Iterative Context Bounding

for Systematic Testing of

Multithreaded Programs

Madan Musuvathi

Shaz Qadeer

Microsoft Research
{madanm,qadeer }@microsoft.com

Abstract

Multithreaded programs are difficult to get right becauseuf
expected interaction between concurrently executingattseTra-
ditional testing methods are inadequate for catching sutxh-
currency errors which manifest themselves late in the devel
ment cycle and post-deployment. Model checking or systemat
exploration of program behavior is a promising alternativera-
ditional testing methods. However, it is difficult to penforsys-
tematic search on large programs as the number of possitle pr
gram behaviors grows exponentially with the program sizen-C
fronted with this state-explosion problem, traditionaldabcheck-
ers perform iterative depth-bounded search. Althoughctiie for
message-passing software, iterative depth-boundingaieiuate
for multithreaded software.

This paper proposes iterative context-bounding, a newckear
algorithm that systematically explores the executions afildti-
threaded program in an order that prioritizes executionis feiver
context switchesWNe distinguish between preempting and nonpre-
empting context switches, and show that bounding the nummber
preempting context switches to a small number significaadtiyi-
ates the state explosion, without limiting the depth of exgdl ex-
ecutions. We show both theoretically and empirically thattext-
bounded search is an effective method for exploring the\nefs
of multithreaded programs. We have implemented our algorin
two model checkers and applied it to a number of real-worldt mu
tithreaded programs. Our implementation uncove¥gueviously

1. Introduction

Multithreaded programs are difficult to get right. Specificead
interleavings, unexpected even to an expert programmead, tie
crashes that occur late in the software development cycévem
after the software is released. The traditional method detirig
concurrent software in the industry stress-testingin which the
software is executed under heavy loads with the hope of pingu
an erroneous interleaving. Empirical evidence clearly alestrates
that this form of testing is inadequate. Stress-testing e pro-
vide any notion of coverage with respect to concurrencyn efter
executing the tests for days the fraction of explored sclesde-
mains unknown and likely very low.

A promising method to address the limitations of traditiona
testing methods ismodel checkingR, 21] or systematic exploration
of program behavior. A model checker systematically exeut
each thread schedule, while verifying that each executiamm
tains desired properties of the program. The fundamentddi@m
in applying model checking to large programs is the well¥no
state-explosion problen.e., the number of possible program be-
haviors grows explosively (at least exponentially) wite gize of
the program.

To combat the state-explosion problem, researchers hags-in
tigated reduction techniques such as partial-order reztufd] and
symmetry reduction [13, 12]. Although these reduction teghes
help in controlling the state explosion, it remains praaticim-
possible for model checkers to fully explore the behavidiage

unknown bugs in our benchmarks, each of which was exposed by programs within reasonable resources of memory and time. Fo

an execution with at mo& preempting context switches. Our ini-
tial experience with the technique is encouraging and dstrates
that iterative context-bounding is a significant improvemever
existing techniques for testing multithreaded programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification — formal methods, validat
F.3.1 Logics and Meanings of PrografsSpecifying and Veri-
fying and Reasoning about Programs — mechanical verificatio
specification techniques; D.2.5¢ftware Engineerirlg Testing
and Debugging — debugging aids, diagnostics, monitorsirtga

General Terms Algorithms, Reliability, Verification

Keywords Concurrency, context-bounding, model checking, multi-
threading, partial-order reduction, shared-memory o, soft-
ware testing

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI 07 June 11-13, 2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

such large programs, model checkers typically resort toistaas
to maximize the number of errors found before running outeef r
sources. One such heuristicdepth-boundind22], in which the
search is limited to executions with a bounded number ofsstép
the search with a particular bound terminates, then it isatg
with an increased bound. Unlike other heuristics for pbdiate-
space search, depth-bounded search provides a valuatldeagev
metric—if search with depth-bounditerminates then there are no
errors in executions with at mogtsteps.

Since the number of possible behaviors of a program usu-
ally grows exponentially with the depth-bound, iterativepth-
bounding runs out of resources quickly as the depth is isecta
Hence, depth-bounding is most useful when interesting\hefsa
of the program, and therefore bugs, manifest in small nurober
steps from the initial state. The state space of messag#pas
software has this property which accounts for the succeswdgl
checking on such systems [10, 16]. In contrast, depth-tbagnd
does not work well for multithreaded programs, where thedts
in the program have fine-grained interaction through shareoh-
ory. While a step in a message-passing system is the senceiree
of amessage, a step in a multithreaded system is a read eroft
shared variable. Typically, several orders of magnitudeensteps

are required to get interesting behavior in a multithregatedgram
than in a message-passing program.

This paper proposes a novel algorithm caliedlative context-
bounding for effectively searching the state space of a multi-
threaded program. In an execution of a multithreaded progra
a context switchoccurs when a thread temporarily stops execu-
tion and a different thread starts. The iterative contexirtling
algorithm bounds the number of context switches in an exatut
However, a thread in the program can execute an arbitrary num
ber of steps between context switches, leaving the execdgpth
unbounded.

Furthermore, the iterative context-bounding algorithratidi
guishes between two kinds of context switches — preemptig a
nonpreempting. Areemptingcontext switch, or simply areemp-
tion, occurs when the scheduler suspends the execution of the run
ning thread at an arbitrary point. This can happen, for imctaat
the expiration of a time slice. On the other hanahoampreempting
context switch occurs when the running thread voluntai#yds its
execution, either at termination or when it blocks on an ailakle
resource. The algorithm bounds the number of preemptiorie wh
leaving the number of nonpreempting context switches undéied.

Limiting the number of preemptions has many powerful and de-
sirable consequences for systematic state-space expioodmul-
tithreaded programs. First, bounding the number of preempt
does not restrict the ability of the model checker to exptigep in
the state space. This is due to the fact that, starting fronstate,
it is always possible to drive a terminating program to cagtiph
(or to a deadlock state) without incurring a preemption. Assailt,

a model checker is able to explore interesting program bergv
even with a bound of zero!

Second, we show (Section 2) that for a fixed number of preemp-
tions, the total number of executions in a programa/nomialin
the number of steps taken by each thread. This theoretiqgadrup
bound makes it practically feasible to scale systematitoeapon
to large programs without sacrificing the ability to go deethe
state space.

Finally, iterative context-bounding has the importantpgendy
that it finds a trace with the smallest number of preempticpeg-
ing the error. As most of the complexity of analyzing a conent
error-trace arises from the interactions between the dscehe al-
gorithm naturally seeks to provide the simplest explamafio the
error. Moreover, when the search runs out of resourceseffsor-
ing all executions witlt preemptions, the algorithm guarantees that
any error in the program requires at leasfl preemptions. In ad-
dition to providing a valuable coverage metric, it also pdes the
programmer with an estimate of the complexity of bugs reingin
in the system and the probability of their occurrence in ficac

We present our iterative context-bounding algorithm in-Sec
tion 3. To evaluate our algorithm, we implemented it in two
model checkers, RIG and GHESS ZING is an explicit-state model
checker for concurrent programs specified in th@& modeling
language. @BEssis a stateless model checker that executes the pro-
gram directly, much along the lines of Verisoft [10], but deed
for shared-memory multithreaded programs.

