Aim 31: What are the properties of a Rhombus and a Rectangle?

Do Now:

- 1) A parallelogram that is equilateral is called a rhombus
- 2) A parallelogram that is equiangular is called a <u>rectange</u>

Rhombus (Equilateral Parallelogram)

If a rhombus is a parallelogram and equilateral, what can we say about the 4 triangles below?

A rhombus has all of the properties of a parallelogram plus:

- · all sides are 2
- · diagonals are I
- · diagonals blsect the angle:

The 4 \triangle 's are \bigcirc by \bigcirc by \bigcirc \bigcirc .

Rectangle (Equilangular Parallelogram)

A rectangle has all of the properties of a parallelogram plus:

- · all right angles
- diagonals are =

1. In rhombus ABCD, AB = 2x - 2 and BC = x + 8. Find the perimeter of ABCD. All sides = in a rhombus.

BC=10+8=18

2. In rectangle ABCD, diagonals AC and BD intersect at E. If and AD = 2x. Find the length of CD.

aDE=AC

- 3. In rhombus PQRS, diagonals PR and QS intersect at T. If PR = 6 and QS = 8, find the perimeter of rhombus PQRS.

Diag. bisect each other & are Use Pyt. Thm. to Find PQ. Perimeter= 5×4=120

4. Given: ABCD is a rhombus; $\overline{MB} \cong \overline{NB}$

Prove: $\triangle AMD \cong \triangle CND$

Reasons

Statements A)AD ECD

3) × A = ×C AB = BC

SAB-MB = BC-NB AM = CN

GA AMD = DCND

2) All sides of rhombus are = 3)Opp. xs of a rhom.au =

4) Same as #2

5) Segment Subtraction

5. Given: Rectangle ABCD, $\overline{DE} \cong \overline{CF}$

Prove: $\triangle ADF \cong \triangle BCE$

Statements

E F Reasons

2) Opp. sides of rect. are = 3) A rect. has = rt. xs. 4) Reflexive 5) Segment Add.

6. Given: XYRS is a rectangle; M is the midpoint of \overline{YR} .

Prove: **AXMS** is isosceles

Statements

Reasons

7. Given: PROE is a rhombus, \overline{SEO} , \overline{PEV} , $\angle SPR \cong \angle VOR$

Prove: $\overline{SE} \cong \overline{EV}$

Statements	Reasons
a) PE = EO	2) All sides of arh. are =
31=22	3) Vertical Ls au =
4×3=×4	4) Opp. 45 of a rh. are =
5) 45PR-43 = 4VOR-4	4 5) Angle Subtraction
	6) ASA
6) DSEP = DOEV	01/13/1
7) SE = EV	TICPCTC

8. In rectangle ABCD, diagonals AC and BD intersect at E. If AE = 20, and BD = 2x + 30, find x.

HW

9. In rhombus ABCD, diagonal BD is drawn. If m≮ ABD = 30°, find m≮ BCD.

HW

10. In rectangle ABCD shown below, \overline{AC} and \overline{BD} are diagonals. If m<1 = 49, find m<ADB.

HW

11. The degree measures of two opposite angles of a parallelogram are represented by 3x + 40 and x + 70. Is the parallelogram a rectangle? Justify your answer.

12. PQRS is a parallelogram. $m \neq SQP = 4x - 2$, $m \neq QSR = 3x + 6$, and $m \neq QPR = 8x - 4$. Solve for x. What specials type of parallelogram is PQRS? Justify your answer.

13. The length of a rectangle is seven more than the width.

A diagonal is one more than twice the width.

Find the width, length, perimeter and area of the rectangle using an algebraic solution.

$$x^{2} + (x+7)^{2} = (2x+1)^{2}$$

$$X^{2} + X^{2} + 14x + 49 = 4x^{2} + 4x + 1$$

$$2x^{2} + 14x + 49 = 4x^{2} + 4x + 1$$

$$0 = 2x^{2} - 10x - 48$$

$$0 = x^{2} - 5x - 24$$

$$(x-8)(x+3)$$

$$x=8 | x\neq -3$$