
Iterative Context Bounding for Systematic Testing of
Multithreaded Programs

Madan Musuvathi Shaz Qadeer
Microsoft Research

{madanm,qadeer}@microsoft.com

Abstract
Multithreaded programs are difficult to get right because ofun-
expected interaction between concurrently executing threads. Tra-
ditional testing methods are inadequate for catching subtle con-
currency errors which manifest themselves late in the develop-
ment cycle and post-deployment. Model checking or systematic
exploration of program behavior is a promising alternativeto tra-
ditional testing methods. However, it is difficult to perform sys-
tematic search on large programs as the number of possible pro-
gram behaviors grows exponentially with the program size. Con-
fronted with this state-explosion problem, traditional model check-
ers perform iterative depth-bounded search. Although effective for
message-passing software, iterative depth-bounding is inadequate
for multithreaded software.

This paper proposes iterative context-bounding, a new search
algorithm that systematically explores the executions of amulti-
threaded program in an order that prioritizes executions with fewer
context switches. We distinguish between preempting and nonpre-
empting context switches, and show that bounding the numberof
preempting context switches to a small number significantlyallevi-
ates the state explosion, without limiting the depth of explored ex-
ecutions. We show both theoretically and empirically that context-
bounded search is an effective method for exploring the behaviors
of multithreaded programs. We have implemented our algorithm in
two model checkers and applied it to a number of real-world mul-
tithreaded programs. Our implementation uncovered9 previously
unknown bugs in our benchmarks, each of which was exposed by
an execution with at most2 preempting context switches. Our ini-
tial experience with the technique is encouraging and demonstrates
that iterative context-bounding is a significant improvement over
existing techniques for testing multithreaded programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification — formal methods, validation;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs — mechanical verification,
specification techniques; D.2.5 [Software Engineering]: Testing
and Debugging — debugging aids, diagnostics, monitors, tracing

General Terms Algorithms, Reliability, Verification

Keywords Concurrency, context-bounding, model checking, multi-
threading, partial-order reduction, shared-memory programs, soft-
ware testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI ’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

1. Introduction
Multithreaded programs are difficult to get right. Specific thread
interleavings, unexpected even to an expert programmer, lead to
crashes that occur late in the software development cycle oreven
after the software is released. The traditional method for testing
concurrent software in the industry isstress-testing, in which the
software is executed under heavy loads with the hope of producing
an erroneous interleaving. Empirical evidence clearly demonstrates
that this form of testing is inadequate. Stress-testing does not pro-
vide any notion of coverage with respect to concurrency; even after
executing the tests for days the fraction of explored schedules re-
mains unknown and likely very low.

A promising method to address the limitations of traditional
testing methods ismodel checking[2, 21] or systematic exploration
of program behavior. A model checker systematically executes
each thread schedule, while verifying that each execution main-
tains desired properties of the program. The fundamental problem
in applying model checking to large programs is the well-known
state-explosion problem, i.e., the number of possible program be-
haviors grows explosively (at least exponentially) with the size of
the program.

To combat the state-explosion problem, researchers have inves-
tigated reduction techniques such as partial-order reduction [9] and
symmetry reduction [13, 12]. Although these reduction techniques
help in controlling the state explosion, it remains practically im-
possible for model checkers to fully explore the behaviors of large
programs within reasonable resources of memory and time. For
such large programs, model checkers typically resort to heuristics
to maximize the number of errors found before running out of re-
sources. One such heuristic isdepth-bounding[22], in which the
search is limited to executions with a bounded number of steps. If
the search with a particular bound terminates, then it is repeated
with an increased bound. Unlike other heuristics for partial state-
space search, depth-bounded search provides a valuable coverage
metric—if search with depth-boundd terminates then there are no
errors in executions with at mostd steps.

Since the number of possible behaviors of a program usu-
ally grows exponentially with the depth-bound, iterative depth-
bounding runs out of resources quickly as the depth is increased.
Hence, depth-bounding is most useful when interesting behaviors
of the program, and therefore bugs, manifest in small numberof
steps from the initial state. The state space of message-passing
software has this property which accounts for the success ofmodel
checking on such systems [10, 16]. In contrast, depth-bounding
does not work well for multithreaded programs, where the threads
in the program have fine-grained interaction through sharedmem-
ory. While a step in a message-passing system is the send or receive
of a message, a step in a multithreaded system is a read or write of a
shared variable. Typically, several orders of magnitude more steps

are required to get interesting behavior in a multithreadedprogram
than in a message-passing program.

This paper proposes a novel algorithm callediterative context-
bounding for effectively searching the state space of a multi-
threaded program. In an execution of a multithreaded program,
a context switchoccurs when a thread temporarily stops execu-
tion and a different thread starts. The iterative context-bounding
algorithm bounds the number of context switches in an execution.
However, a thread in the program can execute an arbitrary num-
ber of steps between context switches, leaving the execution depth
unbounded.

Furthermore, the iterative context-bounding algorithm distin-
guishes between two kinds of context switches — preempting and
nonpreempting. Apreemptingcontext switch, or simply apreemp-
tion, occurs when the scheduler suspends the execution of the run-
ning thread at an arbitrary point. This can happen, for instance, at
the expiration of a time slice. On the other hand, anonpreempting
context switch occurs when the running thread voluntarily yields its
execution, either at termination or when it blocks on an unavailable
resource. The algorithm bounds the number of preemptions while
leaving the number of nonpreempting context switches unbounded.

Limiting the number of preemptions has many powerful and de-
sirable consequences for systematic state-space exploration of mul-
tithreaded programs. First, bounding the number of preemptions
does not restrict the ability of the model checker to exploredeep in
the state space. This is due to the fact that, starting from any state,
it is always possible to drive a terminating program to completion
(or to a deadlock state) without incurring a preemption. As aresult,
a model checker is able to explore interesting program behaviors,
even with a bound of zero!

Second, we show (Section 2) that for a fixed number of preemp-
tions, the total number of executions in a program ispolynomialin
the number of steps taken by each thread. This theoretical upper
bound makes it practically feasible to scale systematic exploration
to large programs without sacrificing the ability to go deep in the
state space.

Finally, iterative context-bounding has the important property
that it finds a trace with the smallest number of preemptions expos-
ing the error. As most of the complexity of analyzing a concurrent
error-trace arises from the interactions between the threads, the al-
gorithm naturally seeks to provide the simplest explanation for the
error. Moreover, when the search runs out of resources afterexplor-
ing all executions withc preemptions, the algorithm guarantees that
any error in the program requires at leastc+1 preemptions. In ad-
dition to providing a valuable coverage metric, it also provides the
programmer with an estimate of the complexity of bugs remaining
in the system and the probability of their occurrence in practice.

We present our iterative context-bounding algorithm in Sec-
tion 3. To evaluate our algorithm, we implemented it in two
model checkers, ZING and CHESS. ZING is an explicit-state model
checker for concurrent programs specified in the ZING modeling
language. CHESSis a stateless model checker that executes the pro-
gram directly, much along the lines of Verisoft [10], but designed
for shared-memory multithreaded programs.