An important aspect of the ©ESs implementation is its dy-
namic partitioning of the set of program variables into dartel
synchronization variables. Typical programs use syndhation
variables, such as locks, events, and semaphores, to ethsiire
there are no data-races on the data variables. Motivatekiph-
servation, GiESSintroduces context switches only at accesses to
synchronization variables and verifies that accesses t \dai-
ables are ordered by accesses to synchronization variabéesh
explored execution. In Section 3.1, we provide theoreficstifica-
tion for the soundness of this approach.

Our evaluation (Section 4) provides empirical evidence tha
small number of preemptions is sufficient to expose norrisdn-
currency bugs. Our implementation uncover@greviously un-
known bugs in several real-world multithreaded programeche
of these bugs was exposed by an execution with at aqete-
emptions. Also, for a set of programs for which complete cear
is possible, we show that few preemptions are sufficient te@ico
most of the state space. This empirical evidence strongjgests
that when faced with limited resources, which is invariahly case
with model checkers, focusing on the polynomially-bounded
potentially bug-yielding executions with a small preeroptbound
is a productive search strategy.

In summary, the technical contributions of the paper are as
follows:

e The notion of iterative context-bounding and the concontita
argument that bounding the number of preemptions is superio
to bounding the depth as a strategy for systematic exptorati
of multithreaded executions.

e A combinatorial argument that for a fixed number of preemp-
tions, the number of executions is polynomial in the totahau
ber of steps executed by the program.

e An iterative context-bounding algorithm that systemadlyca
enumerates program executions in increasing order of greem
tions.

e Empirical evidence that context-bounded executions expos
teresting behavior of the program, even when the number of
preemptions is bounded by a small number.

2. lterative context-bounding

In the view of this paper, model checking a multithreaded- pro
gram is analogous to running the system on a nondeternainisti
scheduler and then systematically exploring each choiaderby
the scheduler. Each thread in the program executes a sexjaénc
steps with each step involving exactly one access to a slvared
able. After every step of the currently running thread, tbleesl-
uler is allowed to choose the next thread to schedule. Asudtres
the number of possibilities explodes exponentially wita tlum-
ber of steps. To make this point concretely, suppBsis atermi-
nating multithreaded program. Le® haven threads where each
thread executes at moststeps of which at mogt are potentially-
blocking. Then the total number of executions Bfmay be as
large as% > (n!)*, a dependence that is exponential in both
n andk. For most programs, although the number of threads may
be small, the number of steps performed by a thread is vegg lar
Therefore, the exponential dependenceé:os especially problem-
atic. All previous heuristics for partial state-space skaincluding
depth-bounding, suffer from this problem.

The fundamental and novel contribution of context-bougdin
that it limits the number of scheduler choices without limiting the
depth of the executior context switch occurs at a schedule point
if the scheduler chooses a thread different from the curremting
thread. This context switch is preempting if the runninge#at is
enabled at the schedule point, otherwise it is nonpreegptin

In context-bounding, we bound the number of preempting con-
text switches (or preemptions) but leave the number of resmppt-
ing context switches unconstrained. It is very importantdte that
the scheduler has a lot more choices in inserting preengptiorit
can choose any one of thek steps to preempt, and for each choice
the scheduler can choose any of the enabled threads to rconin
trast, a nonpreempting context is forced on the schedulenwie
running thread yields — its choice is limited to deciding thext
enabled thread to run.

There are two important facts to note about context-bowndin
First, the number of steps within each context remains unded.
Therefore, unlike depth-bounding there is no bound on the ex
cution depth. Second, since the number of nonpremptingegbnt
switches remains unbounded it is possible to get a competa-t
nating execution even with a bound of zero. For instanceh suc
terminating execution can be obtained from any state byddhe
ing each thread in a round-robin fashion without preempfidrese
two observations clearly indicate that context boundingsdwot af-
fect the ability of the search to go deep into the state space.

We show below that the number of executiongofvith at most
c preemptions is polynomial ik but exponential ire. An exponen-
tial dependence oais significantly better than an exponential de-
pendence o because: is much greater than Moreover, many
concurrency bugs are manifested when threads are preemapted
unexpected places. With this polynomial bound, it becoreesif
ble to apply context-bounded search to large programsaat fer
small values ot.

Let “C, denote the number of ways of choosingbjects out of
a set ofz objects.

THEOREM1. Consider a terminating progran® with n threads,
where each thread executes at méssteps of which at most
are potentially-blocking. Then there are at md¥iC.(nb + c)!
executions of? with ¢ preemptions.

PROOF. The length of each execution d? is bounded bynk.
Therefore, there are are at megt points where a preemption can
occur and at most*C, ways of selecting preemptions from these
nk points. Once the preemptions have been chosen, we have a
maximum ofrb 4 ¢ execution contexts which can be arranged in at
most(nb+c)! ways. Thus, we get the upper bound'6€..(nb+c)!
executions withc preemptionst

Assuming that is much smaller than both andnb, the bound
given in the theorem above is simplified (ok)°(nb)¢(nb)! =
(n?kb)°(nb)!. This bound remains exponential inn, andbd, but
each of these values is significantly smaller tihamwith respect to
which this bound is polynomial. It is also interesting to plify
this bound further for non-blocking multithreaded progsarn
such programs, the only blocking action performed by a threa
is the fictitious action representing the termination of theead.
Thereforeb = 1 and the bound becom¢a?k)°n!.

2.1 Empirical argument

To evaluate the efficacy of iterative context-bounding ipasing
concurrency errors, we have implemented the algorithm aed it
to test several real-world programs. We describe our etialuin
detail in Section 4. Here we give a brief preview of the perfance
of our algorithm on an implementation [15] of a work-steglin
queue algorithm [8]. This implementation represents theugu
using a bounded circular buffer which is accessed conctlyrby
two threads in a non-blocking manner. The implementor gavbel
test harness along with three variations of his implemantaeach
containing what he considered to be a subtle bug. The teséssir
has two threads that concurrently call functions in the watdaling
queue API. Our model checker based on iterative contextdtiog
found each of those bugs within a context-switch bound of two
We plotted the coverage graph for this implementation of the
work-stealing queue. Unlike syntactic notions of coverageh as
line, branch or path coverage, we have chosen the numbes-of di
tinct visited states as our notion of coverage. We belieaé state
coverage is the most appropriate notion of coverage for sgosa
based safety checkers such as our model checker. Figurdsl plo
the fraction of reachable states covered on the y-axis sgtie
context-switch bound on the x-axis. There are several éstarg
facts about this coverage graph. First, full state coveiagehieved

100

90

80

70

60

50

40

% State Space Covered

30

20

10

Context Bound

Finire 1 Coverane aranh

1000000

100000

——icb
10000

100

=-dfs
—t—random
=edb:40
=¢db:20

States Explored

1 3 5 7 9 1 13 15 17 19 21 23 25

Executions (x1000)

Figure 2. Coverage growth

with eleven preemptions although the program has exetidth

at least35 preemptions (see Table 1). Second, 90% state coverage
is achieved within a context-switch bound of eight. Thesseota-
tions indicate that iterative context-bounding is good cti@ving

high coverage within bounds that are significantly smahantthe
maximum number of possible preemptions.

