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Why Deep Learning in Wireless Communications?

Deep Learning in Wireless Communications – Why ?
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q Increasing network complexity! Typically we have Cases 2 or 3.
q Rapidly reaching the scenario where traditional models do not
provide the accuracy required / are too complex to optimize.

Faster transmission technologies are not enough. 
Wireless networks architectures need their own (artificial) brain

Because of complexity and modeling issues!
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Deep learning in wireless

Enablers:

Deep learning requires a lot of data to process

A lot of data is available over the air (Big Data Era)

Improved computing abilities (GPUs)

Challenges:

How to acquire, store, and process this much data?

Artificial neural networks in the cloud or in each device?

How to integrate artificial neural networks into wireless networks?
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Smart radio environments and AI

Smart Radio Environments ⇒ AI

Meta-surfaces provide data storage and processing abilities

Smart radio environments allow handling big data

Smart Radio Environments ⇐ AI

A lot of degrees of freedom to optimize

AI provides a framework for low-complexity system design
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MISO downlink with intelligent surfaces

C. Huang, A. Zappone, G. Alexandropoulos, M. Debbah, C. Yuen, ”Large
Intelligent Surface for Energy Efficiency in Wireless Communication”,

IEEE Transactions on Wireless Communications, submitted (minor
revision), 2019, https://arxiv.org/abs/1810.06934



Problem statement: EE Maximization
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Performance analysis

Alternating maximization of P and Φ

Optimization of P performed in closed-form

Two iterative methods to optimize Φ
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Table I

SIMULATION AND ALGORITHMIC PARAMETERS

Parameters Values

RIS central element placement: (100m, 100m)

BS central element placement: (0, 0)

Small scale fading model 8i, k, j: [H1]ij , [h2,k]i ⇠ CN (0, 1)

Large scale fading model at distance d: 10�3.53

d3.76

Transmission bandwidth BW: 180kHz

Circuit dissipated power at BS PBS: 9dBW

Circuit dissipated power coefficients at BS ⇠ and AF relay ⇠AF: 1.2

Maximum transmit power at BS and AF relay Pmax=PR,max: 20dBW

Dissipated power at each user PUE: 10dBm

Dissipated power at the n-th RIS element Pn(b): 10dBm

Dissipated power at each AF relay transmit-receive antenna PR: 10dBm

Algorithmic convergence parameter: ✏ = 10�3

positions and channel realizations, generated according to the 3GPP propagation environment

described in [62], whose parameters are summarized in Table I. Therein, [H1]ij and [h2,k]i with

i = 1, 2, . . . , N , k = 1, 2, . . . , K, and j = 1, 2, . . . , M denote the (i, j)-th and i-th elements of

the respective matrices. In the table above, we also include the hardware dissipation parameters

of [10], [13] for BS, RIS, and the mobile users, as well as for the AF relay that will be used

for performance comparisons purposes. The relay is assumed to transmit with maximum power

PR,max, which is considered in all performance results equal to Pmax.

Without loss of generality, in the figures that follow we assume equal individual rate constraints

for all K users, i.e., Rmin,k = Rmin 8k. In addition, we set Rmin to a fraction of the rate that

each user would have in the genie case of mutually orthogonal channels and uniform power

allocation. In particular, this genie rate for each k-th mobile user is given by

R = log2

✓
1 +

Pmax

K�2

◆
. (36)

Thus, the QoS constraints depend on Pmax, which ensures that the minimum rate is commensurate

to the maximum power that can be used, in turn leading to a feasibility rate of Problem (8) that

is approximately constant with Pmax. Table II below shows the feasibility rate obtained for

Pmax = 20 dBW and different fractions R.



Comparison with AF relaying: Spectral Efficiency

M BS antennas, K mobile users, N reflecting elements



Comparison with AF relaying: Energy Efficiency

M BS antennas, K mobile users, N reflecting elements



Complexity crunch in communication networks

Relatively small system with ZF, but iterative algorithms needed

If multi-user interference is considered, problem is much harder

Optimal online resource allocation not feasible for larger systems

Learning to Optimize

80AI provides the tools to address C.2 and C.3
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Deep Learning

Learning by ANN

The distinctive trait of deep learning is to implement the learning process by
artificial neural networks (ANN).

ANNs are universal function approximators (under very mild assumptions.)

ANNs exploit large datasets better than other machine learning techniques.



Artificial Neural Networks

ANN model

ANNs are organized hierarchically in layers of elementary processing units,
called neurons.

An input layer forwards the input data to the rest of the network.

One or more hidden layers process the input data.

An output layer applies a final processing to the data before outputting it.

Weights and biases model the strength of the connections among neurons.

