt+1(y , y ′t+1)

T∏
τ=t+1

Gτ+1(y ′τ , y
′
τ+1)

)

which can be updated with the backward recursion

β(y , t) =
∑
y ′

β(y ′, t + 1)Gt+1(y , y ′)
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Conditional random fields

Forward-backward algorithm for CRFs IV

Clearly

Z (x1:T ,w) =
∑
y ′

α(y ′,T ) =
∑
y ′

β(y ′, 1)

Note that if we use start and stop labels/states, we do not need the
sums above and we get

Z (x1:T ,w) = α(stop,T + 1) = β(start, 0)

Besides, we can calculate the following marginal posterior probabilities

p(yt |x1:T ) =
α(yt , t)β(yt , t)

Z (x1:T ,w)

p(yt−1, yt |x1:T ) =
α(yt−1, t − 1)Gt(yt−1, yt)β(yt , t)

Z (x1:T ,w)
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Training CRFs
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Training CRFs

CRF Training I

We have seen that when (x1:T , y1:T ) were given, ML training for
HMMs turned into simple counting

For CRFs, even in that scenario, training is not that simple

Consider conditional log-likelihood (CLL) for a single training
sequence

log p(y1:T |x1:T ; w) = wTF(x1:T , y1:T )− logZ (x1:T ,w)

where F denotes the vector of all Nf features

For multiple training sequences, we need to sum the individual CLL’s
up
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Training CRFs

CRF Training II

Gradient of the CLL for a single sequence is

F(x1:T , y1:T )−
∑
y ′1:T

F(x1:T , y
′
1:T )p(y ′1:T |x1:T )

F(x1:T , y1:T )− Ey ′1:T∼p(y ′1:T |x1:T )

[
F(x1:T , y

′
1:T )

]
When we obtain the maximizing w, the gradient must be zero which
corresponds to making the training data feature values to be the
same as the expected values under the trained model
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Training CRFs

CRF Training III

The expectation of a feature can be computed using the forward and
backward variables as follows:

Ey ′1:T∼p(y ′1:T |x1:T )

[
Fj(x1:T , y

′
1:T )

]
= Ey ′1:T∼p(y ′1:T |x1:T )

[
T∑
t=1

fj(y
′
t−1, y

′
t , x1:T , t)

]

=
T∑
t=1

Ey ′t−1,y
′
t
[fj(y

′
t−1, y

′
t , x1:T , t)]

=
1

Z

T∑
t=1

∑
y1,y2

α(t − 1, y1)fj(y1, y2, x1:T , t)Gt(y1, y2)β(t, y2)

where Gt(y1, y2) = exp{
∑

j ′ wj ′fj ′(y1, y2, x1:T , t)}
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Training CRFs

CRF Training IV

The exact calculation of the expected value can be somewhat
computationally complex (requiring forward-backward iterations)

It is possible to approximate the gradient calculation by

Considering only the best competitor’s feature function instead of
considering the average over all (expected value)

Performing Gibbs sampling to evaluate the expected value
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Training CRFs

Relation to belief propagation

The Viterbi (max-product) and forward-backward (sum-product)
algorithms are special cases of belief propagation in graphical models

Belief propagation generalizes these algorithms to tree-structured
graphs

For loopy graphs, belief propagation does not converge however it can
be used in practice (called loopy BP)

In graphs with a few clusters of loopy parts, junction-tree algorithm
can be used

However, in this talk, we will not focus on BP or general graphical
models
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Training CRFs

RER formulation

Regularized empirical risk (conditional log-likelihood plus a
regularizing penalty term) is optimized in the case of CRFs as well

Original formulation does not include any regularization term,
however it can be added to the objective function for better results

Dropping dependence on 1 : T , given training data (x i , y i ) for i ∈ [N]
where each (x i , y i ) is a training sequence, we get the following RER
function to minimize

N∑
i=1

(
−wTF(x i , y i ) + logZ (x i ,w)

)
+ Ω(w)

and each entry of the gradient vector is

N∑
i=1

−Fj(x i , y i ) +
∑
y ′

p(y ′|x i ; w)Fj(x
i , y ′)

+
∂Ω

∂wj
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Training CRFs

Optimization methods for training/learning

Almost all methods require computation of the gradient whose exact
computation requires forward-backward iterations, but this can be
approximated through methods discussed above

The list of possible optimization methods are:
1 Iterative scaling (old one, slow)
2 Conjugate gradient method
3 L-BFGS (a Quasi Newton method)
4 Stochastic gradient method: update parameters by moving in the

direction of the gradient of one sequence at a time (easy and fast
converging)
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Training CRFs

Stochastic Gradient Updates

Stochastic gradient update for a single weight wj is as follows:

w
(n+1)
j := w

(n)
j +η(n)

Fj(xi , y i )−
∑
y ′

p(y ′|xi ,w(n))Fj(xi , y ′)− ∂Ω

∂wj


where η(n) is a iteration-dependent learning rate parameter (step size
in the gradient direction)

Only one training sample (xi , y i ) is used at a time and multiple
epochs through the data are performed

Usually η(n) is chosen to decrease inversely proportional to the
iteration number n
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Training CRFs

For more information on CRFs

I have used the following papers/documents for CRF’s, it is beneficial
to explore them all

Papers and technical reports [Lafferty et al., 2001, Sutton and
McCallum, 2006, Elkan, 2008, Gupta, 2005, Memisevic, 2006]

See video lecture by Prof. Charles Elkan on videolectures.net

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Structured SVM for sequence labeling
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Structured SVM for sequence labeling