An important aspect of the CHESS implementation is its dy-
namic partitioning of the set of program variables into dataand
synchronization variables. Typical programs use synchronization
variables, such as locks, events, and semaphores, to ensurethat
there are no data-races on the data variables. Motivated by this ob-
servation, CHESS introduces context switches only at accesses to
synchronization variables and verifies that accesses to data vari-
ables are ordered by accesses to synchronization variablesin each
explored execution. In Section 3.1, we provide theoreticaljustifica-
tion for the soundness of this approach.

Our evaluation (Section 4) provides empirical evidence that a
small number of preemptions is sufficient to expose nontrivial con-
currency bugs. Our implementation uncovered9 previously un-
known bugs in several real-world multithreaded programs. Each
of these bugs was exposed by an execution with at most2 pre-
emptions. Also, for a set of programs for which complete search
is possible, we show that few preemptions are sufficient to cover
most of the state space. This empirical evidence strongly suggests
that when faced with limited resources, which is invariablythe case
with model checkers, focusing on the polynomially-boundedand
potentially bug-yielding executions with a small preemption bound
is a productive search strategy.

In summary, the technical contributions of the paper are as
follows:

• The notion of iterative context-bounding and the concomitant
argument that bounding the number of preemptions is superior
to bounding the depth as a strategy for systematic exploration
of multithreaded executions.

• A combinatorial argument that for a fixed number of preemp-
tions, the number of executions is polynomial in the total num-
ber of steps executed by the program.

• An iterative context-bounding algorithm that systematically
enumerates program executions in increasing order of preemp-
tions.

• Empirical evidence that context-bounded executions expose in-
teresting behavior of the program, even when the number of
preemptions is bounded by a small number.

2. Iterative context-bounding
In the view of this paper, model checking a multithreaded pro-
gram is analogous to running the system on a nondeterministic
scheduler and then systematically exploring each choice made by
the scheduler. Each thread in the program executes a sequence of
steps with each step involving exactly one access to a sharedvari-
able. After every step of the currently running thread, the sched-
uler is allowed to choose the next thread to schedule. As a result,
the number of possibilities explodes exponentially with the num-
ber of steps. To make this point concretely, supposeP is a termi-
nating multithreaded program. LetP haven threads where each
thread executes at mostk steps of which at mostb are potentially-
blocking. Then the total number of executions ofP may be as
large as(nk)!

(k!)n
≥ (n!)k, a dependence that is exponential in both

n andk. For most programs, although the number of threads may
be small, the number of steps performed by a thread is very large.
Therefore, the exponential dependence onk is especially problem-
atic. All previous heuristics for partial state-space search, including
depth-bounding, suffer from this problem.

The fundamental and novel contribution of context-bounding is
that it limits the number of scheduler choices without limiting the
depth of the execution. A context switch occurs at a schedule point
if the scheduler chooses a thread different from the currentrunning
thread. This context switch is preempting if the running thread is
enabled at the schedule point, otherwise it is nonpreempting.

In context-bounding, we bound the number of preempting con-
text switches (or preemptions) but leave the number of nonpreempt-
ing context switches unconstrained. It is very important tonote that
the scheduler has a lot more choices in inserting preemptions — it
can choose any one of then.k steps to preempt, and for each choice
the scheduler can choose any of the enabled threads to run. Incon-
trast, a nonpreempting context is forced on the scheduler when the
running thread yields — its choice is limited to deciding thenext
enabled thread to run.

There are two important facts to note about context-bounding.
First, the number of steps within each context remains unbounded.
Therefore, unlike depth-bounding there is no bound on the exe-
cution depth. Second, since the number of nonprempting context
switches remains unbounded it is possible to get a complete termi-
nating execution even with a bound of zero. For instance, such a
terminating execution can be obtained from any state by schedul-
ing each thread in a round-robin fashion without preemption. These
two observations clearly indicate that context bounding does not af-
fect the ability of the search to go deep into the state space.

We show below that the number of executions ofP with at most
c preemptions is polynomial ink but exponential inc. An exponen-
tial dependence onc is significantly better than an exponential de-
pendence onk becausek is much greater thanc. Moreover, many
concurrency bugs are manifested when threads are preemptedat
unexpected places. With this polynomial bound, it becomes feasi-
ble to apply context-bounded search to large programs, at least for
small values ofc.

Let xCy denote the number of ways of choosingy objects out of
a set ofx objects.

THEOREM 1. Consider a terminating programP with n threads,
where each thread executes at mostk steps of which at mostb
are potentially-blocking. Then there are at mostnkCc(nb + c)!
executions ofP with c preemptions.

PROOF.The length of each execution ofP is bounded bynk.
Therefore, there are are at mostnk points where a preemption can
occur and at mostnkCc ways of selectingc preemptions from these
nk points. Once thec preemptions have been chosen, we have a
maximum ofnb+ c execution contexts which can be arranged in at
most(nb+c)! ways. Thus, we get the upper bound ofnkCc(nb+c)!
executions withc preemptions.2

Assuming thatc is much smaller than bothk andnb, the bound
given in the theorem above is simplified to(nk)c(nb)c(nb)! =
(n2kb)c(nb)!. This bound remains exponential inc, n, andb, but
each of these values is significantly smaller thank, with respect to
which this bound is polynomial. It is also interesting to simplify
this bound further for non-blocking multithreaded programs. In
such programs, the only blocking action performed by a thread
is the fictitious action representing the termination of thethread.
Thereforeb = 1 and the bound becomes(n2k)cn!.

2.1 Empirical argument

To evaluate the efficacy of iterative context-bounding in exposing
concurrency errors, we have implemented the algorithm and used it
to test several real-world programs. We describe our evaluation in
detail in Section 4. Here we give a brief preview of the performance
of our algorithm on an implementation [15] of a work-stealing
queue algorithm [8]. This implementation represents the queue
using a bounded circular buffer which is accessed concurrently by
two threads in a non-blocking manner. The implementor gave us the
test harness along with three variations of his implementation, each
containing what he considered to be a subtle bug. The test harness
has two threads that concurrently call functions in the work-stealing
queue API. Our model checker based on iterative context-bounding
found each of those bugs within a context-switch bound of two.

We plotted the coverage graph for this implementation of the
work-stealing queue. Unlike syntactic notions of coveragesuch as
line, branch or path coverage, we have chosen the number of dis-
tinct visited states as our notion of coverage. We believe that state
coverage is the most appropriate notion of coverage for semantics-
based safety checkers such as our model checker. Figure 1 plots
the fraction of reachable states covered on the y-axis against the
context-switch bound on the x-axis. There are several interesting
facts about this coverage graph. First, full state coverageis achieved

50

60

70

80

90

100

%
 S

ta
te

 S
p

a
ce

 C
o

v
e

re
d

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

%
 S

ta
te

 S
p

a
ce

 C
o

v
e

re
d

Context Bound

Figure 1. Coverage graph

100000

1000000

#
 S

ta
te

s
E

x
p

lo
re

d

icb

100

1000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25

#
 S

ta
te

s
E

x
p

lo
re

d

Executions (x1000)

dfs

random

db:40

db:20

Figure 2. Coverage growth

with eleven preemptions although the program has executions with
at least35 preemptions (see Table 1). Second, 90% state coverage
is achieved within a context-switch bound of eight. These observa-
tions indicate that iterative context-bounding is good at achieving
high coverage within bounds that are significantly smaller than the
maximum number of possible preemptions.

