CS124 Lecture 3 Spring 2011

Graphs and modeling

Formulating a simple, precise specification of a computatigroblem is often a prerequisite to writing a
computer program for solving the problem. Many computatigoroblems are best stated in terms of graphs. A
directed graphG(V,E) consists of a finite set of verticds and a set of (directed) edges or akes An arc is an
ordered pair of vertice$v,w) and is usually indicated by drawing a line betweeandw, with an arrow pointing
towardsw. Stated in mathematical terms, a directed grg¥, E) is just a binary relatiofE CV x V on a finite set
V. Undirected graphs may be regarded as special kinds oftddt@graphs, such théb,v) € E < (v,u) € E. Thus,
since the directions of the edges are unimportant, an wtdulegraphG(V, E) consists of a finite set of verticas
and a set of edgés, each of which is an unordered pair of vertidesv}.

Graphs model many situations. For example, the verticegph can represent cities, with edges representing
highways that connect them. In this case, each edge mighhale an associated length. Alternatively, an edge
might represent a flight from one city to another, and eacle edlight have a weight which represents the cost of the
flight. A typical problem in this context is to compute shaitpaths: given that you wish to travel from city X to
city Y, what is the shortest path (or the cheapest flight saledd We will find very efficient algorithms for solving
these problems.

A seemingly similar problem is the traveling salesman peobl Supposing that a traveling salesman wishes to
visit each city exactly once and return to his starting pdimwhat order should he visit the cities to minimize the
total distance traveled? Unlike the shortest paths proplewever, this problem has no known efficient algorithm.
This is an example of an NP-complete problem, and one we tuillystowards the end of this course.

A different context in which graphs play a critical modelingle is in networks of pipes or communication
links. These can, in general, be modeled by directed grajifiscapacities on the edges. A directed edge from
to v with capacityc might represent a cable that can carry a flow of at nwosalls per unit time fromutov. A
typical problem in this context is the max-flow problem: give communications network modeled by a directed
graph with capacities on the edges, and two special verie@ssources and a sink — what is the maximum rate
at which calls fronstot can be made? There are ingenious techniques for solving tiess of flow problems.

In all the cases mentioned above, the vertices and edges gfdbh represented something quite concrete such
as cities and highways. Often, graphs will be used to reptesere abstract relationships. For example, the vertices

of a graph might represent tasks, and the edges might repnesecedence constraints: a directed edge fudimv

3-1

3-2

says that task must be completed beforecan be started. An important problem in this context is saheg: in
what order should the tasks be scheduled so that all thegeace constraints are satisfied. There are extremely fast

algorithms for this problem that we will see shortly.
Representing graphs on the computer

One common representation for a grapfV,E) is theadjacency matrix Suppose/ = {1,---,n}. The adja-
cency matrix forG(V, E) is ann x n matrix A, wherea; j = 1 if (i, j) € E anda; ; = 0 otherwise' The advantage of
the adjacency matrix representation is that it takes cahsitae (just one memory access) to determine whether or
not there is an edge between any two given vertices. In tretbas each edge has an associated length or a weight,
the adjacency matrix representation can be appropriatelyifired so entrya; ; contains that length or weight instead
of just a 1. The disadvantage of the adjacency matrix reptaien is that it require€(n?) storage, even if the
graph has as few &(n) edges. Moreover, just examining all the entries of the matould requireQ(n?) steps,
thus precluding the possibility of linear time algorithnws §raphs witho(n?) edges (at least in cases where all the
matrix entries must be examined).

An alternative representation for a gra@V, E) is theadjacency listepresentation. We say that a verteis
adjacent to a vertekif (i, j) € E. The adjacency list for a verteixis a list of all the vertices adjacent tdin any
order). To represent the graph, we use an array ofrstoerepresent the vertices of the graph, andithelement of
the array points to the adjacency list of ffevertex. The total storage used by an adjacency list repraen of a
graph withn vertices andn edges i<O(n+ m). The adjacency list representation hence avoids the disaalye of
using more space than necessary. We will use this repreiggntar all our graph algorithms that take linear or near
linear time. A disadvantage of adjacency lists, howevehas determining whether there is an edge from vertex
vertex j may take as many assteps, since there is no systematic shortcut to scanningdjaeency list of vertek
For applications where determining if there is an edge betwe/o vertices is the bottleneck, the adjacency matrix

is thus preferable.

