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Why Deep Learning in Wireless Communications?
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Because of complexity and modeling issues!



Deep learning in wireless

Enablers:

m Deep learning requires a lot of data to process
m A lot of data is available over the air (Big Data Era)
= Improved computing abilities (GPUs)
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Enablers:

Deep learning requires a lot of data to process
A lot of data is available over the air (Big Data Era)

Improved computing abilities (GPUs)

Challenges:

m How to acquire, store, and process this much data?
m Artificial neural networks in the cloud or in each device?

m How to integrate artificial neural networks into wireless networks?



Smart radio environments and Al

Smart Radio Environments = Al

m Meta-surfaces provide data storage and processing abilities

= Smart radio environments allow handling big data



Smart radio environments and Al

Smart Radio Environments = Al

Meta-surfaces provide data storage and processing abilities

= Smart radio environments allow handling big data

Smart Radio Environments < Al

m A lot of degrees of freedom to optimize

m Al provides a framework for low-complexity system design



MISO downlink with intelligent surfaces

C. Huang, A. Zappone, G. Alexandropoulos, M. Debbah, C. Yuen, "Large
Intelligent Surface for Energy Efficiency in Wireless Communication”,
IEEE Transactions on Wireless Communications, submitted (minor
revision), 2019, https://arxiv.org/abs/1810.06934



Problem statement: EE Maximization
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Problem statement: EE Maximization

Large Intelligent Surface (LIS)
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User K
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Upon transmit zero-forcing

. Y log (14 peo?)
oF ¢3°K b+ Pis + KPug + NPa(b)

s.t. log, (1 + pkafz) > Rmink Vk=1,2,..., K,

tr((Ho®H:) "P(H®H,) ™) < P,
| =1Vn=1,2,...,N,



Performance analysis

m Alternating maximization of P and ¢

m Optimization of P performed in closed-form

m Two iterative methods to optimize ¢
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SIMULATION AND ALGORITHMIC PARAMETERS

Parameters

Values

RIS central element placement:
BS central element placement

Small scale fading model i, k. j

Large scale fading model at distance d:

Transmission bandwidth BW:

Circuit dissipated power at BS Pas

Circuit dissipated power coefficients at BS & and AF relay £xr
Maximum transmit power at BS and AF relay Poyux=Pa mox:
Dissipated power at each user Pup;

Dissipated power at the n-th RIS element P, (b):

Dissipated power at each AF relay transmit-receive antenna Pr:

Algorithmic convergence parameter:

(100, 100m)
(0,0)

180kHz
9IBW
12
20dBW
10dBm
10dBm
10dBm
e=10"°




Comparison with AF relaying: Spectral Efficiency

M BS antennas, K mobile users, N reflecting elements
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Comparison with AF relaying: Energy Efficiency

M BS antennas, K mobile users, N reflecting elements
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Complexity crunch in communication networks

m Relatively small system with ZF, but iterative algorithms needed
m If multi-user interference is considered, problem is much harder

m Optimal online resource allocation not feasible for larger systems



Complexity crunch in communication networks

m Relatively small system with ZF, but iterative algorithms needed
m If multi-user interference is considered, problem is much harder

m Optimal online resource allocation not feasible for larger systems

C.1: An accurate and tractable theoretical model is available
(e.g., point-to-point channel capacity, point-to-point bit error
probability).

C.2: An accurate but intractable theoretical model is available
(e.g., achievable sum-rate in interference-limited systems).
C.3: A tractable but inaccurate theoretical model is available
(e.g., spectral / energy efficiency of ultra-dense networks,
energy consumption models, hardware impairments).

C.4: Only inaccurate and intractable theoretical models are
available (e.g., molecular communication networks, optical
systems, end-to-end networks optimization).

Al provides the tools to address C.2 and C.3



Deep Learning

Learning by ANN

The distinctive trait of deep learning is to implement the learning process by
artificial neural networks (ANN).

m ANNSs are universal function approximators (under very mild assumptions.)

m ANNs exploit large datasets better than other machine learning techniques.



Artificial Neural Networks

ANN model

ANNSs are organized hierarchically in layers of elementary processing units,
called neurons.

m An input layer forwards the input data to the rest of the network.
m One or more hidden layers process the input data.
m An output layer applies a final processing to the data before outputting it.

m Weights and biases model the strength of the connections among neurons.

Inpqt layer Hidden layer Ougput layer
1 - T
1 1




Fully-connected networks

The input of Layer £ is a vector x;—1. The output x¢(n) of neuron i is:

xe(i) = foe(zie)

;
Zjo =W Xe—1+ bis .

® w,; is a vector weighting the inputs from the previous layer.
m bj, is a bias term.
m fi¢(zi ) is called activation function of the neuron (elementary function).

Each neuron simply takes an affine combination of the inputs, computes
the value of the activation function, and propagates the result.



Training a neural network

ANNSs are trained in a supervised fashion.

Training problem

Given the training set Str = {(xn, ;') }7%, optimize all weights and bias of the

ANN, i.e. @ = {Wot, biot }, in order to minimize the training error.