Finally, we also compared the variation of coverage with time
for various methods of state-space search. Figure 2 plots the num-
ber of distinct visited states on the y-axis against the number of ex-
ecutions explored by different methods. Note that the y-axis is on a
logarithmic scale. There are five curves in the graph corresponding
to iterative context-bounding (icb), unbounded depth-first search
(dfs), random search (random), depth-first search with depth-
bound 40 (db:40), and depth-first search with depth-bound 20
(db:20). As is evident from the graph, iterative context-bounding
achieves significantly better coverage at a faster rate compared to
the other methods. In Section 4, we present a more detailed discus-
sion of the various graphs presented here.

3. Algorithm
In this section, we describe an algorithm that effectively searches
the state space of a program by systematically bounding the number
of preemptions. The algorithm takes as input the initial state s0,
and iteratively explores executions with increasing preemptions. In

Input : initial states0 ∈ State

struct WorkItem { State state ; Tid tid ; }1

Queue〈WorkItem〉 workQueue ;2

Queue〈WorkItem〉 nextWorkQueue ;3

WorkItem w ;4

int currBound := 0;5

for t ∈ enabled(s0) do6
workQueue .Add(WorkItem (s0, t));7

end8

while true do9
while ¬workQueue .Empty() do10

w := workQueue .Front();11

workQueue .Pop();12

Search(w);13

end14

if nextWorkQueue .Empty() then15
Exit();16

end17

currBound := currBound+ 1;18

workQueue := nextWorkQueue ;19

nextWorkQueue .Clear();20

end21

Search(WorkItem w) begin22
WorkItem x ;23

State s;24

s := w .state .Execute(w .tid);25

if w .tid ∈ enabled(s) then26
x := WorkItem(s,w .tid);27

Search(x);28

for t ∈ enabled(s) \ {w .tid} do29
x := WorkItem(s, t);30

nextWorkQueue .Push(x);31

end32

else33
for t ∈ enabled(s) do34

x := WorkItem(s, t);35

Search(x);36

end37

end38

end39

Algorithm 1 : Iterative context bounding algorithm

other words, for anyi ≥ 0, the algorithm explores every execution
with i preemptions before exploring any execution withi + 1
preemptions. This algorithm can be trivially modified to stop when
a particular preemption bound is reached.

We now present a detailed description of the algorithm. The
algorithm maintains two queues of work items. Each work item
w contains a state and a thread identifier and notifies the model
checker to schedule the threadw .tid from the statew .state .
The variableworkQueue contains work items that can be ex-
plored within the current preemption bound set in the variable
currBound . During this exploration, the model checker inserts
work items requiring an extra preemption intonextWorkQueue ,
postponing the processing of such work items after the exploration
of the states within the current preemption bound.

In lines 6–8,workQueue is initialized with work items cor-
responding to the initial state. One work item is created foreach
thread enabled in the initial state. The loop in lines 10–14 removes
a work item from the queue, and invokes the procedureSearch on

it. Whenever control reaches line 15, the algorithm guarantees that
all executions with at mostcurrBound preemptions have been
executed. In lines 15–20, the algorithm continues the execution
of work items innextWorkQueue , if any, after incrementing the
currBound .

The recursive procedureSearch processes a work itemw and
recursively explores all states reachable without introducing any
preemptions. In line 25, the procedure executes the threadw .tid
in w .state till the next scheduling point. In order to explore every
behavior of the program, it is necessary to insert a scheduling
point after each access to a shared variable. Essentially, this forces
a thread to execute at most one shared-variable access in every
step. Section 3.1 provides an improved strategy for introducing
scheduling points.

If w .tid is enabled in the states (line 26), the algorithm sched-
ulesw .tid for another step by callingSearch recursively in line 28.
At the same time, scheduling some other thread enabled ins re-
sults in a preemption ofw .tid . In lines 29–32, the algorithm cre-
ates a work item for every such thread and inserts the item in the
nextWorkQueue .

If the threadw .tid is not enabled ins, thenw .tid voluntarily
yielded control ins. Therefore, the algorithm is free to schedule
any enabled thread without incurring the cost of a preemption. The
loop in lines 34–36 accomplishes this by creating a work itemfor
every enabled thread ins and callingSearch on each one of them.

State caching is orthogonal to the idea of context-bounding; our
algorithm may be used with or without it. In fact, we have im-
plemented our algorithm in two different model checkers—ZING,
which caches states and CHESS, which does not cache states. The
description in this section has ignored the issue of state caching. It
is easy enough to add that feature by introducing a global variable:

Set〈WorkItem〉 table ;

The variabletable is initialized to the empty set. We also add the
following code at the very beginning ofSearch to prune the search
if a state is revisited.

if table.Contains(w) then
return;

end
table .Add(w);

3.1 Strategy for introducing preemptions

During program execution, the scheduler can preempt the current
running thread at an arbitrary point. Subtle concurrency errors arise
when such preemptions occur exactly when the running thread
temporarily violates a global program invariant and subsequent
threads require this invariant for correct execution. To find such
errors, the algorithm presented above schedules each thread for a
single step, enabling a preemption opportunity after everyaccess
to a shared variable.

In this section, we show that it is sufficient to insert a schedul-
ing point before asynchronizationoperation in the program, pro-
vided the algorithm also checks for data-races [1]. By scheduling
all variable access between two synchronization operations atomi-
cally, the algorithm significantly reduces the state space explored.
In addition, exploring this reduced state space is sound andthe al-
gorithm does not miss any errors in the program. This strategy is
essentially a kind of partial-order reduction [9, 18] and was first
proposed in the form above by Bruening and Chapin [1]. Our con-
tribution here is in showing that this reduction is sound when per-
forming a context-bounded search. The formal soundness proof is

fairly involved and is provided in Appendix A. We only provide a
high-level description of the proof in this section.

Let us fix a multithreaded program for the remainder of this sec-
tion. All the definitions and theorems that follow are with respect
to this program.

An executionα is a nonempty sequence of stepsα(1), α(2), . . .,
whereα(i) is the identifier of the thread executing theith step,
for i ≥ 1. We assume that each step in an execution accesses
exactly one variable. We denote by|α| the length ofα. We assume
that thread scheduling is the only source of nondeterminismin the
program. Therefore, by executingα from the initial state of the
program, we arrive at a unique state. Letenabled(α) denote the set
of threads enabled in this state. The executionα is terminatingif
enabled(α) = ∅. Let L(α) be the thread executing the last step of
α, and letV (α) be the variable accessed byL(α) at the last step.
Also, for t ∈ enabled(α), let NV (α, t) be the variable threadt
will access if scheduled from the state obtained by executing α.
For all i ∈ [1, |α|], we defineα|i to be the prefix ofα whose length
is i. Note that a prefix of an execution is also an execution. Given
an executionα, the executionα · β is obtained by executing steps
in β from the state obtained by executingα.

Let SyncVar be the set of synchronization variables that the
threads in the program use to communicate with one another. All
variables that are not inSyncVar belong toDataVar , the set of
data variables. Our implementation dynamically infers thevari-
ables inSyncVar . We also assume that a thread in the program
blocks only on accesses to synchronization variables.