Depth first search

There are two fundamental algorithms for searching a graj@mth first search and breadth first search. To

better understand the need for these procedures, let usnentige computer’s view of a graph that has been input

1Generally, we use eitheror |V| for the number of nodes in a graph, amdr |E| for the number of edges.

3-3

into it, in the adjacency list representation. The compsitgew is fundamentallyjfocal to a specific vertex: it can
examine each of the edges adjacent to a vertex in turn, bgriimg its adjacency list; it can also mark vertices as
visited. One way to think of these operations is to imaginglaing a dark maze with a flashlight and a piece of
chalk. You are allowed to illuminate any corridor of the mareanating from your current position, and you are
also allowed to use the chalk to mark your current locatioth@nmaze as having been visited. The question is how
to find your way around the maze.

We now show how the depth first search allows the computer tbitsnway around the input graph using just
these primitives. (We will examine breadth first search ggr

Depth first search is technique for exploring a graph usingaeksas the basic data structure. We start by
defining a recursive procedure search (the stack is imptidite recursive calls of search): search is invoked on a

vertexv, and explores all previously unexplored vertices reachéoimv.

Procedure searchi(
vertexv
exploredy) =1
previsit()
for (vw) € E
if explored{v) = 0 then searchy)
rof
postvisit{)
end search

Procedure DFSG(V, E))
graphG(V,E)
for eachv eV do
exploredy) :=0
rof
for eachv eV do
if explored{) = 0 then search
rof
end DFS

By modifying the procedures previsit and postvisit, we caa DFS to solve a number of important problems,
as we shall see. It is easy to see that depth first search@kés+ |[E|) steps (assuming previsit and postvisit take
O(1) time), since it explores from each vertex once, and the eaptm involves a constant number of steps per
outgoing edge.

The procedure search defines a tree (** well, actualfgrast but let's not worry about that distinction right

now **) in a natural way: each time that search discovers a nestex, sayw, we can incorporatev into the tree

3-4

by connectingw to the vertexv it was discovered from via the edge w). The remaining edges of the graph can be

classified into three types:

e Forward edges - these go from a vertex to a descendant (btechild) in the DFS tree.
e Back edges - these go from a vertex to an ancestor in the DES tre

e Cross edges - these go from “right to left"— there is no amaéstlation.

Remember there are four types of edges; the fourth is the ‘@dges”, which were edges that led to a new
vertex in the search.

Question: Explain why if the graph is undirected, there can be no crdges.

One natural use of previsit and postvisit could each keepuateo that is increased each time one of these
routines is accessed; this corresponds naturally to amatidime. Each routine could assign to each vertex a
preorder number (time) and a postorder number (time) bagetthe counter. If we think of depth first search as
using an explicit stack, then the previsit number is assigmben the vertex is first placed on the stack, and the
postvisit number is assigned when the vertex is removed ftwrstack. Note that this implies that the intervals
[preorder(u), postordefu)] and[preorder(v), postordefv)| are either disjoint, or one contains the other.

An important property of depth-first search is that the cot#®f the stack at any time yield a path from the root
to some vertex in the depth first search tree. (Why?) Thiswallas to prove the following property of the postorder

numbering:
Claim 3.1 If (u,v) € E then postord€iu) < postordefv) <= (u,v) is a back edge.

Proof: If postordefu) < postordefv) thenv must be pushed on the stack befareDtherwise, the existence
of edge(u,v) ensures that must be pushed onto the stack befarean be popped, resulting ipostordefv) <
postordefu) — contradiction. Furthermore, sineecannot be popped befotg it must still be on the stack whean
is pushed on to it. It follows thatis on the path from the root toin the depth first search tree, and thereftugr)
is a back edge.