Finally, we also compared the variation of coverage withetim
for various methods of state-space search. Figure 2 pletaum-
ber of distinct visited states on the y-axis against the remobex-
ecutions explored by different methods. Note that the g-a&xon a
logarithmic scale. There are five curves in the graph coomrding
to iterative context-boundingidb), unbounded depth-first search
(dfs), random searchrgndom), depth-first search with depth-
bound 40 {b:40), and depth-first search with depth-bound 20
(db:20). As is evident from the graph, iterative context-bounding
achieves significantly better coverage at a faster rate acedpto
the other methods. In Section 4, we present a more detadedsi
sion of the various graphs presented here.

3. Algorithm

In this section, we describe an algorithm that effectivedgrshes
the state space of a program by systematically bounding.ttmoar
of preemptions. The algorithm takes as input the initiatesta,

and iteratively explores executions with increasing prgtgons. In

Input: initial statesy € State

struct Workltem { State state; Tid tid; }
Queue{Workltem) workQueue;
Queue(Workltem) next WorkQueue;
Workltem w;
int currBound:=0;
for ¢ € enabled(so) do
workQueue.Add (Workltem (so, t));
end
while true do
while ~workQueue.Empty () do
w = workQueue Front ();
workQueue.Pop();
Search(w);
end
if nextWorkQueue.Empty () then
Exit();
end
currBound:= currBound+ 1,
workQueue:= next WorkQueue;
next WorkQueue.Clear Q)
end

© 0 N O~ WN P

NN R R R R R R R B B
B O ©WOw~NOWO b~ WNRO

22 Search(Workltem w) begin
23 Workltem z;
24 State s;

25 s .= w.state .Execute (w.tid);

26 if w.tid € enabled(s) then

27 x := Workltem(s, w.tid);

28 Search(X);

29 for ¢t € enabled(s) \ {w.tid} do
30 x := Workltem(s, t);

31 next WorkQueue .Push(X);
32 end

33 else

34 for ¢t € enabled(s) do

35 x := Workltem(s, t);

36 Search(X);

37 end

38 end

39 end

Algorithm 1: Iterative context bounding algorithm

other words, for any > 0, the algorithm explores every execution
with ¢ preemptions before exploring any execution with- 1
preemptions. This algorithm can be trivially modified topstehen

a particular preemption bound is reached.

it. Whenever control reaches line 15, the algorithm guaesithat

all executions with at mosturrBound preemptions have been
executed. In lines 15-20, the algorithm continues the di@tu
of work items innext WorkQueue, if any, after incrementing the
currBound.

The recursive procedurgearch processes a work iterm and
recursively explores all states reachable without intoirty any
preemptions. In line 25, the procedure executes the thue&d
in w.state till the next scheduling point. In order to explore every
behavior of the program, it is necessary to insert a schegluli
point after each access to a shared variable. Essentra#yforces
a thread to execute at most one shared-variable accessriyn eve
step. Section 3.1 provides an improved strategy for intcody
scheduling points.

If w.tid is enabled in the state(line 26), the algorithm sched-
ulesw.tid for another step by callin§earch recursively in line 28.
At the same time, scheduling some other thread enabledré
sults in a preemption ofv.tid. In lines 29-32, the algorithm cre-
ates a work item for every such thread and inserts the iternen t
next WorkQueue.

If the threadw.tid is not enabled irs, thenw.tid voluntarily
yielded control ins. Therefore, the algorithm is free to schedule
any enabled thread without incurring the cost of a preempfibe
loop in lines 34-36 accomplishes this by creating a work item
every enabled thread inand callingSearch on each one of them.

State caching is orthogonal to the idea of context-bounding
algorithm may be used with or without it. In fact, we have im-
plemented our algorithm in two different model checkerstZ,
which caches states antHESs which does not cache states. The
description in this section has ignored the issue of statking. It
is easy enough to add that feature by introducing a glob#iar.

Set(Workltem) table;

The variabletable is initialized to the empty set. We also add the
following code at the very beginning 8karch to prune the search
if a state is revisited.

if table.Contains(w) then
return;

end
table.Add(w);

3.1 Strategy for introducing preemptions

During program execution, the scheduler can preempt themur
running thread at an arbitrary point. Subtle concurrenoyrstarise
when such preemptions occur exactly when the running thread
temporarily violates a global program invariant and subset
threads require this invariant for correct execution. Ta fsuch

We now present a detailed description of the algorithm. The errors, the algorithm presented above schedules eactdtfoea
algorithm maintains two queues of work items. Each work item single step, enabling a preemption opportunity after eeegess
w contains a state and a thread identifier and notifies the modelto a shared variable.

checker to schedule the thread.tid from the statew.state.
The variableworkQueue contains work items that can be ex-
plored within the current preemption bound set in the végiab
currBound. During this exploration, the model checker inserts
work items requiring an extra preemption intext WorkQueue,
postponing the processing of such work items after the eapém

of the states within the current preemption bound.

In lines 6-8,workQueue is initialized with work items cor-
responding to the initial state. One work item is createdefach
thread enabled in the initial state. The loop in lines 10-eMaves
a work item from the queue, and invokes the procedigtech on

In this section, we show that it is sufficient to insert a seted
ing point before asynchronizatioroperation in the program, pro-
vided the algorithm also checks for data-races [1]. By sulieg
all variable access between two synchronization operabomi-
cally, the algorithm significantly reduces the state spagdoeed.
In addition, exploring this reduced state space is soundlandl-
gorithm does not miss any errors in the program. This styaiteg
essentially a kind of partial-order reduction [9, 18] andswist
proposed in the form above by Bruening and Chapin [1]. Our con
tribution here is in showing that this reduction is sound wher-
forming a context-bounded search. The formal soundness [mo

fairly involved and is provided in Appendix A. We only proedc
high-level description of the proof in this section.

Let us fix a multithreaded program for the remainder of thés se
tion. All the definitions and theorems that follow are witlspect
to this program.

An executionx is a nonempty sequence of stefd), «(2),. . .,
where «(7) is the identifier of the thread executing tith step,

for i > 1. We assume that each step in an execution accesse

exactly one variable. We denote y| the length ofe. We assume
that thread scheduling is the only source of nondetermiristne
program. Therefore, by executing from the initial state of the
program, we arrive at a unique state. ketbled () denote the set
of threads enabled in this state. The executiois terminatingif
enabled (o) = . Let L(«) be the thread executing the last step of
a, and letV («) be the variable accessed bya) at the last step.
Also, fort € enabled(c), let NV (a,t) be the variable thread
will access if scheduled from the state obtained by exegutin
Forall: € [1, |af], we definen|; to be the prefix ofx whose length

is 7. Note that a prefix of an execution is also an execution. Given

an executiony, the executiony - 8 is obtained by executing steps
in 3 from the state obtained by executing

Let SyncVar be the set of synchronization variables that the
threads in the program use to communicate with one anotliler. A
variables that are not ifyncVar belong toData Var, the set of
data variables. Our implementation dynamically infers vhe-
ables inSyncVar. We also assume that a thread in the program
blocks only on accesses to synchronization variables.

