Intro to PID Control

Don David
CIRES / CHEM Instrument Facility
Univ. of Colorado Boulder

CHEM-5161 / CHEM-5181 Joint Labview Lectures - Fall 2013

Manual Process Control Loop

Manual Mode: You adjust the output.

Basic Automatic Process Control Loop

Automatic Mode: A control algorithm manipulates the output to hold the process variable at the setpoint.

Some Types of Control Algorithms

Type	Use	Comments
On-Off	Ovens Water level HVAC	Simplest Hysteresis Poor accuracy
PID*	General purpose Linear processes	Relatively easy to use Well known method Highly adaptable Good accuracy
Custom	Critical industrial processes Nonlinear processes	Specific Requires detailed info Complex Best accuracy

^{*}A PID controller has Proportional, Integral, & Derivative terms which must to be tuned for each application.

PID Pseudocode

```
previous_error = 0
integral = 0
Start:

error = setpoint – input
integral = integral + error*dt
derivative = (error – previous error)/dt
output = Kp*error + Ki*integral + Kd*derivative
previous_error = error
wait (dt)
Goto Start
```

Not all three terms need be used. PI controllers are most common.