The other direction is trivial.]

Exercise: What conditions to the preorder and postorder numbers fesatisfy if (u,v) is a forward edge? A

cross edge?
Claim 3.2 G(V,E) has a cycle iff the DFS of @, E) yields a back edge.

Proof: If (u,v) is a back edge, thefu,Vv) together with the path fromto uin the depth first tree form a cycle.

3-5

Graph is explored in preorder ABCDEF.
Postorder is DCBAFE.
DB is a back edge.
AD is a forward edge.
EC is a cross edge.
Figure 3.1: A sample depth-first search.

Conversely, for any cycle i(V,E), consider the vertex assigned the smallest postorder nuniten the
edge leaving this vertex in the cycle must be a back edge byn@4l, since it goes from a lower postorder number

to a higher postorder number. [
Application of DFS: Topological sort

We now suggest an algorithm for the scheduling problem desttipreviously. Given a directed gra@tV,E),
whose vertice¥ = {v1,...V,} represent tasks, and whose edges represent precedentmaiotsisa directed edge
from u to v says that task must be completed befokecan be started. The problem of topological sorting asks: in
what order should the tasks be scheduled so that all thegeace constraints are satisfied.

Note: The graph must be acyclic for this to be possible. (Why?) @&e acyclic graphs appear so frequently

they are commonly referred to as DAGs.
Claim 3.3 If the tasks are scheduled by decreasing postorder nunttsar, dll precedence constraints are satisfied.

Proof: If G is acyclic then the DFS o6 produces no back edges by Claim 3.2. Therefore by Claim 3.1,
(u,v) € Gimplies postordefu) > postordefv). So, if we process the tasks in decreasing order by postardeber,
when taskv is processed, all tasks with precedence constraintsvifdad therefore higher postorder numbers) must
already have been processed. [

There’s another way to think about topologically sorting A Each DAG has &ource which is a vertex

with no incoming edges. Similarly, each DAG hasiak which is a vertex with no outgoing edges. (Proving this

3-6

is an exercise.) Another way to topologically order the iced of a DAG is to repeatedly output a source, remove
it from the graph, and repeat until the graph is empty. Whysdbé work? Similarly, once could repeatedly output

sinks, and this gives the reverse of a valid topological ordgain, why?
Strongly Connected Components

Connectivity in undirected graphs is rather straightfadvaA graph that is not connected can naturally be
decomposed into several connected components (Figure BES does this handily: each restart of DFS marks a

new connected component.

12 13
1 2 I ®
3 A\ \J 5
4
Q) 14
6 e Pg
d
9 10 11

Figure 3.2: An undirected graph

In directed graphs, what connectivity means is more subttesome primitive sense, the directed graph in
Figure 3.3 appears connected, since if it were an undiregriageh, it would be connected. But there is no path from
vertex 12 to 6, or from 6 to 1, so saying the graph is connectadvbe misleading.

We must begin with a meaningful definition of connectivitydimected graphs. Call two verticesandv of
a directed graplc = (V,E) connectedf there is a path fronu to v, and one fromv to u. This relation between
vertices is reflexive, symmetric, and transitive (checkd,it is anequivalence relatiomn the vertices. As such, it
partitionsV into disjoint sets, called thstrongly connected components (SC@§}he graph (in Figure 3.3 there
are four SCC'’s). Within a strongly connected componentpyepair of vertices are connected.

We now imagine shrinking each SCC into a vertex (a supemgréad draw an edge (a superedge) from SCC
X to SCCY if there is at least one edge from a vertex{no a vertex inY. The resulting directed graph has to be a

directed acyclic graph (DAG) — that is to say, it can have ndesy/ (see Figure 3.3). The reason is simple: a cycle

3-7

2-4-5 3-6

7-8-9-10-11-12

12

Figure 3.3: A directed graph and its SCC's

containing several SCC’s would merge to a single SCC, sinestwould be a path between every pair of vertices
in the SCC'’s of the cycle. Hence, every directed graph is a DAB SCC's.