Given an executionx - ¢, we say that a preemption occurred
at o - ¢ if the last thread inw is enabled ina and is different
from¢. In this case, the scheduler preempted the executidri®f
and scheduled the threadLet the number of preemptions im
be denoted byVP(«). A preemption ak - ¢ occurs at an access
to a synchronization variable iNV («, L(c)) € SyncVar. In
other words, the threal(«) was preempted right before an access
to a synchronization variable. An executiondbservable if all
preemptions occur at accesses to synchronization vasiakliete
that if a model checker introduces preemptions only at asses
to synchronization variables, then it can explore only olmge
executions and detect observable races.

Two stepsxy(i) anda(j) in an executiorx aredependenif they
are either executed by the same thread or if they access it sa
synchronization variable. Otherwise the two stepsralependent
Given two dependent steps(i) and a(j), a(i) happens before
a(j) if i < j. The happens-before relationf an executiony,
denoted byHB(«), is the transitive closure of the happens-before
ordering of all dependent steps in the execution. It is eassee
that HB(«) defines a partial-order on the stepsof

An execution igace-freeif any two accesses to the same data
variable ina are ordered byHB(«). Two race-free executions
a and g8 are equivalentif HB(«) = HB(f). Intuitively, two
equivalent executions differ only on the order of indeperndteps
and therefore result in the same final state. A pairt) is araceif
a is race-free buty - ¢ is not. A race(a, t) is observable ity is an
observable execution ard«) = ¢.

THEOREM?Z2. A terminating race-free execution is equivalent
to an observable terminating race-free executiGnsuch that
NP(3) < NP(«).

PROOF. Starting from«, the proof constructs a linearizatigh
of the partial-orderdHB(«) such that all preemptions i occur
at accesses to synchronization variables. By constryctiors
equivalent toa. The key difficulty in the proof is in showing that
NP(B) < NP(«). To do so, the proof constructsiteratively by
changing the order of two independents stepa iim such a way

S

that the number of preemptions does not increase in eacttider
The details of this construction is presented in AppendixiA.

THEOREMS3. If there is a race(«, t), then there is an observable
race (3, u) such thatVP(3) < NP(«).

PROOF.The proof of this theorem is similar to the proof of Theo-
rem 2 and relies on iteratively constructiggfrom « without in-
creasing the number of preemptions. The details are pecsémt
Appendix A.O

Theorem 3 allows us to conclude that for any context-batjiifd
all observable executionswith NP(«a) < c are race-free then all
executionsg (both observable and otherwise) witfiP(5) < ¢
are also race-free. Thus, if no races are reported on oliderva
executions up to the bound then indeed the program is race-free
up to the bound:. Finally, Theorem 2 allows us to to verify the
absence of all errors expressible as predicates on telingretates
by evaluating only the observable executions. This is adbobass
of errors including both deadlocks and assertion failures.

4. Empirical evaluation

We implemented the iterative-context bounding algoritimwo
model checkers and evaluated the algorithm on a few realisti
benchmarks. This section describes our evaluation andeHudts.

We now give brief descriptions of these two model checkers.
ZING has been designed for verifying models of concurrent soft-
ware expressed in thel¥G modeling language. The models may
be created manually or automatically using other toolsréhily,
there exist translators from subsets of C# and X86 assenoboly ¢
into the ZNG modeling language. IRG is an explicit-state model
checker; it performs depth-first search with state cacHingain-
tains the stack compactly using state-delta compressidnpan
forms state-space reduction by exploiting heap-symmetry.

CHESssis meant for verifying concurrent programs directly and
does not require a model to be created. Similar to the Veri$6f
model checker, Bessis stateless and runs program executables
directly. However, Verisoft was designed for messageipgsoft-
ware whereas Bessis designed to verify shared-memory multi-
threaded software. SinceHEssdoes not cache states, it expects
the input program to have an acyclic state space and tereninat
under all possible thread schedules. The&model checker de-
scribed earlier has no such restriction and can handle haficc
and acyclic state spacesHEssintroduces context switches only
at accesses to synchronization variables, while using thaildcks
algorithm [4] to check for data-races in each execution. g
in Section 3.1, this methodology is sound while significaritl-
creasing the effectiveness of the state space exploration.

4.1 Benchmarks

We evaluated the iterative context-bounding algorithm @etaof
benchmark programs. Each program is an open library, rieguir
a test driver to close the system. The test driver allocdtesatls
that concurrently call interesting sequences of libramgcfions
with appropriate inputs. The input program together with tést
driver forms a closed system that is given to the model chrecke
for systematically exploring the behaviors. For the puepokour
experiments, we assume that the only nondeterminism imhe i
program and the test driver is that induced by the schedutgch

the model checker controls.

Obviously, a model checker can only explore behaviors of the
program triggered by the test driver. The quality of theestgtace
search, and thus the bugs found depends heavily upon gobd tes
drivers. When available, we used existing concurrent tes¢s for
our experiments. For programs with no existing test casesynote
our own drivers that, to our best knowledge, explored irstimg

Max Num | Max | Max | Max
Programs LOC Threads K B c
Bluetooth 400 3 15 2 8
File System Model| 84 4 20 8 13
Work Stealing Q. 1266 3 99 2 35
APE 18947 4 247 2 75
Dryad Channels | 16036 5 273 4 167

Table 1. Characteristics of the benchmarks. For each benchmark,
this table reports the number of lines, the number of thredids
cated by the test driver. For an executidf,is the total number of
steps,B is the number of blocking instructions, ands the num-

ber of preemptions. The table reports the maximum values’ of

B, andc seen during our experiments.

Bugs with
Total | Context Bound
Programs Bugs| 0| 1] 2] 3
Bluetooth 1 oj1]|0]0O
Work Stealing Queug 3 0|1]2]|0
Transaction Manage 3 0(0j2]|1
APE 4 211|1]|0
Dryad Channels 5 114(0]0

Table 2. For a total of 14 bugs that our model checker found. this
table shows the number of bugs exposed in executions witttlgxa

¢ preemptions, for ranging fromo0 to 3. The 7 bugs in the first
three programs were previously known. Iterative contexiraling
algorithm found the previouslyunknowrbugs in Dryad and APE.

behavior in the system. Comprehensively closing an opetersys
to expose most of the bugs in the system is a challenging gmmgbl
beyond the scope of this paper.

We provide a brief description of the programs used for our
evaluation below.

Bluetooth: This program is a sample Bluetooth Plug and Play
(PnP) driver modified to run as a library in user space. Theptam
driver does not contain hardware-specific code but captilres
synchronization and logic required for basic PnP functibnaVe
wrote a test driver with three threads that emulated theas®n
of the driver being stopped when worker threads are perfami
operations on the driver.

File system model:This is a simplified model of a file system
derived used in prior work (see Figure 7 in [7]). The program
emulates processes creating files and thereby allocatiagfand
blocks. Each inode and block is protected by a lock.