Given an executionα · t, we say that a preemption occurred
at α · t if the last thread inα is enabled inα and is different
from t. In this case, the scheduler preempted the execution ofL(α)
and scheduled the threadt. Let the number of preemptions inα
be denoted byNP(α). A preemption atα · t occurs at an access
to a synchronization variable ifNV (α,L(α)) ∈ SyncVar . In
other words, the threadL(α) was preempted right before an access
to a synchronization variable. An execution isobservable if all
preemptions occur at accesses to synchronization variables. Note
that if a model checker introduces preemptions only at accesses
to synchronization variables, then it can explore only observable
executions and detect observable races.

Two stepsα(i) andα(j) in an executionα aredependentif they
are either executed by the same thread or if they access the same
synchronization variable. Otherwise the two steps areindependent.
Given two dependent stepsα(i) and α(j), α(i) happens before
α(j) if i < j. The happens-before relationof an executionα,
denoted byHB(α), is the transitive closure of the happens-before
ordering of all dependent steps in the execution. It is easy to see
thatHB(α) defines a partial-order on the steps ofα.

An execution israce-freeif any two accesses to the same data
variable in α are ordered byHB(α). Two race-free executions
α and β are equivalent if HB(α) = HB(β). Intuitively, two
equivalent executions differ only on the order of independent steps
and therefore result in the same final state. A pair(α, t) is arace if
α is race-free butα · t is not. A race(α, t) is observable ifα is an
observable execution andL(α) = t.

THEOREM 2. A terminating race-free executionα is equivalent
to an observable terminating race-free executionβ such that
NP(β) ≤ NP(α).

PROOF. Starting fromα, the proof constructs a linearizationβ
of the partial-orderHB(α) such that all preemptions inβ occur
at accesses to synchronization variables. By construction, β is
equivalent toα. The key difficulty in the proof is in showing that
NP(β) ≤ NP(α). To do so, the proof constructsβ iteratively by
changing the order of two independents steps inα in such a way

that the number of preemptions does not increase in each iteration.
The details of this construction is presented in Appendix A.2

THEOREM3. If there is a race(α, t), then there is an observable
race(β, u) such thatNP(β) ≤ NP(α).

PROOF.The proof of this theorem is similar to the proof of Theo-
rem 2 and relies on iteratively constructingβ from α without in-
creasing the number of preemptions. The details are presented in
Appendix A.2

Theorem 3 allows us to conclude that for any context-boundc, if
all observable executionsα with NP(α) ≤ c are race-free then all
executionsβ (both observable and otherwise) withNP(β) ≤ c
are also race-free. Thus, if no races are reported on observable
executions up to the boundc, then indeed the program is race-free
up to the boundc. Finally, Theorem 2 allows us to to verify the
absence of all errors expressible as predicates on terminating states
by evaluating only the observable executions. This is a broad class
of errors including both deadlocks and assertion failures.

4. Empirical evaluation
We implemented the iterative-context bounding algorithm in two
model checkers and evaluated the algorithm on a few realistic
benchmarks. This section describes our evaluation and the results.

We now give brief descriptions of these two model checkers.
ZING has been designed for verifying models of concurrent soft-
ware expressed in the ZING modeling language. The models may
be created manually or automatically using other tools. Currently,
there exist translators from subsets of C# and X86 assembly code
into the ZING modeling language. ZING is an explicit-state model
checker; it performs depth-first search with state caching.It main-
tains the stack compactly using state-delta compression and per-
forms state-space reduction by exploiting heap-symmetry.

CHESSis meant for verifying concurrent programs directly and
does not require a model to be created. Similar to the Verisoft [10]
model checker, CHESS is stateless and runs program executables
directly. However, Verisoft was designed for message-passing soft-
ware whereas CHESS is designed to verify shared-memory multi-
threaded software. Since CHESSdoes not cache states, it expects
the input program to have an acyclic state space and terminate
under all possible thread schedules. The ZING model checker de-
scribed earlier has no such restriction and can handle both cyclic
and acyclic state spaces. CHESS introduces context switches only
at accesses to synchronization variables, while using the Goldilocks
algorithm [4] to check for data-races in each execution. As shown
in Section 3.1, this methodology is sound while significantly in-
creasing the effectiveness of the state space exploration.

4.1 Benchmarks

We evaluated the iterative context-bounding algorithm on aset of
benchmark programs. Each program is an open library, requiring
a test driver to close the system. The test driver allocates threads
that concurrently call interesting sequences of library functions
with appropriate inputs. The input program together with the test
driver forms a closed system that is given to the model checker
for systematically exploring the behaviors. For the purpose of our
experiments, we assume that the only nondeterminism in the input
program and the test driver is that induced by the scheduler,which
the model checker controls.

Obviously, a model checker can only explore behaviors of the
program triggered by the test driver. The quality of the state space
search, and thus the bugs found depends heavily upon good test
drivers. When available, we used existing concurrent test cases for
our experiments. For programs with no existing test cases, we wrote
our own drivers that, to our best knowledge, explored interesting

Max Num Max Max Max
Programs LOC Threads K B c

Bluetooth 400 3 15 2 8
File System Model 84 4 20 8 13
Work Stealing Q. 1266 3 99 2 35
APE 18947 4 247 2 75
Dryad Channels 16036 5 273 4 167

Table 1. Characteristics of the benchmarks. For each benchmark,
this table reports the number of lines, the number of threadsallo-
cated by the test driver. For an execution,K is the total number of
steps,B is the number of blocking instructions, andc is the num-
ber of preemptions. The table reports the maximum values ofK,
B, andc seen during our experiments.

Bugs with
Total Context Bound

Programs Bugs 0 1 2 3
Bluetooth 1 0 1 0 0
Work Stealing Queue 3 0 1 2 0
Transaction Manager 3 0 0 2 1
APE 4 2 1 1 0
Dryad Channels 5 1 4 0 0

Table 2. For a total of 14 bugs that our model checker found. this
table shows the number of bugs exposed in executions with exactly
c preemptions, forc ranging from0 to 3. The7 bugs in the first
three programs were previously known. Iterative context-bounding
algorithm found the9 previouslyunknownbugs in Dryad and APE.

behavior in the system. Comprehensively closing an open system
to expose most of the bugs in the system is a challenging problem,
beyond the scope of this paper.

We provide a brief description of the programs used for our
evaluation below.

Bluetooth: This program is a sample Bluetooth Plug and Play
(PnP) driver modified to run as a library in user space. The sample
driver does not contain hardware-specific code but capturesthe
synchronization and logic required for basic PnP functionality. We
wrote a test driver with three threads that emulated the scenario
of the driver being stopped when worker threads are performing
operations on the driver.

File system model:This is a simplified model of a file system
derived used in prior work (see Figure 7 in [7]). The program
emulates processes creating files and thereby allocating inodes and
blocks. Each inode and block is protected by a lock.

Work-stealing queue:This program is an implementation [15]
of the work-stealing queue algorithm originally designed for the
Cilk multithreaded programming system [8]. The program hasa
queue of work items implemented using a bounded circular buffer.
Our test driver consists of two threads, a victim and a thief,that
concurrently access the queue. The victim thread pushes work
items to and pops them from the tail of the queue. The thief thread
steals work items from the head of the queue. Potential interference
between the two threads is controlled by means of sophisticated
non-blocking synchronization.