This important decomposition theorem allows one to thinkcofinectivity information of a directed graph
in two levels. At the top level we have a DAG, which has a usefihple structure. For example, as we have
mentioned before, a DAG is guaranteed to have at leassouge(a vertex without incoming edges) andsiak
(a vertex without outgoing edges). If we want more details,amuld look inside a vertex of the DAG to see the
full-fledged SCC —a completely connected graph— that lieseth

This decomposition is extremely useful and informatives ithus very fortunate that we have a very efficient
algorithm, based on DFS, that finds the strongly connectetbonentsn linear time! We motivate this algorithm

next. Itis based on several interesting and slightly sytribgperties of DFS:

Property 1: If DFS is started at a vertex then it will get stuck and restarted precisely when alliced in the SCC
of v, and in all the SCC'’s that are reachable from the SC@, @fre visited. Consequently, if DFS is started at a
vertex of a sink SCC (a SCC that has no edges leaving it in the DRSCC's), then it will get stuck after it visits

3-8

precisely the vertices of this SCC.

For example, if DFS is started at vertex 11 in Figure 3.3 (#exein the only sink SCC in this graph), then it will visit
the six vertices in the sink SCC before getting stuck: vedit2, 10, 9, 7, 8. Property 1 suggests a way of starting a
decomposition algorithm, by finding the first SCC: start DESrf a vertex in a sink SCC, and, when stuck, output
the vertices that have been visited. They form an SCC!

Of course, this leaves us with two problems: (A) How to guegsrtex in a sink SCC, and (B) how to continue
our algorithm by outputting the next SCC, and so on.

Let us first face Problem (A). It turns out that it will be easiet to look for vertices in a sink SCC, but instead

look for vertices in asourceSCC. In particular:

Property 2: The vertex with the highest postorder number in DFS (thahis yertex where the DFS ends) belongs
to a source SCC.

The proof is by contradiction. If Property 2 were not not traedv is the vertex with the highest post-order
number, then there would be an incoming edgev) with u not in the SCC of andw in the SCC ofv. If u were
searched before thenu clearly has a higher postorder numberulvere searched aftetr then sincau does not lie
in v's SCC, it must not be searched untils popped from the search stack, so agamust have a higher postorder

number tharv.

The reason behind Property 2 is thus not hard to see: if tises@ ISCC “above” the SCC of the vertex where the
DFS ends, then the DFS should have ended in that SCC (reathitiger by restarting or by backtracking).

Property 2 provides an indirect solution to Problem (A). €ider a graplG and thereversegraphGR —G with
the directions of all edges reverse@R has precisely the same SCC’s@gwhy?). So, if we make a DFS iGR,
then the vertex where we end (the one with the highest pastrpbelongs to a source SCC®R —that is to say, a
sink SCC ofG. We have solved Problem (A).

You should think about finding an example to show that theofailhg is not true: the vertex with the smallest
postorder number in a DFS belongs to a sink SCC.

Onwards to Problem (B). How does the algorithm continue #fieefirst sink component is output? The solution
is clear: delete the SCC just output frd®¥, and make another DFS in the remaining graph. The only profxe
this would be a quadratic, not linear, algorithm, since weilldaun anO(m) DFS algorithm for up to each @(n)
vertices. How can we avoid this extra work? The key obsemudbiere is that we do not have to make a new DFS in

the remaining graph:

Property 3: If we make a DFS in a directed graph, and then delete a sour€db@is graph, what remains is a

DFS in the remaining graph (the pre-order and post-orderbausimay now not be consecutive, but they will be of

3-9

the right relative magnitude).