Work-stealing queue: This program is an implementation [15]
of the work-stealing queue algorithm originally designed the
Cilk multithreaded programming system [8]. The program has
gueue of work items implemented using a bounded circuldebuf
Our test driver consists of two threads, a victim and a thiedf
concurrently access the queue. The victim thread pushek wor
items to and pops them from the tail of the queue. The thiefatthr
steals work items from the head of the queue. Potentialfertmnce
between the two threads is controlled by means of sophistica
non-blocking synchronization.

APE: APE is an acronym for Asynchronous Processing En-
vironment. It contains a set of data structures and funstibiat
provide logical structure and debugging support to asyorbuis
multithreaded code. APE is currently used in the Windowsatpe
ing system. For our experiments, we compiled APE in userenod
and used a test driver provided by the implementor of APEhén t
test, the main thread initializes APE’s data structuresatas two

// Function called by a worker thread

// of RChannelReaderImpl

void RChannelReaderImpl::AlertApplication(
RChannelltem* item)

{
// Notify Application
// XXX: Preempt here for the bug
// Note: this == channel variable in TestChannel
EnterCriticalSection(&m_baseCS) ;
// process before exit
LeaveCriticalSection(&m_baseCS) ;
}
// Function called by the main thread
void TestChannel (WorkQueue* workQueue, ...)
{

// Creating a channel allocates worker threads
RChannelReader* channel =
new RChannelReaderImpl(..., workQueue);

/...

do work here

channel->Close();
// wrong assumption that channel->Close() waits
// for worker threads to be finished

delete channel;
// BUG: deleting the channel when
// worker threads still have a valid reference
// to the channel
}

Figure 3. Use after free bug in Dryad. The bug requires a context
switch to happen right before the call to EnterCritical8etin
AlertApplication. This is the only preempting context setit The
bug trace Giessfound involves 6 nonpreempting context switches.

worker threads, and finally waits for them to finish. The worke
threads concurrently exercise certain parts of the interfaovided
by APE.

Dryad channels: Dryad is a distributed execution engine for
coarse-grained data-parallel applications [14]. A Dryppligation
combines computational "vertices” with communication doh
nels” to form a data-flow graph. Dryad runs the application by
executing the vertices of this graph on a set of availablegso
sors communicating as appropriate through files, TCP pied,
shared-memory FIFOs. The test harness for Dryad for ourrexpe
iments was provided by its lead developer. The testthéseads
and exercises the shared-memory channel library used fiomen
nication between the nodes in the data-flow graph.

Transaction manager: This program provides transactions in a
system for authoring web services on the Microsoft .NETfptat.
Internally, the in-flight transactions are stored in a halslet, access
to which is synchronized using fine-grained locking. We used
isting test harnesses written by our colleagues for ourraxgats.
Each test contains two threads. One thread performing aatpe
—create, commit, or delete— on a transaction. The secomédhr
is a timer thread that periodically flushes from the haslketatl
pending transactions that have timed out.

Except for the transaction manager, all the benchmarks used
above are written in a combination C and C++. Table 1 enumer-
ates the characteristics of these benchmarks. The tréosachn-

—o—File System Model

/ } -o-Bluetooth

/ ——Transaction Manager

% State Space Covered
LY
5 38
———
T——|
—

—<Work Stealing Queue

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Context Bound

Figure 4. Figures shows the percentage of the entire state space (,

axis) covered by executions with bounded number of preemgti
(x axis). For state spaces of programs small enough for oatem:
checkers to completely search, the graph shows that more
90% of the state space is covered with executions with at r&os
preemptions.

ager is a ZNG model constructed semi-automatically from the ¢
implementation, and has roughif00 lines of code.

In the rest of the section, we will show that bounding the nu
ber of preemptions is an effective method of exploring ieséng
behaviors of the system, while alleviating the state spapksion
problem. Note, as described in Section 2, bounding the nuwfbe
preemptions results in a state space polynomial in the nuwibe
steps in an execution. This allows us to scale systematiomtjon
techniques to larger programs.

Specifically, we will use our experiments to demonstrate
following two hypotheses:

1. Many subtle bugs manifest themselves in executions veiti v
small preemptions.

2. Most states can be covered with few preemptions

4.2 Small context bounds expose concurrency bugs

Context bounding relies on the intuition that many errorsuocue
to few context switches happening at thight places. To substan-
tiate this intuition, we ran the iterative context-bourgliprogram
for the five programs shown in Table 2. For the first three @owy,
namely Bluetooth, work-stealing queue, and the transactian-

ager, we introduced@ known bugs that the respective developers

considered subtle concurrency errors. The iterative gbhbiaund-
ing algorithm was able to find all such errors within a boung.of

We also ran the iterative context-bounding algorithm on APE

and Dryad, the largest programs currently handled by oureinod
checker. We found a total of previously unknownconcurrency
errors. To provide the reader with an idea of the compleXithese
errors, we describe one of the errors we found in Dryad befow i
detail. This error could not be found by a depth-first seaeslen
after running for a couple of hours.

Dryad use-after-free bug: When deallocating a shared heap
object, a concurrent program has to ensure that no exidtiegd
in the system has a live reference to that object. This is ammm
concurrency problem that is very hard to get right. Figuree3 d
scribes an error that requires only one preempting conteittls,
but6 nonpreempting context switches.

1000000

100000

°
o
g ——icb
‘:,,) 10000 —odfs
o —a-idlfs-100
3
* —<idfs-200
L —idfs-150
1000 1 x=HPEE
rr‘—f“l"
100
13 5 7 9 11 13 15 17 19 21 23 25 27 29
Executions (x1000)
Figure 5. Coverage growth for APE
1000000
100000 +
o
o
: M —o-=icb
S i il
o 10000 -o-idfs-125
g I?’"“
S ——dfs
"
** =<idfs-100
e eF N
1000 /(‘KW —=idfs-75
100 +—+— 7T T T T T T T T T

Executions (x1000)

Figure 6. Coverage growth for Dryad

function TestChannel calls theclose function on the channel,
each worker thread gets a STOP message, in response to which a
worker thread calls théalertApplication function, as part of

its cleanup process. However, when there is an preemptimgxio
switch right before the thread enters th&aseCs critical section,

the main thread is able to return from tk&ose function and
subsequently delete the channel, which in this case is ttrerdu

this pointer for the worker thread. The use-after-free bug accur
when the worker thread is subsequently scheduled.

When run with a context bound one, the iterative contextewi
algorithm systematically tried its budgeted preemptingtert
switch at every step, and eventually found the small window i
AlertApplication that found the error. In contrast, a depth-first
search is flooded with an unbounded number of preemptioms, an
is thus unable to expose the error within reasonable timigslim

4.3 Few context bounds cover most states

In the previous section, we empirically showed that a smathiper
of preemptions are sufficient to expose concurrency erhorthis
section, we show that a fair percentage of state space ibegdac
through executions with few preemptions. Obviously, wearky

The error involves a message channel, which contains a few able to demonstrate this on programs for which our modellarsc
worker threads that process messages in the channel. When th are able tawompletehe state space search.