Hidden layerInput layer Output layer



Fully-connected networks

Hidden layerInput layer Output layer

The input of Layer ` is a vector x`−1. The output x`(n) of neuron i is:

x`(i) = fn,`(zi,`)

zi,` = wT
i,`x`−1 + bi,` .

w i,` is a vector weighting the inputs from the previous layer.

bi,` is a bias term.

fi,`(zi,`) is called activation function of the neuron (elementary function).

Each neuron simply takes an affine combination of the inputs, computes
the value of the activation function, and propagates the result.



Training a neural network

ANNs are trained in a supervised fashion.

Training problem

Given the training set STR = {(xn, y∗n )}NTR
n=1 , optimize all weights and bias of the

ANN, i.e. θ = {W tot , btot}, in order to minimize the training error.

min
θ

NTR∑
n=1

L(y n(θ), y∗n)

What about hyperparameters? (e.g. number of layers, neurons, etc.)
Trial and error procedure (with some insight)
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EE Maximization in Interference Networks

B. Matthiesen, A. Zappone, E. A. Jorswieck, M. Debbah, ”Deep Learning
for Optimal Energy-Efficient Power Control in Wireless Interference

Networks”, submitted, 2018, https://arxiv.org/abs/1812.06920



General Interference-limited network model

Interference network with K transmitters and M receivers.
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The receive filter used by receiver m to decode the data from user k is
cm,k .

All receivers have N receive antennas and thermal noise power σ2.

Each transmitter k has a single antenna and transmits with power pk .

The channel between transmitter k and receiver m is hk,m.

The SINR for transmitter k at receiver m is:

γk,m =
|cH

m,khk,m|2pk
σ2 +

∑
j 6=k pj |cH

m,khj,m|2
=

akpk
σ2 +

∑
j 6=k pjbk,j



Sum-EE maximization

Sum-EE maximization is the toughest EE maximization problem:

Sum-EE(p) =
K∑

k=1

log2(1 + γk)

Pc + pk

pk ∈ [0,Pmax,k ] for all k.

B is the transmission bandwidth.

Pc is the total hardware power dissipated in all network nodes.

Alternative problem formulation

We can write the problem as the computation of the function:

F (a, b,Pmax) = arg maxp∈S Sum-EE(p, a, b,Pmax)

with a = {ak}k , b = {bj,k}j,k , Pmax = {Pmax,k}k .

Feedforward neural networks are universal function approximators.
An FFN with input (a, b,Pmax) and output p can learn F.
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Implementation and complexity

Algorithm

Generate a training set {(ai , bi ,Pmax), pi}i by maximizing the Sum-EE.

Train the FNN to adjust parameters and hyperparameters.

Use the trained network to obtain the optimal power allocation for new
(not in the training set) channels.

Complexity

The trained FNN provides a formula for the optimal power allocation.

Training the FNN can be done offline and sporadically.

Complexity of training reduced by the optimization approach in [1].

References
[1] B. Matthiesen, A. Zappone, E. A. Jorswieck, and M. Debbah, “Deep learning for optimal energy-efficient

power control in wireless interference networks,” http://export.arxiv.org/pdf/1812.06920, 2018
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Neural network architecture

Layer Type Size Activation function
Input 20 –

Layer 1 (fully-connected) 128 elu
Layer 2 (fully-connected) 64 relu
Layer 3 (fully-connected) 32 elu
Layer 4 (fully-connected) 16 relu
Layer 5 (fully-connected) 8 elu
Layer 6 (fully-connected) 4 linear

Supervised learning (Keras)

ADAM with MSE

Training set: NTR = 102, 000. Validation set of NV = 10, 200.

Testing set: NTest = 10, 000 for each considered value of
Pmax = −30, . . . , 20 dB, with 1 dB step.

The total number of generated data samples is 622,000.

Interference channel with K = 4 links in a square area with edge of 2km.

Single-antenna transmitters; receivers with N = 2 antennas each.

Rayleigh fast-fading, path-loss, (and shadowing).



Numerical analysis: Training performance

The 622,000 data samples were generated in 8.4 CPU hours
on Intel Haswell nodes with Xeon E5-2680 v3 CPUs running at 2.50 GHz.
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Both training and validation error monotonically decrease.
Neither underfitting nor overfitting occurs.



Numerical analysis: Testing performance

−30 −20 −10 0 10 20
0

0.5

1

1.5

2

2.5

Pmax [dBW]

W
SE

E
[M

bi
t/J

ou
le

]

Optimal ANN SCA
SCAos Max. Power Best only

The FNN achieves optimal performance.

SCA performs close to the FNN only with a sophisticated initialization rule.
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