This is also easy to justify. We just imagine two runs of theSD#gorithm, one with and one without the source
SCC. Consider a transcript recording the steps of the DF&i#ign. It is easy to see that the transcript of both
runs would be the same (assuming they both made the sameslufizvhat edges to follow at what points), except
where the the first went through the source SCC.

Property 3 allows us to use induction to continue our SCCrilyn. After we output the first SCC, we can use
the same DFS information fro@R to output the second SCC, the third SCC, and so on. The fudfiglgn can thus

be described as follows:
Step 1: Perform DFS orGR.

Step 2: Perform DFS or(, processing unsearched vertices in the order of decreasisigrder numbers from the

DFS of Step 1. At the beginning and every restart pridetv SCC: When visiting vertexv, print v.

This algorithm is linear-time, since the total work is rgglist two depth-first searches, each of which is linear time.
Question: (How does one constru@GR from G?) If we run this algorithm on Figure 3.3, Step 1 yields thédieing
order on the vertices (decreasing postordeits DFS): 7, 9, 10, 12, 11, 8, 3, 6, 2, 5, 4, 1. Step 2 now produtes t
following output: New SCC: 7, 8, 10, 9, 11, 12, New SCC: 3, 6\\&CC: 2, 4, 5, New SCC: 1.

Incidentally, therds more sophisticated connectivity information that one carniveé from undirected graphs.
An articulation pointis a vertex whose deletion increases the number of connecieghonents in the undirected
graph. In Figure 3.2 there are 4 articulation points: 3, &r& 13. Articulation points divide the graph inacon-
nected componen(the pieces of the graph between articulation points)lamtyje edgesBiconnected components
are maximal edge sets (of at least 2 edges) such that any tyes edh the set lie on a common cycle. For example,
the large connected component of the graph in Figure 3.Zasmnthe biconnected components on edges between
vertices 1-2-3-4-5-7-8 and 6-9-10. The remaining edges3geand 8-11 are bridge edges; they disconnect the

graph. Not coincidentally, this more sophisticated andlsutmnnectivity information can also be captured by DFS.
Putting in Into Practice

Suppose you are debugging your latest huge software proffnaanmajor industrial client. The program has
hundreds of procedures, each of which must be carefullgdestr bugs.

You realize that, to save yourself some work, it would be lesanalyze the procedures in a particular
order. For instance, if procedure Wri@heck() calls GeCheckNumber(), you would probably want to test
GetCheckNumber() first. That way, when you look for the bugs in Wir@aeck(), you do not have to worry

about checking (or re-checking) GEheckNumber(). (Let’s ighore the specious argument that if tlegeeno bugs,

3-10

you might avoid testing and debugging GéheckNumber() altogether by starting with Wriil€heck().)

You can easily generate a list of what procedures each puoeeadlls with a single pass through the code. So
here’s the problem: given your program, determine whatdgaleeyou should give your testing and debugging team,
so that a procedure will be debugged only after anythinglis eell be debugged.

Go through the program, creating one vertex for each praeedmtroduce a directed edge from vert@xo
vertexA if the procedureéA callsB. This directed edge represents the fact Biatust be debugged befofe We call
this graph theprocedure graph If this graph is acyclic, then the topological sort will giyou a valid ordering for
the debugging.

What if the graph is not acyclic? Then your program usagual recursion that is, there is some chain of
procedures through which a procedure might end up callselfitFor example, this would be the case if procedure
A calls procedure B, procedure B calls procedure C, and pireeC calls procedure A. A topological sort will
detect these cycles, but what we really want is a list of th&inte instances of mutual recursion are harder to test
and debug.

In this case, we should use the strongly connected compeidgurithm on the procedure graph. The SCC
algorithm will find all the cycles, showing all instances ofitmal recursion. Moreover, if we collapse the cycles in
the graph, so that instances of mutual recursion are tresgazhe large super-procedure, then the SCC algorithm
will provide a valid debugging ordering for all the procedsrin this modified graph. That is, the SCC algorithm
will topologically sort the underlying SCC DAG.