Structured SVM for sequence labeling I

The inference in CRF’s (finding the most likely labeling) is given by

y∗1:T = arg max
y ′1:T

wTF(x1:T , y
′
1:T )

Note that there is no need for the normalizing partition function
(Z (x1:T ,w)) for inference (but it is required for training)

Idea: we can use large-margin criterion to learn the weight vector w

Note that the sequence labeling problem is just a multi-class
classification problem with exponentially many classes

So, formulation is very similar to multi-class SVM formulation

Structured SVM first proposed in [Altun et al., 2003, Taskar et al.,
2003]
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Structured SVM for sequence labeling

Structured SVM training I

Given training data
(
xi1:T , y

i
1:T

)N
i=1

We drop dependence on {1 : T} and denote the training data by(
xi , y i

)N
i=1

The primal problem with margin scaling is

min
w

1

2
||w||2 + C

∑
i

ξi

subject to

wTF(xi , y i )−wTF(xi , y ′) > ∆(y i , y ′)− ξi , ∀y ′ ∈ Y, ∀i ∈ [N]
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Structured SVM for sequence labeling

Structured SVM training II

The RER formulation of the same problem is:

min
w

1

2
||w||2+C

N∑
i=1

(
−wTF(xi , y i ) + max

y ′

(
wTF(xi , y ′) + ∆(y i , y ′)

))

If the label-loss ∆(y i1:T , y
′
1:T ) factorizes over time (for example

Hamming loss over the labels) and the features are locally
decomposable (as in CRF), then we can run Viterbi algorithm for
finding the most offending label sequence.
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Structured SVM for sequence labeling

Different varieties of structured SVMs

max(.) operator can be replaced with softmax to obtain a
differentiable objective (as discussed in the multi-class section). This
would enable using primal optimizers, also will require
forward-backward iterations (the problem becomes very similar to
CRF training as in multi-class case)

Different label-loss functions can be used. However, Hamming loss is
the only one that would enable fast inference (since it decomposes
over the individual terms)

Different slack scalings can be used (in the constrained version of the
problem): namely (a) margin scaling and (b) slack rescaling (as
discussed in the multi-class case)

mn-slack, n-slack, 1-slack versions can be proposed (similar to
multi-class case). Typically n-slack formulation is used
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Structured SVM for sequence labeling

Training the structured SVM for sequence labeling

These methods can be used for training
1 Taskar’s method (decomposition of the structured problem into parts)

[Taskar et al., 2003]
2 Cutting plane method (n-slack, dual) [Tsochantaridis et al., 2005]
3 Cutting plane method (1-slack, faster) [Joachims et al., 2009]
4 Stochastic gradient with SMO-like updates (dual) [Bordes et al., 2007]
5 Stochastic gradient for CRF/SVM-softmax (primal) [Vishvanathan

et al., 2006]
6 Stochastic subgradient method (primal) [Ratliff et al., 2007]
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Structured SVM for sequence labeling

Cutting-plane method

Directly solving structured SVM requires exponentially many
constraints or number of dual variables, namely

∏N
i=1 |Y|Ti

Cutting plane idea adds most violated constraints (one for each
sample) at each step and solves the problem at each iteration with
only those constraints

Constraint set grows after each iteration, initialize solution from the
earlier step

It is proven that the algorithm converges in time proportional to 1/ε2

where ε is the desired accuracy of the solution [Tsochantaridis et al.,
2005]

Typically the dual QP problem is solved at each step

The 1-slack formulation requires much less number of constraints (or
dual variables) [Joachims et al., 2009]
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Structured SVM for sequence labeling

Stochastic gradient method for structured SVM I

Similar to CRF training, SVM-softmax can be trained easily with
stochastic gradient leading to the following update for the jth
parameter after considering training instance i in iteration n

w
(n+1)
j = w

(n)
j + η(n)g

(n)
j

g
(n)
j = Fj(xi , y i )−

∑
y ′

γi (w(n), y ′)Fj(xi , y ′)− λwj

γi (w, y ′) =
exp{wTF (xi , y ′) + ∆(y i , y ′)}∑
y ′′ exp{wTF (xi , y ′′) + ∆(y i , y ′′)}

Note that, this update requires forward-backward iterations to
compute the denominator of the γi term
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Structured SVM for sequence labeling

Stochastic gradient method for structured SVM II

The subgradient version (hard-max) of the stochastic gradient update
replaces the negative gradient term with the following easier
computed one:

g
(n)
j = Fj(xi , y i )− Fj(xi , ȳ i )− λwj

where ȳ i is the most offending labeling for instance i , that is

ȳ i = arg max
y ′

(
wTF (xi , y ′) + ∆(y i , y ′)

)
Note that the stochastic subgradient update (in general) may not
converge to the true solution, but can be shown to get close to the
solution [Ratliff et al., 2007]
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Structured SVM for sequence labeling

Toolkits

Hidden markov models

HTK by Cambridge (Young et.al.)
Sphinx, Julius
Matlab statistics toolbox implements discrete HMMs

Condition random fields

CRF++ (for NL problems)
CRFSGD
Mallet

Structured SVM

Svm-struct (includes SVM for sequence labeling) by Joachims
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Structured SVM for sequence labeling

THANK YOU!

Questions?

Hakan Erdogan, A tutorial on sequence labeling, ICMLA 2010, Bethesda MD, December 2010



Structured SVM for sequence labeling
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Questions?
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Structured SVM for sequence labeling
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