N7g
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Training a neural network

ANNSs are trained in a supervised fashion.

Training problem

Given the training set Str = {(xn, ;') }7%, optimize all weights and bias of the

ANN, i.e. @ = {Wot, biot }, in order to minimize the training error.

N7g

min > Ly, (0).y5)

What about hyperparameters? (e.g. number of layers, neurons, etc.)
Trial and error procedure (with some insight)



EE Maximization in Interference Networks

B. Matthiesen, A. Zappone, E. A. Jorswieck, M. Debbah, " Deep Learning
for Optimal Energy-Efficient Power Control in Wireless Interference
Networks”, submitted, 2018, https://arxiv.org/abs/1812.06920



General Interference-limited network model

Interference network with K transmitters and M receivers.

. .

m The receive filter used by receiver m to decode the data from user k is
Cm,k-

m All receivers have N receive antennas and thermal noise power o°.
m Each transmitter k has a single antenna and transmits with power p.

m The channel between transmitter k and receiver m is hy m.
The SINR for transmitter k at receiver m is:

e = |Crl-rly,khk,m|2pk B ak Pk
,m — =
o? +Zj#k Pj|cz,khj,m|2 o? +Z#k pjbx.;




Sum-EE maximization

Sum-EE maximization is the toughest EE maximization problem:

" log, (14 %)
k
Sum-EE(p) = E ﬁ

k=1

B pi € [0, Pmax,«] for all k.
m B is the transmission bandwidth.
m P, is the total hardware power dissipated in all network nodes.



Sum-EE maximization

Sum-EE maximization is the toughest EE maximization problem:
K

log, (1 + k)
Sum-EE(p) = » | —2——
=1 Pc + Pk

B pr € [07 Pmax,k] for all k.
m B is the transmission bandwidth.

m P, is the total hardware power dissipated in all network nodes.

Alternative problem formulation

We can write the problem as the computation of the function:

F Pmax = S -EE ) 7b, Pmax
(a, b, ) arggeag um-EE(p, a )

with @ = {ak}k, b= {bj .k }jk, Pmax = {Pmax,k }«-



Sum-EE maximization

Sum-EE maximization is the toughest EE maximization problem:
K

logy(1 + &)
Sum-EE(p) = » | —2——
=1 Pc + Pk

B pr € [07 Pmax,k] for all k.
m B is the transmission bandwidth.

m P, is the total hardware power dissipated in all network nodes.

Alternative problem formulation

We can write the problem as the computation of the function:

F Pmax E -EE ) ey ,Pmax
(a, b, ) =arg gea%(Sum (p,a, b )
with @ = {ax}k, b = {bj«}jk, Pmax = {Pmax,k }k-

Feedforward neural networks are universal function approximators.
An FFN with input (a, b, Pmax) and output p can learn F.



Implementation and complexity

Algorithm

m Generate a training set {(aj, bi, Pmax), p; }i by maximizing the Sum-EE.

m Train the FNN to adjust parameters and hyperparameters.

m Use the trained network to obtain the optimal power allocation for new
(not in the training set) channels.



Implementation and complexity

Algorithm

m Generate a training set {(aj, bi, Pmax), p; }i by maximizing the Sum-EE.
m Train the FNN to adjust parameters and hyperparameters.

m Use the trained network to obtain the optimal power allocation for new
(not in the training set) channels.

Complexity

m The trained FNN provides a formula for the optimal power allocation.
m Training the FNN can be done offline and sporadically.

m Complexity of training reduced by the optimization approach in [1].

References
[1] B. Matthiesen, A. Zappone, E. A. Jorswieck, and M. Debbah, “Deep learning for optimal energy-efficient
power control in wireless interference networks,” http://export.arxiv.org/pdf/1812.06920, 2018



Neural network architecture

Layer Type Size | Activation function
Input 20 -
Layer 1 (fully-connected) | 128 elu
Layer 2 (fully-connected) 64 relu
Layer 3 (fully-connected) 32 elu
Layer 4 (fully-connected) 16 relu
Layer 5 (fully-connected) 8 elu
Layer 6 (fully-connected) 4 linear

Supervised learning (Keras)
ADAM with MSE
Training set: Nrr = 102,000. Validation set of Ny = 10, 200.

Testing set: Nt s = 10,000 for each considered value of
Pmax = _30, .. ,20 dB, with 1 dB step.

m The total number of generated data samples is 622,000.

m Interference channel with K = 4 links in a square area with edge of 2km.
m Single-antenna transmitters; receivers with N = 2 antennas each.

m Rayleigh fast-fading, path-loss, (and shadowing).



Numerical analysis: Training performance

The 622,000 data samples were generated in 8.4 CPU hours
on Intel Haswell nodes with Xeon E5-2680 v3 CPUs running at 2.50 GHz.
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Both training and validation error monotonically decrease.
Neither underfitting nor overfitting occurs.



Numerical analysis: Testing performance
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m The FNN achieves optimal performance.
m SCA performs close to the FNN only with a sophisticated initialization rule.



For more applications
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