APE: APE is an acronym for Asynchronous Processing En-
vironment. It contains a set of data structures and functions that
provide logical structure and debugging support to asynchronous
multithreaded code. APE is currently used in the Windows operat-
ing system. For our experiments, we compiled APE in user-mode
and used a test driver provided by the implementor of APE. In the
test, the main thread initializes APE’s data structures, creates two

// Function called by a worker thread
// of RChannelReaderImpl
void RChannelReaderImpl::AlertApplication(

RChannelItem* item)
{

// Notify Application

// XXX: Preempt here for the bug
// Note: this == channel variable in TestChannel
EnterCriticalSection(&m_baseCS);
// process before exit
LeaveCriticalSection(&m_baseCS);

}

// Function called by the main thread
void TestChannel(WorkQueue* workQueue, ...)
{

// Creating a channel allocates worker threads
RChannelReader* channel =

new RChannelReaderImpl(..., workQueue);

// ... do work here

channel->Close();
// wrong assumption that channel->Close() waits
// for worker threads to be finished

delete channel;
// BUG: deleting the channel when
// worker threads still have a valid reference
// to the channel

}

Figure 3. Use after free bug in Dryad. The bug requires a context
switch to happen right before the call to EnterCriticalSection in
AlertApplication. This is the only preempting context switch. The
bug trace CHESSfound involves 6 nonpreempting context switches.

worker threads, and finally waits for them to finish. The worker
threads concurrently exercise certain parts of the interface provided
by APE.

Dryad channels: Dryad is a distributed execution engine for
coarse-grained data-parallel applications [14]. A Dryad application
combines computational ”vertices” with communication ”chan-
nels” to form a data-flow graph. Dryad runs the application by
executing the vertices of this graph on a set of available proces-
sors communicating as appropriate through files, TCP pipes,and
shared-memory FIFOs. The test harness for Dryad for our exper-
iments was provided by its lead developer. The test has5 threads
and exercises the shared-memory channel library used for commu-
nication between the nodes in the data-flow graph.

Transaction manager: This program provides transactions in a
system for authoring web services on the Microsoft .NET platform.
Internally, the in-flight transactions are stored in a hashtable, access
to which is synchronized using fine-grained locking. We usedex-
isting test harnesses written by our colleagues for our experiments.
Each test contains two threads. One thread performing an operation
—create, commit, or delete— on a transaction. The second thread
is a timer thread that periodically flushes from the hashtable all
pending transactions that have timed out.

Except for the transaction manager, all the benchmarks used
above are written in a combination C and C++. Table 1 enumer-
ates the characteristics of these benchmarks. The transaction man-

50

60

70

80

90

100

%
 S

ta
te

 S
p

a
ce

 C
o

v
e

re
d

File System Model

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

%
 S

ta
te

 S
p

a
ce

 C
o

v
e

re
d

Context Bound

Bluetooth

Transaction Manager

Work Stealing Queue

Figure 4. Figures shows the percentage of the entire state space (y
axis) covered by executions with bounded number of preemptions
(x axis). For state spaces of programs small enough for our model
checkers to completely search, the graph shows that more than
90% of the state space is covered with executions with at most8
preemptions.

ager is a ZING model constructed semi-automatically from the C#
implementation, and has roughly7000 lines of code.

In the rest of the section, we will show that bounding the num-
ber of preemptions is an effective method of exploring interesting
behaviors of the system, while alleviating the state space explosion
problem. Note, as described in Section 2, bounding the number of
preemptions results in a state space polynomial in the number of
steps in an execution. This allows us to scale systematic exploration
techniques to larger programs.

Specifically, we will use our experiments to demonstrate the
following two hypotheses:

1. Many subtle bugs manifest themselves in executions with very
small preemptions.

2. Most states can be covered with few preemptions

4.2 Small context bounds expose concurrency bugs

Context bounding relies on the intuition that many errors occur due
to fewcontext switches happening at theright places. To substan-
tiate this intuition, we ran the iterative context-bounding program
for the five programs shown in Table 2. For the first three programs,
namely Bluetooth, work-stealing queue, and the transaction man-
ager, we introduced7 known bugs that the respective developers
considered subtle concurrency errors. The iterative context bound-
ing algorithm was able to find all such errors within a bound of3.

We also ran the iterative context-bounding algorithm on APE
and Dryad, the largest programs currently handled by our model
checker. We found a total of9 previouslyunknownconcurrency
errors. To provide the reader with an idea of the complexity of these
errors, we describe one of the errors we found in Dryad below in
detail. This error could not be found by a depth-first search,even
after running for a couple of hours.

Dryad use-after-free bug: When deallocating a shared heap
object, a concurrent program has to ensure that no existing thread
in the system has a live reference to that object. This is a common
concurrency problem that is very hard to get right. Figure 3 de-
scribes an error that requires only one preempting context switch,
but6 nonpreempting context switches.

The error involves a message channel, which contains a few
worker threads that process messages in the channel. When the

10000

100000

1000000

#
 S

ta
te

s
C

o
v
e

re
d

icb

dfs

idfs-100

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

#
 S

ta
te

s
C

o
v
e

re
d

Executions (x1000)

idfs-100

idfs-200

idfs-150

Figure 5. Coverage growth for APE

10000

100000

1000000

#
 S

ta
te

s
C

o
v
e

re
d

icb

idfs-125

dfs

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

#
 S

ta
te

s
C

o
v
e

re
d

Executions (x1000)

dfs

idfs-100

idfs-75

Figure 6. Coverage growth for Dryad

function TestChannel calls theclose function on the channel,
each worker thread gets a STOP message, in response to which a
worker thread calls theAlertApplication function, as part of
its cleanup process. However, when there is an preempting context
switch right before the thread enters them baseCS critical section,
the main thread is able to return from theclose function and
subsequently delete the channel, which in this case is the current
this pointer for the worker thread. The use-after-free bug occurs
when the worker thread is subsequently scheduled.

When run with a context bound one, the iterative context-switch
algorithm systematically tried its budgeted preempting context
switch at every step, and eventually found the small window in
AlertApplication that found the error. In contrast, a depth-first
search is flooded with an unbounded number of preemptions, and
is thus unable to expose the error within reasonable time limits.

4.3 Few context bounds cover most states

In the previous section, we empirically showed that a small number
of preemptions are sufficient to expose concurrency errors.In this
section, we show that a fair percentage of state space is reached
through executions with few preemptions. Obviously, we areonly
able to demonstrate this on programs for which our model checkers
are able tocompletethe state space search.

Figure 4 shows the cumulative percentage of the entire state
space covered by executions with increasing context bounds. The
results for transaction manager benchmark is from the ZING model
checker, which is an explicit-state model checker. Thus, counting
states is straightforward for this program. The remaining three pro-
grams are executables run directly by the CHESSmodel checker.
These programs make numerous calls to the synchronization prim-
itives provided by the kernel. Capturing the state in this case would
require accounting for this kernel state, apart from the global vari-
ables, the heap, and the stack. In fact, this difficulty in captur-
ing states of program executables is the main reason for design-
ing CHESSas a stateless model checker. For these programs, we
use the happens-before relation of an execution, describedin Sec-
tion 3.1 and formally defined in Appendix A, as a representation
for the state at the end of the execution.