Figure 4 shows the cumulative percentage of the entire state bounding. They are essentially program monitors which can b

space covered by executions with increasing context bouritss
results for transaction manager benchmark is from tingszanodel
checker, which is an explicit-state model checker. Thuanting
states is straightforward for this program. The remainimge pro-
grams are executables run directly by theeSsmodel checker.
These programs make numerous calls to the synchronization p
itives provided by the kernel. Capturing the state in thisecaould
require accounting for this kernel state, apart from théaglari-
ables, the heap, and the stack. In fact, this difficulty inteap
ing states of program executables is the main reason fogmlesi

applied to each execution explored by iterative contextroling.
Heuristic search Confronted with limited computational re-
sources and large state spaces, researchers have deVedopisd
tics for partial state-space search. Groce and Visser [td] p
posed the heuristic of prioritizing states with more endittgeads.
Sivaraj and Gopalakrishnan [24] proposed the use of a rangadin
through the search space. Unlike these heuristics, iteratintext-
bounding provides an intuitive notion of coverage and apafhyial
guarantee on the number of context-bounded executions.

ing CHESSas a stateless model checker. For these programs, weg. Conclusions

use the happens-before relation of an execution, desciib8dc-
tion 3.1 and formally defined in Appendix A, as a represeoiati
for the state at the end of the execution.

Figure 4 shows that for both Bluetooth and the filesystem
model,4 preemptions are sufficient to completely explore the en-
tire state space. For the relatively larger transactionaganand
the work-stealing queue benchmark, a context-bourtdaofds re-
spectively are sufficient to cover more thao¥% of the state space.
This strongly suggests the advantage of iterative contexhtling
— when systematically exploring the behavior of multitided
programs, model checkers can maximize state space covieyage
focusing on the polynomial humber of executions with few-pre
emptions.

For programs on which the model checker is unable to complete
the state space search, we report the increase in the stsites v
by different search strategies. Figure 5 shows the numbstatés
covered in the y axis with the number of complete executidns o
the program in the x axis for the APE benchmark. Figure 6 shows
corresponding graph for the Dryad benchmark. These twohgrap
compare the iterative context bounding algorithm with teptt-
first (dfs) search strategy and the iterative depth-boundidfs)
strategy. For the idfs search, we selected different deptindls
and selected the the depth bound with maximum, minimum, and
median coverage. From the graph, it is very evident thatestnt
bounding is able to systematically achieve better stateespaver-
age, even in the first000 executions.

5. Related work
Context-bounding: The notion of context-bounding was intro-

Model checking or systematic exploration of program bebraig
a promising alternative to traditional testing methods timulti-
threaded software. However, it is difficult to perform sys#tic
search on large programs because the number of possible pro-
gram executions grows exponentially with the length of tke-e
cution. Confronted with this state-explosion problemditianal
model checkers perform partial state-space search usihgitpies
such as iterative depth-bounding. Although effective fassage-
passing software, iterative depth-bounding is inadeqiaatenulti-
threaded software because several orders of magnitudesteps
are required to get interesting behavior in a multithregutegram
than in a message-passing program.

This paper proposes a novel algorithm caliedative context-
bounding for effectively searching the state space of a multi-
threaded program. Unlike iterative depth-bounding whiekgpri-
ority to executions with shorter length, iterative contbrunding
gives priority to executions with fewer preemptions. Wevgtibat
that by bounding the number of preemptions, the number of ex-
ecutions becomes a polynomial function of the executiortidep
Therefore, context-bounding allows systematic exploretd scale
to large programs without sacrificing the ability to go deehe
state space.

We implemented iterative context-bounding in two model
checkers and used our implementation to uncévareviously un-
known bugs in realistic multithreaded benchmarks. Eacthee
bugs required at most preemptions. Our experience with these
benchmarks and other benchmarks with previously known bugs
indicates that many bugs in multithreaded code are maaidst
executions with a few preemptions. Our experiments alsizatel
that state coverage increases faster with iterative ctbxnding

duced by Qadeer and Wu [20] as a method for static analysis of than with other search methods. Therefore, we believe tog-i

concurrent programs by using static analysis techniquesiajged
for sequential programs. That work was followed by the theor
ical result of Qadeer and Rehof [19] which showed that cdntex
bounded reachability analysis for concurrent boolean narog is
decidable. Our work exploits the notion of context-boudfor
systematic testing in contrast to these earlier resultshvwviere fo-
cused on static analysis. The combinatorial argument di@e2
and the distinction between preempting and nonpreemptingext
switches is a direct result of our focus on dynamic rathem 8tatic
analysis.

State-space reduction techniqueskesearchers have explored
the use of partial-order reduction [9, 18, 17, 3] and symynetr
reduction [13, 5, 12] to combat the state-space explosiat-pr
lem. These optimizations are orthogonal and complemeritary
the idea of context-bounding. In fact, our preliminary expents
indicate that state-space coverage increases at an even riae
when partial-order reduction is performed during iteratontext-
bounding.

Analysis tools Researchers have developed many dynamic
analyses, such as data-race detection [23] and atomiicitstion
detection [6], for finding errors in multithreaded softwa&uch
analyses are again orthogonal and complementary to centext

tive context-bounding significantly improves upon exigtsearch
strategies.

In future work, we would like to make our model checker
even more scalable. We believe that incorporating comphtang
state-reduction techniques, such as partial-order remyatould
improve scalability. Yet another interesting directiom émr work
is to extend GEsS which currently handles user-mode programs
written against the WIN32 API, to kernel-mode programs.

Acknowledgements

We would like to thank Michael Isard, Joseph Joy, and Daajehei
for providing the benchmarks, and lulian Neamtiu for hefpivith
CHESS We would like to thank Tom Ball and the anonymous
reviewers for their feedback on a prior version of this paper

References

[1] Derek Bruening and John Chapin. Systematic testing dfithreaded
Java programs. Technical Report LCS-TM-607, MIT/LCS, 2000

[2] E. M. Clarke and E. A. Emerson. Synthesis of synchroivorat
skeletons for branching time temporal logic. Uagic of Programs
LNCS 131, pages 52-71. Springer-Verlag, 1981.

[3] Matthew B. Dwyer, John Hatcliff, Robby, and Venkateshasad
Ranganath. Exploiting object excape and locking infororatin
partial-order reductions for concurrent object-orienpgrdgrams.
Formal Methods in System Desjit5:199-240, 2004.

[4] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Golkdiloc
Efficiently computing the happens-before relation usincksets.
In FATES/RV 06: Formal Approaches to Testing and Runtime
Verification volume 4262 ofLecture Notes in Computer Science
pages 193-208. Springer-Verlag, 2006.

F. Allen Emerson and A. Prasad Sistla. Symmetry and model
checking.Formal Methods in System Desid@{1/2):105-131, August
1996.

C. Flanagan and S. N. Freund. Atomizer: A dynamic atotyici
checker for multithreaded programs. ROPL 04: Principles of
Programming Languagepages 256—267. ACM Press, 2004.

5

—

[6

—

[7

—

C. Flanagan and P. Godefroid. Dynamic partial-ordeuotidn for
model checking software. IROPL 05: Principles of Programming
Languagespages 110-121. ACM Press, 2005.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randdlhe
implementation of the Cilk-5 multithreaded language.PIlrDI 98:
Programming Language Design and Implementatjuaiges 212—-223.
ACM Press, 1998.