Figure 4 shows that for both Bluetooth and the filesystem
model,4 preemptions are sufficient to completely explore the en-
tire state space. For the relatively larger transaction manager and
the work-stealing queue benchmark, a context-bound of6 and8 re-
spectively are sufficient to cover more than90% of the state space.
This strongly suggests the advantage of iterative context bounding
— when systematically exploring the behavior of multithreaded
programs, model checkers can maximize state space coverageby
focusing on the polynomial number of executions with few pre-
emptions.

For programs on which the model checker is unable to complete
the state space search, we report the increase in the states visited
by different search strategies. Figure 5 shows the number ofstates
covered in the y axis with the number of complete executions of
the program in the x axis for the APE benchmark. Figure 6 shows
corresponding graph for the Dryad benchmark. These two graphs
compare the iterative context bounding algorithm with the depth-
first (dfs) search strategy and the iterative depth-bounding (idfs)
strategy. For the idfs search, we selected different depth bounds
and selected the the depth bound with maximum, minimum, and
median coverage. From the graph, it is very evident that context
bounding is able to systematically achieve better state space cover-
age, even in the first1000 executions.

5. Related work
Context-bounding: The notion of context-bounding was intro-
duced by Qadeer and Wu [20] as a method for static analysis of
concurrent programs by using static analysis techniques developed
for sequential programs. That work was followed by the theoret-
ical result of Qadeer and Rehof [19] which showed that context-
bounded reachability analysis for concurrent boolean programs is
decidable. Our work exploits the notion of context-bounding for
systematic testing in contrast to these earlier results which were fo-
cused on static analysis. The combinatorial argument of Section 2
and the distinction between preempting and nonpreempting context
switches is a direct result of our focus on dynamic rather than static
analysis.

State-space reduction techniques: Researchers have explored
the use of partial-order reduction [9, 18, 17, 3] and symmetry
reduction [13, 5, 12] to combat the state-space explosion prob-
lem. These optimizations are orthogonal and complementaryto
the idea of context-bounding. In fact, our preliminary experiments
indicate that state-space coverage increases at an even faster rate
when partial-order reduction is performed during iterative context-
bounding.

Analysis tools: Researchers have developed many dynamic
analyses, such as data-race detection [23] and atomicity-violation
detection [6], for finding errors in multithreaded software. Such
analyses are again orthogonal and complementary to context-

bounding. They are essentially program monitors which can be
applied to each execution explored by iterative context-bounding.

Heuristic search: Confronted with limited computational re-
sources and large state spaces, researchers have developedheuris-
tics for partial state-space search. Groce and Visser [11] pro-
posed the heuristic of prioritizing states with more enabled threads.
Sivaraj and Gopalakrishnan [24] proposed the use of a randomwalk
through the search space. Unlike these heuristics, iterative context-
bounding provides an intuitive notion of coverage and a polynomial
guarantee on the number of context-bounded executions.

6. Conclusions
Model checking or systematic exploration of program behavior is
a promising alternative to traditional testing methods formulti-
threaded software. However, it is difficult to perform systematic
search on large programs because the number of possible pro-
gram executions grows exponentially with the length of the exe-
cution. Confronted with this state-explosion problem, traditional
model checkers perform partial state-space search using techniques
such as iterative depth-bounding. Although effective for message-
passing software, iterative depth-bounding is inadequatefor multi-
threaded software because several orders of magnitude moresteps
are required to get interesting behavior in a multithreadedprogram
than in a message-passing program.

This paper proposes a novel algorithm callediterative context-
bounding for effectively searching the state space of a multi-
threaded program. Unlike iterative depth-bounding which gives pri-
ority to executions with shorter length, iterative context-bounding
gives priority to executions with fewer preemptions. We show that
that by bounding the number of preemptions, the number of ex-
ecutions becomes a polynomial function of the execution depth.
Therefore, context-bounding allows systematic exploration to scale
to large programs without sacrificing the ability to go deep in the
state space.

We implemented iterative context-bounding in two model
checkers and used our implementation to uncover9 previously un-
known bugs in realistic multithreaded benchmarks. Each of these
bugs required at most2 preemptions. Our experience with these
benchmarks and other benchmarks with previously known bugs
indicates that many bugs in multithreaded code are manifested in
executions with a few preemptions. Our experiments also indicate
that state coverage increases faster with iterative context-bounding
than with other search methods. Therefore, we believe that itera-
tive context-bounding significantly improves upon existing search
strategies.

In future work, we would like to make our model checker
even more scalable. We believe that incorporating complementary
state-reduction techniques, such as partial-order reduction, could
improve scalability. Yet another interesting direction for our work
is to extend CHESS, which currently handles user-mode programs
written against the WIN32 API, to kernel-mode programs.

Acknowledgements
We would like to thank Michael Isard, Joseph Joy, and Daan Leijen
for providing the benchmarks, and Iulian Neamtiu for helping with
CHESS. We would like to thank Tom Ball and the anonymous
reviewers for their feedback on a prior version of this paper.

References
[1] Derek Bruening and John Chapin. Systematic testing of multithreaded

Java programs. Technical Report LCS-TM-607, MIT/LCS, 2000.

[2] E. M. Clarke and E. A. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. InLogic of Programs,
LNCS 131, pages 52–71. Springer-Verlag, 1981.

[3] Matthew B. Dwyer, John Hatcliff, Robby, and Venkatesh Prasad
Ranganath. Exploiting object excape and locking information in
partial-order reductions for concurrent object-orientedprograms.
Formal Methods in System Design, 25:199–240, 2004.

[4] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks:
Efficiently computing the happens-before relation using locksets.
In FATES/RV 06: Formal Approaches to Testing and Runtime
Verification, volume 4262 ofLecture Notes in Computer Science,
pages 193–208. Springer-Verlag, 2006.

[5] F. Allen Emerson and A. Prasad Sistla. Symmetry and model
checking.Formal Methods in System Design, 9(1/2):105–131, August
1996.

[6] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. InPOPL 04: Principles of
Programming Languages, pages 256–267. ACM Press, 2004.

[7] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. InPOPL 05: Principles of Programming
Languages, pages 110–121. ACM Press, 2005.

[8] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the Cilk-5 multithreaded language. InPLDI 98:
Programming Language Design and Implementation, pages 212–223.
ACM Press, 1998.

[9] Patrice Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion Problem.
LNCS 1032. Springer-Verlag, 1996.

[10] Patrice Godefroid. Model checking for programming languages using
Verisoft. InPOPL 97: Principles of Programming Languages, pages
174–186. ACM Press, 1997.

[11] Alex Groce and Willem Visser. Model checking Java programs using
structural heuristics. InISSTA 02: Software Testing and Analysis,
pages 12–21, 2002.

[12] Radu Iosif. Exploiting heap symmetries in explicit-state model
checking of software. InASE 01: Automated Software Engineering,
pages 254–261, 2001.

[13] C. Norris Ip and David L. Dill. Better verification through symmetry.
Formal Methods in System Design, 9(1/2):41–75, 1996.

[14] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed data-parallel programs fromsequential
building blocks. Technical Report MSR-TR-2006-140, Microsoft
Research, 2006.

[15] Daan Leijen. Futures: a concurrency library for C#. Technical Report
MSR-TR-2006-162, Microsoft Research, 2006.

[16] Madanlal Musuvathi, David Park, Andy Chou, Dawson R. Engler, and
David L. Dill. CMC: A pragmatic approach to model checking real
code. InOSDI 02: Operating Systems Design and Implementation,
pages 75–88, 2002.

[17] Ratan Nalumasu and Ganesh Gopalakrishnan. An efficientpartial
order reduction algorithm with an alternative proviso implementation.
Formal Methods in System Design, 20(3):231–247, May 2002.

[18] Doron Peled. Partial order reduction: Model-checkingusing
representatives. InMFCS 96: Mathematical Foundations of Computer
Science, pages 93–112. Springer-Verlag, 1996.

[19] S. Qadeer and J. Rehof. Context-bounded model checkingof
concurrent software. InTACAS 05: Tools and Algorithms for the
Construction and Analysis of Systems, volume 3440 ofLecture Notes
in Computer Science, pages 93–107. Springer-Verlag, 2005.

[20] S. Qadeer and D. Wu. KISS: Keep it simple and sequential.In PLDI
04: Programming Language Design and Implementation, pages 14–
24. ACM Press, 2004.

[21] J. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. InFifth International Symposium on Program-
ming, Lecture Notes in Computer Science 137, pages 337–351.
Springer-Verlag, 1981.

[22] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern
Approach (Second Edition). Prentice Hall, 2002.

[23] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: a dynamic data race detector for
multithreaded programs.ACM Transactions on Computer Systems,
15(4):391–411, 1997.

[24] Hemanthkumar Sivaraj and Ganesh Gopalakrishnan. Random walk
based heuristic algorithms for distributed memory model checking.
Electronic Notes in Theoretical Computer Science, 89(1), 2003.

A. Appendix
A.1 Definitions

The number of preemptions inα, denoted byNP(α), is defined
recursively as follows:

NP(t)=0

NP(α.t)=

{

NP(α) if t = L(α) ∨ L(α) 6∈ enabled(α)
NP(α) + 1 otherwise

The happens-before relation of an executionα, denoted by
HB(α), is the transitive closure of the relation

{ (i, j) ∈ {1, . . . , |α|} × {1, . . . , |α|} |
(i < j ∧ ti = tj) ∨
(i < j ∧ V (α|i) = V (α|j) ∧ V (α|j) ∈ SyncVar) }.

The executionα is race-free if and only if for alli, j ∈ [1, |α|], if
i < j andV (α|i) = V (α|j) then(i, j) ∈ HB(α).

We assume that there is a special synchronization event vari-
able et corresponding to each threadt. The first operation oft
blocks onet until et is signaled by the parent oft in the operation
that createst. Thus, it is guaranteed that in any execution the first
operation of any thread accesses a synchronization variable. Fur-
thermore, we also assume that a thread terminates by performing
as its final operation a block onet that is never signaled. Thus, it is
also guaranteed that in the final state of any terminating execution
all threads are accessing a synchronization variable.

Consider an executionα, a threadt, and a data variabled.
We definelast(α, t) to be 0 if α(i) 6= t for all i ∈ [1, |α|].
Otherwise, we definelast(α, t) to be the numberi ∈ [1, |α|]
such that (1)α(i) = t, (2) V (α|i) ∈ SyncVar , and (3) for all
j ∈ (i, |α|], if α(j) = t thenV (α|j) ∈ DataVar . We define
last(α, d) to be0 if V (α|i) 6= d for all i ∈ [1, |α|]. Otherwise,
we define last(α, d) to be the numberi ∈ [1, |α|] such that
V (α|i) = d andV (α|j) 6= d for all j ∈ (i, |α|].

A pair (α, t) is arace if α is race-free,NV (α, t) ∈ DataVar ,
and there existsi ∈ [1, |α|] such thati = last(α,NV (α, t)),
α(i) 6= t, and(i, last(α, t)) 6∈ HB(α).

An executionα is k-nice if the following conditions hold:

1. For all i ∈ [1, |α|), eitherα(i) = α(i + 1) or V (α|i+1) ∈
SyncVar .

2. There are exactlyk threads in the set

{t | t ∈ enabled(α) ∧ t 6= L(α) ∧ NV (α, t) ∈ DataVar}.

An observable execution is0-nice. An execution isnice if it is k-
nice for somek ≥ 0. A race(α, t) is k-nice if α is k-nice and
α(|α|) = t. A race isnice if it is k-nice for somek ≥ 0.

A.2 Proofs

LEMMA 1. If α is a nice execution,α · t is a race-free execution,
and α · t · δ is an execution, then there is a nice and race-free
executionβ equivalent toα · t such thatNP(β · δ) ≤ NP(α · t · δ).

PROOF.If V (α·t) ∈ SyncVar orα(|α|) = t, thenβ = α·t is nice
and we are done. OtherwiseV (α · t) ∈ DataVar andα(|α|) 6= t.
Then, there existsi ∈ [1, |α|) such thatα(i) = t. Let l ∈ [1, |α|)
be such thatα(l) = t andα(j) 6= t for all j ∈ (l, |α|]. Let γ
be the nonempty sequence such thatα = α|l · γ. Sinceα · t is
race-free andV (α · t) ∈ DataVar , we know thatα|l · t · γ is an
execution equivalent toα · t. We let β = α|l · t · γ. We know
that bothγ(1) 6= t and γ(|γ|) 6= t. If t ∈ enabled(α|l · t),
we haveNP(β) = NP(α|l · γ). If t 6∈ enabled(α|l · t), we
haveNP(β) < NP(α|l · γ). In either case, we haveNP(β) ≤
NP(α|l · γ) = NP(α). In addition, sinceα(|α|) 6= t and t ∈
enabled(α), we haveNP(α) < NP(α · t). ThereforeNP(β) <
NP(α · t). If δ is empty, we are done. Otherwise, letδ = u · δ′

for someδ′. We haveNP(β) ≤ NP(β · u) ≤ NP(β) + 1
andNP(α · t) ≤ NP(α · t · u) ≤ NP(α · t) + 1. Therefore
NP(β ·u) ≤ NP(α · t ·u). Sinceβ · u is equivalent toα · t ·u, we
conclude thatNP(β · u · δ′) ≤ NP(α · t · u · δ′). 2

LEMMA 2. A race-free executionα is equivalent to a nice race-free
executionβ such thatNP(β) ≤ NP(α).

PROOF. Let |α| = n. We construct a sequence of executions
β1, . . . , βn by repeated applications of Lemma 1. We letβ1 =
α(1). For eachi ∈ [1, n), we obtainβi+1 is obtained by invoking
Lemma 1 withα = βi, t = α(i + 1), andδ = α(i + 2) · · ·α(n).
We letβ = βn. 2

THEOREM 2. (Restatement)A terminating race-free executionα
is equivalent to an observable terminating race-free execution β
such thatNP(β) ≤ NP(α).