Patrice Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosiobl&mo
LNCS 1032. Springer-Verlag, 1996.

[10] Patrice Godefroid. Model checking for programmingdeages using
Verisoft. INPOPL 97: Principles of Programming Languaggsges
174-186. ACM Press, 1997.

[11] Alex Groce and Willem Visser. Model checking Java peogs using
structural heuristics. IBSSTA 02: Software Testing and Analysis
pages 12-21, 2002.

[12] Radu losif. Exploiting heap symmetries in explicis&® model
checking of software. IMSE 01: Automated Software Engineering
pages 254-261, 2001.

[13] C. Norris Ip and David L. Dill. Better verification thrgin symmetry.
Formal Methods in System Desidg#(1/2):41-75, 1996.

[14] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, drDennis
Fetterly. Dryad: Distributed data-parallel programs freeguential
building blocks. Technical Report MSR-TR-2006-140, Miwét
Research, 2006.

[15] Daan Leijen. Futures: a concurrency library for C#. firdcal Report
MSR-TR-2006-162, Microsoft Research, 2006.

[16] Madanlal Musuvathi, David Park, Andy Chou, Dawson RgEen and
David L. Dill. CMC: A pragmatic approach to model checkingilre
code. InOSDI 02: Operating Systems Design and Implementation
pages 75-88, 2002.

[17] Ratan Nalumasu and Ganesh Gopalakrishnan. An effipiarital
order reduction algorithm with an alternative proviso ievpentation.
Formal Methods in System Desjd20(3):231-247, May 2002.

[18] Doron Peled. Partial order reduction: Model-checkimging
representatives. IMFCS 96: Mathematical Foundations of Computer
Sciencepages 93-112. Springer-Verlag, 1996.

[19] S. Qadeer and J. Rehof. Context-bounded model cheaking
concurrent software. ITACAS 05: Tools and Algorithms for the
Construction and Analysis of Systemslume 3440 of_ecture Notes
in Computer Scien¢gpages 93—-107. Springer-Verlag, 2005.

[20] S. Qadeer and D. Wu. KISS: Keep it simple and sequeritiaPLDI
04: Programming Language Design and Implementatjgeges 14—
24. ACM Press, 2004.

[8

—_

[9

—

[21] J. Queille and J. Sifakis. Specification and verificatas concurrent
systems in CESAR. IFifth International Symposium on Program-
ming Lecture Notes in Computer Science 137, pages 337-351.
Springer-Verlag, 1981.

[22] Stuart Russell and Peter Norvidhrtificial Intelligence: A Modern
Approach (Second EditionPrentice Hall, 2002.

[23] Stefan Savage, Michael Burrows, Greg Nelson, Patroka®/arro,
and Thomas Anderson. Eraser: a dynamic data race detector fo
multithreaded programsACM Transactions on Computer Systems
15(4):391-411, 1997.

[24] Hemanthkumar Sivaraj and Ganesh Gopalakrishnan. éamialk
based heuristic algorithms for distributed memory modeic&ing.
Electronic Notes in Theoretical Computer Scigrg®(1), 2003.

A. Appendix
A.1 Definitions

The number of preemptions i, denoted byNP(«), is defined
recursively as follows:

NP(t)=0

NP(«
NP<a~t>—{Np§a§ +1

The happens-before relation of an executiondenoted by
HB(«), is the transitive closure of the relation

{G,9) e {l,...,]al} x {1,...,]al} |
(i<jnti=tj)V
(i <jAV(al) = V(ialj) A V(al;) € SyncVar) }.

The executiony is race-free if and only if for alf, 5 € [1, |«|], if
i< jandV(al;) = V(al;) then(i,j) € HB(a).

We assume that there is a special synchronization event vari
able e; corresponding to each thread The first operation of
blocks one; until e; is signaled by the parent ¢fin the operation
that creates. Thus, it is guaranteed that in any execution the first
operation of any thread accesses a synchronization verighr-
thermore, we also assume that a thread terminates by pémfiprm
as its final operation a block an that is never signaled. Thus, itis
also guaranteed that in the final state of any terminatingugian
all threads are accessing a synchronization variable.

Consider an execution, a threadt, and a data variablé.
We definelast(c,t) to be 0 if a(i) # ¢ for all ¢ € [1,|«af].
Otherwise, we defindast(c,t) to be the numbet € [1,|«]
such that (1)a(:) = ¢, (2) V(a|s) € SyncVar, and (3) for all
Jj € (i,]al], if a(j) = tthen V(a|;) € DataVar. We define
last(a, d) to be0 if V(a|;) # dforalli € [1,|al]. Otherwise,
we definelast(a,d) to be the number € [1,|a|] such that
V(als) =dand V(a|;) # dforall j € (4, |c]].

A pair (a, t) is araceif a is race-free NV (a, t) € DataVar,
and there exists € [1,|a|] such thati = last(a, NV (o, 1)),
a(i) # t, and(z, last(a, t)) € HB(x).

An executionx is k-nice if the following conditions hold:

1. Foralli € [1,|al), eithera(i) = a(i + 1) or V(al|i+1) €
SyncVar.
2. There are exactli threads in the set

{t | t € enabled(a) Nt # L(a) N NV (a,t) € DataVar}.

if t = L(a) V L(a) € enabled ()
otherwise

An observable execution &nice. An execution isiceif it is k-
nice for somek > 0. A race(a,t) is k-nice if « is k-nice and
a(|a]) = t. Arace isniceif it is k-nice for some: > 0.

A.2 Proofs
LEMMA 1. If o is a nice executiony - t is a race-free execution,

and « - t - § is an execution, then there is a nice and race-free

execution3 equivalent tax - ¢ such thatVP(3-§) < NP(a-t-9).

PROOFIf V(a-t) € SyncVar ora(|a|) = t, theng = a-tis nice
and we are done. Otherwidé(a - t) € DataVar anda(|a|) # t.
Then, there exists € [1, |a|) such thai(i) = ¢. Letl € [1, |a])
be such thaty(l) = t anda(j) # tforall j € (I,|«a|]. Lety
be the nonempty sequence such that= «f; - v. Sincea - t is
race-free and/ (« - t) € DataVar, we know thata|; - ¢ - is an
execution equivalent tex - t. We letg3 = af; - ¢ - v. We know
that both~(1) # t and~(]y|) # t. If t € enabled(a|; - t),
we have NP(3) = NP(ali -). If t € enabled(ca|; - t), we
have NP(3) < NP(al; - 7). In either case, we hav®P(3) <
NP(a|; - v) = NP(a). In addition, sincen(|a|) # t andt
enabled(a), we haveNP(a) < NP(« - t). ThereforeNP((3)
NP(a - t). If § is empty, we are done. Otherwise, fet= w -
for somed’. We have NP(3) < NP(B3-u) < NP(B) + 1
and NP(« - t) < NP(a-t-u) < NP(a-t)+ 1. Therefore
NP(B-u) < NP(a-t-u). SinceB - u is equivalent tax - ¢ - u, we
conclude thatVP (3 - u - §") < NP(a-t-u-4§'). 0

c>4/\m|

LEMMA 2. Arace-free execution is equivalent to a nice race-free
executions such thatVP(3) < NP(«).