PROOF. By Lemma 2, we know thatα is equivalent to a nice
race-free executionβ such thatNP(β) ≤ NP(α). Sinceα is
terminating, so isβ. If β is k-nice for k > 0, then there exists
i ∈ [1, |β|) such thatβ(i) 6= β(i + 1) and NV (β|i, β(i)) ∈
DataVar . Sinceβ is nice, we know that threadβ(i) is never
scheduled after stepi. ThereforeNV (β, β(i)) ∈ DataVar and
β(i) ∈ enabled(β) which is a contradiction. Thereforeβ is 0-nice.
2

LEMMA 3. If there is a race(α, t) such thatα is nice, then there is
a nice race(β, u) such thatNP(β) ≤ NP(α).

PROOF.Let NV (α, t) = d. Sinced ∈ DataVar and the first
action of any thread accesses a synchronization variable, there
existsi ∈ [1, |α|] such thatα(i) = t. Let l ∈ [1, |α|] be such that
α(l) = t and for allj ∈ (l, |α|], we haveα(j) 6= t. Since(α, t)
is a race, we know thatlast(α, d) ∈ [1, α], α(last(α, d)) 6= t and
thereforel 6= last(α, d). There are two cases:
(l < last(α, d)): Sinceα is nice andα(l) = t 6= α(l+1), we have
V (α|l+1) ∈ SyncVar . SinceV (α|last(α,d)) ∈ DataVar , the
interval (l, last(α, d)) is nonempty. Supposen ∈ (l, last(α, d))
is such thatV (α|n+1) = d and for all i ∈ (l, n], we have
V (α|i) 6= d. Letβ = α|l · t ·α(l+1) · · ·α(n) andu = α(n+1).
Then β is nice andNP(β) ≤ NP(α|n) ≤ NP(α). We have
NV (α|l, t) = NV (α, t) = d. Thereforelast(β, d) = l + 1. Since
NV (α|n, u) = d, we haveNV (β, u) = d. SinceV (β|l+1) ∈
DataVar , β(l + 1) = t, andα(i) 6= t for all i ∈ [l + 1, n], we
have(l+1, last(β, u)) 6∈ HB(β). Sinceα is nice andV (α|n+1) ∈
DataVar , we haveα(n) = α(n + 1) = u and consequently
β(|β|) = u. Therefore(β, u) is a nice race.

(l > last(α, d)): Let β = α|l. Sinceβ is a prefix ofα, we know
that β is nice,β(|β|) = t, andNP(β) ≤ NP(α). Since(α, t)
is a race, we know that(last(α, d), last(α, t)) 6∈ HB(α). Since
HB(β) ⊆ HB(α), we have(last(α, d), last(α, t)) 6∈ HB(β).
We havelast(α, d) = last(β, d) and last(α, t) = last(β, t).
Therefore(last(β, d), last(β, t)) 6∈ HB(β). Finally NV (β, t) =
NV (α, t) = d, and we get that(β, t) is a nice race.2

We define a partial order≺ on nice executions as follows. Letα
be a nice execution andγ be the unique longest0-nice prefix ofα.
Let α = γ · δ. Similarly, Let α′ be a nice execution,γ′ be the
unique longest0-nice prefix ofα′, andα′ = γ′ · δ′. Now, α ≺ α′

iff |γ| > |γ′| ∨ |γ| = |γ′|∧ |δ| < |δ′|. For terminating programs,
the relation≺ is well-founded, that is, for every executionα there
is a finite sequenceαn ≺ · · · ≺ α1 such thatα1 = α andαn is
0-nice.

LEMMA 4. If there is ak-nice race(α, t) for somek > 0, then
there is a nice race(β, u) such thatβ ≺ α andNP(β) ≤ NP(α).

PROOF. Let γ be the unique longest0-nice prefix of α. Since
k > 0, we know thatγ is a strict prefix ofα. Let l = |γ| and
x = α(l). If (γ, x) is race, then we letβ = γ andu = x. Since
x = α(l) = γ(l), (γ, x) is a nice race. Sinceβ is 0-nice, we
haveβ ≺ α. Sinceβ is a prefix ofα, we haveNP(β) ≤ NP(α).
Otherwise, we have that(γ, x) is not a race. Letd = NV (γ, x).
Thend ∈ DataVar , x 6= α(i) for all i ∈ (l, |α|], andx 6= t. There
are two cases:
(∃j ∈ (l, |α|].V (α|j) = d): Let n ∈ [l, |α|) be such that
V (α|n+1) = d and V (α|j) 6= d for all j ∈ (l, n]. Let
β = γ · x · α(l + 1) · · ·α(n) and u = α(n + 1). Thenβ is
nice andNP(β) ≤ NP(α|n) ≤ NP(α). Moreover,γ · x is a
prefix of the unique longest0-nice prefix ofβ. Thereforeβ ≺ α.
We haveNV (α|l, x) = NV (α, x) = d. Thereforelast(β, d) =
l + 1. SinceNV (α|n, u) = d, we haveNV (β, u) = d. Since
V (β|l+1) ∈ DataVar , β(l + 1) = x, and α(i) 6= x for all
i ∈ [l + 1, n], we have(l + 1, last(β, u)) 6∈ HB(β). Sinceα is
nice andV (α|n+1) ∈ DataVar , we haveα(n) = α(n + 1) = u
and consequentlyβ(|β|) = u. Therefore(β, u) is a nice race.
(∀j ∈ (l, |α|].V (α|j) 6= d): Let β = γ · x · α(l + 1) · · ·α(|α|)
and u = t. Then β is nice andNP(β) ≤ NP(α). Moreover,
γ · x is a prefix of the unique longest0-nice prefix ofβ. Therefore
β ≺ α. Let e = NV (α, t) = NV (β, t). There are two cases:
d = e or d 6= e. Supposed = e. SinceV (β|l+1) ∈ DataVar ,
β(l + 1) = x, α(i) 6= x for all i ∈ [l + 1, |α|], andx 6= u,
we have(l + 1, last(β, u)) 6∈ HB(β). Supposed 6= e. Since
(α, t) is a race, we know that(last(α, e), last(α, t)) 6∈ HB(α).
Sinceβ contains a single additional event overα and this event
is an access of variabled 6= e by threadx 6= u, we get that
(last(β, e), last(β, t)) 6∈ HB(β). Therefore(β, u) is a race. Since
γ is a strict prefix ofα, we know thatl < |α|. Thereforeβ(|β|) = u
and we get that(β, u) is a nice race.2

THEOREM3. (Restatement)If there is a race(α, t), then there is
an observable race(β, u) such thatNP(β) ≤ NP(α).

PROOF.Suppose(α, t) is a race. Sinceα is race-free, by Lemma 2
we get a nice race-free executionα′ such thatNP(α′) ≤ NP(α)
and(α′, t) is a race. From the well-foundedness of≺ and repeated
applications of Lemma 4, we obtain a finite sequence of nice races
(β1, t1), . . . , (βn, tn) such that(β1, t1) = (α′, t), βn ≺ · · · ≺ β1,
NP(βn) ≤ · · · ≤ NP(β1), andβn is 0-nice. We letβ = βn and
u = tn. 2