PROOF.Let |a|] = n. We construct a sequence of executions

B1,...,0Bn by repeated applications of Lemma 1. We &t =
a(1). For eachi € [1,n), we obtaing;+1 is obtained by invoking
Lemma 1 witha = 8;,t = a(i + 1), andd = a(i + 2) - - - a(n).
We letg = 3,,.0

THEOREM2. (Restatement)A terminating race-free executian
is equivalent to an observable terminating race-free etienuy3
such thatVP(8) < NP(«).

PROOF.By Lemma 2, we know thaty is equivalent to a nice
race-free executior such thatNP(8) < NP(a). Sincec is
terminating, so is3. If 3 is k-nice for k& > 0, then there exists
i € [1,|8]) such that3(i) # B8(i + 1) and NV (8], 8(i)) €
DataVar. Since g is nice, we know that threa@(:) is never
scheduled after step ThereforeNV (3, 3(:)) € DataVar and
B(t) € enabled () which is a contradiction. Thereforeis 0-nice.
|

LEmMMA 3. If there is araceg(«, t) such thatx is nice, then there is
a nice race(3, u) such thatNP(3) < NP(«).

PROOF.Let NV (a,t) = d. Sinced € DataVar and the first
action of any thread accesses a synchronization variahéze t
existsi € [1, |a]] such thatu(i) = ¢. Letl € [1, |«|] be such that
a(l) = tand forallj € (I, |«|], we havex(j) # ¢. Since(a, t)
is a race, we know thdtst(c, d) € [1, o, a(last(a, d)) # t and
thereforel # last(a, d). There are two cases:

(Il < last(a, d)): Sincea is nice andx(l) =t # a(l+1), we have
V(aliy1) € SyncVar. Since V(ausi(a,0)) € DataVar, the
interval (I, last(c, d)) is nonempty. Suppose € (I, last(a,d))
is such thatV(a|n+1) = d and for alli € (I,n], we have
V(al) #d.LetB=ali-t-a(l+1) - a(n) andu = a(n+1).
Then g3 is nice andNP(3) < NP(«a|,) < NP(a). We have
NV (a|i,t) = NV (a,t) = d. Therefordlast(5,d) = [+ 1. Since
NV (a|n,u) = d, we haveNV (8,u) = d. Since V(8|;+1) €
DataVar, (1 + 1) = t, anda(i) # tforalli € [I + 1,n|, we
have(l+1, last(83,u)) ¢ HB((). Sincex is nice andV (a|n+1) €
DataVar, we havea(n) = a(n + 1) = u and consequently
B(|8]) = u. Therefore(3, u) is a nice race.

(I > last(a,d)): Let 8 = «a;. Sinceg is a prefix ofa, we know
that 3 is nice, 3(|8]) = t, and NP(8) < NP(«). Since(a,t)
is a race, we know thatlast(«, d), last(a,t)) ¢ HB(«). Since
HB(B8) C HB(«), we have(last(a,d), last(a,t)) & HB(S).
We havelast(a,d) = last(83,d) and last(a,t) = last(B,1).
Therefore(last(3, d), last(8,t)) ¢ HB(S). Finally NV (8,t) =
NV (a,t) = d, and we get thafs3, t) is a nice raced

We define a partial ordex on nice executions as follows. Let
be a nice execution angdbe the unique longes$knice prefix ofa.
Let « = v - 4. Similarly, Leto’ be a nice executiony’ be the
unique longeso-nice prefix ofa’, anda’ =+’ - §'. Now, o < o’
iff [y > 7| vV |v[= [¥'[Ald] < [8"]. For terminating programs,
the relation< is well- founded that is, for every execution there
is a finite sequence,, < --- < a1 such thatny = o anda, is
0-nice.

LEMMA 4. If there is ak-nice race(c,t) for somek > 0, then
there is a nice racé, u) such that3 < c« and NP(3) < NP(a).

PROOF. Let v be the unique longedt-nice prefix of a. Since
k > 0, we know thaty is a strict prefix ofa. Let! = |y| and
z = a(l). If (v,x) is race, then we le8 = v andu = z. Since
z = a(l) = v(), (v,z) is a nice race. Sincg is 0-nice, we
haves < a. Sinceg is a prefix ofa, we haveNP(5) < NP(a).
Otherwise, we have thdty, z) is not a race. Letl = NV (v, z).

Thend € DataVar, z # o(i) forall ¢ € (I, |a], andz # t. There
are two cases:

G € (Laf]l.V(al;) = d): Letn € [, |a|) be such that
V(alnt1) = d and V(alj) # dforall j € (I,n]. Let
B=v-xz-all+1)--aln)andu = a(n + 1). Theng is

nice andNP(8) < NP(a|,) < NP(«a). Moreover,y - z is a
prefix of the unique longedt-nice prefix of 3. Therefores < a.
We haveNV (a|;,z) = NV (a,z) = d. Thereforelast(3,d) =
I+ 1. SinceNV (a|n,u) = d, we haveNV (3,u) = d. Since
V(Bli+1) € DataVar, 3(1 + 1) = =z, anda(:z) # =z for all
1 € [l +1,n], we have(l + 1, last(8,u)) ¢ HB(B). Sincex is
nice andV (a|n+1) € DataVar, we havex(n) = a(n+1) = u
and consequentlg(|8|) = u. Therefore(3, u) is a nice race.

(Vi € (Llaf].V(al;) # d):LetB =y -z a(l+1) - alaf)
andu = ¢. Thenp is nice andNP(3) < NP(«a). Moreover,
~ -z is a prefix of the unique longestnice prefix of3. Therefore
B < a.lete = NV(a,t) = NV(8,t). There are two cases:
d = eord # e. Supposel = e. SinceV (8|;+1) € DataVar,
Bl+1) =z a@) # zforali € [l +1,|a|], andz # wu,
we have(l + 1, last(8,u)) ¢ HB(B). Supposed # e. Since
(a, t) is a race, we know thatlast(a, €), last(a, t)) ¢ HB(a).
Since 8 contains a single additional event owerand this event
is an access of variablé # e by threadz # u, we get that
(last(B, e), last(B,t)) ¢ HB(3). Therefore(3, u) is arace. Since
~ is a strict prefix ofx, we know thal < |«|. Therefore3(|3]) = u
and we get thaf3, v) is a nice raced

THEOREM3. (Restatement)lf there is a race(«, t), then there is
an observable racégs, u) such thatVP(3) < NP(«).

PROOF.Suppos€«, t) is a race. Sincer is race-free, by Lemma 2
we get a nice race-free executiah such thatNP(a’) < NP(«)

and(c’, t) is a race. From the well-foundedness-ofind repeated
applications of Lemma 4, we obtain a finite sequence of nicesa

(Blvtl)v DR (antn) SUCh tha(ﬁhtl) = (O/7t)v Bn < - =< Blv
NP(B3n) < --- < NP(B1), andg, is 0-nice. We let3 = 3, and
u=t,. 0

